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Abstract: Sea level rise (SLR) attributed to the melting of ice caps and thermal expansion of seawater
is of great global significance to vast populations of people residing along the world’s coastlines.
The extent of SLR’s impact on physical coastal areas is determined by multiple factors such as
geographical location, coastal structure, wetland vegetation and related oceanic changes. For coastal
communities at risk of inundation and coastal erosion due to SLR, the modelling and projection of
future sea levels can provide the information necessary to prepare and adapt to gradual sea level rise
over several years. In the following study, a new model for predicting future sea levels is presented,
which focusses on two tide gauge locations (Darwin and Milner Bay) in the Northern Territory (NT),
Australia. Historical data from the Australian Bureau of Meteorology (BOM) from 1990 to 2022 are
used for data training and prediction using artificial intelligence models and computation of mean
sea level (MSL) linear projection. The study employs a new double data decomposition approach
using Multivariate Variational Mode Decomposition (MVMD) and Successive Variational Mode
Decomposition (SVMD) with dimensionality reduction techniques of Principal Component Analysis
(PCA) for data modelling using four artificial intelligence models (Support Vector Regression (SVR),
Adaptive Boosting Regressor (AdaBoost), Multilayer Perceptron (MLP), and Convolutional Neural
Network–Bidirectional Gated Recurrent Unit (CNN-BiGRU). It proposes a deep learning hybrid
CNN-BiGRU model for sea level prediction, which is benchmarked by SVR, AdaBoost, and MLP.
MVMD-SVMD-CNN-BiGRU hybrid models achieved the highest performance values of 0.9979 (d),
0.996 (NS), 0.9409 (L); and 0.998 (d), 0.9959 (NS), 0.9413 (L) for Milner Bay and Darwin, respectively.
It also attained the lowest error values of 0.1016 (RMSE), 0.0782 (MABE), 2.3699 (RRMSE), and 2.4123
(MAPE) for Darwin and 0.0248 (RMSE), 0.0189 (MABE), 1.9901 (RRMSE), and 1.7486 (MAPE) for
Milner Bay. The mean sea level (MSL) trend analysis showed a rise of 6.1 ± 1.1 mm and 5.6 ± 1.5 mm
for Darwin and Milner Bay, respectively, from 1990 to 2022.

Keywords: deep learning (DL); sea level (SL); convolutional neural network (CNN); bidirectional
gated recurrent unit; support vector regression (SVR); adaptive boosting regressor (AdaBoost);
multivariate variational mode decomposition (MVMD); successive variational mode decomposition
(SVMD); principal component analysis (PCA)

MSC: 68T07; 68T09; 68W01

1. Introduction

Global sea level rise is a complicated environmental issue exacerbated by human activ-
ities and climate change [1]. The phenomenon of sea level rise (SLR) is currently a matter
of global concern due to its significant implications for coastal regions and ecosystems.
According to the IPCC (2021), by 2050, the global mean sea level (GMSL) is projected to
rise by at least 0.15 up to 0.26 m [2]. Climate change, which is mostly caused by human
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activities, including the burning of fossil fuels, deforestation, and industrial processes, is
largely responsible for the rise in sea levels worldwide [3]. These impacts, together with the
thermal expansion of the ocean [4,5], are the primary causes of sea level rise [5]. This occurs
when oceans absorb heat as the Earth’s atmospheric temperature continues to increase
due to continued greenhouse gas production. The absorption of heat causes sea water to
expand, leading to an increase in the volume of the oceans [6]. In addition, the melting
of glaciers and polar ice caps adds to the volume of oceans. These combined impacts are
attributed to a gradual increase in sea levels, which pose a serious threat to coastal areas [7].

The effects of sea level rise are wide-ranging and broad. As sea levels rise, coastal
towns and cities are increasingly vulnerable to flooding [8,9], which can harm infrastructure
and public facilities, causing property loss and disrupting beach amenity and daily life. Fur-
thermore, drinking water supplies, aquifers that contain freshwater, and agricultural land
are also at risk of saltwater interference. Seawater intrusion is a threat to coastal habitats,
including wetlands and estuaries, and can have a negative impact on biodiversity [10].

In recognition of these far-reaching impacts, the need to adapt to changing coastlines is
a reality for all coastal communities. Data pertaining to what future sea levels may look like
provide a foundation for planning and adaptation strategies that ensure that the impacts
associated with SLR are mitigated or at least minimalized.

This study focusses on the Northern Territory region of Australia and aims to present
a method developed to assess and predict future sea level rise. The potential for coastal
inundation is further compounded by tropical cyclones and storm surges which frequently
occur in this area. In fact, on average, the Northern Territory experiences at least two cyclone
events in a year [11]. The effects of tropical cyclones are often disastrous, particularly when
storm surges coincide with spring tides [11]. This would be an important investigation and
future study for the region to anticipate such occurrences with sea level rise. In the same
region, a ground-based study [12] found that the majority of local people were likely to
relocate from their houses due to sea water intrusion in coming years. Northern Territory
has coastal wetlands that lie between 0 and 5 m above the mean sea level and are therefore
more vulnerable to SLR and sea water inundation [13]. In such an environment, accurate
and reliable information regarding future sea level changes is extremely important for the
development of timely decisions regarding adaptation and mitigation options.

