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Introduction

Nowadays, Light Detection and Ranging (LiDAR) data wins 
an advanced position among other remote sensing data [1]. 
Automatic vegetation detection and modelling in forest and urban 
areas are one of the important envisaged applications of LiDAR 
data. In fact, automatic tree detection in LiDAR data belongs to the 
automatic classification of LiDAR data topic. The scanned scene 
consists of different man-made objects such as buildings, bridges, 
roads and dams. Furthermore, the studied zone may contain 
natural item classes such as vegetation, terrain, rivers, and lakes. 
In order to model the project area, its LiDAR point cloud has to be 
classified according to the main classes [2]. Once the classification 
is achieved successfully, the next step is to model each class 
aside. Concerning the vegetation detection and modelling, classic 
approaches were employed in the literature such as RANdom 
Sample Consensus (RANSAC) algorithm [3,4], local maximum 
algorithm [5], surface growing algorithm and multiple echo 
analysis [6], voxel layer single tree modelling algorithm [7], 
morphological algorithm [8] and analysis of fullwave form LiDAR 
data [9].

Recently, a modern technique called machine learning 
enhanced the automatic processing of the LIDAR data area. This 
technique becomes quickly widespread and occupied a major  

 
position in regard to the other classical approaches. This paper 
presents one machine learning method that widely applied for 
automatic vegetation recognition and modelling in LiDAR data 
field. This method is Random Forest (RF). The paper aims to 
summarize the principal of this technique in addition to its main 
applications in LiDAR data field. 

In the next section, Random forest technique will be discussed.

Random Forest

RF is an ensemble of supervised learning algorithms used 
for classification and regression, used in predictive modelling 
and machine learning technique [10]. It gathers the results and 
the predictions of several decision trees to finally choose the best 
output which is the mode (the value that appears most often in 
the set of decision trees results) of the classes or mean prediction.

RF works by splitting the dataset into two sections, the training 
set and the test set. Then randomly select multiple samples from 
the training set. Next, use the decision tree for each sample which 
divides each selection into two daughters using the best division. 
Thereafter, repeat the last step to finally vote for each prediction 
result and select the most voted prediction as the final result 
(Figure 1).
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Figure 1: Random Forest training workflow.

The main hyperparameters in Random Forest are either used 
to increase the predictive power of the model or to make the model 
faster [11]. In this context, a higher number of trees can increase 
the performance as well as makes the predictions more stable, but 
unfortunately, the processing time becomes longer. Furthermore, 
the employment of a maximum number of features in addition to 
a minimum number of leaves are that requested splitting internal 
nodes may improve the algorithm performance. Once the training 
step is realized, the trained model can be applied to a dataset that 
is not used for training. This procedure allows estimating their 
predictions and compared them to the expected values [12].

In literature, many authors applied RF exclusively on LiDAR 
data [13,14] whereas other authors simultaneously used 
additional data and LiDAR point cloud as input for RF algorithm 
[15,16]. From another viewpoints, several applications were 
achieved on LiDAR data by using the RF technique. Yu et al. [14] 
suggested an approach for estimating tree characteristics such as 
height, diameter, and stem volume using LiDAR data. For attending 
this goal, RF is considered as a classifier. Levick et al. [17] fused 
the Digital Surface Model (DSM) calculated from LiDAR point 
cloud and field-measured wood volume using RF Algorithm. Chen 
et al. [13] used the feature selection method and RF algorithm for 
forested landslide detection. For this purpose, the Digital Terrain 
Model (DTM) and the slope model was established for the scanned 
scene, and the selected features are calculated at the pixel level. 
The same principle was applied by Guan et al. [18] to classify the 
city components in the urban zones. 

RF was broadly used for vegetation detection in forest and 
urban areas. Niemeyer et al. [19] classified the scanned city 
elements by integrating RF classifier into a Conditional Random 
Field (CRF) framework. Moreover, Man et al. [16] extracted grasses 
and trees in urban areas using airborne LiDAR and hyperspectral 
data. RF and object-based classification methods were employed 
together to extract the distribution map of urban vegetation. 
[20,21] underlined the efficiency of RF for vegetation detection in 
forest and urban areas. Huang & Zhu [15] developed an approach 
for fusing hyperspectral image and LiDAR data based on RF. In this 
context, each feature is ranked by RF, and more useful features are 
selected as inputs for RF for data classification. 

Conclusion

RF is an efficient machine learning technique that can be used 
for automatic vegetation extraction and modelling in forests and 
urban zones in LiDAR data. In this context, LiDAR data can be used 
exclusively or in addition to other supplementary data such as 
field-measurement and hyperspectral data.
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