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Abstract: This paper reports the development of a simple and efficient 4-node flat shell el-

ement with six degrees of freedom per node for the analysis ofarbitrary shell structures. The

element is developed by incorporating a strain smoothing technique into a flat shell finite el-

ement approach. The membrane part is formulated by applyingthe smoothing operation on

a quadrilateral membrane element using Allman-type interpolation functions with drilling

DOFs. The plate-bending component is established by a combination of the smoothed cur-

vature and the substitute shear strain fields. As a result, the bending and a part of membrane

stiffness matrices are computed on the boundaries of smoothing cells which leads to very ac-

curate solutions, even with distorted meshes, and possiblereduction in computational cost.

The performance of the proposed element is validated and demonstrated through several

numerical benchmark problems. Convergence studies and comparison with other existing

solutions in the literature suggest that the present element is efficient, accurate and free of

lockings.

Keyword flat shell, strain smoothing method, shear-locking free, first-order shear deforma-

tion theory, drilling degrees of freedom.

1 Introduction

The wide application of shell structures in engineering practice has caught the interests of

many researchers in the fields of analysis and design of such structures. A great body of

research work has been proposed over several decades towards the development of simple

and efficient shell finite elements through three major approaches: (1) the curved shell
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elements based on classical shell theory with curvilinear coordinates; (2) the degenerated

shell elements derived from three-dimensional solid elements and (3) the flat shell elements

obtained by the combination of the membrane and bending behaviour of plate elements.

In general, it is difficult to identify which shell element isthe most advantageous. Among

these approaches, the flat shell elements are regarded to be the most attractive as they can

be readily built by combining existing plate and membrane elements. They have been used

extensively because of the simplicity in their formulation, the effectiveness in performing

computation and the flexibility in applications to both shell and folded plate structures. In

addition, the performance of the flat shell elements for thick to thin structures also signifi-

cantly improved with the aid of Reissner-Mindlin kinematics, the incorporation of drilling

degrees of freedom (Iura and Atluri, 1992) and the variational principles governing rotations

(Atluri, 1980; Atluri and Cazzani, 1994; Atluri, 1984; Suetake, Iura, and Atluri, 2003).

Although triangular flat elements are most efficient for discretizing arbitrary shell geome-

tries, quadrilateral elements are usually used owing to their better performance with respect

to convergence rates than that of triangular elements (Lee and Bathe, 2004). The difficulty

in the development of the four-node shell element is that such elements are too stiff and

suffer from locking phenomenon. This phenomenon originates from the shortcoming in the

interpolation of the displacement. Two well-known lockingtypes that may occur in four-

node flat elements in analysis of shell structures are (1) thetransverse shears locking which

arises as the ratio of the thickness-to-characteristic length of a shell becomes small (e.g.

t/L ≤ 1/100), and (2) the membrane locking which occurs when coarse or distorted meshes

are used, especially in bending dominated problems.

With the development of shell elements, many methods have been proposed to circumvent

these disadvantages. For a summary, the readers are referred to (Yang, Saigal, Masud,

and Kapania, 2000). Techniques to handle shear-locking commonly adopted are the re-

duced/selective integration (Hughes, Cohen, and Haroun, 1978; Zienkiewicz, Taylor, and

Too, 1971; Stolarski and Belytschko, 1983). However, it maylead to the possible mani-

festation of hourglass modes and stabilization matrices are required to remove these spu-
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rious modes (Belytschko and Tsay, 1983; Belytschko, Lin, and Tsay, 1984). An alterna-

tive scheme for dealing with the shear-locking problem is the hybrid/mixed formulation in

which separate interpolations are used for the stresses anddisplacements (Lee and Pian,

1978; Noor and Peters, 1981). In another approach to alleviate shear locking, the assumed

natural strain method (ANS) first proposed in (MacNeal, 1978, 1982), is generally reported

to be an efficient method utilizing complete numerical integration rules. In this approach,

the transverse shear strains are interpolated from the displacement-dependent strains defined

at the mid-side of element edges to reduce transverse shear locking. Based on this concept,

some efficient models were presented, including the mixed interpolated tensorial component

(MITC) family proposed by Bathe’s group (Dvorkin and Bathe,1984; Bathe and Dvorkin,

1985) and the discrete strain gap (DSG) elements proposed byBischoff’s group (Bischoff

and Bletzinger, 2001; Koschnick, Bischoff, Camprubi, and Bletzinger, 2005). Another inter-

esting scheme arising from mixed variational formulationsis the enhanced assumed strain

(EAS) method first presented by (Simo and Rifai, 1990) and further developed in the linear

elastic range (Andelfinger and Ramm, 1993; Cardoso, Yoon, and Valente, 2006) and non-

linear aspects (Bischoff and Ramm, 1997; Eckstein and Basar, 2000; Cardoso, Yoon, and

Valente, 2007). The key point of this method lies in the use ofa strain field composed of

a compatible strain field and an enhanced strain field based onthe Hu-Washizu variational

principle to reduce shear locking.

