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Abstract
During the past few decades, a range of digital strategies for Nitrogen (N) management 
using various types of input data and recommendation frameworks have been developed. 
Despite much research, the benefits accrued from such technology have been equivocal. 
In this work, thirteen methods for mid-season N recommendations in cereal production 
systems were evaluated simultaneously, ranging from simple mass balance through to non-
mechanistic approaches based on machine learning. To achieve this, an extensive field 
research program was implemented, comprising twenty-one N strip trials implemented in 
wheat and barley fields across Australia over four cropping seasons. A moving window 
regression approach was used to generate crop response functions to applied N and calcu-
late economically optimal N rates along the length of the strips. The N recommendations 
made using various methods were assessed based on the error against the optimal rate and 
expected profitability. The root mean squared error of the recommendations ranged from 
15 to 57 kg/ha. The best performing method was a data-driven empirical strategy in which 
a multivariate input to characterise field and season conditions was abundantly available 
and used to predict optimal N rates using machine learning. This was the only approach 
with potential to substantially outperform the existing farmer management, reducing the 
recommendation error from 42 to 15 kg/ha and improving profitability by up to A$47/ha. 
Despite being reliant on extensive historical databases, such a framework shows a promis-
ing pathway to drive production systems closer towards season- and site-specific economi-
cally optimum recommendations. Automated on-farm experimentation is a key enabler for 
building the necessary crop response databases to run empirical data-driven decision tools.

Keywords  Nitrogen decision tools · Crop sensing · Machine learning · Site-specific 
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Introduction

Some aspects of modern agricultural systems may be perceived as inefficient. For exam-
ple, Australian wheat production between 1996 and 2010 was estimated to be about half 
of what could be achieved under best management practices (Global Yield Gap and Water 
Productivity Atlas, 2022); similar numbers are found for major crops in Brazil (e.g. soy-
bean and sugarcane) and the USA (e.g. wheat). According to Hochman and Horan (2018), 
suboptimal nitrogen (N) management is a main contributor to the yield gap in Australia. 
Yet, estimating the optimal N fertiliser rate to apply can be a challenging task for farmers 
since the crop demand for the nutrient and the supply by the soil can vary significantly, 
both spatially and temporally. In addition, Australian farmers operate against a background 
of climate variability and economic uncertainty, which impacts their management strate-
gies according to their risk profile. Nitrogen management is therefore an important ele-
ment of risk management (Monjardino et al., 2013) such that tools which increase grower 
confidence in N decision making may have a large impact on farm business performance. 
To facilitate N management, several tools and agronomic services have become available 
to growers. Below, the main categories of agronomic thinking that underpin fertiliser man-
agement generally and the various tools for N application are described. For a compre-
hensive narrative on the various principles guiding crop mineral nutrition and fertilisation 
management, the work of Lemaire et al. (2021) is recommended.

Arguably the most common agronomic principle to calculate nutrient application rates 
is the so-called ‘nutrient budget’, or ‘mass balance’ (Meisinger et al., 2008). This approach 
seeks to balance the crop demand for nutrient with the supply in the system by applying 
fertiliser as needed. It relies on the prediction of nutrient demand based on estimates of 
yield potential, the assessment of soil nutrient supply and on other assumptions relating 
to the quality of the produced yield (e.g. grain protein content) and to the efficiency of 
nutrient uptake from applied fertiliser. Another common agronomic approach to determine 
fertiliser rates follows the concept of ‘crop responsiveness’ to applied nutrient. This strat-
egy determines optimal application rates—for example, the rate that maximises yield—
empirically based on experimentation. Traditionally, fertiliser recommendations following 
this approach have been based on average response curves, obtained from fertilisation trials 
covering several sites and or years in an area of interest (Lemaire et al., 2021). Not surpris-
ingly, the average response curve may not fully account for the specific climate or soil con-
ditions of each field in a given season. Thus, extrapolating recommendations to conditions 
different to those of the experiments themselves usually generates large errors, even in the 
same field (Colaço and Bramley, 2019).

Another agronomic framework that is less commonly used amongst producers relies on 
the notions of nutrient dilution and critical nutrient levels (Lemaire et al., 2019); herein, 
this approach will be referred to as ‘nutrient sufficiency’. This approach is based on moni-
toring plant nutrition and assuring, through the application of fertiliser, that the plant nutri-
ent level stays at or above a predetermined threshold (the ‘critical nutrient level’). The 
threshold represents the minimum nutrient concentration in the plant needed to maximise 
plant growth or productivity and it is previously determined based on field experimenta-
tion. One important consideration is the effect of allometry and nutrient dilution in the 
plant; that is, the nutrient concentration and the critical level tend to decrease with larger 
plant biomass. Amongst many applications, these concepts are commonly implemented in 
‘rules of thumb’ to interpret tissue nutrient analysis and guide in-season fertiliser interven-
tions. Somewhat analogous to this approach, is the ‘soil nutrient bank’ strategy for fertiliser 
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management (Meier et al., 2021). In this case, the focus is on monitoring soil nutrient lev-
els as opposed to the plant nutrient level to assure that the amount of mineral N in the 
soil is above a given threshold. Critical for this strategy is to determine, through previous 
experimentation, an adequate threshold—that is, an adequate ‘size’ of the soil mineral N 
‘bank’ for different soil types and production systems. Although these different decision 
methods seek a similar outcome (maximum crop yield with minimum use of fertiliser), 
they may result in different recommendations due to the different points of reference being 
used (i.e., different crop and soil information) and the different assumptions underpin-
ning the recommendation. Moreover, these different approaches vary in their capacity to 
be deployed in the field and implemented spatially using Precision Agriculture (PA) tools 
given the likely spatial variation in the key input data.

Over the past three decades, crop sensing technologies have been used to implement 
some of the above frameworks in a semi-automated fashion to enable site-specific ferti-
liser application and potentially contribute to closing yield gaps associated with suboptimal 
N management. The Nitrogen Fertilisation Optimisation Algorithm (NFOA; Raun et  al., 
2005), which uses a mass balance concept, and the Holland and Schepers (2010) approach 
based on crop responsiveness, were pioneer sensor-based approaches developed to support 
site-specific nutrient management. These and similar strategies have been tested for many 
crops in different countries, becoming one of the most investigated topics in PA research 
(Colaço & Bramley, 2018; Franzen et  al., 2016). They have also been implemented in 
commercial systems around the world, although with arguably low adoption by farmers 
(Lowenberg-DeBoer and Erickson, 2019; Bramley & Ouzman, 2019).

Despite these many years of development, a recent review found great variation in the 
reported benefit from the use of sensor-based N application, with about 25% of studies 
reporting economic losses (Colaço & Bramley, 2018); Diacono et al. (2013) similarly ques-
tioned the economic benefit of precision N fertilisation. Colaço and Bramley (2018) high-
lighted the fact that most sensor-based strategies treated the N decision as univariate; that 
is, they rely solely on the measurements of a single type of sensor, despite the inherent 
complexity of N management decisions, which was suggested as a major reason for obser-
vations of poor performance. Moreover, sensor-based methods have been framed around 
agronomic mechanistic understanding, albeit with simplifications to suit the decision tool, 
with the sensor technology used to estimate the crop parameters needed to deploy the 
decision framework. For example, in the mass balance concept used by the NFOA sensor 
approach, the vegetation index derived by the crop sensor is used to estimate grain yield 
potential, but the grain quality (i.e., grain protein content) which ultimately determines the 
total nutrient demand and the fertiliser nutrient recovery by the plant are assumed. Thus, 
aside from the inherent limitation of the framework itself—the uncertainty of the yield 
estimation—there are built-in sources of error in the calculation of the recommendation 
which can compromise its effectiveness for site-specific nutrient management. These issues 
were thoroughly demonstrated in Colaço and Bramley (2019) and Colaço et al. (2021a). An 
alternative approach has been suggested where sensed variables inform a machine learn-
ing model that predicts the optimal N rate directly. This approach was considered more 
capable of handling system complexity inherent to N decisions. As shown in  Colaço et al. 
(2021a), this approach outperformed agronomic mechanistic frameworks used by more tra-
ditional sensor-based strategies, although the results were based on a single-site, plot-based 
experiment.

The limited ability of plot-based trials to reflect the inherent farm- and field-scale 
variability, has been a common constraint in sensor-based technology research (Colaço 
& Bramley, 2018). Another main issue has been the fact that most studies have used 
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subjective assessments of sensor-based technology by testing their use strictly against 
current farm practice (Colaço & Bramley, 2018). Consequently, the relative bene-
fit from sensors claimed in these studies depends on how good the current manage-
ment practice is. Ideally, all management practices in a comparison study, which may 
include sensor-based approaches and farmer’s practice, should be evaluated against 
optimal management and then compared amongst themselves. On-farm experimenta-
tion (OFE)—field-scale experiments conducted in partnership with farmers (Lacoste 
et  al., 2022) and implemented and monitored using PA technology—is key for ena-
bling both large scale trials and the observation of optimal N rates for the comparison 
of alternative recommendation methods.

This work sought to assess the recommendation accuracy and the impact on farm 
profitability of a range of N fertiliser recommendation methods for wheat and barley 
production in Australia. A parallel goal was to investigate new approaches which may 
improve farmer confidence in N decision-making in the face of the risks associated 
with N management. A total of thirteen methods were evaluated including approaches 
based on various types of digital technologies, input data and frameworks along with 
a number of currently utilised benchmark methods. The hypothesis of this study was 
that, with access to a variety of sensing technologies, an on-farm experiment and 
potentially useful data from a range of on- and off-farm sources, farmers ought to be 
able to make mid-season N decisions with greater confidence than is possible using 
approaches typically used at present. Comparisons of these approaches were made 
using 21 large-scale on-farm field trials spanning the three main Australian grain pro-
ducing regions over four years.

