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Abstract                                                                                                                                                                           

In this paper, numerical simulations of circular boreholes under internal hydraulic pressure 

are carried out to investigate the energy transferred to the surrounding rock and the 

breakdown pressure. The simulations are conducted by using a micromechanical continuum 

damage model proposed by Golshani et al. (2006). The simulation results suggest that the 

borehole breakdown pressure and the energy transferred to the surrounding rock are 

dependent on the mechanical properties of the rock and borehole size. Although the energy 

transferred to the surrounding rock increases with increasing borehole size, the borehole 

breakdown pressure decreases. 
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1. Introduction 

Stresses are applied inside the boreholes either to produce deformations in order to determine 

the modulus of the rock or to induce fractures (Jaeger and Cook, 1969). Hydraulic fracturing 

is one of the techniques used to stimulate the production of oil or gas in reservoirs. This 

technique involves pumping a fluid under pressure into a borehole. This pressurized fluid 

introduced into the borehole produces stress concentration in the surrounding rock causing 

the development of fractures. Other applications of hydraulic fracturing have been recently 

found in geotechnical engineering for ground reinforcement and in environmental engineering 

for solid waste disposal. In fact, attention is focused on the prediction of the borehole pressure 

and is usually the only parameter available to evaluate the operation (Papanastasiou, 1997). 

However, the energy transferred to the rock during pressurization of the borehole can be 

considered as another parameter for the evaluation of the operation. 

Energy can be stored in or released from the rock medium in the vicinity of a borehole 

subjected to internal pressure. If the internal energy exceeds the limit that the material can 

withstand, the energy release will occur to re-establish the internal energy level within a 

tolerable limit. Griffith (1920) suggested that a potential relief mechanism is the micro-

cracking. According to his theory the excess of energy is dissipated with the growth of 

microcracks during rock failure.  

The energy transferred to the surrounding rock associated with the phenomena occurring in 

the borehole under breakdown pressure (the energy requirements for rock fracturing) is given 

by 

ctfs WWWWW +++=                                                                                                              (1) 



 

 

 

where 
sW , 

fW , 
tW   and 

cW  represent strain energy (borehole wall deformation), fracture 

energy, thermal energy (thermal exchange between rock and fluid) and chemical energy 

(chemical change of the rock due to the interaction with the fluid). 

The strain energy is the potential energy stored in the rock under stress and is given by 
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where V is the volume of the rock. σ  and  ε  are the stress and strain in the rock under applied 

stresses. The symbol  (:) stands for the inner product. 

The fracture energy is material property of rock and is given by 
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where KC and E are the fracture toughness and Young’s modulus of the rock and A is the area 

of fracture created.  

When the internal energy reaches a critical limit, this level must be reduced by one or more 

relief mechanisms. As previously explained, the most significant relief mechanism for rocks 

is microcracking.  

The main objective of this paper is to investigate numerically the energy transferred to the 

rock around a vertical borehole under breakdown pressure i.e., the pressure at which 

fracturing occurs, by using a micromechanics-based continuum damage model (2D) proposed 

by Golshani et al. (2006).  For this purpose three types of rocks i.e., Inada granite, Mount Isa 

granite and Toowoomba basalt are simulated. The effect of borehole diameter on the 

transferred energy will also be discussed. In this study we only consider the effects of 

borehole wall deformation and the fracture energy and the fluid is restricted from entering the 

microcracks. 

 

2. Micromechanics-based continuum damage model 

In this model, the rock matrix is regarded as an elastic solid with N groups of microcracks 

distributed at different orientations, and the i-th group is characterized by the microcracks 

orientation θ(i)
, the number density of the microcracks  ρ(i)

, and the average microcracks 

length  2c
(i)

. θ(i)
  is the inclination angle of the unit vector n

(i)
, normal to a microcrack, to the 

global axis  x1 (see Fig. 1).  In the following discussion, “´” indicates quantities in the local 

coordinate x'i- axes. 

By assuming that microcrack growth occurs in tensile mode I (Hallbauter et al., 1973, Kranz, 

1979, Costin, 1983, Blair and Cook, 1998), the stress intensity factor KI for a single 

microcrack with respect to local axes x'i (i=1, 2) axes is approximated by 

tI cK σπ ′−=                                                                                                                             (4)                                

where 
tσ ′  is the tensile stress acting normal to the microcrack surface (Fig. 2), and is 

expressed as: 
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 Where 
22S′ is the deviatoric stress )2/)(( 1122 σσ ′−′= .                          