Some of these approaches mentioned above are also used to remedy membrane locking,

especially the selective reduced integration (SRI) technique and the EAS method. However

some of them deteriorate significantly when mesh is distorted (Cardoso, Yoon, and Valente,

2006). More works on the problems related to the membrane locking of flat shell elements

can be found in the references of (Cook, 1994), (Groenwold and Slander, 1995), (Choi and

Lee, 2003) and (Cui, Liu, Li, Zhao, Nguyen, and Sun, 2008).

A large number of four-node shell element formulations havebeen presented to date, show-

ing good performance, however, there is still room to improve the behaviour of flat shell

elements, in order to enhance the efficiency, accuracy and stability even when meshes are
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coarse or elements are badly-shaped. The objective of this study is to propose an improved

formulation of a locking-free quadrilateral flat shell element with six degrees of freedom

per node that is able to reduce the mesh distortion sensitivity and enhance the coarse mesh

accuracy. The present flat element is obtained by applying the strain smoothing method

(SSM) to a quadrilateral flat shell element with the combinedcharacteristics of a membrane

Allman-type element with drilling DOFs and the assumed strain plate-bending element of

(Bathe and Dvorkin, 1985). The SSM was originally proposed by (Chen, Wu, and You,

2001) as a normalization for nodal integration of mesh-freeGalerkin weak form. Based on

this concept, (Liu, Dai, and Nguyen, 2007) first presented the application of the SSM to

the 2D elasticity finite element method as a new smoothed finite element method (SFEM).

Further application of SSM for laminated composite plates/shells and piezoelectric solids

was presented by (Nguyen-Van, Mai-Duy, and Tran-Cong, 2007, 2008a,b).

In this study, the membrane part of the proposed shell element is enhanced by applying

the SSM instead of the use of hierarchical bubble interpolation mode. The SSM is also

applied to the curvature of the plate-bending part to improve the flexural behaviour in the

distorted as well as coarse meshes in particular. With the aids of the SSM, the evaluation of

bending and membrane stiffness matrices are carried out by integration along the boundary

of smoothing elements which can give more accurate numerical integration even with badly-

shaped elements or coarse meshes and also reduce computational time when compared

with the evaluation of domain integration. Moreover, the incorporation of the SSM also

facilitates relatively simple implementation procedure which makes coding much easier.

In the following sections, a brief review of the four-node flat shell finite element with drilling

DOFs is first introduced. This is followed by the strain smoothing approach for the flat shell

element. Numerical benchmarks are then conducted to investigate and assess the perfor-

mance of the proposed 4-node flat shell element before drawing the final conclusions.
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2 Finite element formulations of the 4-node flat shell element with drilling degrees of
freedom

2.1 Membrane part

The 4-node membrane element with drilling DOFs (Figure 1) isderived by combining the

in-plane displacements using Allman-type interpolation functions (Allman, 1984) and the

standard bilinear independent normal (drilling) rotationfields. Details of the formulation

can be found in the original reference (Ibrahimbegovic, Taylor, and Wilson, 1990) and only

a brief review is presented here.

Figure 1: A 4-node quadrilateral element with drilling degrees of freedom

The independent rotation field is interpolated as follows.

θz =
4

∑
i=1

Ni(ξ ,η)θzi, (1)

and the in-plane displacement fields are approximated by theAllman-type interpolation

u =

[

u
v

]

=
4

∑
i=1

Ni(ξ ,η)

[

ui

vi

]

+
1
8

8

∑
k=5

Nk(ξ ,η)(θz j−θzi)

[

yi j

xi j

]

, (2)

where

xi j = x j −xi, yi j = y j −yi, (3)

Ni(ξ ,η) = 1
4(1+ ξiξ )(1+ ηiη) i = 1,2,3,4 (4)

Nk(ξ ,η) = 1
2(1−ξ 2)(1+ ηkη) k = 5,7 (5)

Nk(ξ ,η) = 1
2(1+ ξkξ )(1−η2) k = 6,8. (6)
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and the ordered triplets(k, i, j) are given by(5,1,2), (6,2,3), (7,3,4), (8,4,1)

The linear strain matrix is given by

εm = symm∇u =
4

∑
i=1

Bmiui, (7)

whereui = [ui vi θzi]
T is the nodal vector and the gradient matrixBmi has the following

form

Bmi =





Ni,x 0 Nxi,x

0 Ni,y Nyi,y

Ni,y Ni,x Nxi,y +Nyi,x



 . (8)

in which Nx, Nyare Allman’s incompatible shape functions defined as

Nxi =
1
8
(yi j Nl −yikNm), (9)

Nyi =
1
8
(xi j Nl −xikNm). (10)

The above indicesi, j, k, l , mcan be expressed in a Matlab-like definition as follows.

i = 1,2,3,4; m= i +4; l = m−1+4∗ f loor(1/i);

k = mod(m,4)+1; j = l −4. (11)

where f loor(x) rounds the elements ofx to the nearest integers towards minus infinity and

mod(x,y) is the modulus after division ofx by y.