Materials and methods

The methodology for this study had three main components. The first was the imple-
mentation of on-farm crop response experiments, including strips of high (‘rich’), low 
(‘zero’) and intermediate (‘field’) N rate treatments that were harvested by headers 
equipped with onboard yield and protein monitors. An important element of these 
was that they could be implemented by collaborating farmers using the farmers’ own 
equipment. The second was a site-specific analysis of harvest data to assess the crop 
response to fertiliser application using a moving window regression approach along 
the length of each strip trial; this step generated local response functions and esti-
mates  of optimal fertiliser rates. The third was the assessment of the different ferti-
liser management strategies of interest using the local response functions generated in 
the previous step, with the various strategies assessed based on their profitability and 
the recommendation error benchmarked at each site against the observed economically 
optimal N rate (EONR).

The processing of spatial data, including data cleaning (elimination of outliers), 
spatial interpolation and map generation, was performed in QGIS 3.10 (QGIS Devel-
opment Team, 2022) using the PAT plugin (Precision Agriculture Tools; Ratcliff et al., 
2020) coupled with Vesper 1.62 (Minasny et al., 2005) for kriging interpolation when 
needed. Analysis, including the moving window regression, statistical modelling for 
the N recommendations and comparison of the N recommendation methods, was done 
in R 3.3.0 (R Core Team, 2022).
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Field program and experimental design

A large program of OFE was conducted between 2018 and 2021 as part of a multi-agency 
research project entitled ‘Future Farm’. A total of twenty-one field trials were established 
in commercial fields of wheat and barley covering a range of soil types and weather condi-
tions across Western and South Australia, Victoria and New South Wales (Table 1). The 
main goal of the trials was to enable the assessment of crop response to N application and 
the observation of optimal N rates in a spatially distributed manner; that is, covering the 
expected range of variation in crop performance within each field. Second, it sought to 
provide a range of crop N availability scenarios from which field calibration data could be 
collected for the development of sensor-based N recommendation approaches.

The fields were implemented with a strip trial comprising adjacent strips of an N ‘rich’ 
and an N ‘zero’ treatment (Fig. 1). The strips were positioned to run across ‘management 
zones’ determined through analysis of available spatial data such as previous yield maps, 
remotely sensed imagery and electromagnetic and gamma soil survey data when availa-
ble. There was some variation in the specific design of each trial depending on the farmer 
equipment and farmer preference at each site. For example, in Fig. 1, as for the majority 
of trials, the N strips were 36 m wide, equivalent to three header widths; in some other tri-
als, strips were equivalent to one or two header widths (12 or 24 m). Typically, crops were 
sown and grown according to normal farmer practice. At, or soon after sowing, the N ‘rich’ 
strip was established with N applied at approximately twice the normal farmer rate to cre-
ate an environment of non-limiting N supply. Also, an N ‘zero’ strip was established with 
no additional application of N beyond that applied at sowing; the remainder of the field 
was fertilised according to normal farmer practice with the area adjacent to the strips used 
as the ‘normal field’ treatment.

Field data were collected at various stages during the season, starting prior to sowing 
when soil samples were collected from the top 0.3 m depth layer at targeted locations along 
the length of each strip (Fig. 1) for general soil characterisation (e.g., the analysis of soil 
texture, organic matter, pH, etc.) and analysis of mineral N; these analyses were under-
taken in an independent commercial laboratory. There were between 15 and 21 sample 
locations per trial (5–7 per strip), depending on the field size. At Zadoks growth stage 31 
(or GS-31; Zadoks et al., 1974), the trial was scanned with a sensing system for measure-
ments of various vegetation indices and machine vision crop feature extraction (see details 
below). At the same time, plant samples were collected from the same locations as for 
the pre-sowing sampling. For each plant sample, two plant rows of 1 m length were cut at 
the ground level and analysed for dry biomass and plant N concentration. Prior to harvest, 
plant samples (two rows of 1 m length) were collected near the same targeted locations for 
plant and grain analysis of dry biomass and N concentration. The fields were harvested 
using machines equipped with onboard yield monitors and GNSS (Global Navigation Sat-
ellite System) guidance. In most cases (in 15 out of the 21 trials), the harvester was also 
equipped with an onboard calibrated grain protein sensor. The protein data from grain sam-
pling was used for the analysis of trials that did not have onboard protein sensors available.

Site‑specific crop response analysis

For the site-specific assessment of the crop response to N application, a moving window 
regression analysis along the length of each strip trial was conducted using the harvest 



988	 Precision Agriculture (2024) 25:983–1013

1 3

Ta
bl

e 
1  

L
ist

 o
f s

ite
s u

se
d 

in
 th

e 
pr

og
ra

m
 o

f fi
el

d 
tri

al
s

a  Th
e 

sa
m

e 
nu

m
er

ic
al

 in
de

x 
fo

r e
ac

h 
lo

ca
tio

n 
in

di
ca

te
s t

ha
t t

he
 sa

m
e 

fie
ld

 w
as

 u
se

d 
in

 d
iff

er
en

t y
ea

rs
b  M

ai
n 

so
il 

ty
pe

 o
f t

he
 fi

el
d 

so
ur

ce
d 

fro
m

 th
e 

A
us

tra
lia

n 
So

il 
Re

so
ur

ce
 In

fo
rm

at
io

n 
Sy

ste
m

 (A
SR

IS
, 2

02
2)

c  A
ve

ra
ge

 so
il 

cl
ay

 c
on

te
nt

 a
t t

he
 0

.3
 m

 d
ep

th
 la

ye
r o

bt
ai

ne
d 

fro
m

 so
il 

sa
m

pl
in

g
d  R

ai
nf

al
l b

et
w

ee
n 

A
pr

il 
an

d 
O

ct
ob

er
 so

ur
ce

d 
fro

m
 th

e 
A

us
tra

lia
n 

B
ur

ea
u 

of
 M

et
eo

ro
lo

gy
 (B

O
M

, 2
02

2)
 u

si
ng

 th
e 

ne
ar

es
t w

ea
th

er
 st

at
io

n 
fro

m
 th

e 
fie

ld
e  A

ve
ra

ge
 y

ie
ld

 m
ea

su
re

d 
fro

m
 th

e 
N

 ‘r
ic

h’
 tr

ea
tm

en
t

f  A
ve

ra
ge

 E
O

N
R

 (e
co

no
m

ic
al

ly
 o

pt
im

al
 N

 ra
te

) o
bt

ai
ne

d 
fro

m
 th

e 
N

 st
rip

 tr
ia

l d
at

a

Ye
ar

Lo
ca

tio
na

C
ro

p
Fi

el
d 

Si
ze

 (h
a)

M
ai

n 
So

il 
Ty

pe
b

C
la

y 
co

nt
en

t 
(%

)c
G

ro
w

in
g 

se
as

on
 ra

in
fa

ll 
(m

m
)d

A
ve

ra
ge

 y
ie

ld
 

(t/
ha

)e
A

ve
ra

ge
 E

O
N

R
 

(k
g/

ha
)f

20
18

Ta
rle

e 
- S

A
1

W
he

at
64

Ve
rto

so
ls

38
.8

18
1

5.
0

87
20

18
W

oo
ra

k-
V

IC
1

W
he

at
11

9
Ve

rto
so

ls
45

.6
23

2
5.

5
45

20
18

K
al

an
ni

e-
W

A
1

W
he

at
22

7
K

an
do

so
ls

15
.2

23
2

3.
5

56
20

19
Ta

rle
e-

SA
1

W
he

at
64

Ve
rto

so
ls

38
.8

21
8

3.
5

43
20

19
W

oo
ra

k-
V

IC
1

B
ar

le
y

11
9

Ve
rto

so
ls

45
.6

23
7

4.
7

13
0

20
19

K
al

an
ni

e-
W

A
2

W
he

at
35

7
K

an
do

so
ls

17
.2

19
4

2.
2

85
20

20
N

ar
ra

br
i-N

SW
1

W
he

at
18

3
Ve

rto
so

ls
43

.4
26

1
5.

4
39

20
20

Ta
rle

e-
SA

1
B

ar
le

y
64

Ve
rto

so
ls

38
.8

35
2

7.
5

93
20

20
W

oo
ra

k-
V

IC
2

W
he

at
23

2
Ve

rto
so

ls
36

.2
29

0
4.

2
87

20
20

K
al

an
ni

e-
W

A
2

W
he

at
35

7
K

an
do

so
ls

17
.2

16
2

2.
5

21
20

19
B

oo
le

ro
o 

C
en

tre
-S

A
1

B
ar

le
y

10
0

D
er

m
os

ol
s

25
.1

14
5

0.
8

4
20

19
U

ra
ni

a-
SA

1
W

he
at

53
C

al
ca

ro
so

ls
24

.8
17

6
4.

2
11

7
20

19
W

ha
rm

in
da

-S
A

1
W

he
at

31
So

do
so

ls
11

.4
17

9
4.

0
65

20
19

Tu
m

by
 B

ay
-S

A
1

B
ar

le
y

77
C

al
ca

ro
so

ls
30

.3
18

6
2.

9
77

20
19

Lo
xt

on
-S

A
1

W
he

at
15

3
C

al
ca

ro
so

ls
3.

8
92

0.
9

13
20

20
U

ra
ni

a-
SA

1
B

ar
le

y
53

C
al

ca
ro

so
ls

24
.8

33
0

5.
1

38
20

20
B

oo
le

ro
o 

C
en

tre
-S

A
2

B
ar

le
y

86
D

er
m

os
ol

s
24

.2
34

3
4.

8
29

20
20

Tu
m

by
 B

ay
-S

A
2

W
he

at
41

C
al

ca
ro

so
ls

25
.4

19
5

2.
3

44
20

20
Lo

xt
on

-S
A

1
B

ar
le

y
15

3
C

al
ca

ro
so

ls
3.

8
19

4
2.

1
24

20
21

B
oo

le
ro

o 
C

en
tre

-S
A

1
W

he
at

10
0

D
er

m
os

ol
s

25
.1

21
7

2.
3

9
20

21
Lo

xt
on

-S
A

2
B

ar
le

y
21

8
C

al
ca

ro
so

ls
6.

