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Abstract: Advanced plant phenotyping techniques to measure biophysical traits of crops are helping
to deliver improved crop varieties faster. Phenotyping of plants using different sensors for image
acquisition and its analysis with novel computational algorithms are increasingly being adapted to
measure plant traits. Thermal and multispectral imagery provides novel opportunities to reliably
phenotype crop genotypes tested for biotic and abiotic stresses under glasshouse conditions. However,
optimization for image acquisition, pre-processing, and analysis is required to correct for optical
distortion, image co-registration, radiometric rescaling, and illumination correction. This study
provides a computational pipeline that optimizes these issues and synchronizes image acquisition
from thermal and multispectral sensors. The image processing pipeline provides a processed stacked
image comprising RGB, green, red, NIR, red edge, and thermal, containing only the pixels present
in the object of interest, e.g., plant canopy. These multimodal outputs in thermal and multispectral
imageries of the plants can be compared and analysed mutually to provide complementary insights
and develop vegetative indices effectively. This study offers digital platform and analytics to monitor
early symptoms of biotic and abiotic stresses and to screen a large number of genotypes for improved
growth and productivity. The pipeline is packaged as open source and is hosted online so that it can
be utilized by researchers working with similar sensors for crop phenotyping.

Keywords: thermal; multispectral; image processing; co-registration; illumination correction;
segmentation

1. Introduction

Plant phenotyping characterises growth and biophysical traits at different plant de-
velopment stages [1]. Conventional phenotyping methods (e.g., visual observations and
destructive sampling) are prone to operator bias, time-consuming, and often destruc-
tive [2,3]. Image-based high-throughput plant phenotyping is a promising alternative
to conventional phenotyping and has been widely used to measure plant morphological
and agronomical traits. Imaging systems, including thermal and multispectral sensors,
provide a non-invasive and non-destructive method for detecting emitted and reflected
electromagnetic radiation from plant canopies to study plant traits such as growth, biomass
accumulation, and stress symptoms [4,5].

Optical images can be used to measure different plant traits, including leaf area,
height, canopy biomass, and yield [6]. Multispectral imaging is widely used to extract
detailed information about crop attributes by capturing spectral data cubes, consisting of
two-dimensional images under different wavelengths [7]. Mathematical combinations of
spectral wavebands are often used to create vegetative indices (VIs), such as Normalized
Difference Vegetation Index (NDVI) [8] and Enhanced Vegetation Index (EVI) [9], which
are used to estimate green biomass [10,11]. Similarly, Normalized Difference Red-Edge
(NDRE) [12] and Red-edge Chlorophyll Index (RCI) [13,14] are used to predict chlorophyll
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concentration in plant tissues [15]. Multispectral imaging processing and machine learning
techniques have also been used to detect abiotic and biotic stresses in plants, such as root
water stress [16,17], and tomato spotted wilt virus and powdery mildew [18].

Thermal imaging can be used to monitor subtle changes in the temperature of plant
canopies over different plant growth stages and in response to environmental conditions.
Unlike multispectral imaging, thermal imaging measures the emitted radiation from plants,
thereby not requiring an illumination source [19]; hence, thermal sensing can be easily
employed at night to observe diurnal changes in plants, thereby enabling study of criti-
cal plant physiological processes such as diurnal water loss due to transpiration [20,21].
Moreover, thermal images can detect subtle variations in plant temperature due to water
stress. The temperature of plants has been shown to increase long before the appearance of
chlorotic or necrotic patches in response to disease. Currently, thermal imagery is widely
used for irrigation scheduling [22], detecting stress in canopies due to pathogens [23], heat
stress, and stomatal conductance [24,25].

Vieira and Ferrarezi [26] used a handheld thermal camera to determine water stress
and assess the water potential of citrus plants growing under glasshouse conditions. In
another study by Hu, et al. [27], thermal imaging was combined with a back propagation
neural network to compare predictions of Infrared Crop Water Stress Index (ICWSI) with
yield. Grant, Chaves and Jones [24] applied thermal imaging under a controlled environ-
ment to study the reaction of plants (grapevines, beans, and lupins) under irrigated and
non-irrigated conditions. The study observed a significant correlation between temperature
and stomatal conductance; however, it also highlighted potential limitations of thermal
imaging, such as inaccuracy in temperature values, time-consuming data analysis, and a
lack of reliable references to calibrate temperature.