Furthermore, the skew-symmetric part of the strain tensor (εsk) can be expressed as

εsk = skew∇u =
4

∑
i=1

biui + θz, (12)

where

bi =





−1
2Ni,y

1
2Ni,x

1
16

(

−yi j Nl ,y +yikNm,y +xi j Nl ,x−xikNm,x
)

−Ni



 , (13)
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and the indicesi, j, k, l , m are defined by Equation (11).

The variational formulation suggested by (Hughes and Brezzi, 1989) is described as

Πγ(u,θz) =
1
2

∫

Ω
εT

mDmεmdΩ+
1
2

γ
∫

Ω
(εsk−θz)

2dΩ−

∫

Ω
uT fdΩ. (14)

Minimization of Equation (14) results in the element membrane stiffness matrixKmem ,

which is the sum of matrixKm and a penalty matrixPγ as follows.

Kmem= Km+Pγ =
∫

Ω
BT

mDmBmdΩ+ γ
∫

Ω
bTbdΩ. (15)

The positive penalty parameterγ in Equation (15) is problem dependent. However, the

formulation is reported to be insensitive to the value ofγ which is taken as the shear modulus

value (γ = G) (Hughes, Brezzi, Masud, and Harari, 1989; Ibrahimbegovic, Taylor, and

Wilson, 1990). Many recent numerical studies showed that the smaller value ofγ (i.e.

value of γ/G between 1/10000 and 1) appeared to give more accurate solutions (Long,

Geyer, and Groenwold, 2006; Liu, Riggs, and Tessler, 2000; Pimpinelli, 2004). In this

study,γ/G = 1/1000 is used.

2.2 Plate-bending part

For the plate bending component of the flat shell element, theMindlin-Reissner type 4-node

plate element is employed (Figure 2).

Figure 2: A 4-node quadrilateral plate bending element
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The displacement fieldu is approximated as

u = [w θx θy]
T =

4

∑
i=1

Niui, (16)

whereNi is the bilinear shape function as in Equation (4) andui = [wi θxi θyi] is the nodal

displacement vector of the element.

The corresponding approximation of curvature is given by

κ =





θx,x

θy,y

θx,y + θy,x



 = Bbu, (17)

where

Bbi =





0 Ni,x 0
0 0 Ni,y

0 Ni,y Ni,x



 . (18)

The shear strain is approximated with independent interpolation schemes in the natural

coordinate system as

[

γx

γy

]

= J−1
[

γξ
γη

]

= J−1N̂











γA
η

γB
ξ

γC
η

γD
ξ











, (19)

in which

N̂ =
1
2

[

(1−ξ ) 0 (1+ ξ ) 0
0 (1−η) 0 (1+ η)

]

, (20)

J is the Jacobian matrix and the midside nodes A, B, C, D are shown in Figure 2. Expressing

γA
η , γC

η andγB
ξ ,γD

ξ in terms of the discretized fieldsu, we obtain the shear matrix

B̄si = J−1
[

Ni,ξ b11
i Ni,ξ b12

i Ni,ξ
Ni,η b21

i Ni,η b22
i Ni,η

]

, (21)

where

b11
i = ξix

M
,ξ , b12

i = ξiy
M
,ξ , b21

i = ηix
L
,η , b22

i = ηiy
L
,η , (22)
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in which ξi ∈ {−1,1,1,−1}, ηi ∈ {−1,−1,1,1}

and(i,M,L) ∈ {(1,B,A);(2,B,C);(3,D,C);(4,D,A)}.

Then through the direct application of variational principles, the element plate-bending stiff-

ness matrix can be obtained as follows.

K p = Kb +K s =
∫

Ωe

BT
b DbBbdΩ+

∫

Ωe

BT
s DsBsdΩ, (23)

whereDs, Db are material rigidity matrices for bending and shear, respectively.

2.3 Construction of a flat shell element

The plate bending and membrane formulations presented in the above sections can be com-

bined to form a four-node shell element as shown in Figure 3.

Figure 3: A 4-node quadrilateral flat shell element

When all nodes of the flat shell element are placed in the mid-thickness plane of the shell,

the stiffness matrix of a shell element can be formed by combining the plate stiffness and

membrane stiffness obtained independently as follows.