A sea level dataset analysis can be challenging with the generation of large volumes
of time series data and its dependence on related oceanic parameters. For processing
such complicated, high-dimensional data, the advancement of deep learning architecture
has provided a suitable platform to process multi-inputs for data modelling and forecast-
ing [14,15]. The deep learning models provide the advantages of neural layers which are
capable of processing and providing higher accuracy in predictions [16]. Extraction of
spatial information from the input data is highly suited for hybrid models such as Convo-
lutional Neural Network–Bidirectional Gated Recurrent Unit (CNN-BiGRU) [17]. It is able
to handle large datasets and effectively extract connections in the dataset [17,18].

Feature extraction techniques have also become very important in data modelling
as they help to extract valuable information from raw signals [19]. A study in [20] used
multi-signal wavelet decomposition to extract temporal multiscale variations from satel-
lite altimetry data and successfully tracked the spatial–temporal distribution. Sea level
signal was decomposed into its intrinsic mode functions (IMFs) in [21] using Successive
Variational Mode Decomposition (SVMD), which were used as feature inputs for sea level
rise forecasting. The Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) technique was effectively used in [22] to extract IMFs for sea level
rise prediction.
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Most studies have either used a single standalone machine learning model [23–25]
or employed single data decomposition with machine learning models [21,22,26] for SLR
predictions. To date, no SLR study has employed PCA analysis with data decomposition
to optimize the data inputs. Hence, this study utilizes CNN-BiGRU as its objective model
and implements double data decomposition for feature extraction. To compare and anal-
yse how double data decomposition enhances prediction accuracy, the study also uses
Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Adaptive Boosting
Regressor (AdaBoost) as benchmark models. While many studies have used single data
decomposition techniques, this study is novel as it is the first study, to the best of authors’
knowledge, to explore a double data decomposition method for sea level prediction in
Australia. These exploratory approaches culminate in a new double data decomposition
method of Multivariate Variational Mode Decomposition (MVMD) and Successive Varia-
tional Mode Decomposition (SVMD), followed by the Principal Component Analysis (PCA)
for optimal dimensionality reduction. This method presents a new approach for sea level
rise study in Australia. Specifically, the objectives of this research are the following:

1. To employ the double data decomposition method (MVMD-SVMD) for sea level
signal to extract intrinsic mode functions (IMFs).

2. To reduce input data dimensionality by applying PCA analysis.
3. To predict sea level using a hybrid deep learning CNN-BiGRU model.
4. To benchmark the CNN-BiGRU model with SVR, AdaBoost, and MLP models.
5. To provide an estimate of future sea levels for both study sites.

The remainder of this paper is organized as follows. Section 2 provides the details
on oceanic and sea level data sources, locations, and characteristics. It also includes data
input correlations, decomposition process and dimensionality reduction, evaluation metrics
formulae, and the model background. Section 3 presents the results of data modelling
and predictions.

2. Materials and Methods
2.1. Study Area and Dataset

The historical dataset for Darwin and Milner Bay in the Northern Territory of Australia
from the “Australian Baseline Sea Level Monitoring Project Hourly Sea Level and Meteo-
rological Data” (http://www.bom.gov.au/oceanography/projects/abslmp/data/index.
shtml, accessed on 15 July 2023) provided by the Bureau of Meteorology (BOM), Australia,
was used for this study. This dataset includes hourly tide gauge data for the study locations
from 1990 to 2022. Tide gauge observations provide continuous data that are useful for
modelling future sea level predictions [27]. The dataset includes oceanic data such as sea
level height (in m), water temperature (in ◦C), air temperature (in ◦C), barometric pressure
(in hPa), wind direction (in degrees True), wind gust (in m/s), and wind speed (in m/s)
at 60 min intervals. With the goal of tracking sea levels along Australia’s coastline, BOM
developed the Australian Baseline Sea Level Monitoring Project. The tide gauge is a part of
a water observation station that gathers data using installed sensors. The study locations
are Darwin and Milner Bay with latitudes and longitudes of 12◦27′40′′ S, 130◦50′30′′ E and
12◦23′11′′ S, 130◦51′43′′ E, respectively, in the state of Northern Territory, Australia. The
research area map of the two coastal cities is displayed in Figure 1 below.

http://www.bom.gov.au/oceanography/projects/abslmp/data/index.shtml
http://www.bom.gov.au/oceanography/projects/abslmp/data/index.shtml
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Figure 1. Australia map showing the sea level study sites. The red outline is around the study loca-
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entails a number of stages, including the removal of inaccurate or missing data points, the 
use of means from a specific year or interpolation to fill in gaps, and the standardization of 
the data to ensure consistency in units and scales [29]. This study used the linear interpola-
tion method to address the missing values in the dataset. Lagged values were used as model 
inputs in many types of research, which is known to improve prediction accuracy. Figure 2 
below shows the antecedent behaviour of lags in Darwin using the Auto Correlation Func-
tion (ACF) and Partial Autocorrelation Function (PACF) graphs for the sea level series values 
in terms of variations in their separation from one another. In addition, PACF is also used 
because of its capacity to yield the series’ partial correlation with its very own lagged read-
ings. This helps to determine how many historical lags are useful to include in the prediction 
model. Four lags of the sea level time series were chosen as input for the AI model after the 
graphical analysis for each series in Darwin and Milner Bay dataset. Figure 2 shows the 
ACF-PACF analysis for the Darwin site. Table 1 lists the oceanic parameters and lagged val-
ues used in the Artificial Intelligence models. The lags and other oceanic metrics were eval-
uated using a correlation test as shown in Tables 2 and 3 when compared with sea level as a 
target variable for prediction. 