4
14

1
0.

8
4



989Precision Agriculture (2024) 25:983–1013	

1 3

data. For each trial, a circular buffer of 50 m radius moved along the strip length in incre-
ments of 10  m. In each 10  m increment, the harvest point data within the buffer were 
selected for a local regression analysis. The 50 m radius of the circular buffer was enough 
to encompass data from the two N strips and from an adjacent field area. The harvest point 
data within each window comprised information on grain yield derived from the onboard 
yield monitor data, after cleaning of the dataset, joined with the grain protein information 
corresponding to the closest location within the same trial strip for which it was available 
(either from the onboard sensor or from manual sampling). These grain yield and protein 
information were used to determine partial profit at each yield monitor data point. Par-
tial profit was calculated as the gross income minus the expenditure on N fertiliser based 
on average grain and fertiliser prices between 2018 and 2021 (Table 2); the gross harvest 
income accounted for grain protein premiums as described in Table 2. This local harvest 
data (i.e. within the moving window area) was then used in a regression analysis using 
a quadratic function. The EONR, the N rate that maximised partial profit, was identi-
fied from the partial profit response curve for each moving window and was then used in 
the comparative analysis of the various N recommendation methods tested in this study. 
Figure  2 demonstrates the approach on the experimental trial established at a site near 
Booleroo Centre in the ‘far north’ grain-growing region of South Australia (SA) in 2021, 
with one of the ‘windows’ highlighted, showing the harvest data points used in generating 
response functions to changing N rate. Each field trial had an average of 112 windows for 
the generation of crop response functions and EONR observations (making a total of 2352 
response observations).

In order to minimise management disruption and increase farmer engagement in 
this work—in line with the participatory nature of this research between farmers and 

Fig. 1   Example of an N strip experiment and point sample location layout in a 357-ha wheat field near 
Kalannie-WA, 2019
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Table 2   Average grain and nitrogen prices (2018–2022) applied in partial profit analysis

*Wheat and barley grades according to the Grain Standards of the Grain Trade Australia (Grain Trade Aus-
tralia, 2022)
**Source (Grain Trade Australia, 2022)

Item Grade* Grain protein (%) Price adjustment Price (A$/t)**

Wheat ASW1 < 10.5 0.85 261.80
Wheat APW1 10.5–11.5 1 (base) 308.00
Wheat H2 11.5–13 1.05 323.40
Wheat H1 > 13 1.1 338.80
Barley Malting 9–12 1 (base) 300.00
Barley Feed < 9 or > 12 0.92 277.00
Urea (46% N) – – – 500.00

Fig. 2   Experimental strip design implemented in a 100-ha barley field near Booleroo Centre, SA, 2021, and 
a moving window analysis of crop response to N application. The graphs illustrate the local response curves 
and optimal N rates (ONR is depicted as red crosses) generated from data within one of the moving win-
dows along the length of the strip trial
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researchers—a strip design was chosen (as described above) as opposed to a more ran-
domised and replicated trial, which could potentially allow more N rates to be used and 
better characterisation of crop N responsiveness. As a consequence, three N rates were 
used (the N ‘rich’, N ‘zero’ and farmer practice), but with many harvest data points avail-
able for each rate (Fig. 2). Likewise, a simple quadratic function fitted to partial profit data 
was used rather than more established yield response functions such as the Mitscherlich 
(1924) model because of the limitation posed by the restricted number of N rates avail-
able. For the purpose of this work, this experimental strategy was regarded as acceptable, 
especially in light of the fact that this simple quadratic function can capture profit decline 
that may happen at high N rates (example in Fig. 2). It is also important to note that these 
trials were designed in close collaboration with the farmer as an aid to fine-tuning N deci-
sion-making in near real-time in the field in which the trial was conducted. In most cases, 
the collaborating farmer was already using these strip trials on their own. Thus, the trial 
designs were maintained, with minimum requirements imposed by the project team. As 
such, the trials were not aimed at ‘discovery science’ or intended to inform generalised 
recommendations, although numerous such trials within a farm or region could contribute 
to these (Bramley et al., 2022).

Input variables for digital N recommendation methods

Digital variables from private and public sources were collected at each site (Table  3) 
and used in different combinations for the N recommendation frameworks detailed below 
(Table  4). Since the recommendations aimed for a mid-season decision, only variables 
available until GS-31 crop stage were used. These variables characterise the field history, 
in-season crop status, soil and landscape features and weather. In-season crop scanning 
in each strip was conducted at GS-31 with the use of a Crop Circle sensor (wavelengths 
670 mm, 730 and 780 mm, model ACS-430, Holland Scientific, Lincoln—USA) for NDVI 
(Normalised Difference Vegetation index; Rouse, 1973) and NDRE (Normalised Differ-
ence Red Edge; Fitzgerald et al., 2010) measurements. The sensor was installed on an all-
terrain vehicle 1 m from the ground (approximately 0.5–0.7 m from the top of the crop 
canopy) at nadir position, collecting data every second, which was on average, every 2.7 m 
along the length of the trials. Machine vision data were also collected and used to extract 
crop features for use in the N sufficiency recommendation approach (detailed below). An 
RGB action camera (model FDR-X3000, Sony, Tokyo—Japan) was installed alongside 
the Crop Circle sensor (1 m from the ground level) and oblique geotagged RGB images 
were collected every second. Each frame was post-processed using OpenCV 3.4.2 (Brad-
ski, 2000) in Python to segment plant pixels and extract colour indices and features in the 
red, green and blue colour space (RGB). The colour indices and canopy features generated 
were the normalised green red colour difference index (NGRDI) and normalised red blue 
colour difference index (NRBDI), which have reported correlations with biomass and plant 
N concentration (Jiang et  al., 2019); canopy cover was assessed as a surrogate for plant 
size. Readers are referred to McCarthy et al. (2022) for more details on the machine vision 
variable extraction methodology.

Publicly available variables were also collected (Table  3). Remote sensing products 
were obtained using the  Google Earth Engine Platform (Gorelik et  al., 2017) including 
Landsat8, MODIS and Sentinel2 imagery (NDVI and NDRE were calculated using 664, 
782 and 832 nm wavelengths). Each site was characterised for a range of soil, landscape 
and weather variables (Table 3). In the case of land surface temperature, model parameters 



992	 Precision Agriculture (2024) 25:983–1013

1 3

Ta
bl

e 
3  

L
ist

 o
f v

ar
ia

bl
es

 u
se

d 
fo

r d
ig

ita
l N

 re
co

m
m

en
da

tio
ns

G
ro

up
Va

ria
bl

e
D

es
cr

ip
tio

n
So

ur
ce

Sp
at

ia
l s

ca
le

Ti
m

in
g 

of
 c

ol
le

ct
io

n

Fi
el

d 
hi

sto
ry

H
ist

or
ic

 y
ie

ld
 (o

n-
fa

rm
)

A
ve

ra
ge

 y
ie

ld
 fr

om
 p

re
vi

ou
s 

3 
to

 4
 y

ea
rs

 o
f w

he
at

 a
nd

 
ba

rle
y 

co
ps

O
nb

oa
rd

 y
ie

ld
 m

on
ito

rin
g

Si
te

-s
pe

ci
fic

 (i
nt

er
po

la
te

d 
at

 
5 

m
 p

ix
el

s)
Pr

ev
io

us
 se

as
on

s

Fi
el

d 
hi

sto
ry

Y
ie

ld
 p

ot
en

tia
l

W
at

er
 li

m
ite

d 
yi

el
d 

po
te

nt
ia

l 
(t/

ha
) a

t t
he

 lo
ca

l l
ev

el
Y

ie
ld

 G
ap

 A
us

tra
lia

—
C

SI
RO

a
Fi

el
d-

sc
al

e
Pr

ev
io

us
 se

as
on

s

Fi
el

d 
hi

sto
ry

H
ist

or
ic

 y
ie

ld
 (p

ub
lic

)
H

ist
or

ic
 a

ve
ra

ge
 y

ie
ld

A
BA

R
ES

b
Fi

el
d-

sc
al

e
Pr

ev
io

us
 se

as
on

s
Fi

el
d 

hi
sto

ry
H

ist
or

ic
 c

ro
p 

in
di

ce
s

5t
h 

an
d 

95
th

 N
D

R
E 

pe
rc

en
-

til
es

 fr
om

 h
ist

or
ic

 im
ag

er
y

La
nd

sa
t 8

c
Si

te
-s

pe
ci

fic
 (3

0 
m

 p
ix

el
s)

Pr
ev

io
us

 se
as

on
s

In
-s

ea
so

n 
cr

op
 se

ns
in

g
Ve

ge
ta

tio
n 

in
di

ce
s

N
D

V
I a

nd
 N

D
R

E 
in

 e
ac

h 
str

ip
 tr

ea
tm

en
t

C
ro

p 
ci

rc
le

 se
ns

or
Si

te
-s

pe
ci

fic
 (p

oi
nt

 d
at

a 
al

on
g 

th
e 

str
ip

s)
G

S-
31

In
-s

ea
so

n 
cr

op
 se

ns
in

g
Ve

ge
ta

tio
n 

in
di

ce
s

N
D

V
I a

nd
 N

D
R

E 
in

 e
ac

h 
str

ip
 tr

ea
tm

en
t

Se
nt

in
el

 2
c

Si
te

-s
pe

ci
fic

 (1
0 

m
 p

ix
el

s)
G

S-
31

 (n
ea

re
st 

im
ag

e 
fro

m
 

th
e 

C
ro

p 
C

irc
le

 se
ns

in
g 

da
te

)
In

-s
ea

so
n 

cr
op

 se
ns

in
g

M
ac

hi
ne

 v
is

io
n 

fe
at

ur
es

*
N

G
R

D
I, 

N
R

B
D

I a
nd

 
ca

no
py

 c
ov

er
 in

 e
ac

h 
str

ip
 

tre
at

m
en

t

RG
B

 c
am

er
a

Si
te

-s
pe

ci
fic

 (p
oi

nt
 d

at
a 

al
on

g 
th

e 
str

ip
s)

G
S-

31

So
il/

la
nd

sc
ap

e
So

il 
bu

lk
 d

en
si

ty
So

il 
bu

lk
 d

en
si

ty
 a

t t
he

 to
p 

0.
3 

m
 la

ye
r

A
SR

IS
d

Fi
el

d-
sc

al
e

–

So
il/

la
nd

sc
ap

e
So

il 
cl

ay
 c

on
te

nt
So

il 
cl

ay
 c

on
te

nt
 a

t t
he

 to
p 

0.
3 

m
 la

ye
r

A
SR

IS
d

Fi
el

d-
sc

al
e

–

So
il/

la
nd

sc
ap

e
So

il 
pH

So
il 

pH
 (C

aC
l2

) a
t t

he
 to

p 
0.

