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Abstract. Data anonymization techniques based on enhanced privacy
principles have been the focus of intense research in the last few years.
All existing methods achieving privacy principles assume implicitly that
the data objects to be anonymized are given once and fixed, which makes
it unsuitable for time evolving data. However, in many applications, the
real world data sources are dynamic. In such dynamic environments, the
current techniques may suffer from poor data quality and/or vulnera-
bility to inference. In this paper, we investigate the problem of updat-
ing large time-evolving microdata based on the sophisticated l-diversity
model, in which it requires that every group of indistinguishable records
contains at least l distinct sensitive attribute values; thereby the risk of
attribute disclosure is kept under 1/l. We analyze how to maintain the l-
diversity against time evolving updating. The experimental results show
that the updating technique is very efficient in terms of effectiveness and
data quality.

1 Introduction

Many organizations are increasingly publishing microdata (tables that
contain unaggregated information about individuals). These tables can
include medical, voter registration, census, and customer data. Some of
these microdata need to be released, for various purposes, to other par-
ties in a modified form (without the direct identifying information such
as SSN, Name, etc.). But even altered this way, these datasets could still
present vulnerabilities that can be exploited by intruders, i.e. persons
whose goals are to identify specific individuals and to use the confidential
information they discover for malicious purposes. The high volume and
availability of released datasets together with ever increasing computa-
tional power made the protection against those vulnerabilities an increas-
ingly difficult task. To avoid linking attacks, Samarati and Sweeney [11,



15] proposed a definition of privacy called k-anonymity. A table satisfies
k-anonymity if every record in the table is indistinguishable from at least
k−1 other records with respect to every set of quasi-identifier attributes;
such a table is called a k-anonymous table.

Due to its conceptual simplicity, numerous algorithms have been pro-
posed for implementing k-anonymity via generalization and suppression.
Samarati [11] presents an algorithm that exploits a binary search on the
domain generalization hierarchy to find minimal k-anonymous table. Sun
et al. [12] recently improve his algorithm by integrating the hash-based
technique. Bayardo and Agrawal [3] presents an optimal algorithm that
starts from a fully generalized table and specializes the dataset in a mini-
mal k-anonymous table, exploiting ad hoc pruning techniques. LeFevre et
al. [6] describes an algorithm that uses a bottom-up technique and a priori
computation. Fung et al. [5] present a top-down heuristic to make a table
to be released k-anonymous. As to the theoretical results, Meyerson and
Williams [9] and Aggarwal et al. [1, 2] proved the optimal k-anonymity is
NP-hard (based on the number of cells and number of attributes that are
generalized and suppressed) and describe approximation algorithms for
optimal k-anonymity. Sun et al. [13] proved that k-anonymity problem is
also NP-hard even in the restricted cases, which could imply the results
in [1, 2, 9] as well.

Recent studies shows that although k-anonymity protects against iden-
tity disclosure, it is insufficient to prevent attribute disclosure. To ad-
dress this limitation of k-anonymity, several models such as p-sensitive k-
anonymity [16], (p+, α)-sensitive k-anonymity [14], l-diversity [8], (α, k)-
anonymity [19] and t-closeness [7] were proposed in the literature in order
to deal with the problem of k-anonymity. The work presented in this pa-
per is based on l-diversity model, introduce by [8]. The main contribution
of [8] is to introduce the l-diversity property, which provides privacy even
when the data publisher does not know what kind of knowledge is pos-
sessed by the adversary. Most of the existing solutions are limited only to
static data release. That is, in such solutions it is assumed that the entire
dataset is available at the time of release. Nevertheless, large microdata
sets containing private information are time-evolving, meaning that new
data are collected and added, and old data are purged.

One possible method is to publish anonymizations of current micro-
data, that is, when the new anonymous versions of such a dataset are pre-
pared for release, the current solution is to reprocess the entire dataset,
without relying on previous releases of the dataset. However, processing
a large dataset in this way to achieve the privacy requirement is time-



consuming. Another approach is to anonymize and publish new records
periodically. Then researchers can either study each released dataset in-
dependently or merge multiple datasets together for more comprehen-
sive analysis. Although straightforward, this approach may suffer from
severely low data quality.

The incremental updates are not well addressed in the previous stud-
ies. [17] studies the incremental update issue for k-anonymity model.
In this paper, we discuss about the updating technique for large time-
evolving microdata on l-diversity model which extend the results in [17].
we propose an updating technique for the maintenance of l-diverse large
evolving datasets. Essentially, the proposed technique produces a l-diverse
dataset starting from a previous l-diverse release solution for the dataset,
which is updated to include the new data in the increment dataset and to
delete the obsolete dataset. The anonymous process tries to minimize in-
formation loss. As our experimental results show, this updating technique
is far more efficient than to re-process the whole updated microdata.