K f lat =

[

Kmem 0
0 K p

]

. (24)

For some shells with double curvature, it may not be possibleto have four nodes of the flat

shell element on the same plane (warped geometries) and the flat element stiffness must be

modified before transformation to the global reference system by using the rigid link cor-

rection suggested by (Taylor, 1987). For the rigid link correction, the mean plane is formed
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by connecting central points of each side and distances between the mean plane and each

nodes are taken to be the same(|zi | = h). Then, the following displacement transformation

equation at each nodei is employed to transform the nodal variables to the projected flat

element variables

q′
i =































u′i
v′i
w′

i
θ ′

xi
θ ′

yi

θ ′
zi































=

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 zi 0 1 0 0
−zi 0 0 0 1 0
0 0 0 0 0 1















































ui

vi

wi

θxi

θyi

θzi































= W iqi, (25)

whereW is the projection matrix andzi defines the warpage offset at each nodei perpen-

dicular to the flat mean plane as shown in Figure 4.

Figure 4: The projection of a warped shell element into a flat mean plane

The local element stiffness matrix, considering the warping effects, is obtained as follows

K local = WK f latWT . (26)

Then the element stiffness in the global reference systemKglobal is obtained via the rotation

matrix R

Kglobal = RTK localR. (27)
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3 Strain smoothing approach for flat shell finite element

3.1 Smoothed membrane strain approximation

The membrane strains at an arbitrary pointxC can be obtained by using the following strain

smoothing operation

ε̃m(xC) =
∫

ΩC

εm(x)Φ(x−xC)dΩ, (28)

whereεm is the membrane strain obtained from displacement compatibility condition as

given in Equation (7);ΩC is the smoothing cell domain on which the smoothing operation

is performed (ΩC may be an entire element or part of an element as shown in Figure 5,

depending on the stability analysis (Liu, Dai, and Nguyen, 2007)); Φ is a given smoothing

function that satisfies at least unity property
∫

ΩC

ΦdΩ = 1 and, in the present work is defined

as

Φ(x−xC) =

{

1/AC x ∈ ΩC,
0 x /∈ ΩC,

(29)

in which AC =
∫

ΩC

dΩ is the area of a smoothing cell (subcell).

Figure 5: Subdivision of an element intonc smoothing cells and values of bilinear shape
functions at nodes

SubstitutingΦ into Equation (28) and applying the divergence theorem, onecan get the
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smoothed membrane strain

ε̃m(xC) =
1

2AC

∫

ΩC

(

∂ui

∂x j
+

∂u j

∂xi

)

dΩ =
1

2AC

∫

ΓC

(uin j +u jni)dΓ, (30)

whereΓC is the boundary of the smoothing cell.

Introducing the finite element approximation ofum = [u v θz]
T into Equation (30) gives

ε̃m(xC) = B̃m(xC)um, (31)

where

umi = [ui vi θzi]
T , (32)

B̃mi(xC) =
1

AC

∫

ΓC





Ninx 0 Nxinx

0 Niny Nyiny

Niny Ninx Nxiny +Nyinx



dΓ. (33)

Applying Gauss integration along 4 segments of the boundaryΓC of the smoothing domain

ΩC, the above equation can be rewritten in algebraic form as

B̃mi(xC) =
1

AC

4

∑
b=1

















nG
∑

n=1
wnNi(xbn)nx 0 0

0
nG
∑

n=1
wnNi(xbn)ny 0

nG
∑

n=1
wnNi(xbn)ny

nG
∑

n=1
wnNi(xbn)nx 0

















+
1

AC

4

∑
b=1

















0 0
nG
∑

n=1
wnNxi(xbn)nx

0 0
nG
∑

n=1
wnNyi(xbn)ny

0 0
nG
∑

n=1
wnNxi(xbn)ny +

nG
∑

n=1
wnNyi(xbn)nx

















(34)

wherenG is the number of Gauss integration points,xbn the Gauss point andwn the cor-

responding weighting coefficients. The first term in Equation (34), which relates to the

in-plane translations (approximated by bilinear shape functions), is evaluated by one Gauss

point (nG= 1). The second term, associated with the in-plane rotations(approximated by

quadratic shape functions), is computed using two Gauss points (nG= 2).
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The smoothed membrane element stiffness matrix can be obtained as

K̃mem= K̃m+Pγ =
∫

Ω B̃T
mDmB̃mdΩ+ γ

∫

Ω bTbdΩ

=
nc
∑

C=1
B̃T

mCDmB̃mCAC + γ
∫

Ω bTbdΩ (35)

in which nc is the number of smoothing cells. To avoid numerically over-stiffening the

membrane, one smoothing cell (nc= 1) is used in the present formulation. Higher numbers

of smoothing cells will lead to stiffer solutions and the accuracy may not be enhanced

considerably. The penalty matrixPγ is integrated using a 1–point Gauss quadrature to

suppress a spurious, zero-energy mode associated with the drilling DOFs.