Figure 1. Australia map showing the sea level study sites. The red outline is around the study locations.

2.2. Data Preprocessing and Input Selection

A critical component of every data analysis study is ensuring the quality of the data
and providing scientific solutions for missing values. One of the most important aspects of
the provision of accurate SLR modelling relates to the quality of available data and methods
of analysis for sea level rise forecasting. This involves data preprocessing and feature
extraction for Artificial Intelligence (AI) modelling. Data preprocessing is an essential
foundation for SLR forecasting that determines the quality of sea level predictions [28].
Data preparation entails a number of stages, including the removal of inaccurate or missing
data points, the use of means from a specific year or interpolation to fill in gaps, and
the standardization of the data to ensure consistency in units and scales [29]. This study
used the linear interpolation method to address the missing values in the dataset. Lagged
values were used as model inputs in many types of research, which is known to improve
prediction accuracy. Figure 2 below shows the antecedent behaviour of lags in Darwin
using the Auto Correlation Function (ACF) and Partial Autocorrelation Function (PACF)
graphs for the sea level series values in terms of variations in their separation from one
another. In addition, PACF is also used because of its capacity to yield the series’ partial
correlation with its very own lagged readings. This helps to determine how many historical
lags are useful to include in the prediction model. Four lags of the sea level time series were
chosen as input for the AI model after the graphical analysis for each series in Darwin and
Milner Bay dataset. Figure 2 shows the ACF-PACF analysis for the Darwin site. Table 1 lists
the oceanic parameters and lagged values used in the Artificial Intelligence models. The
lags and other oceanic metrics were evaluated using a correlation test as shown in Tables 2
and 3 when compared with sea level as a target variable for prediction.
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Figure 2. ACF-PACF analysis for the Darwin study site. The red dots shows the correlation of lags
for the Darwin sea level dataset.

Table 1. Input features and description.

Input Oceanic Features

Air Temperature (◦C)

Water Temperature (◦C)

Wind Direction (in degrees True)

Wind Gust (m/s)

Wind Speed (m/s)

Barometric Pressure (hPa)

Sea Level Lags (t − 1, t − 2, t − 3, t − 4) (m)

Decomposed Intrinsic Mode Functions (IMFs) (m)

Table 2. Sea level correlation with lagged values and decomposed IMFs.

L1 L2 L3 L4 IMF1 IMF2 IMF3 Sea
Level

L1 1.0000 0.8809 0.5559 0.1093 0.0869 0.8263 0.0362 0.8809

L2 0.8809 1.0000 0.8809 0.5559 0.0853 0.4960 −0.0116 0.5559

L3 0.5559 0.8809 1.0000 0.8809 0.0835 0.0399 −0.0443 0.1093

L4 0.1093 0.5559 0.8809 1.0000 0.0820 −0.4261 −0.0385 −0.3489

Sea Level 0.8809 0.5559 0.1093 −0.3489 0.0875 0.9466 0.0588 1.0000
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Table 3. Sea level correlation with observed oceanic parameters.

Water
Temp. Air Temp. Pressure Wind

Direction
Wind
Gust

Wind
Speed Sea Level

Water
Temp. 1.0000 0.5471 −0.5596 0.1819 0.0483 −0.0053 0.0410

Air Temp. 0.5471 1.0000 −0.4722 0.2535 0.0599 0.0187 −0.0362

Pressure −0.5596 −0.4722 1.0000 −0.2906 −0.1957 −0.1244 −0.0451

Wind
Direction 0.1819 0.2535 −0.2906 1.0000 0.0533 0.0730 −0.0501

Wind
Gust 0.0483 0.0599 −0.1957 0.0533 1.0000 0.7858 0.0176

Wind
Speed −0.0053 0.0187 −0.1244 0.0730 0.7858 1.0000 0.0094

Sea Level 0.0410 −0.0362 −0.0451 −0.0501 0.0176 0.0094 1.0000

2.3. Data Normalization

Every one of the model’s input and target datum were normalized in order to make
modelling easier. Equation (1) was used to scale the values to the [0,1] range:

xn =
xactual − xmin
xmax − xmin

(1)

Equation (2) was used to return the values to their original scale following predictions
produced using the trained model:

xactual = xn(xmax − xmin) + xmin (2)

where x is the input data value, xmin is the overall minimum, and xmax is the overall
maximum value.

2.4. Double Data Decomposition by Multi-Variational and Successive Variational Mode
Decomposition (MVMD-SVMD)

This study uses two data decomposition techniques of MVMD and SVMD for sea level
signal decomposition. The steps involved in the MVMD are as follows [30]:

(i) The data matrix X with dimensions N × T is defined. N and T are the number of
variables and time points, respectively.