It should be noted that the compressive stress is taken to be positive. The first term on the 

right hand side of Eq (5) stems from the far field compression, hence it takes a positive value 

(compression) in a common case. This means that the first term acts as an inhibiting factor for 

microcracking. The second term is the tensile stress, which is locally generated as a result of 

the inhomogeneity of rock and sliding movement on asperities. Following the suggestion by 



 

 

Costin (1983), we assume that the local tensile stress increases proportionally to the 

deviatoric stress 
22S ′ . d is a typical length scale of material such as grain size, and is 

experimentally determined (see Golshani et al., 2006). It is of particular importance to point 

out that the local tensile stress decreases as the microcrack grows. Otherwise, the microcrack 

would propagate without any limit as soon as the stress intensity factor KI  reaches the 

fracture toughness KIC.  

The stress-induced microcrack growth takes place in tensile mode I when the following 

relation is satisfied 

0=−′−=− ICtICI KcKK σπ                                                                                                            (6)          

Eq (6) was formulated for a single microcrack and the effect of neighbouring microcracks 

was not considered. In order to evaluate the elastic interaction among neighbouring 

microcracks, we use the so-called pseudo-traction method developed by Horii and Nemat-

Nasser (1985a, 1985b). For simplicity, we first consider an infinite plate with two 

microcracks α and β with lengths 2cα and 2cβ, both of which are subjected to far field stresses 

(see Fig. 3). This problem is elastically analysed by decomposing it into three sub-problems; 

i.e. a homogeneous sub-problem and two sub-problems α and β, as shown in Figure 3. There 

is no microcrack in the homogenous sub-problem, which is subjected to the same far field 

stresses as the original problem (i.e. σ11, σ22 and σ12). In the sub-problem α and β, we deal 

with a single microcrack under zero stresses, individually. The traction-free condition must be 

satisfied on the surface of the microcracks in the original problem since the microcracks α 

and β are assumed to be open. To do this, )( 2222

αα σσ P′+′−  and )( 1212

αα σσ P′+′−  must be applied to the 

surface of the microcrack α in the sub-problem α. Here, ασ 22
′ and ασ 12

′ are the stresses at the 

position of microcrack α arising from the far field stresses in the homogenous problem, and 
ασ P

22
′ and ασ P

12
′ , called pseudo-tractions, stand for the stresses at the position of microcrack α in 

sub-problem β. That is, the pseudo-tractions are generated by microcrack β � through elastic 

interactions between the microcracks α and β.  

The pseudo-tractions are calculated such that all the boundary conditions for the original 

problem are satisfied  

 { } [ ]{ } { }( )ββαβα σσγσ PP ′+′′=′                                                                                                           (7)                                       

where { } { }TPPPP αααα σσσσ 122211 ,, ′′′=′ , { } { }Tββββ σσσσ 122211 ,, ′′′=′ , and [ ]αβγ ′   is a  3×3 matrix and each 

element of which is a function of the position vectors  x
α
 and  x

b
 of the centres of microcracks  

α and β,  their half lengths (cα and  cβ), and the inclination angle θαβ  between  x1
'β

 and  x1
'α

. 

Eq (7) is tentatively called the consistency equation in the sense that stress boundary 

conditions are taken into account. If more details are necessary, readers should refer to the 

papers by Horii and Nemat-Nasser (1985a, 1985b), Okui et al. (1993), and Golshani et al. 

(2006). 

 

Considering the effect of the interaction among microcracks, the stress intensity factor 

equation (Eq (4)) can be rewritten as follows 
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It is assumed that the rock matrix remains elastic in the entire process so that the inelastic 

deformation arises from opening of microcracks. Since the matrix is elastic, the stress-strain 

relationship is given by:  

 )(: εεσ
)

−= teD                                                                                                                            (9)                      



 

 

where De is the elastic modulus tensor, and the symbol (:) stands for the inner product. εt is 

the total strain tensor and ε
)  is the inelastic strain tensor arising from the opening of 

microcracks. The inelastic strain arising from opening the i-th group microcracks is 

formulated in terms of the average length of microcracks 2c
(i)

, microcracks orientation  θ(i)
, 

number density of microcracks ρ(i)
 , and the applied stresses σ (Golshani et al., 2006).  

We now have governing equations for analysing stress-induced behaviour of brittle rock; i.e., 

microcrack growth law (7), Consistency Eqs. (8) and Constitutive Eqs. (9). Unknowns are σ, 

c and σP
. The initial values of the unknowns are given by solving boundary value problems 

by using the stress-induced microcrack growth law. They correspond to a state just after the 

application of a load. Based on the finite element methods, we solved the governing equations 

on a numerical basis. Three-node triangular elements were used, in each of which the 

displacement, the interaction stresses and the length of the microcracks belonging to the i-th 

group are constant. 