3.2 Smoothed plate-bending strain approximation

In a similar way, by using the same constant smoothing function Φ as for membrane strain,

the smoothed curvature matrix can be obtained as

κ̃(xC) =

∫

ΩC

κ(x)Φ(x−xC)dΩ =
1

2AC

∫

ΓC

(θin j + θ jni)dΓ. (36)

Then the relationship between the smoothed curvature field and the nodal displacement is

written as

κ̃(xC) = B̃b(xC)ub, (37)

where

ubi = [wi θxi θyi]
T , (38)

B̃bi(xC) =
1

AC

∫

ΓC





0 Ninx 0
0 0 Niny

0 Niny Ninx



dΓ. (39)

Using integration with one-point Gauss quadrature to evaluate the above equation over four

boundary segment of the smoothing cell we obtain

B̃bi(xC) =
1

AC

4

∑
b=1





0 Ni(xG
b )nx 0

0 0 Ni(xG
b )ny

0 Ni(xG
b )ny Ni(xG

b )nx



lbC. (40)
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Finally, the plate-bending element stiffness matrix in Equation (23) can be transformed as

follows

K̃ p = K̃b +K s =
nc

∑
C=1

B̃T
b DbB̃bAC +

∫

Ωe

BT
s DsBsdΩ. (41)

In Equation (41), the shear termK s is still computed by 2×2 Gauss quadrature while the

element bending stiffness̃Kb is computed by one Gaussian point along each segment of the

smoothing cells of the element. In this study, two smoothingcells (nc = 2) as shown in

Figure 5 are used for calculating the smoothed bending stiffness matrix of the element in

order to ensure the rank sufficiency.

The flat shell element stiffness matrix in Equation (24) is then rewritten as

K̃ f lat =

[

K̃mem 0
0 K̃ p

]

. (42)

This forms the basis of a new four-node quadrilateral element named MISQ24 (Mixed In-

terpolation Smoothing Quadrilateral element with 24 DOFs)for analysis of shell structures.

4 Numerical results and discussions

In this section, several benchmark problems are presented to validate and demonstrate the

performance of the MISQ24 flat element in shell structural analysis. The developed element

performance is compared with that of a fairly complete set ofother four-node shell elements

in the literature. The list of shell elements used for comparison with the proposed element

is outlined in Table 1.

4.1 Scordelis-lo (Barrel vault) roof

The Scordelis-Lo roof provides one of the standard tests to assess the performance of shell

elements in a combined bending-membrane problem with the membrane action being dom-

inant. The roof is modelled as a short cylinder shell, loadedby self-weight and supported by

rigid diaphragms at the curved edges while the straight edges are free. Geometric, material

data and boundary conditions of the problem are shown in the Figure 6.
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Table 1: List of shell elements used for comparison in the present study.

Name Brief description
DKQ-4 4-node discrete Kirchoff quadrilateral element of (Taylor, 1987)
SRI-4 bilinear degenerated shell element, with selective reduced integration

of (Hughes and Liu, 1981)
RSDS-4 bilinear resultant-stress degenerated-shell element, with uniform re-

duced integration and stability (Liu, Law, Lam, and Belytschko, 1986)
URI-4 4-node uniformly reduced integrated element (Belytschko, Wong, and

Stolarski, 1989)
QPH quadrilateral shell element with physical hourglass control of (Be-

lytschko and Leviathan, 1994)
IBRA-4 4-node shell element with drilling DOFs developed by(Ibrahimbe-

govic and Frey, 1994)
MITC4 4-node fully integrated shell element based on assumed shear strain

field of (Dvorkin and Bathe, 1984)
Mixed bilinear element with mixed formulation for membraneand bending

stress and full 2x2 quadrature of (Simo, Fox, and Rifai, 1989)
MIN4T 4-node flat shell with drilling DOFs via explicit Kirchhoff constrains

(Liu, Riggs, and Tessler, 2000)
NMS-4F defect-free 4-node flat shell element with drilling DOF (Choi and Lee,

1999)
XSHELL41/42 4-node quasi-conforming flat shell element with driling DOFs (Kim,

Lomboy, and Voyiadjis, 2003)
QC5D-SA 4-node flat shell with drilling DOFs and 5-point quadrature by (Groen-

wold and Slander, 1995)
SHELL63 4-node thin shell element with drilling DOFs in (ANSYS, 1998)
T029 4-node Mindlin shell element in (Samtech, 2003)
Sauer 4-node element proposed by (Sauer, 1998)
GruWag 4-node element proposed by (Gruttmann and Wagner, 2005)

According to (MacNeal and Harder, 1985), the theoretical value for the vertical deflection

at the center of the free edge is 0.3086, but a slightly lower value 0.3024 seems to have

become the reference solution for many publications. In this study the latter value is used to

normalize numerical results. Taking advantage of symmetry, only a quadrant of the roof is

discretized and analyzed. Two typical types of mesh, namelyN×N uniform elements and

N×N distorted elements are shown in Figure 7.