(ii) The data matrix is normalized.
(iii) The objective function is defined as follows and is minimized to decompose the data

into U and V modes:

min
U,V

∑N
n=1∥Xn − UnV∥

2

2 + λ∑N
i=1∥Un∥1 (3)

where Xn represents the n-th channel of X, Un is the mode of the n-th channel, V is the
common mode across all channels, and λ is a regularization parameter that balances
the sparsity of U.

(iv) The optimization problem is solved iteratively using the alternating direction method
of the multiplier (ADMM).

(v) The modes are updated iteratively until the convergence criteria are met.
(vi) The Xn modes are reconstructed (Xn ≈ UnV) for each channel n.

This also utilizes the SVMD method [31] with the decomposed modes of MVMD. The
steps of SVMD are as follows:

(i) Original signal X and residual R0 = X are set up.
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(ii) The residual Rk−1 is decomposed into UkVk modes and updated in the next step. The
decomposed modes are computed by the following function:

UkVk = argmin
U,V

∥Rk−1 − UV∥2
2 + λk∥Un∥1 (4)

where λk is the regularization parameter for sparsity.
(iii) The residual Rk−1 is updated for the next iteration, as follows:

Rk = Rk−1 − UkVk (5)

(iv) The process of decomposition is iterated until the residual Rk attains convergence.
(v) After K iterations are completed, the original signal is reconstructed using the ex-

tracted modes, as follows:
Xn ≈ ∑K

k=1 UkVk (6)

Figures 3–5 show the graphs of decomposed IMFs after the decompositions were ap-
plied using the above algorithms in MATLAB software (version R2019b by The MathWorks,
Inc located in Natick, MA, USA) [30,31].
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Figure 3. Decomposed sea level IMFs obtained from MVMD decomposition for the Darwin study
site. The IMFs represent the local characteristics of the sea level signal and represent intrinsic modes
of oscillation that reflect the sea level signal variability.

Each IMF was further decomposed by Successive Variational Mode Decomposition
(SVMD), which was first presented in [31]. This allows for the sequential extraction of
modes for more feature information from the MVMD decomposed IMFs. Thus, SVMD
offers less computing overhead and is based on the same concepts as Variational Mode De-
composition (VMD). The input signal is subjected to consecutive applications of Variational
Model Extraction (VME), which adds restrictions to stop convergence on formerly ob-
tained modes. In the process to extract the intrinsic modes in the decomposition algorithm,
the convergence on previous extracted modes is restricted to ensure that the algorithm
continues to extract new modes until all relevant modes are identified [32]. To locate the
signal containing the most compact spectrum, the optimization problem is handled while
guaranteeing the reconstruction error is minimized via the Lth mode extracted sum. With
100 data points, the intrinsic mode decomposition (IMF) of the sea level (lag) in Darwin is
shown in Figure 4 below. It should be noted that IMFs are derived from the original sea
level signal via the decomposition process which focusses on the properties of the signal
such as the zero mean, the number of extrema, and symmetric envelopes; hence, they are
unitless [33].
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Figure 5. Darwin sea level IMF1, 100 data points shown for decomposition using SVMD. This is a
snapshot of SVMD decomposed IMF 1, and 2 modes derived from MVMD IMF1.

Both MVMD and SVMD are an extension of Variational Mode Decomposition
(VMD) [34], where MVMD decomposes the multivariate signals to extract both common
and individual components simultaneously, and SVMD decomposes the signals into their
constituent modes or components iteratively. Using double data decomposition provides
many advantages. Firstly, it enhances the interpretability of the sea level signal, which
contains different levels of components such as trends, seasonality, and residuals with irreg-
ular fluctuations, whereby single decomposition may not capture all levels of complexity
in it. Secondly, each decomposition technique helps to reduce the noise and unwanted
variations in the signal. Thirdly, two successive decomposition steps help to separate and
isolate different features in the sea level signal more efficiently.

2.5. Input Feature Selection Using Principal Component Analysis (PCA)

PCA was used for data reduction in this study. The sea level signal was decomposed
into six IMFs by the MVMD and then each IMF was further decomposed into two IMFs.
This added 12 columns of input data, which could have added more computational load
into the model. Hence, PCA was utilized to reduce the data into two columns of PCA1
and PCA2. This is critical to ensure optimization of the computational process. PCA is an
unsupervised statistical-based method for dimensionality reduction [35]. This is performed
by transforming correlated variables into a smaller set (principal components) that retain
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the original information and are linear combinations of the original variable [36]. The
summary of steps involved in the PCA analysis is as follows [37,38]:

(i) Each IMF of sea level data was standardized by subtracting the mean and divided by
standard deviation.

(ii) Matrix A is formulated where each row corresponds to the IMF and each column to a
sample point.

(iii) The covariance is performed on matrix A to obtain covariance matrix B.
(iv) Eigenvalue decomposition of matrix B is computed to obtain eigenvectors and eigen-

values of matrix B.
(v) The eigenvectors are sorted in descending order.
(vi) Matrix W is obtained from the selection of the top two eigenvectors.
(vii) The original matrix A of IMF data is projected on the selected components to obtain

the dimensionality reduction in the IMFs, as follows:

Y = AW (7)

where Y is the transformed data matrix, A is the standardized data matrix, and W is
the matrix of selected principal components.