 

3. Numerical simulation 

A single borehole in rock medium (3000mm×3000mm) was simulated and plane strain 

condition was assumed.  First mesh convergence study was performed to determine the finite 

element mesh with satisfactory accuracy. For this purpose, Inada granite was considered. 

Then using this mesh, numerical simulation was carried out for three types of rocks i.e., Inada 

granite, Mt. Isa granite and Toowoomba basalt to determine the internal energy transferred to 

the surrounding rock under pressure inside the borehole at failure (using Eqs.1-3).  

 

3.1 Mesh convergence study 

In finite element modelling, a finer mesh typically results in a more accurate solution. 

However, as a mesh is made finer, the computation time increases. A mesh convergence 

study enables us to obtain an accurate solution with a mesh that is sufficiently dense and not 

too demanding of computing resources. To perform a mesh convergence study, first we create 

a mesh using the fewest, reasonable number of nodes and elements and analyse the model. 

Then, we re-create the mesh with a denser element distribution, re-analyse it and compare the 

results to those of the previous mesh. We keep increasing number of nodes and elements and 

re-analyse the model until the results converge satisfactorily within a given tolerance.  

Inada granite is biotite granite from a quarry in Kasama, Ibaraki, Japan. Inada granite consists 

of coarse to medium grains of quartz, feldspar and biotite. The mean grain size of Inada 

granite is about 2.0 mm (Takemura et al., 2005). The Inada granite had 73 MPa Young’s 

modulus, 0.23 Poisson’s ratio and the approximate stress-strain curves are given in Fig. 4. 

Fracture toughness and length parameter for Inada granite were chosen as KIC = 2.50 MPa
1/2

 

and d = 0.34 mm. The average length of microcracks and microcrack number density are 

c=0.5mm and ρ = 0.21 (see Golshani et al., 2006). The uniaxial compression strength of 

Inada granite was reported as 218 MPa (Takemura et al., 2005) 

We considered seven cases of meshes as shown in Table 1. The borehole diameter was 50 

mm for all cases. Uniform pressure was applied inside the hole for each case and internal 

energy under breakdown pressure was determined (Fig. 5). Note that the results were 

normalized using the reference energy (Wr) that was chosen as the energy for the first case.  

As shown in Fig. 5, the energy remains essentially the same from the 3rd case (i.e., the mesh 

with 326 elements) onwards. It is noteworthy that computational cost increases faster than 

mesh sizes. Thus, we chose the fourth case: a mesh with 195 nodes and 350 elements that 

satisfies the accuracy requirement of a minimum computational cost. 

 



 

 

3.2 Calculation of the energy for Inada granite, Mt. Isa granite and Toowoomba basalt 

Mt. Isa granite occurs in Northwest Queensland, Australia and its grain size is about 0.2 mm 

(Geoscience report, Australia, 2001). Toowoomba basalt (South-eastern Queensland, 

Australia) is generally fine-grained, dark grey to black igneous rock. In most cases individual 

minerals cannot be recognized by the naked eye because of the fine grain size (Willmott et al., 

1995). Basalt is characterized by mineral grain size less than 0.3 mm and for Toowoomba 

basalt, which is fine-grained basalt, the average grain size is set to 0.05 mm.  

The input parameter used in the numerical simulation of Mt. Isa granite and Toowoomba 

basalt are listed in Table 2 where elastic properties and fracture toughness are from 

experimental tests using samples with 60 mm diameter and 145 mm height.  

In crystalline rocks, it is assumed that grain boundaries act as the predominant source of stress 

concentrating flaws and that the initial microcrack lengths are of the order of the rock grain 

size (Eberhardt et al., 1999). Thus, we can estimate initial microcrack length of Mt. Isa 

granite and Toowoomba basalt based on their grain size. The microcrack number density of 

Mt. Isa granite and Toowoomba basalt are not reported and are set to be 0.21 on a tentative 

basis.  

The region (3000mm×3000mm) with a hole of 50 mm diameter was meshed with 195 nodes 

and 350 elements (Fig. 6). Uniform stress was applied inside the borehole and the energy at 

failure for Inada granite, Mt. Isa granite and Toowoomba basalt was obtained as 4.5 KJ, 5.7 

KJ and 7.3 KJ. The breakdown stresses of theses three types of rocks were 173 MPa, 204 

MPa and 255 MPa. The relationship between borehole pressure and transferred strain energy 

of Mount Isa granite is shown in Fig. 7.  