Table 2 shows the normalized deflections at the midpoint of the free edge (point B) obtained
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Figure 6: The Scordelis-Lo roof: Geometry and material data
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Figure 7: The Scordelis-Lo roof: (a) typical regular mesh and (b) irregular mesh.

by the present element with different meshes, together withthose of other 4-node shell el-

ements available in the literature. The results show that the present elements perform quite

well in both types of mesh in comparison with the reference solution and other shell ele-

ments. The convergence of stress resultants obtained by uniform elements is also presented

in Table 3.

The numerical convergence is also plotted in Figure 8. As canbe seen, the convergence rate

of the present element for both types of mesh is nearly equivalent. It is also observed that the

MISQ24’s rate of convergence is slightly slower than that ofthe SRI-4 element. However,

it is interesting to note that the MISQ24 element appears to converge monotonically to

the reference solution even with a highly distorted mesh. Convergence rate of the present

element in this problem indeed appear quite satisfactory.
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Table 2: The Scordelis-Lo roof: displacements at point B, normalized by 0.3024

Model
Mesh

4×4 8×8 12×12 16×16

MISQ24 (regular mesh) 1.1912 1.0420 1.0154 1.0063

MISQ24 (irregular mesh) 1.1925 1.0422 1.0155 1.0066

SRI-4 0.964 0.984 – 0.999

RSDS-4 1.201 1.046 – 1.010

T029 (SAMCEF) 0.976 0.986 – 0.993

NMS-4F 1.047 1.005 – 0.997

QPH 0.940 0.980 – 1.010

DKQ-4 1.048 1.005 – 0.996

IBRA-4 1.047 1.005 – 0.997

URI-4 1.219 1.054 – 1.017

Table 3: The Scordelis-Lo roof: Stress resultants (bendingand membrane components)

Mesh MC
x NC

x NB
y

4×4 -2.162E3 -3.210E3 6.810E4

8×8 -2.081E3 -3.379E3 7.372E4

16×16 -2.062E3 -3.400E3 7.372E4

4.2 A pinched cylinder with end diaphragms

In this section, a pinched cylinder with end diaphragms is considered. This problem is re-

garded as one of the most severe tests for the performance of the element with the presence

of both in-extensible bending and complex membrane states of stress. The cylinder is sup-

ported by rigid diaphragms at both ends and pinched with two opposite radial concentrated

loads at the middle of the length. The geometrical and material properties of the cylinder

are depicted in Figure 9.

Owing to symmetry, only one octant of cylinder is modelled with a mesh of uniform ele-

ments as well as distorted elements. Two typical meshes usedin the analysis are shown in

Figure 10.
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Figure 8: The Scordelis-Lo roof: Convergence behaviour

The theoretical solution of the radial deflection at the loading point (point C) given by Ted

(Belytschko and Leviathan, 1994) is 1.8248× 10−5. The present numerical results with

meshes of 4×4, 8×8, 12×12 and 16×16 elements are compared versus other solutions

from the literature using 4–node quadrilateral elements. All the numerical results, normal-

ized with respect to the analytical value, are given in the Table 4. It is observed that the

performance of the present element is in excellent agreement with the analytic solution for

both types of mesh and are better than other shell elements considered in this study. The

convergence of stress resultants at the loaded point obtained by uniform elements is also

reported in Table 5.

The convergence behaviours of all cited elements are also plotted together in Figure 11.

As it can be seen, the MISQ24 elements yield the most rapidly converging solutions to

theoretical value. In the case of highly distorted elements, it is particularly interesting to

point out that the present element faces no difficulties converging at the same rate as some

of the most efficient contemporary four-node shell elementsusing uniform elements. The

MISQ24’s convergence rate is even slightly better than the SHELL63 element used in the

commercial finite element software ANSYS for this problem.
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Figure 9: A pinched cylinder with end diaphragms: Geometry and material data
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Figure 10: A pinched cylinder with end diaphragms: (a) typical regular mesh and (b) irreg-
ular mesh.

4.3 A pinched hemispherical shell with an180 hole

Figure 12 shows the hemispherical shell with an 180 hole subjected to concentrated diamet-

rical loads of opposite signs every 900 in the equatorial plane. This problem is a very useful

example to check the ability of the element to handle rigid body rotation about the normal

to the shell surface and the inextensible bending modes. Shell elements with membrane

locking cannot correctly solve this problem. Taking advantage of symmetry, a quadrant of

the shell is modelled with uniform elements.