Thermal imaging paired with multispectral imaging provides a dimensional modality
to study the physiological response of plants to stress [1]. For instance, thermal images can
detect subtle temperature changes, while multispectral images provide complementary
information on the presence of any biotic stress (observed from colour change), and crop
biomass [28–30]. Further, specific technical constraints of unimodal datasets can be resolved
through multimodal data fusion. For example, thermal imaging is prone to the temperature
of in-scene background targets when measuring plant temperature. The fusion of thermal
and spectral imaging enables segmentation algorithms to mask background thermal noise
and extract pure thermal pixels from plants [1]. Leinonen and Jones [25] combined images
from thermal, red, and NIR bands, which were utilised to separate the plants from the
background soil. Their study suggested that the co-registration of visible and thermal
images followed by the classification of pixels in the visible spectrum is essential for
accurately profiling canopy temperature. Stutsel, et al. [31] used thermal cameras to see
variation in temperature of tomato plants under salinity stress. Pixel information from
the green–red vegetation index was derived from RGB images and was used to outline
individual plants from the soil pixel. Bai, et al. [32] calculated Crop Water Stress Index
(CWSI) and Growth Index (GI) using an image processing pipeline created for thermal
and multispectral images. The study advocated that fusion of thermal and multispectral
imaging in glasshouse conditions has potential to efficiently phenotype wheat genotypes
for drought tolerance. Cucho-Padin, et al. [33] have fused the IR and RGB images from a
thermal camera to develop software to calculate the Crop Water Stress Index (CWSI) and
Green–Red Vegetative Index (GRVI). Bulanon, et al. [34] fused thermal and visible images
for orange fruit detection using Laplacian pyramid transform and fuzzy logic. This study
highlighted the benefits image fusion compared to simply using the thermal images for
improved efficacy of fruit detection. Despite the availability of a few studies involving the
fusion of thermal imaging with other visible imaging in agriculture applications, its wide
scale adoption is still limited. To large extent, this is due to the unavailability of an image
processing tool to enable ease of data analytics.

Thermal and multispectral imaging are used in both aerial and handheld modes to
study plant growth and response to treatments under field and glasshouses conditions [35].
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Aerial imageries are beneficial for covering large areas in fields. Handheld sensors are
advantageous for studying individual plants, as the analysis of different sections of the
canopy can be performed with higher spatial resolution and accuracy [36]. However, both
multispectral and thermal imaging are impacted by various environmental factors (includ-
ing air temperature, humidity, haze, illumination intensity and direction) and, therefore,
require correction of raw images before further analysis [4,37]. This study aimed to (i)
develop an image processing pipeline to optimise thermal and multispectral imagery under
glasshouse conditions; (ii) reduce the processing time by incorporating batch processing
routines including image calibration, registration, illumination adjustment, temperature
rescaling, segmentation, extraction of vegetation indices, and temperature profiles; and (iii)
demonstrate the efficacy of the developed package to detect early symptoms of heat stress
in wheat plants.

2. Materials and Methods
2.1. Experiment Setup

The experiment was conducted in a glasshouse at the Grains Innovation Park, Hor-
sham, Victoria, Australia. Wheat plants were grown in pots to test and optimise thermal
and multispectral imagery. The growing conditions in the glasshouse were 24 ◦C and 15 ◦C
during day and night, respectively, with relative humidity ranging 55–65%. The imaging
was done under natural light conditions.

2.2. Integrated Sensor Platform and Imaging Setups

The experiment used a thermal (FLIR T640, Teledyne FLIR LLC, Wilsonville, OR, USA)
and a multispectral (Parrot Sequoia, Parrot SA, Paris, France) sensor to capture multimodal
data. The FLIR T640 sensor provides a resolution of 640 × 480 pixels and can detect
temperature ranges from −40 to 2000 ◦C. The camera provides a precision of ±2 ◦C and
thermal sensitivity of less than 0.03 ◦C at 30 ◦C. The Parrot Sequoia was used to capture
multispectral images with four spectral channels, including green, red, infrared (IR), and
red-edge bands with a resolution of 1290 × 960 pixels at 12 Mpix. The central wavelength
and wavelength width of the channels are green: 550 ± 40 nm, red: 660 ± 40 nm, red-edge:
735 ± 10 nm and NIR: 790 ± 40 nm [38]. Additionally, the multispectral sensor captures a
standard red–green–blue (RGB) colour image with a resolution of 4608 × 3695 pixels.