The tangential stress at the borehole surface was calculated as -62.5 MPa, -71.4 MPa and -

85.6 MPa for Inada granite, Mt. Isa granite and Toowoomba basalt, respectively. These 

stresses considerably exceed the tensile strength of these rocks obtained experimentally. The 

reason is that the borehole breakdown does not take place even if the largest tangential stress 

at the borehole surface reaches the tensile strength of rock. In fact, it occurs when the initiated 

fracture becomes unstable (Morita et al., 1996). In relation to this point, Haimson and 

Fairhust (1970) and Guo et al. (1993) found out that the tensile strength obtained from the 

hydraulic fracturing test (i.e., the largest tangential stress at the borehole surface) and the 

tensile strength obtained from the Brazilian test were different.  

 

3.3 The borehole diameter 

To investigate the effect of the borehole size on the energy transferred to the surrounding rock 

under breakdown pressure, Inada granite with boreholes of 25 mm, 50 mm and 75 mm 

diameter was simulated. The number of elements for these three simulations respectively was 

494, 350 and 426 that provide us accurate results. The results show that borehole breakdown 

pressure and energy are dependent on the borehole size (Table 3).  The borehole breakdown 

pressure is higher for smaller diameter holes. Morita et al. (1995) obtained similar results in 

the laboratory tests on cubic Berea sandstone (76 cm×76 cm×76 cm) with holes of 10 mm 

and 38 mm diameters subjected to internal pressure and far field confining stresses. As the 

borehole diameter increases, the energy transferred to the surrounding rock increases which is 

due to increase of strain energy component with increasing borehole diameter. Cuss et al. 

(2003) obtained similar results in their experiments with sandstone.  

 

4. Conclusion 

A single borehole in rock medium under internal pressure was simulated using a 

micromechanical continuum damage model (Golshani et al., 2006). The numerical simulation 



 

 

predicts that the borehole breakdown pressure and the energy transferred to the rock depend 

on the formation’s mechanical properties and borehole size. It was found that although the 

energy transferred to the surrounding rock increases with increasing borehole size the 

borehole breakdown pressure decreases. Furthermore, the energy seems to increase faster than 

the decrease of the breakdown pressure. 

It should be noted that thermal energy and chemical energy were neglected in the calculation 

of the energy transferred to the rock around a borehole under internal pressure.  For more 

accurate results these should be taken into consideration. 
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Case No.       No. of elements      No. of nodes

1                        234                       132

2                        246                       140     

3                        326                       182     

4                        350                       195     

5                        414                       228     

6                        510                       278     

7                        626                       338     

Case No.       No. of elements      No. of nodes

1                        234                       132

2                        246                       140     

3                        326                       182     

4                        350                       195     

5                        414                       228     

6                        510                       278     

7                        626                       338     

Case No.       No. of elements      No. of nodes

1                        234                       132

2                        246                       140     

3                        326                       182     

4                        350                       195     

5                        414                       228     

6                        510                       278     

7                        626                       338     

Table 1. Number of elements and nodes for different 
cases 



 

 

 

 

 

Parameter                                             Mt. Isa Granite      Toowoomba Basalt

Young’s modulus (GPa)                             61.4                           78.7

Poisson’s ratio                                            0.22         0.25

Fracture toughness (MPa m1/2)                   1.94                           1.88

Initial microcrack length* (µm)                     50                           12.5        

Number density of microcracks* 0.21                          0.21

Tensile Strength (MPa)                              -10.1                         -14.8 

* These data are estimates.

Parameter                                             Mt. Isa Granite      Toowoomba Basalt

Young’s modulus (GPa)                             61.4                           78.7

Poisson’s ratio                                            0.22         0.25

Fracture toughness (MPa m1/2)                   1.94                           1.88

Initial microcrack length* (µm)                     50                           12.5        

Number density of microcracks* 0.21                          0.21

Tensile Strength (MPa)                              -10.1                         -14.8 

* These data are estimates.

Table 2. Model parameters used in numerical 
calculations for Mt. Isa Granite 

 and Toowoomba Basalt 



 

 

 

 

 

 

 

 

Hole diameter       Breakdown pressure      Energy

(mm)                        (MPa)                    (KJ)

25                             187                     2.05

50                             173                     4.52 

75                             156                     8.08

Hole diameter       Breakdown pressure      Energy

(mm)                        (MPa)                    (KJ)

25                             187                     2.05

50                             173                     4.52 

75                             156                     8.08

Table 3. Breakdown pressure and energy transferred 
to the surrounding 

 rock at failure. 