Table 6 shows numerical results for the radial displacementat the loading point (uA) for

different elements. The values are normalized with the theorical value of 0.094 reported by

(MacNeal and Harder, 1985). All normalized radial displacements are also plotted in Fig-
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Table 4: A pinched cylinder with end diaphragms: displacements at point C, normalized
by: 1.8248×10−5

Model
Mesh
4×4 8×8 12×12 16×16

MISQ24 (regular) 0.6416 0.9411 0.9921 1.0018
MISQ24 (irregular) 0.6478 0.9375 0.9915 1.0010
MIN4T 0.5040 0.8374 – 0.9619
XSHELL41 0.625 0.926 – 0.995
XSHELL42 0.625 0.918 – 0.992
SRI-4 0.373 0.747 – 0.935
RSDS-4 0.469 0.791 – 0.946
SHELL63(ANSYS) 0.6302 0.9371 – 1.0029
QC5D-SA 0.3759 0.7464 – 0.9300
QPH 0.370 0.740 – 0.930
IBRA-4 0.3704 0.7367 – 0.9343
DKQ-4 0.6357 0.9459 – 1.0160
MITC4 0.3699 0.7398 – 0.9300
Mixed 0.3989 0.7628 – 0.9349

Table 5: A pinched cylinder with end diaphragms: Stress resultants.

Mesh MC
x NC

x

8×8 1.381E-1 -6.501E-2

12×12 2.060E-1 -7.276E-2

16×16 2.464E-1 -7.362E-2

ure 13 to assess the convergence behaviour of each element. It can be seen that the present

element yields the most monotonic convergence towards the reference solution while some

other elements do not. The plot also shows that the present element exhibits an excellent

accuracy with a 16× 16 mesh. No membrane locking is detected and the performanceof

the present element in this problem is remarkable.

4.4 A hypar shell

A hyperbolic paraboloid shell or hypar shell (Figure 14) as proposed in (Gruttmann and

Wagner, 2005) is studied. This problem is used to assess the performance of element in

dealing with warped geometry and the effect of membrane locking. The geometry of the

hypar shell is defined by the expressionz= xy
8L . The shell is subjected to a uniform loadpz
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Figure 11: A pinched cylinder with end diaphragms: Convergence behaviour

Figure 12: A pinched hemispherical shell with 180 hole: Geometry and material data

in the vertical direction with the following boundary conditions:

w(−L/2,y) = w(L/2,y) = w(x,−L/2) = w(x,L/2) = 0;

uA = uB = 0; vC = vD = 0.

The entire hypar shell is modelled and analysed with uniformelements. Table 7 presents

the computed vertical displacement at the center point withdifferent models. The analytic

solution for the central deflection (w0 = 4.6) calculated by (Duddeck, 1962) is used for nor-

malization. Numerical results indicate that the behaviourof the present element is in a close

agreement with other reference solutions. It is observed that the present element does not
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Figure 13: A pinched hemispherical shell with an 180 hole:Convergence behaviour

Figure 14: A hypa shell: Geometry and material data

show any sign of membrane locking even with coarse meshes. The element demonstrates

an excellent performance where the displacement prediction error for the coarse mesh of

8×8 elements is about 0.35%.

The displacements presented in Table 7 are also shown graphically in Figure 15 to assess

the convergence with mesh refinement. As it can be seen from the plot, the present element

does converge more quickly than elements cited here do for this problem.
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Table 6: A hemispherical shell with an 180 hole: displacements at point A, normalized by
0.0940

Model
Mesh

4×4 8×8 12×12 16×16

MISQ24 (regular) 0.7670 0.9798 0.9954 0.9960

MIN4T 0.136 0.651 0.897 –

IBRA-4 0.999 0.991 0.990

XSHELL41 1.027 1.001 – 0.990

XSHELL42 0.266 0.652 – 0.960

QC5D-SA 0.386 0.951 – 0.991

DKQ-4 0.897 0.999 – 0.995

NMS-4F 0.935 0.989 – 0.991

Mixed 0.993 0.987 – 0.988

Table 7: A hypar shell: central deflectionw0 for different elements, normalized by 4.6

Model
Mesh
4×4 8×8 16×16 32×32 64×64

MISQ24 0.978 0.994 0.998 0.999 1.000
DKQ-4 0.980 0.989 0.991 – 0.993
Sauer 0.980 0.991 0.996 – 1.000
GruWag 0.983 0.991 0.996 – 1.000

4.5 A partly clamped hyperbolic paraboloid shell

The problem considered in this section is that of a hyperbolic paraboloid shell, clamped

along one side and free on three edges and loaded by self-weight (Figure 16). This is a

pure bending dominated problem and known to be a very hard test for locking behaviour as

suggested in References (Chapelle and Bathe, 1998; Bathe, Iosilevich, and Chapelle, 2000).