Figure 6 shows the PCA reduction in Darwin sea level IMFs. PCA identifies patterns
and correlation in the sea level IMFs and compresses the data but preserves the important
information for further analysis [39].
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2.6. Data Partition

Although there is no rigid guideline for data partitioning, Table 4 provides a detailed
breakdown of how the sea level dataset was split which was based on the split ratio used
in previous research [21,22,40,41].

Table 4. Data partition for the study sites broken down with the dates.

Partition Training Set (60%) Validation Set (20%) Testing Set (20%)

Sea Level Dataset January 1990–February 2011 March 2011–February 2017 March 2017–December 2022
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2.7. Model Theoretical Background

This section provides the theoretical background for all models in this study, plus their
optimized parameters in modelling and predictive model evaluation metrics. It outlines
the statistical and mathematical functions used for model algorithms and formulae.

2.7.1. Convolutional Bidirectional Gated Recurrent Unit (CNN-BiGRU)

The CNN-BiGRU hybrid architecture in the study combines the layers of 1D CNN
and two layers of bidirectional GRU for regression modelling. It allows the input dataset
to pass through CNN and BiGRU, consequently utilizes the benefits of both platforms in
processing the data for training the hybrid model. Hence, it leverages the strengths of
both architectures to process sequential datasets. It obtains the superior ability of CNN
for feature extraction and then allows the BiGRU to capture sequential dependencies. The
parameter tuning is performed using grid search in Python (Python version 3.8.5 by Python
Software Foundation located in Fremont, CA USA). ‘GridSearchCV’ with scikit-learn. The
grid search includes hyperparameters for the hybrid model through the optimization of
parameters that provide the best values such as weight regularization, batch, and dropout.
Hence, a hybrid CNN-BiGRU model has the advantage of utilizing the capabilities of CNN
and BiGRU’s deep learning architecture.

CNN is a feedforward and backward neural network that can be considered to work
in two parts: a feature extraction and a classification part [42]. CNN is different from a tra-
ditional neural network by the inclusion of multiple layers, pooling, local connections, and
sharing of weights [43,44]. BiGRU is a deep learning architecture with two Gated Recurrent
Units (GRUs). Thus, the CNN-BiGRU model can successfully capture temporal dependen-
cies in the data and uses these two gating mechanisms to selectively update the hidden state
of the network on each step, making it an effective tool for forecasting [45,46]. The GRU
shown in Figure 7 includes a reset and update gate which have the following equations:

Update gate : z = δ(Wzht−1 + Uzxt) (8)

Reset gate : r = δ(Wrht−1 + Urxt) (9)
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Figure 7. An overview of the structure of the GRU cell. The dark brown cells represent the gates and
light brown cells are the sigmoid function.

The GRU takes in two inputs, a previous cell state (ht−1) and training data input (xt),
resulting in a cell output (ht). These are passed through the following components within
the GRU unit [47]:
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×—Elementwise multiplication;
+—Vector addition;
δ—Sigmoid function;
tanh—Hyper tangent function.

This study used BiGRU, which takes input in both forward and backward processes.
This helps to increase its efficiency for capturing important information from the input
dataset [48]. Figure 8 below shows the Python modelling using the CNN-BiGRU model
after the MVMD-SVMD IMF feature extraction. Figure 9 shows the associated validation
and training loss during the process.
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2.7.2. Multilayer Perceptron (MLP)

Multilayer Perceptron is a feedforward and backward artificial neural network of
fully connected neurons which consists of nonlinear activation functions [49]. Generally,
it contains an input layer, one or more hidden layers, and an output layer [50], as shown
below in Figure 10.
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Figure 10. General structure of MLP network architecture. The brown circles show input layer, light
blue circles are hidden layer and red circle show the output layer.

Each layer in MLP has nodes that connects to every other node in the subsequent
layer. The input layer distributes the input data and the nodes have linear activation
functions with no thresholds [51]. The hidden layer has hidden unit nodes which have
thresholds with weights and nonlinear activation functions. The MLP is fed forward and
backward in its information processing. Finally, the information is passed to the output
layer nodes, which have linear activation functions to provide the data output. The MLP
model utilized in this study has two hidden layers with 20 and 10 neurons, respectively,
with an initial rate optimizer of 0.001. The hidden layer uses Rectified Linear Unit (ReLu) as
the activation function and Adaptive Moment Estimation (ADAM) algorithm to minimize
the loss function.

2.7.3. Adaptive Boosting Regressor (AdaBoost)

Boosting is based on the general problem of producing an accurate prediction rule
by combining moderately inaccurate rules-of-thumb [52]. First introduced by Freund and
Schapie [52], the adaptive boosting algorithm is used to serve as a meta-estimator in the
structure of the AdaBoost Regressor. By modifying the sample weights (wi) of items in
accordance with predictor errors, this approach incrementally improves the efficiency of a
regressor that has been fitted to a dataset (X, y). Figure 11 shows an ensemble (i = 1. . .I) of
four weak learners (fi) that are trained sequentially on the data (Xi, yi), which are sampled
from (X, y) with replacement [53]. The confidence measures βi are computed where a low
value implies high confidence in the prediction.
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2.7.4. Support Vector Regression (SVR)

The Support Vector Regression (SVR) is based on the Support Vector (SV) algorithm
developed by Vapnik and associates [54]. SVR, a further variation of support vector
machines (SVMs), was effectively used for time series in [55]. The SVR was presented in
1997 by Vapnik, Steven Golowich, and Alex Smola [56] and uses the same principles of
SVM. This technique efficiently learns a variable’s importance for characterizing the input
and output relationship [57]. SVR is a supervised learning algorithm and trains data using
a symmetrical loss function whereby high and low estimates are equally penalized [58].
The algorithm attempts to find the optimum solution by minimizing the prediction error.
Formally, this can be presented with the equations below [59] and Figure 12 shows the
arrangement of error and hyperplane.