2 Preliminaries

Let T be the initial microdata table and T ′ be the released microdata
table. T ′ consists of a set of tuples over an attribute set. The attributes
characterizing microdata are classified into the following three categories.

• Identifier attributes that can be used to identify a record such as
Name and Medicare card.

• Quasi-identifier (QI) attributes that may be known by an intruder,
such as Zip code and Age. QI attributes are presented in the released
microdata table T ′ as well as in the initial microdata table T .

• Sensitive attributes that are assumed to be unknown to an intruder
and need to be protected, such as Disease or ICD9Code. Sensitive at-
tributes are presented both in T and T ′.

In what follows we assume that the identifier attributes have been
removed and the quasi-identifier and sensitive attributes are usually kept
in the released and initial microdata table. Another assumption is that
the value for the sensitive attributes are not available from any external
source. This assumption guarantees that an intruder can not use the sen-
sitive attributes to increase the chances of disclosure. Unfortunately, an
intruder may use record linkage techniques [18] between quasi-identifier
attributes and external available information to glean the identity of indi-
viduals from the modified microdata. To avoid this possibility of privacy
disclosure, one frequently used solution is to modify the initial microdata,



MCN Gender Age Zip Diseases
∗ Male 25 4350 Hypertension
∗ Male 23 4351 Hypertension
∗ Male 22 4352 Depression
∗ Female 28 4353 Chest Pain
∗ Female 34 4352 Obesity
∗ Female 31 4350 Flu

Table 1: Microdata

MCN Gender Age Zip Diseases
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Hypertension
∗ Male 22-25 435∗ Depression
∗ Female 28-34 435∗ Chest Pain
∗ Female 28-34 435∗ Obesity
∗ Female 28-34 435∗ Flu

Table 2: 3-anonymous Microdata

more specifically the quasi-identifier attributes values, in order to enforce
the k-anonymity property.

Definition 1 (Quasi-identifier). A quasi-identifier (QI) is a minimal
set Q of attributes in microdata table T that can be joined with external
information to re-identify individual records (with sufficiently high prob-
ability

Definition 2 (k-anonymity). The modified microdata table T ′ is said
to satisfy k-anonymity if and only if each combination of quasi-identifier
attributes in T ′ occurs at least k times.

A QI-group in the modified microdata T ′ is the set of all records in
the table containing identical values for the QI attributes. There is no
consensus in the literature over the term used to denote a QI-group. This
term was not defined when k-anonymity was introduced [11, 15]. More
recent papers use different terminologies such as equivalence class [19, 8,
7] and QI-cluster [16, 14].

For example, let the set {Gender, Age, Zip Code} be the quasi-
identifier of Table 1. Table 2 is one 3-anonymous view of Table 1 since
there are two QI-groups and the size of each QI-group is at least 3. So
k-anonymity can ensure that even though an intruder knows a particular
individual is in the k-anonymous microdata table T , s/he can not infer
which record in T corresponds to the individual with a probability greater
than 1/k.

The k-anonymity property ensures protection against identity disclo-
sure, i.e. the identification of an entity (person, institution). However, it
does not protect the data against attribute disclosure. To deal with this
problem in privacy breach, the l-diversity model was introduced in [8].

Definition 3 (l-diversity principle). A QI-group is said to have l-
diversity if there are at least l “well-represented” values for the sensitive



attribute. A modified table is said to have l-diversity if every QI-group of
the table has l-diversity.

Machanavajjhala et al. [8] gave a number of interpretations of the
term “well-represented” in this principle:

1. Distinct l-diversity: The simplest understanding of “well repre-
sented” would be to ensure there are at least l distinct values for the
sensitive attribute in each QI-group. Distinct l-diversity does not prevent
probabilistic inference attacks. A QI-group may have one value appear
much more frequently than other values, enabling an adversary to con-
clude that an entity in the equivalence class is very likely to have that
value. This motivated the development of the following two stronger no-
tions of l-diversity.