3 
m

 la
ye

r
A

SR
IS

d
Fi

el
d-

sc
al

e
–

So
il/

la
nd

sc
ap

e
G

am
m

a 
ra

di
om

et
ry

U
23

8 , T
h23

2  a
nd

 K
40

 ra
di

-
om

et
ry

 fr
om

 a
irb

or
ne

 
ga

m
m

a-
ra

y 
sp

ec
tro

m
et

ric
 

su
rv

ey

R
ad

io
m

et
ric

 G
rid

 o
f 

A
us

tra
lia

e
Si

te
-s

pe
ci

fic
 (1

00
 m

 p
ix

el
s)

–

So
il/

la
nd

sc
ap

e
A

sp
ec

t, 
hi

ll 
sh

ad
e 

an
d 

sl
op

e
La

nd
sc

ap
e 

at
tri

bu
te

s f
ro

m
 

di
gi

ta
l e

le
va

tio
n 

m
od

el
D

ig
ita

l e
le

va
tio

n 
m

od
el

 o
f 

A
us

tra
lia

f
Si

te
-s

pe
ci

fic
 (3

0 
m

 p
ix

el
s)

–

W
ea

th
er

Ev
ap

ot
ra

ns
pi

ra
tio

n
To

ta
l e

va
po

tra
ns

pi
ra

tio
n

M
O

D
IS

c
Fi

el
d-

sc
al

e
B

et
w

ee
n 

so
w

in
g 

an
d 

G
S-

31



993Precision Agriculture (2024) 25:983–1013	

1 3

Ta
bl

e 
3  

(c
on

tin
ue

d)

G
ro

up
Va

ria
bl

e
D

es
cr

ip
tio

n
So

ur
ce

Sp
at

ia
l s

ca
le

Ti
m

in
g 

of
 c

ol
le

ct
io

n

W
ea

th
er

Ph
as

e 
an

d 
am

pl
itu

de
M

od
el

 p
ar

am
et

er
s (

ph
as

e 
an

d 
am

pl
itu

de
) o

f a
 

si
nu

so
id

 fu
nc

tio
n 

fit
te

d 
to

 
a 

la
nd

 su
rfa

ce
 te

m
pe

ra
tu

re
 

da
ta

se
t

M
O

D
IS

c
Fi

el
d-

sc
al

e
–

W
ea

th
er

D
eg

re
e 

da
ys

Su
m

m
ed

 d
ai

ly
 m

ea
n 

te
m

-
pe

ra
tu

re
s

BO
M

g
Fi

el
d-

sc
al

e
B

et
w

ee
n 

so
w

in
g 

an
d 

G
S-

31

W
ea

th
er

R
ai

nf
al

l
To

ta
l d

ai
ly

 ra
in

fa
ll,

 a
nd

 
ac

cu
m

ul
at

ed
 si

nc
e 

so
w

in
g,

 
ag

gr
eg

at
ed

 in
to

 w
ee

kl
y 

in
te

rv
al

s

BO
M

g
Fi

el
d-

sc
al

e
B

et
w

ee
n 

so
w

in
g 

an
d 

G
S-

31

W
ea

th
er

M
ax

im
um

 te
m

pe
ra

tu
re

Su
m

m
ed

 d
ai

ly
 m

ax
im

um
 

te
m

pe
ra

tu
re

, a
nd

 a
cc

u-
m

ul
at

ed
 si

nc
e 

so
w

in
g,

 
ag

gr
eg

at
ed

 in
to

 w
ee

kl
y 

in
te

rv
al

s

BO
M

g
Fi

el
d-

sc
al

e
B

et
w

ee
n 

so
w

in
g 

an
d 

G
S-

31

*D
at

a 
us

ed
 fo

r t
he

 N
 su

ffi
ci

en
cy

 st
ra

te
gy

 o
nl

y
a  Y

ie
ld

 G
ap

 A
us

tra
lia

 (C
SI

RO
, 2

02
2)

b  A
us

tra
lia

n 
B

ur
ea

u 
of

 A
gr

ic
ul

tu
ra

l a
nd

 R
es

ou
rc

e 
Ec

on
om

ic
s a

nd
 S

ci
en

ce
s (

A
BA

R
ES

, 2
02

2)
c  G

oo
gl

e 
Ea

rth
 e

ng
in

e 
(G

or
el

ic
k 

et
 a

l.,
 2

01
7)

d  A
us

tra
lia

n 
So

il 
Re

so
ur

ce
 In

fo
rm

at
io

n 
Sy

ste
m

 (A
SR

IS
, 2

02
2)

e  A
us

tra
lia

n 
w

id
e 

G
am

a 
ra

di
om

et
ric

 su
rv

ey
 (P

ou
dj

om
 D

om
an

i a
nd

 M
in

ty
, 2

01
9)

f  W
ils

on
 e

t a
l. 

(2
01

1)
g  B

ur
ea

u 
of

 M
et

eo
ro

lo
gy

 (B
O

M
, 2

02
2)



994	 Precision Agriculture (2024) 25:983–1013

1 3

Ta
bl

e 
4  

L
ist

 o
f N

 re
co

m
m

en
da

tio
n 

m
et

ho
ds

 e
va

lu
at

ed

La
be

l
A

pp
ro

ac
h

D
es

cr
ip

tio
n

EO
N

R
Ex

-p
os

t r
ef

er
en

ce
O

bs
er

ve
d 

N
 ra

te
 th

at
 m

ax
im

is
ed

 p
ar

tia
l p

ro
fit

M
ax

 y
ie

ld
Ex

-p
os

t r
ef

er
en

ce
O

bs
er

ve
d 

N
 ra

te
 th

at
 m

ax
im

is
ed

 g
ra

in
 y

ie
ld

Fa
rm

er
B

en
ch

m
ar

k 
m

et
ho

d
Fa

rm
er

 d
ec

is
io

n 
fo

r a
pp

lic
at

io
n 

ra
te

Si
m

pl
ifi

ed
 M

as
s B

al
an

ce
B

en
ch

m
ar

k 
m

et
ho

d
A

 m
as

s b
al

an
ce

 c
al

cu
la

tio
n 

fro
m

 p
ub

lic
ly

 av
ai

la
bl

e 
w

at
er

-li
m

ite
d 

yi
el

d 
po

te
nt

ia
l d

at
a,

 u
se

d 
as

 a
 st

an
da

rd
 c

om
m

er
ci

al
 a

gr
on

om
ist

 c
om

pa
ris

on
Y

ie
ld

 P
re

di
ct

io
n 

(L
M

)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 y
ie

ld
 p

re
di

ct
io

n
In

sp
ire

d 
by

 th
e 

‘N
itr

og
en

 F
er

til
is

at
io

n 
O

pt
im

is
at

io
n 

A
lg

or
ith

m
’, 

a 
m

as
s b

al
-

an
ce

 b
ac

k 
ca

lc
ul

at
io

n 
fro

m
 e

sti
m

at
ed

 y
ie

ld
 u

si
ng

 N
D

V
I a

nd
 a

 si
m

pl
e 

lin
ea

r 
re

gr
es

si
on

 m
od

el
Y

ie
ld

 P
re

di
ct

io
n 

(R
F)

D
ig

ita
l m

et
ho

d 
ba

se
d 

on
 y

ie
ld

 p
re

di
ct

io
n

A
s p

er
 ‘Y

ie
ld

 P
re

di
ct

io
n 

(L
M

)’
 b

ut
 u

si
ng

 m
ul

tip
le

 v
ar

ia
bl

es
 a

nd
 a

 R
an

do
m

 
Fo

re
st 

m
od

el
 fo

r y
ie

ld
 p

re
di

ct
io

n 
in

ste
ad

 o
f t

he
 li

ne
ar

 re
gr

es
si

on
Re

sp
on

se
 F

un
ct

io
n 

(N
D

V
I C

C
)