Subject to : min
w,b,ξ,ξ*

1
2
∥w∥2 + C

n

∑
i=1

(ξ + ξ*)


wϕ(xi) + b − yi ≤ ε + ξi

*

yi − wϕ(xi)− b ≤ ε + ξi
*

ξi, ξi
* ≥ 0, i = 1, .....n.

 (10)

where C = penalty parameter, ε = an insensitive loss function, ξi, ξi
* = slack variables, and

∥w∥2 = Euclidean norm.
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2.8. Summary of Selected Model Parameters in Python

This section provides the values of optimized parameters used in Python. The val-
ues were obtained using GridSearchCV from the scikit-learn library. This approach has
been effectively used in many past studies to obtain the best parameters for predictive
models [60–62]. It helps to provide the best combinations of hyperparameters for machine
learning models [63,64].

(i) CNN-BiGRU Modelling Parameters

CNN layer: filters = 64, kernel size = 3, activation function = ‘relu’ (Rectified linear
Unit), loss = ‘mean_squared_error’, optimizer = ‘adam’, dropout = 0.1, early stopping:
monitor = ‘val_loss’, patience = 3, restore_best_weights = True, kernel regularizer = l2(0.01).

BiGRU layer: GRU units = 32, activation function = ’relu’ (Rectified linear Unit),
loss = ‘mean_squared_error’, optimizer = ‘adam’, dropout = 0.1, early stopping: mode = min-
imum, patience = 20, kernel regularizer = l2(0.01).

(ii) MLP Modelling Parameters

hidden_layer_sizes = (20, 10), learning_rate_init = 0.001, max_iter = 5000, activation =
‘relu’(Rectified linear Unit), solver = ‘adam’, dropout = 0.1, loss = ‘mean_squared_error’,
monitor = ‘val_loss’, patience = 5, restore_best_weights = True.

(iii) AdaBoost Modelling Parameters

DecisionTreeRegressor(max_depth = 3), n_estimators = 50, random_state = 42.

(iv) SVR Model Parameters

n_samples = 1000, n_features = 20, noise = 0.1, random_state = 42), kernel = ‘rbf’,
C = 1.0, epsilon = 0.1, gamma = ‘scale’.

2.9. Performance Evaluation Metrics for AI Models

Eight statistical measures that are obtained from Equations (10)–(17) on the predicted
outcomes are used in evaluating the models’ performance, and tests are run on the test
dataset. Table 5 shows the data quantities used in the computations.
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Table 5. Symbols used in Equations (11)–(18).

Symbol Quantity

DOi Observed Data

MDO Mean Observed Data

DSi Simulated Data

MDS Mean Simulated Data

1. Pearson’s correlation coefficient (r):

r =

 ∑n
i=1 (DOi − MDO)(DSi − MDS)√

∑n
i=1 (DOi − MDO)2∑n

i=1(DSi − MDS)2

2

(11)

2. Willmott’s index of agreement (d):

d = 1 −
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi − MDO|+|DOi − MDS|)2

]
(12)

3. Nash–Sutcliffe coefficient (NS):

NS = 1 −
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(DOi − MDO)2

]
, −∞ ≤ NS ≤ 1 (13)

4. Legates and McCabe’s index (LM):

LM = 1 −
[

∑n
i=1|DSi − DOi|

∑n
i=1|DOi − MDS|

]
, 0 ≤ L ≤ 1 (14)

5. Root-mean-squared error (RMSE):

RMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2 (15)

6. Mean absolute error (MABE):

MABE =
1
n∑n

i=1|(DSi − DOi)| (16)

7. Relative root-mean-squared error (RRMSE):

RRMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2

1
n ∑n

i=1 DOi
× 100 (17)

8. Mean absolute percentage error (MAPE):

MAPE =
1
N

(
∑i=1

N

∣∣∣∣∣ (SWL for − SWLobs

)
SWLobs

∣∣∣∣∣
)
× 100 (18)

3. Results
3.1. Efficiency Performance Metrics

The results of this study include the computation of evaluation metrics of the pre-
dicted SLR with observed data for the models (SVR, AdaBoost, MLP, CNN-BiGRU). The



Mathematics 2024, 12, 2376 16 of 25

benchmark models applied in this study help to provide a comparative analysis for de-
veloping a robust and objective model. Such metrics also form an important aspect of
machine learning that utilize datasets for prediction [65]. Here, our analysis helps to show
whether combining the benefits of two different ML platforms can improve performance
in target variable prediction. This study uses four performance evaluation metrics, in-
cluding Pearson’s correlation coefficient, Willmott’s index of agreement, Nash–Sutcliffe
coefficient and Legates and McCabe’s index which have been successfully used in many
past studies [21,22,41,65].