A special arrangement was required to pair the thermal and multispectral sensors
and provide a systematic overlap of respective field-of-views (FoVs) and pixel-to-pixel
matching between the sensors. The thermal and multispectral cameras were integrated
using a magnetic mount assembly (Figure 1). The physical pairing of the two sensors
ensured a fixed relative orientation, with the multispectral sensor providing a larger FoV to
envelop the thermal sensor’s FoV. The irradiance sensor of the multispectral camera was
positioned over the thermal camera to capture variations in local illumination levels during
imaging. Finally, a white background target with 80 percent reflectivity was placed behind
the object plane to act as a radiometric calibration target. This provided a spectral contrast
between the plant and background, which helped to digitally extract the plant and avoid
background noise. The camera setup was kept stationary, and the image acquisition was
triggered after manually placing a potted plant in front of the imaging setup.

2.3. Image Processing

A processing pipeline was developed to correct geometric distortions, image-to-image
registration, radiometric/illumination correction, and segmentation of captured images
(Figure 2). The image processing pipeline aimed to correct irregularities in the images due
to intrinsic factors (e.g., camera distortion), ambient factors (e.g., light and temperature
variations), and segment areas of interest (i.e., the plant canopies from the background). The
pipeline also aimed to process images in a batch to simplify the processing. All codes were
written in MATLAB to produce a library package which is available at https://github.com/
SmartSense-iHub/Thermal-and-Multispectral-Image-Analysis-Processing-Pipeline.git (ac-

https://github.com/SmartSense-iHub/Thermal-and-Multispectral-Image-Analysis-Processing-Pipeline.git
https://github.com/SmartSense-iHub/Thermal-and-Multispectral-Image-Analysis-Processing-Pipeline.git
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cessed on 12 November 2022). A MATLAB library Natural-Order Filename Sort (Nsort-
files) [39] was used to load thermal and multispectral images in sequential order.
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Figure 2. The image processing pipeline. The steps include image acquisition by thermal and
multispectral cameras, and image processing for distortion correction of multispectral images, image
registration (coarse and fine), radiometric scaling of thermal images, and illumination correction of
multispectral images.

2.3.1. Correction of Radial Optical Distortions in Multispectral Images

Multispectral sensors have significant radial barrel distortion and different spatial
coverage among bands that lead to misregistration effects [40]. Radial distortion occurs
when the light rays bend more towards the edges of a lens than at its optical centre, and
it is inversely proportional to the size of the lens. Radial distortion occurs if the FoV of
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a fore−optics lens is greater than the size of the image sensor that captures the image.
The inward or outward displacement of light rays before hitting the sensor from its ideal
location causes the straight lines on the image to render the shapes of an arc due to radial
distortion [41,42]. Radial distortion is the measure of the image height (Ih) divided by
object height (Oh), i.e., transverse magnification (M = Ih

Oh
) with the off-axis image distance

(r). An increase in M with r results in pincushion distortion, whereas barrel distortion is
observed when M decreases with r [41] (Figure 3a).
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Figure 3. Process of capturing images and radial optical distortion. (a) An image without distortion
(top) and image with radial barrel distortion (bottom) where r is the off-axis image distance, which
increases with distortion. (b) Extrinsic parameters (Rotation (R) and Translation (T)) are used to
convert the 3D world plane coordinates (Ow) to a 3D camera plane coordinates (Oc), which are
converted to 2D image coordinates (Oi) with the help of intrinsic parameters; Op represents the pixel
plane.

Camera calibration involves determining the intrinsic, extrinsic, and distortion param-
eters. Extrinsic parameters transfer the 3D world coordinates [X Y Z] to the 3D camera
coordinates [Xc Yc Zc] [43]. The extrinsic parameters consist of Rotation (R) and Translation
(T) (Figure 3b).