D
ig

ita
l m

et
ho

d 
ba

se
d 

on
 c

ro
p 

re
sp

on
se

 p
re

di
ct

io
n

In
sp

ire
d 

by
 th

e 
C

ro
p 

C
irc

le
 (C

C
) a

pp
ro

ac
h,

 th
e 

N
 ra

te
 th

at
 m

ax
im

is
ed

 th
e 

C
ro

p 
C

irc
le

 N
D

V
I b

as
ed

 o
n 

a 
m

id
-s

ea
so

n 
re

sp
on

se
 fu

nc
tio

n 
of

 v
eg

et
at

io
n 

in
de

x 
vs

. N
 ra

te
Re

sp
on

se
 F

un
ct

io
n 

(N
D

R
E 

C
C

)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 c
ro

p 
re

sp
on

se
 p

re
di

ct
io

n
A

s p
er

 ‘R
es

po
ns

e 
Fu

nc
tio

n 
(N

D
V

I C
C

)’
 b

ut
 u

si
ng

 N
D

R
E 

in
ste

ad
 o

f N
D

V
I

Re
sp

on
se

 F
un

ct
io

n 
(N

D
V

I S
en

t)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 c
ro

p 
re

sp
on

se
 p

re
di

ct
io

n
A

s p
er

 ‘R
es

po
ns

e 
Fu

nc
tio

n 
(N

D
V

I C
C

)’
 b

ut
 u

si
ng

 S
en

tin
el

 2
 d

at
a 

in
ste

ad
 o

f 
C

ro
p 

C
irc

le
Re

sp
on

se
 F

un
ct

io
n 

(N
D

R
E 

Se
nt

)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 c
ro

p 
re

sp
on

se
 p

re
di

ct
io

n
A

s p
er

 ‘R
es

po
ns

e 
Fu

nc
tio

n 
(N

D
V

I S
en

t)’
 b

ut
 u

si
ng

 N
D

R
E 

in
ste

ad
 o

f N
D

V
I

N
 S

uffi
ci

en
cy

 (M
V

)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 N
 su

ffi
ci

en
cy

N
 su

ffi
ci

en
cy

 a
pp

ro
ac

h 
ba

se
d 

on
 m

ac
hi

ne
 v

is
io

n 
da

ta
D

D
 (d

at
a 

ab
un

da
nc

e)
D

ig
ita

l m
et

ho
d 

ba
se

d 
on

 a
n 

em
pi

ric
al

, d
at

a-
dr

iv
en

 a
pp

ro
ac

h
D

at
a-

dr
iv

en
 m

od
el

; t
he

 si
te

 a
nd

 se
as

on
 c

on
di

tio
ns

 a
t w

hi
ch

 th
e 

m
od

el
 is

 
va

lid
at

ed
 a

re
 w

el
l r

ep
re

se
nt

ed
 in

 th
e 

da
ta

 u
se

d 
to

 b
ui

ld
 th

e 
m

od
el

D
D

 (d
at

a 
lim

ite
d)

D
ig

ita
l m

et
ho

d 
ba

se
d 

on
 a

n 
em

pi
ric

al
, d

at
a-

dr
iv

en
 a

pp
ro

ac
h

D
at

a-
dr

iv
en

 m
od

el
; t

he
 si

te
 a

nd
 se

as
on

 c
on

di
tio

ns
 a

t w
hi

ch
 th

e 
m

od
el

 is
 

va
lid

at
ed

 a
re

 n
ot

 w
el

l r
ep

re
se

nt
ed

 in
 th

e 
da

ta
 u

se
d 

to
 b

ui
ld

 th
e 

m
od

el



995Precision Agriculture (2024) 25:983–1013	

1 3

(phase and amplitude) from a sinusoid function fitted to a land surface temperature dataset 
were retrieved using the approach of Jakubauskas and Legates (2000). A brief description 
of all variables used is provided in Table 3. The final database comprised observations in 
each moving window in which the target variable was the EONR and the predicting varia-
bles were those described in Table 3. For each predicting variable, the average value within 
the area of the moving window was used.

Fertiliser N recommendation methods

The thirteen methods for making N recommendations tested in this work are described 
in this section. They include four reference (or benchmark) methods and nine alternative 
methods for N recommendation in the scope of precision/digital agriculture (Table 4). The 
following sub-sections categorise these methods by their general approach.

Reference and benchmark N recommendation methods

There were four reference or benchmark methods evaluated (the top four methods listed in 
Table 4). The EONR observed from the experimentation (ex-post) was the absolute refer-
ence against which all other recommendations were compared. The ‘Max Yield’ method 
was an additional ex-post reference method for comparison, which was the observed rate 
that maximised grain yield. A third reference was the ‘Farmer’ approach. This recommen-
dation varied from farm to farm, but it generally involved a holistic assessment, through 
various methods, of the probable yield potential and N supply by the system, combined 
with considerations of economic factors. These N decisions were made either by the farm-
ers themselves or in conjunction with their consultant agronomist. Thus, the decision was 
also influenced by the experience and intuition of both farmer and agronomist, and by other 
subjective factors such as the farmer risk profile. The recommendation was implemented at 
a single dose across the field.

The last reference method was the ‘Simplified Mass Balance’ which represented a 
standard commercial practice in which limited on-farm information is available. To cal-
culate the total N demand, publicly available information of historic water-limited yield 
potential at the local region level was used, sourced from the Yield Gap Australia web-
site (CSIRO, 2021) and target grain N concentrations equivalent to 13% (wheat) and 11% 
(barley) grain protein content. The soil N supply was set to 65 kg/ha, based on the average 
information obtained from the pre-sowing soil sampling across the trials; such generalised 
soil N supply information was used (as opposed to the field average) to simulate a best 
guess by the farmer/agronomist when soil samples are not collected in the field, as is the 
common practice amongst producers. The final N recommendation was calculated as the 
N demand minus the soil supply divided by a fertiliser N grain recovery of 0.3 (Eq. 1). 
The fertiliser recovery factor represents the relative amount of applied N that ends up in 
the grain and was calculated as the difference in grain N removal (in kg/ha) between the 
‘normal field’ and the ‘zero’ strip relative to the difference in applied N between these two 
areas and averaged across all trials (Eq. 2).

(1)N rate =
(Yield Potential × Protein factor) − Initial Soil N

Fertiliser N Grain Recovery
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where, ‘Yield Potential’ was the historic water-limited yield potential in kg/ha at the local 
regional level; the ‘Protein Factor’ was 0.0228 for wheat (using 13% as the protein target 
and 5.7 as the conversion factor from protein to N; Dalal et al., 1997) and 0.0176 for bar-
ley (using 11% as the protein target and 6.2 as the conversion factor from protein to N; 
Dalal et al., 1997); ‘GNfield’ and ‘GNzero’ were the grain N removal in kg/ha in the ‘field’ 
and ‘zero’ areas; and the ‘Applied Nfield’ and ‘Applied Nzero’ were the total N rate in kg/ha 
applied to the ‘field’ and ‘zero’ areas.

Digital methods based on yield prediction

Digital methods based on a ‘mass balance’ N recommendation were evaluated (5th and 
6th methods listed in Table 4). Inspired by the NFOA approach (Raun et al., 2005), they 
were based on the prediction of crop yield using crop sensing and on information from 
an N ‘rich’ reference area (see below). The mid-season N requirement, assessed at GS-31 
stage, was calculated as the predicted yield in the N ‘rich’ treatment minus the predicted 
yield in the adjacent field area, converted into total grain N (based on 13 and 11% grain 
protein content as targets for wheat and barley) and divided by the fertiliser N grain recov-
ery (Eq. 3). The fertiliser N grain recovery was the same as the one used for the ‘Simplified 
Mass Balance’ method (Eq. 2). The total N recommendation rate was given as the mid-
season N requirement plus any N applied previous to GS-31.

where, ‘Yrich’ and ‘Yfield’ were the yield predictions in kg/ha made at GS-31 stage at the 
‘rich’ and ‘normal field’ area; the ‘Protein Factor’ was 0.0228 for wheat (for a 13% protein 
target) or 0.0176 for barley (for a 11% protein target); the ‘Fertiliser N Grain Recovery’ 
was 0.3 (Eq. 2), meaning 30% of applied N fertiliser is expected to get into grain yield; and 
the ‘Applied Initial N’ was any N applied in kg/ha prior to GS-31.

There were two variants of this sensor-based N recommendation method regarding how 
grain yield was predicted: the ‘Yield Prediction (LM)’ method and the ‘Yield Prediction 
(RF)’ method. For the ‘Yield Prediction (LM)’ method, grain yield was predicted from 
the mid-season (GS-31) Crop Circle NDVI divided by growing degree days at the date of 
sensing using a linear model (LM) which is a similar approach to the one used by Raun 
et  al. (2005). For the ‘Yield Prediction (RF)’ method, a Random Forest (RF) regression 
model using a range of digital variables was used to predict grain yield. These two variants 
were designed to allow the assessment of the potential benefit of machine learning when 
the decision is underpinned by a mechanistic agronomic framework (i.e., the mass balance 
approach). To select the variables for the RF model, a recursive feature elimination (RFE) 
process was used to rank all available variables listed in Table  3 based on their impor-
tance. Then, a variable selection was made by eliminating the least useful variables. Vari-
ables considered to be too similar to each other were also eliminated. For example, when 
both NDVI and NDRE had similar importance based on the RFE, the least useful one was 
eliminated. Generally, the manual filtering sought to select only variables that were con-
sidered to provide information on different agronomic aspects of the system, reducing the 
likelihood of overfitting the model. In both methods for yield prediction, the models were 

(2)Fertiliser N Grain Recovery =
GNfield − GNzero

Applied Nfield − Applied Nzero

(3)N rate =
(YRich − Yfield) × Protein Factor

Fertiliser N Grain Recovery
+ Applied Initial N
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generated separately for wheat and barley. Also, for every field where yield was being pre-
dicted, only data from the other remaining fields were used for modelling.

Digital methods based on crop response prediction

Sensor-based methods following a ‘crop responsiveness’ framework were also tested in 
this study (7th to 10th methods listed in Table 4). These methods were based on the gen-
eral idea behind the Crop Circle algorithm, which uses the Holland and Schepers (2010) 
approach. The sensor was used in combination with the on-farm N strips to make observa-
tions of crop response to N application near the GS-31 crop stage. Following the same pro-
cess as for the local response analysis with harvest data (Fig. 2), for each moving window 
along the length of the trial, a quadratic relationship was generated between the sensor-
based vegetation index and N rate and this function was used to assess the optimal N rate; 
that is, the N rate that maximised the vegetation index. The main limitation of this method 
is that it assumes that the crop response function observed mid-season is equivalent to the 
one observed at harvest, which may or may not be appropriate; certainly, it ignores out-
standing weather events after the mid-season scanning. There were four variations of this 
approach testing the NDVI and NDRE as input data when obtained either from the Crop 
Circle sensor or from the Sentinel 2 imagery.