Pearson’s correlation coefficient is used in [66] as a measure of the predictive accuracy
of models in genome-wide prediction. It measures the strength of association between
observed and predicted values [67,68]. Willmott’s index of agreement [69] is a statistical
measure which measures the degree of association between observed and predicted values
of a machine learning model. The index reflects the bias and variability between the
observed and predicted values [70]. It has been used in the evaluation of sea level prediction
previously [41], ground water salinization risk prediction [71], and significant wave height
prediction [40]. The Nash–Sutcliffe coefficient [72] is a widely used evaluation metric in
hydrology [73,74]. It determines the relative magnitude of the residual variance compared
to measured data variance [75]. Legates and McCabe’s index [76] is an evaluation metric
which also assesses the goodness of fit between model predictions and observed values. It
overcomes some of the limitations of other evaluation metrics that measure the correlation
by taking into account both the additive and proportional differences between the observed
and predicted values of a machine learning model [77]. Hence, these metrics were computed
for all models in this study for both the Milner Bay and Darwin study sites. Tables 6 and 7
below show the model performance results. Of the four machine learning models used
to predict SLR, MVMD-SVMD-CNN-BiGRU (shown in the bottom row of each table)
performed the best.

Table 6. Milner Bay efficiency performance metrics.

Model Correlation Coefficient (r) Willmott’s Index
of Agreement (d)

Nash–Sutcliffe’
Coefficient (NS)

Legates and McCabes’
Index (L)

MVMD-SVMD-SVR 0.9406 0.9362 0.8800 0.6509
MVMD-SVMD-AdaBoost 0.9571 0.9439 0.9074 0.6891

MVMD-SVMD-MLP 0.9974 0.9970 0.9943 0.9280
MVMD-SVMD-CNN-BiGRU 0.9980 0.9979 0.9960 0.9409

Table 7. Darwin efficiency performance metrics.

Model Correlation Coefficient (r) Willmott’s Index
of Agreement (d)

Nash–Sutcliffe’
Coefficient (NS)

Legates and McCabes’
Index (L)

MVMD-SVMD-SVR 0.9878 0.9856 0.9687 0.8263
MVMD-SVMD-AdaBoost 0.9881 0.9869 0.9730 0.8453

MVMD-SVMD-MLP 0.9963 0.9952 0.9900 0.9046
MVMD-SVMD-CNN-BiGRU 0.9984 0.9980 0.9959 0.9413

3.2. Error Metrics

Four error metrics (RMSE, MABE, RRMSE, MAPE) were utilized in the evaluation of
the machine learning model variance in this study. RMSE and MABE metrics are widely
used for predictive model evaluation [77]. RMSE is a measure of the average variance
between the predicted and observed values [78]. MAE measures the average magnitude of
errors between predicted and observed values [79]. RRMSE provides a standard deviation
of the residuals and normalizes the RMSE by the mean [80], while MAPE provides a
measure of the mean absolute percentage deviation [78]. Tables 8 and 9 show the error
metrics for all models. Again, the variance between the predicted and modelled SLR was
the lowest when using the MVMD-SVMD-CNN-BiGRU model. This was shown to be the
case for both Darwin and Milner Bay.
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Table 8. Milner Bay error metrics.

Model RMSE MABE RRMSE MAPE
MVMD-SVMD-SVR 0.1362 0.1120 10.9161 10.7201

MVMD-SVMD-AdaBoost 0.1197 0.0997 9.5904 9.5417
MVMD-SVMD-MLP 0.0297 0.0231 2.3814 2.1551

MVMD-SVMD-CNN-BiGRU 0.0248 0.0189 1.9901 1.7486

Table 9. Darwin error metrics.

Model RMSE MABE RRMSE MAPE
MVMD-SVMD-SVR 0.2813 0.2312 6.5577 6.8155

MVMD-SVMD-AdaBoost 0.2613 0.2058 6.0926 5.9953
MVMD-SVMD-MLP 0.1589 0.1269 3.7050 3.7037

MVMD-SVMD-CNN-BiGRU 0.1016 0.0782 2.3699 2.4123

4. Discussion
4.1. Result Evaluation

Tables 6 and 7 show the efficiency performance metrics of Darwin and Milner Bay.
Pearson’s correlation coefficient (r) shows the degree of association of predicted and ob-
served variables [81] of sea level at both study sites. The MVMD-SVMD-CNN-BiGRU
hybrid deep learning model shows the highest r values of 0.9980 and 0.9984 for Milner Bay
and Darwin, respectively. MVMD-SVMD-MLP also achieves high r values of 0.9974 and
0.9963 for Milner Bay and Darwin, respectively. MVMD-SVMD-AdaBoost and MVMD-
SVMD-SVR recorded values greater than 0.9 and performed well with data decomposition
inputs. To further support the r value performance metric, this study also utilized Will-
mott’s index of agreement (d), Nash–Sutcliffe’ coefficient (NS), and Legates and McCabes’
index (L). These have been widely used in many past studies [21,22,65] alongside correla-
tion coefficient to effectively compare AI model performance. All results show consistent
metrics, for both study sites. The MVMD-SVMD-CNN-BiGRU hybrid model introduced in
this study shows the best performance with values of 0.9979 (d), 0.996 (NS), and 0.9409 (L);
and 0.998 (d), 0.9959 (NS), and 0.9413 (L) for Milner Bay and Darwin, respectively. Legates
and McCabes’ index shows the most difference between MVMD-SVMD-SVR and MVMD-
SVMD-CNN-BiGRU for both study sites. This index also confirms the superior performance
of MVMD-SVMD-CNN-BiGRU for SLR prediction. Such error metric computations are an
essential aspect of AI model performance evaluation [82] and each indicates the overall
robust performance of MVMD-SVMD-CNN-BiGRU.