Three intrinsic parameters—principal points (optical centre), focal length, and skew
coefficient(s) convert 3D camera coordinates to 2D pixel coordinates (x, y) [43,44]. The
intrinsic parameters can be represented in a matrix as:fκ 0 0

s fy 0
cx cy 1

 (1)

where [cx cy] is the optical centre in pixels, [fx fy] is the focal length in pixels
(

F
P

)
, F

represents the focal length in world units (mm), P is the pixel in world units, and s is
defined by fx tan α, where α is the angle between the image axes.

However, after applying extrinsic and intrinsic translation, due to the radial distortion,
the camera captures the values of the distorted pixels (xd, yd) instead of the real points (x,
y). The distorted relation between the distorted points is represented as:

xd= x
(

1 + k1r2+k1r4 +k1r6
)

(2)

yd= y
(

1 + k1r2 +k1r4+k1r6
)

(3)
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where x and y are 2D undistorted pixel coordinates after the application of intrinsic projec-
tions, and r2= x2 +y2 and k1, k2, k3 are the radial distortion coefficients of the lens.

This study utilises the traditional checkerboard corner detection method [45] to remove
distortion. A 5 × 8 grid checkerboard with a 50 mm size for each square grid was used
for this process. For distortion correction, images were taken from different distances and
angles using the multispectral camera. The world points were detected from the corners to
determine the extrinsic parameters for each band (Figure 4a,b).
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Figure 4. (a) A distorted image of a checkerboard pattern from a multispectral camera and (b) extrinsic
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2.3.2. Registration of Optical, Multispectral, and Thermal Images

Image registration was used to align multiple images with geometric shifts to create a
composite view and improve the signal-to-noise ratio. Image registration matches two or
more images acquired from different viewpoints, sensors, time, or FoVs to extract valuable
information otherwise impossible from the individual images. The purpose of image
registration for this research was to align and stack the images from the multispectral and
thermal cameras, which have a different FoV (Figure 5a,b) and sensor plane offsets. The
images were aligned for analysis using a two-step image registration process, i.e., a coarse
registration followed by a fine registration.
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Figure 5. Setup for coarse image registration: (a) FoV of RGB; (b) FoV of thermal image. A white
corflute with different geometric cut-outs was placed in front of a black background with a higher
surface temperature than the corflute sheet. The cut-outs are visible in optical (RGB), multispectral,
and thermal image bands.
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Coarse registration: The coarse registration process involves identifying discernible
features using key point descriptors, filtering the image features using a saliency measure
such as M-estimator Sample Consensus (MSAC) [46], computing geometric transformation
using the filtered image features, and applying the geometric transformation on the image
pair for registration [47]. In this implementation process, an image feature-based registra-
tion [48] was applied to register optical (RGB), multispectral and thermal images coarsely.
Image features are discernible points that are common among two or more images to be
aligned.

Typically, checkerboards are used for automated corner detection (using key point
descriptors) and matching algorithms (using geometric transformation) to operate on
optical input images, e.g., for correct shifts in different spectral bands [11]. However, it is
difficult to detect black and white checkerboards in thermal images, as the temperature
between the white and black marks remains the same. Thus, a set of geometric shapes cut-
out in a corflute sheet (20 × 20 cm) was used to provide discernible and common reference
feature points. The geometric shapes cut-out was placed in front of a higher temperature
back wall. The setup was arranged to detect geometric corners as image features between
the optical, multispectral, and thermal images. The temperature difference can be observed
as corners in the geometric shapes in the thermal image, and the difference in colour acts as
corners in optical and multispectral images (Figure 5a,b).

The coarse registration step was implemented to provide rigid transformation, which
varies with the orientation of the cameras and the distance of imaging. The rigid transfor-
mation matrix includes translation and rotation, and nonrigid matrix includes shear and
scale with the matrix representations, as shown in Table 1.

Table 1. Rigid and nonrigid transformation matrix.

Rigid Nonrigid

Translation (T) =

 1 0 0
0 1 0
tx ty 1

 Shear (Sh) =

 1 shy 0
shκ 1 0

0 0 1


Rotation (R) =

 cos(q) sin(q) 0
− sin(q) cos(q) 0

0 0 1

 Scale (S) =

sκ 0 0
0 sy 0
0 0 1



Translation, scale, and shear measure the displacement, scale factor, and shear along
the x- and y-axis, respectively. The angle of rotation about the origin is denoted by q. These
parameters are combined depending on the position and orientation of the two image
pairs to create a geometric transformation matrix. Figure 6a shows how a moving image is
projected in the FoV of the fixed image. The matched points of fixed and moving image
pairs were used to determine the translation, shear, scale, and rotation angle between the
two image pairs. These four matrices are concatenated using matrix multiplication to
obtain a geometric transformation matrix, which was used to project the moving image into
the frame of the fixed image. The coarse registration resulted in fixed and projected image
pairs to nearly overlap with minute shifts, represented as distance in pixels (Figure 6b).