Digital method based on N sufficiency

The last agronomic approach used to frame a sensor-based recommendation in this study 
was the ‘N sufficiency’ approach (11th method listed in Table 4). Despite the sound agro-
nomic theory behind it, the implementation of such a framework through a sensor-based 
approach has been much less common compared to the NFOA or the Holland and Schepers 
algorithms (Colaço and Bramley, 2018; Franzen et al., 2016). The approach used here was 
first presented in Colaço et al. (2022). This framework sought to guarantee adequate plant 
nutrition by monitoring plant nutrient levels and using a nutrient concentration threshold 
to calculate the N requirement for a mid-season management intervention. To account for 
nutrient dilution in the plant, the threshold, also referred to as the ‘critical nutrient level’, 
varied according to crop biomass; that is, the critical N level was lower for larger bio-
masses. Overall, there were two main components to this approach. The first involved sen-
sor-based predictions of crop biomass and plant N concentration (a) and the second made 
use of (b) a predefined dilution curve to determine the critical nutrient concentration for 
each biomass level.

a)	 Biomass and N concentration sensor estimates: For the purposes of this study, Machine 
Vision (MV) technology was used for the biomass and plant N concentration assessment. 
Biomass and N concentration models were generated from multiplicative combina-
tions of MV variables (e.g., Gebremedhin et al., 2019) and the sampled biomass and N 
concentration data using linear regression. Models were constructed for the combined 
wheat and barley data; preliminary investigation showed no benefit for the predictions 
when models were made independently for each crop. The biomass model was generated 
using a combination of NGRDI and canopy cover with R2 = 0.55 and RMSE = 374 kg/
ha compared with the sampled data. The N concentration model was generated using a 
combination of NGRDI and canopy cover with R2 = 0.28 and RMSE = 1.0% compared 
with the sampled data. Another option for mapping crop biomass at scale would be 



998	 Precision Agriculture (2024) 25:983–1013

1 3

the use of LiDAR, as described by  Colaço et al. (2021b) and a further, arguably more 
convenient, alternative to ground-based approaches for biomass estimation might be 
that based on freely available remotely sensed imagery (Perry et al., 2022).

b)	 Dilution curve: Fig. 3 shows the N dilution plot used for this study which was derived 
from the sampled plant biomass and N concentration data collected across the project 
trials added with available data from previous research conducted in a similar Australian 
environment (Fitzgerald et al., 2010). Dry biomass was plotted against N concentration 
for each sample, and boundary lines were generated using exponential decay functions; 
the upper function was used as the target (threshold) N concentration for each biomass 
level.

The N requirement was calculated as the difference between a target mid-season crop N 
uptake and the current crop N uptake divided by the fertiliser N crop recovery (Fig. 3 and 
Eq. 4). The target crop N uptake was given by the estimated biomass in the N ‘rich’ area 
multiplied by the critical N level for such biomass. The ‘current’ crop N uptake was simply 
the estimated biomass multiplied by the estimated N concentration in the ‘normal field’ 
area (i.e., adjacent to the strips). The fertiliser N crop recovery was the relative amount of 
applied N expected to be absorbed by the aboveground plant biomass. It was calculated as 
the difference in plant N uptake between the ‘normal field’ and the ‘zero’ strip divided by 
the difference in applied N in these areas (similar to Eq. 2 but using mid-season plant N 
uptake instead of grain N removal). The plant sampling data were used for this calculation 

Fig. 3   The N dilution plot guiding the N sufficiency recommendation. The blue dots represent plant data 
collected across all trials in the project including mid-season and harvest plant sampling. The smaller grey 
dots are samples collected from a previous separate study (Fitzgerald et al., 2010). The black dot and the 
red cross are hypothetical field data representing a current crop assessment and the target for fertilisation 
with the latter being based on the biomass assessed from the N ‘rich’ area associated with a target plant N 
concentration for such biomass
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and the recovery factor was given as the average across all trials. The total N recommenda-
tion rate was given as the mid-season N requirement plus any N applied previous to GS-31.

where, ‘Biomassrich’ and ‘Biomassfield’ were sensor-based estimates in kg/ha of above-
ground dry biomass at the N ‘rich’ and ‘normal field’ areas (see above); the ‘Critical N 
Level’ was the nutrient critical level associated with the estimated biomass at the ‘rich’ 
area obtained through the predefined dilution curve (Fig. 3); the ‘Fertiliser N Crop Recov-
ery’ was 0.35 meaning 35% of applied N fertiliser gets absorbed into the above ground 
crop biomass; and the ‘Applied Initial N’ was any N applied in kg/ha prior to GS-31.

Digital method based on an empirical, data‑driven approach

The final N recommendation method evaluated was based on an empirical data-driven 
(DD) approach (last two methods listed in Table  4). Contrary to other frameworks, this 
method did not rely on any agronomic mechanistic calculation of the N rates; likewise, 
digital variables were not modelled to predict crop parameters to enable this sort of calcu-
lation. Rather, the available digital inputs were modelled directly against EONR using RF 
regression. In essence, this empirical approach provides a recommendation by assessing 
current site and season characteristics and relating these to conditions for which optimal 
N rates are known. Therefore, it predicts the final EONR using data that are available until 
the GS-31 crop stage (Table 3). Note that the data from soil and plant sampling mentioned 
earlier were not used for this approach. Only data from publically available sources or 
those collected using digital sensors on the field were used for this DD method (Table 3). 
Aside from the data listed in Table 3, a range of OFE variables derived by combining the 
crop sensing data with the strip information were used as potential predictors of EONR. 
The following OFE variables were generated at the moving window basis: the vegetation 
index observed independently in the ‘rich’, ‘zero’ and ‘field’ areas; the vegetation index 
ratio between ‘rich’ and ‘field’ areas, and between ‘field’ and ‘zero’ areas; and the N rate 
recommendations derived from the ‘Response Function’ sensor-based methods used as 
predicting variables. The OFE variables were derived using both the NDVI and NDRE 
sourced from the Crop Circle sensor and Sentinel 2 satellite. Similar to the ‘Yield Predic-
tion (RF)’ method, RFE was used to rank the variables which were then filtered down to 
a final set of predicting variables. Again, in the case of predicting variables that were con-
sidered too similar to each other, only the most useful one was used; this manual filtering 
was especially important when selecting a minimal subset of the available OFE variables 
described above.

The DD method was implemented in two variations: a ‘data abundant’ and ‘data limited’ 
mode to simulate different levels of data availability. These scenarios were developed by 
changing the type of model validation. The ‘data abundant’ scenario represented a best-case 
scenario where the site and season for which the model was being applied were well repre-
sented in the data used to build the model. In this case, a 50–50% random split in the data was 
used for training and validation of the model; in effect, this meant that data from all sites and 
seasons were used to build the model. Because data from the field where the recommendation 
is being made was used to train the model, it is highlighted that this method represents a hypo-
thetical scenario in which abundant historical information about the field in which the decision 

(4)

N rate =
(Biomassrich × Critical N Level) − (Biomassfield × N%field)

Fertiliser N Crop Recovery
+ applied initial N
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is to be made is available. Therefore, this approach sought to assess the upper potential of 
performance for an empirical DD approach. The ‘data limited’ scenario represented a scenario 
where the data used for training and validation of the model had to rely solely on data from 
other sites. In other words, it was simulating a scenario where very little was known about a 
particular site. Overall, this approach represented the actual performance of the DD method 
using the field data that was available for this research. In both situations, wheat and barley 
models were created independently of each other.

Comparative assessment of N recommendation methods

The recommendation methods described above were evaluated at each moving window in the 
on-farm experiments; note that recommendations and the assessment of the different methods 
were therefore restricted to the strip area (‘rich’, ‘zero’ and the adjacent normal field area). 
Thus, they were not implemented or assessed across the entire field. All digital N recom-
mendations, along with the EONR and ‘Max Yield’ reference methods, were generated both 
site-specifically, where each moving window had a specific N rate recommendation, and uni-
formly, by averaging the site-specific rates across all moving windows of a same field. The 
´Farmer´ and the ‘Simplified Mass Balance’ recommendations were evaluated only as a uni-
form rate application.

The main assessment process for these recommendations was designed to provide a com-
parison between the ability of the different methods to predict N requirement across the sites, 
in terms of both average accuracy and average profitability. The EONR generated on a site-
specific basis from the field response trials were the absolute reference against which all other 
recommendations were evaluated. Thus, the error for each recommendation was calculated 
based on the site-specific EONR. Also, the expected profitability of each method was obtained 
by inserting each recommended N rate into the respective site-specific profit response function 
at each moving window (Fig. 4). Results were aggregated for each trial based on the root mean 
squared error (RMSE) and the average partial profit across the field. To facilitate the interpre-
tation of results, the average partial profit of each recommendation method was normalised 
against the EONR partial profit achieved at each site, producing a ‘normalised partial profit’ 
(NPP), with the EONR having an NPP = 1. This was considered important given the differing 
production potential of the various sites. Results were then averaged across all trials and plot-
ted into an error (RMSE) by profit (NPP) biplot.

Due to restricted availability of data at some sites, the N sufficiency method could only be 
implemented in eight trials, rather than all 21. To allow the comparison with the other meth-
ods which were assessed based on all trials, the N sufficiency average results regarding RMSE 
and NPP were adjusted based on their value relative to the ‘Farmer’ results. For example, if 
the average RMSE for the ‘N Sufficiency (MV)’ method across the eight sites was 35 kg/ha, 
and the ‘Farmer’ average RMSE was 30 kg/ha, the ‘N Sufficiency (MV)’ result was given a 
relative value of 1.16. To plot this result across all trials, if the average ‘Farmer’ error for all 
trials was 40 kg/ha, then the adjusted error for the ‘N Sufficiency (MV)’ method would be 
40 × 1.16 = 46.4 kg/ha.
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Results

In general, the results highlighted the strong performance of the collaborating farmers in 
managing N fertilisation (Fig. 5; Table 5). Their uniform management achieved 94% of the 
maximum profitability represented by the site-specific EONR and almost reached the opti-
mum management for a uniform application; the difference between the farmer application 
and the uniform EONR was around 2% (Table 5). The fact that the farmer recommendation 
was near optimum at the field level means that one route to improve N management for 
these high performing farmers is to augment the spatial resolution of their management; 
that is, to implement effective N decisions at the site-specific level. The ‘Farmer’ recom-
mendation also outperformed the ‘Simplified Mass Balance’ approach and most univariate, 
sensor-based, digital N recommendation methods.