Root-mean-squared error (RMSE), mean absolute error (MABE), mean absolute per-
centage error (MAPE), and relative root-mean-squared error (RRMSE) were also calculated
for each model in this study. MVMD-SVMD-CNN-BiGRU attained the lowest error val-
ues of 0.1016 (RMSE), 0.0782 (MABE), 2.3699 (RRMSE), and 2.4123 (MAPE) for Darwin
and 0.0248 (RMSE), 0.0189 (MABE), 1.9901 (RRMSE), and 1.7486 (MAPE) for Milner Bay.
Figures 13 and 14 present scatterplots of all models between the observed and predicted
datasets in the testing phase. MVMD-SVMD-MLP and MVMD-SVMD-CNN-BiGRU show
a close scatter of points, indicating a higher accuracy of prediction. This is also confirmed
by the histogram of absolute prediction error where the lower bracket bins in both models
have higher values than MVMD-SVMD-SVR and MVMD-SVMD-AdaBoost (Figure 15).
Figure 16 shows the time series comparison of 100 data points with similar patterns for the
predicted and observed SLR dataset.
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4.2. Mean Sea Level Trend Evaluation with MVMD-SVMD-CNN-BiGRU Model
Mean Predictions

Figures 17 and 18 show mean sea level trend for Darwin and Milner Bay as 6.1 ± 1.1 mm
and 5.6 ± 1.5 mm, respectively. These values, including uncertainties, coincide with the
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given range of 4–6 mm/yr in [83], which is notably higher than the global average as
reported. With the linear projection of the trend, the mean sea level of Darwin and Milner
Bay are predicted to be about 4.37 m and 1.33 m, respectively, in the year 2032.
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4.3. Limitations, Challenges, and Model Interpretability

While machine learning models have evolved and expanded to efficiently train data
for prediction, there are associated limitations and challenges that need to be consid-
ered [84–86]. Firstly, an important aspect of sea level prediction is the availability of
sufficient data for AI modelling. The site should also be reliable and state the accuracy
of data with minimum missing values. Secondly, the prediction of sea level also needs
to include information on other associated oceanic and climate parameters for the same
timeline. AI models rely on input data information to extract underlying features and rela-
tionships with the target variable for prediction. AI model interpretability in the early years
focused on approaches to visualize the internal representations of predictive models [87].
Ribeiro et al. [88] proposed a model agnostic method known as the Local Interpretable
Model-agnostic Explanation (LIME) by fitting interpretable local surrogate models around
individual instances of the feature dataset [87]. Such approaches that highlight and explain
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the importance of the parameters used in data-driven AI models improve the overall
interpretation of the results and model performance, as shown below.

Figure 19 shows how positive and negative feature weights are assigned for a single
instance in the CNN-BiGRU prediction model. In this case, PCA1, Lag 5, and wind
direction display strong feature weightings. While LIME does provide information on
feature weights in the model, it uses linear regression and may not capture the nonlinearities
in the model [89]. Furthermore, the LIME explanation is on individual prediction rather
than the global behaviour [89]. This area of AI interpretability is an emerging area of
research that promises to provide more techniques that can give a more granular insight
into the use of predictive AI models [87,90].
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5. Conclusions

This study has successfully shown the importance of sea level data decomposition and
feature extraction approach for artificial intelligence modelling. Since the new deep learning
models are highly capable of handling more data inputs, the extraction of intrinsic features
through IMFs provides more information on data inputs for prediction. Furthermore, the
use of PCA for IMF input selection helps with dimensionality reduction for data modelling.
This study shows that double data decomposition of sea level signal can achieve high
prediction accuracy of AI models. Both study sites of Darwin and Milner Bay show an
increase in mean sea level. While there are some studies for the Northern Territory, very
few have quantified the impacts of sea level rise and trend. Given the rate of SLR and
the cascading impacts associated with coastal erosion and inundation, there is an urgent
need for a better understanding and accurate predictive ability of coastal and wetland
changes. In this study, a method for achieving this is presented that aims to assist relevant
stakeholders to make informed adaptation decisions for the region. The estimated SLR
values of 6.1 ± 1.1 mm and 5.6 ± 1.5 mm for Darwin and Milner Bay are significant,
indicating the need for appropriate adaptation strategies, particularly in consideration of
the prevalence of tropical cyclones and storm surges in this area. The AI models were
evaluated using LIME to obtain an insight into the model black box. Challenges and
limitations to sea level study such as data availability and missing values are highlighted.
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