Fine registration: A fine registration was applied using intensity-based registra-
tion [49,50] to fix the misalignment after coarse registration. The misalignment may be
caused by the difference in image capture times between the two sensors combined with
the movement of the plant’s canopy. Intensity-based registration aligns images based on
the pixel intensity levels of the two images that overcome the local anatomical differences.
An image similarity metric (Mattes mutual information algorithm) [51] and one-plus-one
evolutionary optimiser [52] were used for fine registration. An image similarity metric
determines the statistical closeness of pixel-level intensity information between two images,
and optimisers work iteratively to minimise the similarity metric, thereby achieving perfect
overlap (Figure 7b). The fine registration step involves a nonrigid geometric transformation
model involving shear (Sh) and scale (S) transformation in addition to Translation (T) and
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Rotation (R), as in Table 1. Therefore, the nonrigid transformation model enables an organic
alignment of plant tissues such as stems and leaves at fine level, and to a large extent can
adjust for minor shaking of plant due to air.
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2.3.3. Radiometric Rescaling of Thermal Images

Radiometric rescaling is used to convert the Digital Numbers (DN) to corresponding
parametric values. In captured thermal images, temperature values remain scaled as
8-bit DN equivalent in a range of 0–255 (Figure 8a). The first step to convert the DN to
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temperature values was to extract the maximum (maxT) and minimum temperature (minT),
which are, respectively, embedded at the top and bottom of the temperature scale in the
captured thermal images. An Optical Character Recognition (OCR) algorithm was used
to extract the maxT and minT levels. Secondly, the max and the min DN numbers were
determined from each image. Finally, a standard radiometric rescaling model (Equation (4))
was used to convert the DN values to temperature values (Figure 8b).

T = minT +
maxT−minT

maxDN−minDN
×DN (4)
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2.3.4. Gradient Removal and Illumination Correction of Multispectral Images

Illumination variation is caused by (i) non-uniformness in the spatial distribution of
radiation on the object plane due to the direction of the incident radiation, and (ii) changes
in the intensity of the incident radiation through time, i.e., for images taken at different
time points [53,54]. Inaccurate retrieval of reflectance images and inaccuracies in image
analysis and segmentation, are some of the main problems associated with illumination
variation [55].

Traditional ways of correcting illumination involve creating an imaging chamber
with perfect light conditions, which is expensive, time-consuming, and not feasible in
all glasshouse settings. The method used in this research is suitable for a glasshouse
environment, easy to replicate, and cost-effective. This method was carried out in two
steps—gradient variance was carried out followed by the illumination correction. A
variation in gradient is the change in colour or intensity of images in a certain direction.
This is caused due to directional light source during image acquisition and can produce a
significant variation in pixel values.

To correct the gradient in the image, first, an interpolated gradient reference image
(Gref) was created. A 4 × 4 pixels size Region of Interest (ROI) was selected from the four
corners of the original image. Next, the average illumination of these four corners was
calculated to interpolate Gref [54]. The difference between Gref and the minimum pixel
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value of Gref was calculated as Gdif (Equation (5)). Finally, the corrected gradient (Gcor)
was determined by subtracting the original image

(
Iorg
)

with the Gdif (Equation (6)).

Gdif= Gref −min(G ref) (5)

Gcor= Iorg − Gdif (6)

After the gradient correction, the temporal variation in illumination levels was applied
to the corrected image. A dark reference image (Idark) was taken by covering the lenses of
the multispectral camera. An interpolated image was created from the four corners of the
gradient-corrected image (Gcor) as the white reference image (Iwhite). The final corrected
image Icor was derived from Equation (7), where the corrected data were subtracted from
the dark reference data and then divided by the difference of the white and dark reference
image, and the output was multiplied by the spectral reflectance factor (ref) of the back-
ground band, which was 80%. Figure 9a,b show the results after gradient correction and
illumination correction; the output after illumination correction facilitates the segmentation
process.