The only approach that showed potential to exceed the farmer management performance 
was the DD (abundant) method, which did not rely on a mechanistic calculation of N rates; 
instead, this approach uses a ML model trained against empirically derived EONR. In the 
‘data abundance’ scenario, when the current field and season factors that drive crop N 

Fig. 4   The process of building a database with observations of economically optimal N rates (EONR) using 
local response curves along the length of a N strip trial (1), and the assessment of the error and expected 
profitability of different N recommendation methods using the local response function (2). The illustration 
of the strip experiment is out of scale and values in the tables are hypothetical
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requirement are well represented in the model training dataset, the DD recommendation 
improved the farmer N management profitability by 5% (or A$47/ha when a baseline for 
NPP of A$1000/ha is used). Arguably of greater importance is that it also reduced the error 
from 42 to 15 kg/ha suggesting that it offers considerable value to those concerned with the 
risk associated with N decision-making. On the other hand, in a situation of limited data, 
that is, when the model needs to rely on datasets that do not fully cover the current field 
scenario, the DD (limited) method was similar to the ‘Simplified Mass Balance’ approach 
and to other mechanistic sensor-based methods. This result highlights the value of input 
data specific to the field of interest.

The selected variables for the DD EONR prediction with RF are presented in Fig. 6, 
which makes clear the importance of those derived from the OFE for the EONR prediction. 
These were the Sentinel NDVI from each N strip (both ‘rich’ and ‘minus’) and the N rate 
associated with maximum mid-season Sentinel NDVI. Note that vegetation index ratios 
between strips, which are commonly used in traditional sensor-based approaches (e.g. 
Raun et al., 2005) were also tested, but they were shown less useful than the ‘Resp Func’ 
recommendations when used as predicting variables based on the RFE results; thus, only 
the latter were used as predictors.

Fig. 5   Error by profit biplot showing the average results of various N recommendation methods across 21 
large scale on-farm trials
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All digital recommendation methods framed around mechanistic agronomic N decisions 
(‘Yield Prediction’, ‘Response Function’ and ‘N Sufficiency’) scored near or below the 
Farmer performance. Because of their large recommendation error—the RMSE for these 
methods was at least 40 kg/ha—there was no benefit in implementing them site-specifically 
as opposed to uniform management. Indeed, in some cases, using a uniform application 
reduced the error substantially. Overall, this result suggests that methods in which the rec-
ommendation error is expected to be large are better implemented as the average for the 
field instead of site-specifically.

The mechanistic sensor-based methods that got closer to the Farmer N management per-
formance were the ‘N Sufficiency (MV)’, the ‘Yield Prediction (RF)’ and the ‘Response 
Function (NDVI Sent)’, all at the uniform application level (Fig. 5). The Response Func-
tion approach was sensitive to the type of input data; that is, some combinations of vegeta-
tion indices and their data sources may match a profit response function better than oth-
ers. In the case of this study, the sensor-based response function that most resembled the 
final profit function was the one derived from Sentinel 2 NDVI. Since Sentinel data can 

Table 5   Error and profitability average results of various N recommendation methods

Methods ranked on normalised partial profit achieved
*Normalised Partial Profit (NPP) in A$/ha using a A$1000/ha baseline

Method Spatial scale RMSE (kg/ha) Normalised par-
tial profit (NPP)

Normalised partial 
profit (NPP in A$/
ha)*

EONR Site-specific 0.0 1.00 1000
DD (data abundance) Site-specific 15.6 0.99 990
Max yield Site-specific 35.6 0.97 972
DD (data abundance) Uniform 34.5 0.96 960
EONR Uniform 34.5 0.96 959
Max yield Uniform 40.2 0.95 948
Farmer Uniform 42.8 0.94 943
Resp func (NDVI Sent) Uniform 48.6 0.93 930
Yield prediction (RF) Uniform 44.1 0.93 928
 N sufficiency (MV) Uniform 42.1 0.93 927

Yield prediction (RF) Site-specific 44.0 0.93 926
Yield prediction (LM) Uniform 44.7 0.93 926
Yield prediction (LM) Site-specific 44.8 0.92 925
 N sufficiency (MV) Site-specific 44.4 0.92 922

DD (data limited) Uniform 45.8 0.91 913
Simplified mass balance Uniform 46.2 0.91 910
Resp func (NDRE Sent) Uniform 57.0 0.91 909
DD (data limited) Site-specific 46.0 0.91 907
Resp func (NDVI CC) Uniform 48.3 0.90 897
Resp func (NDRE CC) Uniform 51.0 0.88 884
Resp func (NDVI Sent) Site-specific 56.6 0.87 870
Resp func (NDRE Sent) Site-specific 63.6 0.86 859
Resp func (NDVI CC) Site-specific 55.9 0.85 851
Resp func (NDRE CC) Site-specific 56.9 0.85 846
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be accessed for free, the fact that it out-performed the methods which used proximal crop 
sensors represents an important result for farmer adopters of such PA technologies. The ‘N 
sufficiency’ method, a less common sensor-based approach, had a similar performance to 
the ‘Yield Prediction’ methods.

Enhanced analytics based on machine learning failed to improve the performance of a 
mechanistic sensor-based method underpinned by a mass balance recommendation. This 

Fig. 6   Variables selected for EONR (a) and yield (b) prediction ranked based on their relative importance 
for the Random Forest Model using Recursive Feature Elimination. Refer to Table 3 for an explanation of 
the variables
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can be assessed by comparing the two variants of the ‘Yield Prediction’ approach. Despite 
the more sophisticated yield prediction algorithm used by the ‘Yield Prediction (RF)’ 
method, there was little benefit to the final N recommendation as compared to the simple 
regression technique used by the ‘Yield Prediction (LM)’. The use of multiple variables 
coupled with the RF algorithm did improve the R2 of the yield prediction from 0.22 to 0.42 
(data not shown) as compared to the simple regression. However, that did not translate 
into a practical benefit for the N recommendation; the difference in the recommendation 
error between the two methods was less than 1 kg/ha in RMSE (Table 5). Of interest, the 
selected variables for yield prediction with RF are available in Fig. 6.

Discussion

An extensive field program of large scale on-farm trials was conducted across Australia 
to assess a range of sensor-based mid-season N management strategies. Methods were 
assessed based on the recommendation error (RMSE) against observed optimal N rates in 
the field and the associated impact on crop production profitability. This approach has not 
been common for the evaluation of site-specific N management strategies in PA research. 
In the review of Colaço and Bramley (2018) on available sensor-based N decision tools, 
none of the studies reviewed measured the accuracy of the N rate recommendation—it is, 
in fact, ironic that research on ‘precision’ agriculture did not assess the ‘precision’ (or the 
error) of management practices. Instead, results of sensor-based N application have been 
mostly reported based on their impact on yield and or input consumption against farmer 
management, which may lead to biased evaluations of the technology, depending on how 
good the current farmer practice is. For a pragmatic investigation, measuring the error of a 
given recommendation is necessary, but the method’s profitability should be just as crucial, 
as it is the relationship between error and profit that can be used to distinguish differences 
in risk between techniques. Conscious of this, the main output of the analytical framework 
used in this work was precisely an ‘error by profit’ biplot (Fig. 5) showing the performance 
of the investigated recommendation strategies.

The results show that as the performance of the different methods approached the opti-
mal input N rate, the impact on profitability reduced. Note that profitability increased with 
higher N recommendation accuracy (lower RMSE) but the rate of increase in profitability 
reduced as the methods became more accurate (Fig. 5). This reflects the flatness around 
the maxima of typical response curves describing the relationship between production and 
input use (e.g. Figures 2 and 4). The implications of this phenomenon to PA, and more spe-
cifically to site-specific nutrient management, have been thoroughly discussed by Pannell 
(2006, 2017) in terms of production profitability. In summary, this allows for a wide range 
of N rates near the optimal level to have a similar impact on crop performance and profit-
ability, thus potentially limiting the benefit from more accurate N recommendations. This 
also explains the generally good performance—between 85 and 95% of maximum partial 
profit—of most recommendation methods. Moreover, if the cost of technological solutions 
for N management is expected to increase with greater recommendation accuracy, it could 
be inferred that there may be thresholds in recommendation error below which a change 
may not be economically justified. Nonetheless, the reduced error associated with the data-
driven recommendation equates to greatly increased confidence that the farmer can have 
in their N decision if the data-driven recommendation is followed. It is also worth noting 
that the production profit analysis used here does not consider the potential environmental 
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implications of flat N response functions. Such flatness (around the maxima) of typical 
response curves, coupled with the ability to identify an optimum application rate with low 
uncertainty (error), should mean that there is flexibility in the system to optimise N rec-
ommendations that consider environmental and resource use efficiency impacts with mini-
mum penalty to crop profitability (Rogers et al., 2016). Such flexibility will no doubt be 
important in future N decision tool developments.

Considering the above, and despite the diminishing gains in profitability from more 
accurate N management, the analysis presented here for Australian grain production 
showed that there is an opportunity to improve the profitability of farmer N management 
by up to 6% (or around A$60/ha). It is important to note that this result was obtained for 
a cohort of farmers who are leaders in their field. As such, the historic average yield for 
the field trials in this study (based on the yield monitor data) was around 1.7 times the 
regional average yield (ABARES, 2022). Likewise, whilst the regions covered by this work 
had an average yield gap of around 60% ([1-(actual yield/yield potential)]; CSIRO, 2022), 
the collaborating farmers showed an average yield gap of around 15% based on the actual 
obtained yield and the regional yield potential; data not shown. On the assumption that 
farmers operating a little further from the optimum, compared to the collaborators of this 
research, have larger yield gaps than 15%, it could be speculated that the impact of adopt-
ing the data-driven approach may be increased for ‘average’ farm businesses compared to 
that reported here, due to the greater potential for improvement. On the other hand, the 
overall gains from optimized N management might be constrained by other manageable 
factors (for example pH, trace element deficiencies, etc.) that have not been optimized on 
less well managed farms. Somewhat perversely, the present results suggest that in order to 
assess the potential average impact of different N management practices, future studies will 
benefit from collaboration with farmers whose management is not as close to the ‘top of 
the tree’ as those involved in the present work.