2. Entropy l-diversity: The entropy of a QI-group G is defined to be:

Entropy(G) = −
∑

s∈S

p(G, s)logp(G, s)

in which S is the set of the sensitive attribute, and p(G, s) is the fraction
of records in G that have sensitive value s. A table is said to have entropy
l-diversity if for every QI-group G, Entropy(G) ≥ log(l). Entropy l- di-
versity is strong than distinct l-diversity. As pointed out in [8], in order
to have entropy l-diversity for each QI-group, the entropy of the entire
table must be at least log(l). Sometimes this may too restrictive, as the
entropy of the entire table may be low if a few values are very common.
This leads to the following less conservative notion of l-diversity.

3. Recursive (c, l)-diversity: Recursive (c, l)-diversity makes sure that
the most frequent value does not appear too frequently, and the less
frequent values do not appear too rarely. Let m be the number of values
in a QI-group, and ri, 1 ≤ i ≤ m be the number of times that the ith

most frequent sensitive value appears in a QI-group G. Then G is said
to have recursive (c, l)-diversity if r1 < c(rl + rl+1 + ... + rm). A table is
said to have recursive (c, l)-diversity if all of its QI-groups have recursive
(c, l)-diversity.

In this paper, we adopt the first interpretation of l-diversity, that is, we
say a microdata satisfies l-diversity principle, if there are at least l distinct
values in each QI-group. We applied the cluster technique reported in
[4]. To ensure that l-diversity is correctly enforced, two constraints are
required when the clustering process is performed. First, each resulted
cluster must have at least l distinct values for the sensitive attribute. If it



does, the subsequent generalization of the cluster elements to a common
tuple ensures the l-diversity requirement. Second, the clustering method
must act towards minimizing the information loss. The clusters should
be formed such that the information lost by generalizing each group of
tuples to a common value will be as low as possible.

Definition 4. [4] [Information Loss] Let cl ∈ P be a cluster, gen(cl)
its generalization information and A = {N1, · · ·Ns, C1, · · ·Ct} the set of
quasi identifier attributes. The information loss caused by generalizing cl
tuples to gen(cl) is:

IL(cl) = |cl|(
s∑

j=1

|gen(cl)[Nj ]|
|[minr∈T r[Nj ],maxr∈T r[Nj ]]|) +

t∑

j=1

h(∧(gen(cl)[Cj ]))
h(HCj )

where |cl| denotes the cardinality of cluster cl; |[i1, i2]| is the size of the
interval [i1, i2] (the value i2 − i1); ∧(w), w ∈ HCj is the sub-hierarchy of
HCj rooted at w; h(HCj ) denotes the height of the tree hierarchy HCj .

Definition 5. Total information loss for a solution P = {cl1, · · · , clv}
of the l-diversity by clustering problem, denoted by IL(P), is the sum of
the information loss measure for all the clusters in P.

The information loss measure penalizes each tuple with a cost pro-
portional with how “far” the tuple is from the cluster generalization in-
formation. Intuitively, the smaller the clusters are in a solution and the
more similar the tuples in those groups will be, then less information will
be lost. So, the desideratum is to group together the most similar objects
(i.e. that cause the least possible generalization) in clusters with respect
to the l-diversity requir

3 Dynamic Updating Time-evolving Microdata

Let P = {cl1, · · · clv} be a solution for the l-diversity problem for the
microdata T . There are three problems arisen in the updating process.
The first is that when there is a new segment of data that needs to
be added to the original microdata, and how to process the update to
make it preserve the l-diversity. The second is when parts of the original
data needs to be deleted, how to maintain l-diversity. The third one is
a hybrid version of adding and deleting. We can solve the third one by
independently solve the first and second problem. The first and second
problems are described as follows:



Problem 1. The dataset 4+T is added to T . How to efficiently update P
to P ′ = {cl′1, · · · cl′v} that ensures l-diversity for T ∪4+T?

Problem 2. The dataset4+T is deleted from T . How to efficiently update
P to P ′ = {cl′1, · · · cl′v} that ensures l-diversity for T −4−T?

The solution to the first problem is as follows. Each tuple r in 4+T
is added to that cluster in P that, increased with r, will produce the
minimum increase of total information loss. Due to multiple insertions,
when a cluster grows bigger than 2k elements and it has at least 2l distinct
sensitive values, we can split that cluster into two sub-cluster in a greedy
manner that tries to minimize total information loss.

The solution to the second problem proceeds as follows. Each tuple r
in 4−T is deleted from the cluster currently containing it. The clusters
that remain with less than k elements or less than l distinct sensitive
values are dispersed into the other cluster, in order to maintain l-diversity
for T − 4−T . Each element r of cl′j is relocated to another cluster will
produce the minimum increase of the total information loss. If a cluster
grows bigger then 2k elements and with more than 2l distinct sensitive
values, that cluster will be split into two, which is the same process as
the first problem.