SIcor =
Gcor − Idark
Iwhite + Idark

× ref (7)
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2.3.5. Segmentation to Separate the Plant from the Background

Segmentation is a crucial precursor in image analysis for plants. Image segmentation
helps remove the nonvegetative parts, which improves the extraction of spectral and
temperature profiles of different parts of plants, such as leaves, stems, and heads [56,57].

For this experiment, since the spatial resolution of the RGB was better than the thermal
image, the RGB image was used to create a foreground mask for the plant. A segmentation
mask was used to extract the plant from the background for thermal and multispectral
images [58]. The image segmentation was carried out using an adaptive thresholding
method. The adaptive thresholding method has an advantage over fixed thresholding as it
provides an optimal threshold of pixels based on the intensity of its neighbour pixels. Ad-
ditionally, adaptive thresholding solves the issue with shadow pixels, which are incorrectly
considered parts of a plant during segmentation in a global thresholding approach [59].
Figure 10a shows the foreground mask and the segmented RGB image and Figure 10b the
output of the segmented image.
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Each of the stacked images only represents the pixel associated with the canopy of the 
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Figure 10. Image segmentation: (a) foreground mask after adaptive thresholding and (b) segmented
RGB image after application of the foreground mask. The non-canopy pixel values are converted to
zero.

The image processing pipeline’s output was an eight-band stacked image (Figure 11).
The band was stacked in the sequence RGB, green, red, NIR, red-edge, and thermal image.
Each of the stacked images only represents the pixel associated with the canopy of the plant,
and the remaining pixels were set to Not a Number (NAN), which represents undefined
pixel values. The final eight-band image facilitates analysis and comparison of the plant
canopies for different biotic and abiotic stresses at different levels simultaneously.
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Figure 11. An eight-band stacked image representing only the canopy pixels in the following order:
RGB, green, red, NIR, red-edge, and thermal. Each pixel of an image represents the same pixels for
the other images, which are represented by red squares in the images.
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2.3.6. Vegetation Indices

Vegetation indices were calculated from the eight-band stacked image by using a
mathematical combination of several spectral bands to maximise the information obtained
from the vegetation while minimising the noise caused by atmospheric effects or reflectance
from soil [60]. Biotic and abiotic stresses can highly affect the biophysical property of plants
and are correlated to the VIs of crops [61]. NVDI is one of the commonly used indices that
combines reflectance from NIR and red light; a low NVDI value indicates the presence of
stress in plants caused by biotic or abiotic factors [62,63]. The value of NDVI ranges from
−1 to 1, where the higher value represents healthy and dense vegetation [64] (Figure 12a).
CI red edge (CIre) is calculated with the help of NIR and red-edge wavelength (Figure 12b).
Observing small variations in chlorophyll contents is useful since a linear relationship exists
between the reflectance of NIR and the inverse of the red-edge band [65]. Some other VIs
that can be associated with the presence of pathogens are related to water content in plants
and chlorophyll pigmentation. The Triangle Vegetation Index (TVI) [66] that determines the
radiant energy absorption of chlorophyll has been used to classify healthy and unhealthy
crops. NDRE is calculated similarly to the NDVI, but uses a red edge instead of the red
band [67]. NDRE is used to identify healthy plants during the mid to late stages of plant
growth. The modified indices with red edges improve the vegetative indices since red-edge
light is highly sensitive to mid- and high-level chlorophyll contents [30]. The package
generates the VIs listed in Table 2; however, any VIs having components of green, red,
red-edge, NIR wavelengths can be generated by the users.
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Figure 12. Vegetative indices: (a) Normalized Difference VI (NDVI) and (b) Chlorophyll Index red
edge (CIre).

Table 2. Vegetation indices generated from the image processing pipelines.

Indices Equations References

Normalized Difference Vegetation Index (NDVI) NDVI = NIR − RED
NIR + RED [8]

Normalized Difference Red Edge (NDRE) NDRE = NIR − RED _EDGE
NIR + RED _EDGE [12]

Chlorophyll Index red edge (CIre) CIre = NIR
RED_EDGE − 1 [14]

Triangle Vegetation Index (TVI) 0.5(120(NIR−GREEN)− 200(RED−GREEN)) [66]
Renormalized Difference Vegetation Index (RDVI) RDVI = NIR − RED√

NIR + RED
[68]

Chlorophyll Vegetation Index (CVI) CVI = NIR RED
GREEN2 [69]

Chlorophyll Index green (CIg) CIg = NIR
GREEN − 1 [70]
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3. Results

The results of the study are split into three subsections. The results show the per-
formance of the three main methods used in the image processing pipeline, i.e., radial
distortion correction, image registration, and segmentation.