The univariate sensor-based N systems evaluated in this study that followed mechanistic 
decision frameworks can nearly match the performance of farmers at the uniform manage-
ment level. Therefore, the results for these technologies suggest they can be regarded as 
useful in the automation of decisions to help improve management for farmers that cur-
rently operate at lower average N management profitability. However, such sensor-based 
approaches appear insufficient as drivers of site-specific N management strategies for 
underpinning adoption of PA. Their inherently large error does not warrant use in varia-
ble-rate fertiliser interventions, and they are better implemented as a uniform average rate 
across the field. This finding is contrary to much PA research on the use of current com-
mercial sensor-based N tools supporting approaches based on the NFOA (e.g. Li et  al., 
2009; Ortiz-Monasteiro & Raun, 2007; Sapkota et al., 2014; Tubaña et al., 2008a, b) or on 
the Holland and Schepers (2010) algorithm (e.g. Stamatiadis et al., 2017) as effective site-
specific management strategies. Not surprisingly, those studies, and many others reviewed 
by Colaço and Bramley (2018), did not assess the recommendation error between site-spe-
cific and uniform sensor-based N application. It is also noted that there is considerable 
irony in that, whereas such on-the-go sensor-based approaches were developed with the 
primary intention of supporting continuous variable rate application, their use generally 
relied on crop response information derived from average values obtained within plots or 
strips (see references above and those available in Colaço & Bramley, 2018). This issue 
was compounded by the use of ramped strips (Roberts et al., 2011). It is recognised that 
the reason why this study was able to account for within strip variability in crop response 
was because the analysis was restricted to the trial area, as opposed to making recom-
mendations across the entire field; as such, specific crop response information (using the 
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‘rich’ and ‘zero’ areas) was available for the recommendation in each moving window. In 
a real application scenario, in which recommendations are needed across the entire field 
area, the use of strips allow, at best, an average response to be used for each zone. To 
overcome this issue, future work should investigate the use of available covariate data to 
estimate crop response away from the strip trial area. Another alternative would be the 
use of more replicated trials (e.g. Bullock et al., 2019; Cook & Bramley, 1998), in which 
crop response information varies even within the same management zone, and is available 
nearby the point where the recommendation is being made. In addition, a more replicated 
design could potentially contribute to more N rates being used, thus potentially improving 
the generation of local crop response functions (Trevisan et al., 2020).

The attempt to improve a sensor-based mechanistic N rate recommendation (based on a 
mass balance approach) through enhanced analytics—by using a multivariate digital input 
and ML for crop parameter prediction—was not effective, which runs counter to the gen-
eral assumption where ML algorithms are presumed to be necessarily better than simpler 
modelling approaches. Results from this and previous research (Colaço et al., 2021a) sug-
gest that the limitation for mechanistic fertiliser recommendations may lie not in the ana-
lytics used, but in the agronomic decision framework itself. Despite the better prediction 
of yield potential using ML, the benefit for the N rate recommendation derived from it was 
negligible. Such results suggest that some inherent limitations of simplified N rate calcu-
lations constrain their efficacy. The assumptions around expected grain quality and ferti-
liser N recovery, for example, appear to prevent them from generating accurate fertiliser 
recommendations at the site-specific level, likely also due the fact that variation in other 
factors affecting crop performance, such as available soil water, are ignored in such simple 
approaches. It has been noted that a large effort in the research community (see reviews of 
Chlingaryan et al., 2018; Liakos et al., 2018; Mishra et al., 2016; van Klompenburg et al., 
2020) to improve crop parameter prediction through ML, especially for crop yield predic-
tion, has been undertaken without a critical consideration of the limited ability of current 
agronomic decision tools to make appropriate use of such information. This and previous 
research (Colaço et al., 2021a) suggests a shift in focus in which ML and OFE are used as 
the means for the agronomic decision itself. The alternative, which was implemented in 
this work, used available multivariate digital inputs, coupled with OFE information and 
ML, to train data-driven N decision algorithms empirically. That is, rather than focusing on 
the prediction of yield potential to enable a mass balance N rate recommendation, the ML 
model predicts optimal N application rates directly from the digital input data by assessing 
current field and season variables and relating them to conditions for which optimal N rates 
are known.

The range of digital input variables used in this study, covering various factors driving 
crop N requirement, coupled with the RF algorithm, successfully identified the optimal 
N rate at the site-specific level and for variable scenarios when sufficient historical data 
was available. From the group of variables tested in the DD method, those derived using 
information from the strip response trial featured as the most crucial predictors. Whilst this 
work did not directly assess the value of soil moisture information—as did Lawes et  al. 
(2019) and Colaço and Bramley (2019)—which is presumed to be of high value for N man-
agement decision making in dryland farming systems, it can be considered that OFE vari-
ables indicating a crop response to N application incorporate the effects of soil moisture 
up to the time of measurement. Other important predicting variables worth investigating 
might be those related to weather forecasting and crop development beyond the time when 
the mid-season N decision is made, the lack of which are probably important contributors 
to the recommendation error (15 kg/ha of RMSE) of the DD method in this work.
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The idea that a ML algorithm could replace a complex agronomic mechanistic 
model to arrive at effective N recommendations was first proposed by Lawes et  al. 
(2019). In that case, an RF model was trained using crop and soil parameters, such as 
leaf N concentration and soil moisture status, against optimal N rates derived from a 
simulated APSIM (Agricultural Production Systems Simulator; Holzworth et al., 2014) 
model dataset. The work of  Colaço et  al. (2021a) further developed that approach 
by training the empirical model using digital variables such as sensor-based vegeta-
tion indices and in  situ soil moisture  sensor data as model input. However, the latter 
study was based on a plot-based experiment at a single site. The present work dem-
onstrates the potential of a data-driven empirical model in real field scenarios using 
digital variables that are accessible from on-farm and public data sources. The recom-
mendation error obtained in this study (15 kg/ha of RMSE) is consistent with results 
found in Colaço et al. (2021a) and Lawes et al. (2019). These current results also show 
the importance of OFE information and the use of multivariate predictors, which 
included weather and landscape variables, for the DD decision model. However, due 
to the empirical nature of this approach, and the minimal agronomic domain knowl-
edge embedded in it, the model is crucially reliant on an extensive historical dataset. 
The success of the approach relies on availability of sufficient historical on-farm data 
that reflect crop response to inputs in such a way that it covers the range of variation in 
expected field and season conditions in which the model will be used.

A key enabler for the construction of such a digital database is the implementation 
of OFE. More specifically, on-farm trials should be automated and embedded into nor-
mal farm operations so that large crop response datasets can be collected effortlessly 
across multiple farms and seasons. To achieve that, experimental designs can be imple-
mented using variable-rate controllers and GNSS machine guidance systems; the fields 
can be monitored during the season using remote and proximal sensing technology and 
then harvested through onboard monitoring systems. A system in which farmers share 
OFE data across larger communities may also play a role in building the necessary 
database for empirical data-driven decision tools.

While this work used simple analytics and OFE trial designs, future work should 
continue to investigate and test other field approaches; for example, more replicated 
trials and/or approaches that allow extrapolation of crop response information away 
from the trial area, as mentioned above. Investigation of more sophisticated methods to 
analyse OFE spatial data is also warranted; for example, those that account for spatial 
autocorrelation in the data such as geographically weighed regression (Evans et  al., 
2020; Rakshit et al., 2020) or geostatistical methods (Bishop & Lark, 2006; Jin et al., 
2021). Nonetheless, in considering such approaches, the trade-off between trial com-
plexity and farmer utility and pragmatism will need careful consideration (Bramley 
et al., 2022). In relation to the development of data-driven models, future work should 
also investigate the interaction between the geographical coverage (i.e. local, regional, 
national, etc.) of the data and derived models, and the amount of data needed to build 
effective models. Techniques to embed mechanistic knowledge and agronomic decision 
rules (for example, using crop modelling techniques) into empirical ML algorithms are 
also worth exploring, as they could potentially reduce data requirements and expand 
model applicability across more variable scenarios. Overall, this work shows a prom-
ising pathway for digital on-farm technology, artificial intelligence and OFE to drive 
production systems closer towards season- and site-specific economically optimum 
operations.
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Conclusions

This work assessed a range of N recommendation methods, including digital approaches 
and current farmer practice, using a large program of field-scale trials across Australia over 
four years. The main lessons learned from this research are:

•	 Empirical, multivariate, data-driven methods have potential to reduce the error and 
increase profitability of fertiliser management, but they are heavily reliant on extensive 
on-farm digital databases.

•	 On-farm experimentation is a critical enabler of data-driven decision tools as it allows 
the automated collection of large digital datasets of crop response to applied nutrient 
needed to train empirical ML algorithms. Such OFE should desirably be adopted as a 
core element of farm business operation to support decision optimisation.

•	 Current univariate sensor-based algorithms underpinned by simplistic agronomic deci-
sion frameworks can match the performance of farmer management at the field level. 
However, due to inherently large error, recommendations are better implemented as the 
average for the field rather than site-specifically. As such, these technologies should be 
treated with caution as platforms to support variable rate site-specific management.

•	 Digital recommendation frameworks that make use of ML techniques but force their 
output into simplistic agronomic decision frameworks fail to improve accuracy and 
profitability of fertiliser management decisions.

•	 The development of site-specific nutrient management solutions must be conscious of 
the flatness around the maxima of typical crop response functions limiting the gain in 
profitability through greater accuracy of fertiliser recommendations.
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