Theorem 1. Let T be a set of records and l be the specified anonymity
requirement. Every cluster that the algorithm finds has at least l distinct
sensitive values, but no more than 2l − 1.

Proof. As the algorithm finds a cluster with the number of sensitive at-
tribute values of the records is equal to or greater than l, every cluster
contains at least l distinct sensitive values. If there is one cluster with
less than l distinct sensitive values, each record in this cluster could be
relocated to other cluster. That is, in the worst case, the records with
l − 1 distinct sensitive values are added to another single cluster which
already has records with l distinct sensitive values. Therefore, the maxi-
mum number of distinct sensitive values in a cluster is 2l − 1.

4 Experimental Results

In our experiment, we adopted the publicly available data set, Adult
Database, at the UC Irvine Machine Learning Repository [10], which
has become the benchmark of this field and was adopted by [6, 8, 5]. In
this section we compare, in terms of efficiency, scalability, and results



Attribute Type Distinct values Height
Age Numeric 74 5

Workclass Categorical 8 3
Education Categorical 16 4
Country Categorical 41 3

Marital Status Categorical 7 3
Race Categorical 5 3

Gender Categorical 2 2

Table 3: Features of Quasi-identifier

quality, the static algorithm from [16] with our incremental algorithms.
The algorithms have been implemented and executed on P4 machine with
2.4 GHz each and 1 GB of RAM.

Table 3 provides a brief description of the data including the attributes
we used, the type of each attribute data, the number of distinct values for
each attribute, and the height of the generalization hierarchy for each at-
tribute. In all the experiments, we considered Age as the set of numerical
quasi-identifier attributes, and Work-class, Marital-status, Occupation,
Race, Sex, and Native-country as the set of categorical quasi-identifier at-
tributes. l-diversity property was enforced in respect to the quasi-identifier
consisting of all these seven attributes. We removed all tuples that con-
tained the unknown value for one or more of the quasi-identifier attributes
from the data.

The experiment contains three steps. First, the static algorithm from
[16] was applied on a dataset, which is a subset extracted from the entire
adult dataset. Second, we applied the dynamic algorithm to update the
clusters produced by the static algorithm and considering several differ-
ent choices of inserting/deleting dataset. Third, the static algorithm was
applied on the entire new updated dataset datasets. When doing insert-
ing, T has 10000 objects, and the inserting dataset had different sizes,
varying between 0.5% and 50% of the entire adult dataset. When doing
deleting, the deleting parts had different sizes, varying between 50 and
5000 tuples. The values considered for l were 2, 4.

In Fig. 1(a) and 2(a), we compare: a) the information loss for each
set of clusters obtained by applying the static l-diversity algorithm, fol-
lowed by updating algorithms on the corresponding updated dataset; b)
the information loss for the set of clusters obtained by applying the static
algorithm on the updated dataset. We can expect that the information
loss obtained by the updating algorithm deteriorates when the increment/
decrement dataset grows in size w.r.t. the initial dataset size. Neverthe-



Fig. 1: Information Loss vs Running Time (I)

Fig. 2: Information Loss vs Running Time (II)

less, as is usually the case in the real world databases evolution, for small
modification amounts, the information loss remains at about the same
level as if we would use the static algorithm. From these experiments, we
draw the conclusion that the updating algorithm can be used for main-
taining l-diverse microdata when the changing portions of the datasets
are small.

Fig. 1(b) and Fig. 2(b) illustrate the running time for the updating al-
gorithms compared with the static algorithm. The time for incrementally
processing the datasets grows with the size of the datasets, however, it is
still significantly lower than the time required to process the datasets with
the static algorithm. Whether to use updating algorithm or a static one
is to be decided by the requirement of data quality and execution time.
The advantages of dynamic updating algorithms can maintain acceptable
data quality while the running time is tolerated.

5 Conclusion and Future Work

In this paper, we identified and investigate the problem of maintaining
l-diversity in time evolving microdata, and proposed a simple yet effective



solution. Maintaining l-diversity against various types of dynamic updates
is an important and practical problem. As we show in experiments, the
running time of the dynamic updating algorithms is significantly lower
than that of the static algorithm. From the data quality perspective, the
information loss is also comparable with the information loss obtained by
applying the non-incremental algorithm to the final dataset. As future
work, we will make more comprehensive experimental studies to compare
the dynamic method with others and extend to other privacy paradigms.
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