3.1. Correction of Radial Optical Distortion

The distortion parameters were used to correct the optical distortion of the crop
images. The reprojected points (Figure 13) were translated with an overall mean error of
0.21 pixels, with the highest reprojection error of 0.6 pixels for an individual image (NIR
band). The reprojection error measures the qualitative accuracy of the undistorted image.
The reprojection error is the distance between a pattern key point detected in an undistorted
image, and a corresponding reference point projected on the undistorted image. The mean
reprojection error for each band is listed in Table 3.
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Figure 13. Reprojection error between the distorted and undistorted image for NIR band. The x- and
y-axis represent the number of images and mean errors in pixels, respectively.

Table 3. Mean reprojection error between the distorted and undistorted image for different multi-
spectral bands.

Bands Red Red-Edge NIR Green

Mean reprojection error (pixels) 0.29 0.60 0.21 0.20

3.2. Image Registration

Mattes Mutual Information (MMI) [51] was calculated to determine the accuracy of
the registration process. The MMI measures how related one set of pixels of an image is
to another. The higher MMI implies less entropy among the images and that the images
are better aligned. In Figure 14, the bar graph represents MMI, and the image numbers are
shown on the x-axis. The value of MMI was greater than 0.9, indicating the images were
well aligned.

3.3. Segmentation

Since there was no ground-truth data for the images, Root Mean Square Error (RMSE)
and Structural Similarity Map (SSIM) [71] were calculated to find the accuracy of the image
segmentation process. Figure 15a represents the RMSE value for images, and the average
value of RMSE between the segmented image and the original image was below 0.8.

The SSIM was also used to validate the accuracy of the segmentation process. In the
SSIM map, a large local SSIM had bright pixels representing the common regions between
two images (Figure 15b).
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4. Discussion

Digital imaging is pivotal in high-throughput plant phenotyping to characterise
morpho-physiological traits reliably and efficiently [1]. For imaging, thermal and multispec-
tral sensors provide essential modalities, i.e., thermal cameras detect the infrared energy
emitted from the object to generate a digital image, whereas multispectral cameras convert
the light reflected from the object to a visual image. The different modalities of these two
cameras can be used in conjunction to add dimensionality to the information [4,5].

An objective of this study was to develop an image processing tool to fuse the informa-
tion obtained from thermal and multispectral images for application in plant research. For
image fusion, special care should be taken so that the two sensors are aligned correctly to
provide uniformity in the FoV of the images. Data correction is often one of the most trivial
but critical tasks in image processing, and it is essential to correct the different discrepancies
in images (distortion, illumination, contrast, etc.) for accurate and swift analysis [72]. This
study reports a sequential image processing pipeline to help researchers effectively utilise
thermal and multispectral cameras for plant phenotyping. The steps involved in the image
processing pipeline include correction of optical distortion, image co-registration, thermal
radiometric scaling, background illumination correction, and segmentation.

The radial barrel distortion is a common issue, especially with sensor having smaller
focal length [73], which is observed in the green, red, NIR, and red-edge images taken by
the multispectral camera [40]. The removal of optical distortion helped solve the distortion
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so that the corrected images could be used for co-registration and segmentation processes.
In this study, a 5× 8 grid checkerboard pattern with a 50 mm box size was used to calculate
the intrinsic and extrinsic parameters of the multispectral camera; the reprojection error
of the overall bands was below 0.29 pixels except for the red-edge band (0.6). A similar
approach was applied by Das Choudhury, et al. [74] to correct images taken from a Parrot
Sequoia camera, using a 28 × 28 mm box size and achieved an average error of less than
0.3 pixels.

Image co-registration was used to fuse the thermal and multispectral images. The idea
behind image fusion was to extract information from both cameras. The co-registration of
the images was carried out in two steps: feature-based and intensity-based. The feature-
based transformation was used to scale and transform the thermal image to an RGB image
using a transformation matrix. However, the feature-based transformation is rigid and
varies with the distance between the target image and the camera [75]. Hence, the trans-
formation matrix was calculated at variable distances and used for the coarse registration
step of the image registration for each imaging setup. To avoid image misalignment
caused by the movement of the plant canopy, the imaging was performed in an area of the
glasshouse without significant air movement, and image acquisition between thermal and
multispectral cameras was closely synchronised.

Radiometric scaling of thermal images was performed as the pixel values are stored as
DN values instead of temperature values. Most studies have not explained how the DN
values were converted into actual temperature values in thermal images [33]. The only
temperature values provided in the thermal image are the minimum and maximum values
of temperature recorded for the entire image, which is recorded at the right side of the image.
In this study, the maximum and minimum temperature values were extracted with the help
of a text recognition algorithm called OCR (Optical Character Recognition) [76], followed
by a formula for radiometric scaling to derive each pixel’s temperature value from the DN
values. In a recent study, measures were taken to correct the canopy temperature that may
be impacted by the emission from the surroundings [33]. However, this approach was not
applied in this experiment, since it was carried out in a controlled environment, with the
FOV of the thermal camera on the canopy and a fair distance was maintained between
the background and the plants. The thermal camera used here captures a radiometric
thermogram and saves the file as a radiometric JPG image (RJPG), which allows the
adjustment of the distance of object, reflected temperature, emissivity, and surrounding
temperature within the camera settings [77].

Segmentation of the background from an object can be challenging due to noise present
in the image other than the object of interest [78,79]. A white background was used to help
remove background noise to facilitate the segmentation process. Since the intensity and
resolution of the RGB image were greater than the thermal image and other bands, the RGB
image was used to create a foreground mask that was applied to the remaining images.
In a study to identify water stress, Leinonen and Jones [25] have also used visible images
to classify vegetative from nonvegetative pixels and extract temperature values of only
the vegetation. Adaptive thresholding or local method was utilised for segmentation, this
method is useful for nonuniform lightning conditions and solves the problem of shadowing.
In another study, the local thresholding method was also utilised to segment the maize
canopy from a white background [74].

The image processing pipeline was designed specifically for controlled environment
conditions, since, for field conditions, image acquisition has moved from handheld cameras
to sensors mounted on unmanned aerial vehicles. Other segmentation methods such as
Mask R-CNN [80] and semantic segmentation [81] can be implemented if the setup is to be
used in field conditions. Additionally, measures can be applied to correct temperature that
may be affected by the thermal emissions and reflections from surrounding objects [33].

Although FLIR thermal cameras provide licensed software for the scaling of thermal
images, the users are limited to only temperature values of canopy for their study. A
recent study fused RGB and thermal images from a FLIR E60 thermal camera to determine
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water management in potato [33]. However, this study was only limited to calculation of
CWSI from thermal and GRVI from RGB sensors. Researchers are keen on using multiple
sensors to study crop phenological changes during stress; however, there is a limitation of
open-source packages that helps users to correct and combine information from thermal
and multispectral images at pixel level. The output of our study helps to facilitate the
researchers with a package that combines the information from thermal and multispectral
sensors. This package generates stacked images with eight-bands in the order: RGB (1st–3rd
band), green (4th band), red-edge (5th band), NIR (6th band), red (7th band), and thermal
(8th band), which contained only the pixels of the plant, which are easy to compare and
compute different VIs. Importantly, the image processing pipeline allows batch processing
of images to save computational time and efforts. This package enables users to create the
already known indices in multispectral bands and create new indices by combining both
multispectral and thermal imagery.

5. Conclusions

An image processing pipeline was established and packaged to analyse multispectral
and thermal images captured in a glasshouse environment. The automated image pro-
cessing pipeline fixes issues of radial distortion in multispectral images, co-registration of
the thermal and multispectral images, normalisation of variation in illumination across
the multispectral image, and classification of canopy pixels from background noise. The
final output received from the pipeline is a stacked image with an eight-band composite
retaining only the canopy pixels for each band, which can be used to create vegetative
indices. The process is efficient as images are processed and analysed in batches across all
bands. The image processing pipeline will be helpful for researchers working with thermal
and multispectral imaging in glasshouse conditions.
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