The shell geometry is described by the equation:z= x2−y2;(x,y) ∈
[

−L
2 ; L

2

]

One symmetric half of the shell, with uniform mesh patterns of N×N/2 elements, is ana-

lyzed in the present work. To the author’s knowledge, there is no analytic solution for this

problem and the reference solution for displacement and strain energy obtained by (Bathe,

Iosilevich, and Chapelle, 2000) with a refined mesh of high-order element MITC16, are
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Figure 15: A hypar shell: normalized central deflections with mesh refinement

Figure 16: A partly clamped hypar shell: Geometry and material data

used for comparison. Two thickness-to-length (t/L) ratios of 1/100 and 1/1000 are used

to check locking behaviour of the present element. The computed results are reported in

Table 8 and Table 9 for displacements and strain energies, respectively.

Figure 17 demonstrate the convergence of displacement and strain energy. It can be seen

that the proposed element MISQ24 performs well, exhibitinginsensitivity to the decrease

in thickness.
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Table 8: A partly clamped hypar shell: deflection at point A with mesh refinement.

Mesh
t/L=1/100 t/L=1/1000

MISQ24 MITC16 MISQ24 MITC16

8×4 9.9088E-5 – 7.1209E-3 –

16×8 9.4681E-5 – 6.7129E-3 –

32×16 9.3665E-5 – 6.4677E-3 –

48×24 9.3501E-5 9.3355E-5 6.4264E-3 6.3941E-3

64×32 9.3453E-5 – 6.4130E-3 –

Table 9: A partly clamped hypar shell: strain energy with mesh refinement

Mesh
t/L=1/100 t/L=1/1000

MISQ24 MITC16 MISQ24 MITC16

8×4 1.8028E-3 – 1.2512E-2 –

16×8 1.7073E-3 – 1.1633E-2 –

32×16 1.6858E-3 – 1.1155E-2 –

48×24 1.6822E-3 1.6790E-3 1.1077E-2 1.1013E-2

64×32 1.6812E-3 – 1.1055E-2 –

4.6 A pre-twisted cantilever beam

A pre-twisted cantilever beam shown in Figure 18 is considered in this section. The can-

tilevered beam undergoes 900 of twist over its length. Two load cases are studied: a unit

shear forceP in the width direction and a unit shear forceQ in the thickness direction. This

example, proposed by (MacNeal and Harder, 1985), is an excellent test for assessing the

element performance when the geometry configuration is warped. In the case of isotropic

material, the theoretical deflections at the beam’s tip are 0.00542 (in-plane shearP) and

0.001754 (out-of-plane shearQ), respectively, for the two load cases.

Table 10 presents the obtained results with mesh refinement together with other numerical

solutions in the literature. It is observed that the MISQ24 element has no difficulties in

dealing with warped geometries. Its performance is found tobe better than that of some

other elements cited here such as XSHELL42, RSDS-4 and MITC4elements.
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Figure 17: A partly clamped hypar shell: (a) Convergence of the deflection at point A and
(b) convergence of the strain energy.

5 Conclusions

In this paper, an improved displacement-based 4-node flat shell element with drilling de-

grees of freedom has been developed and reported for geometrically linear analysis of shell

structures within the framework of the first-order shear deformation theory. The element is

constructed basically by superimposing a membrane elementwith drilling degrees of free-

dom and an assumed strain plate-bending element. To enhancethe basic behaviour of the

element, the strain smoothing technique has been performedindependently for membrane
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Figure 18: Pre-twisted cantilever beams: geometry and material data.

Table 10: Isotropic pre-twisted cantilever beam: tip displacements, normalized by 5.424×
10−2 for in-plane displacements and by 1.754×10−2 for out-of-plane displacements.

Load case Model
Mesh

2×6 4×12 4×24

In-plane MISQ24 0.979 1.006 1.008

DKQ-4 – – 0.996

XSHELL41 – – 0.997

XSHELL42 – – 1.228

RSDS-4 – – 1.411

MITC4 – – 0.996

Out-of plane MISQ24 0.811 0.928 1.015

DKQ-4 – – 0.998

XSHELL41 – – 0.999

XSHELL42 – – 1.473

RSDS-4 – – 1.361

MITC4 – – 0.974

and bending strain parts. This technique allows integration, associated with the evaluation

of bending and membrane parts of stiffness matrices, to be performed on the boundaries of

the smoothing cells, which contributes to the high accuracyof the numerical solution. In

some cases of mesh with certain level of distortion, the present element still shows better

performance than that of other finite elements with uniform meshes. The smoothing oper-

ation also prevents numerical over-stiffening of the element, which helps avoid membrane

locking due to drilling DOFs.

Several numerical benchmark investigations are carried out to validate and demonstrate the
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efficiency and accuracy of the proposed element. The new flat shell element provides very

excellent results to most of problems when compared with analytic solutions and referenced

four-node shell elements in the literature. It is observed that the element is free of membrane

and shear locking and could be a good candidate for general shell structural analysis in

engineering practice where the range of thickness-to-length (t/L) ratio is usually from 1/10

to 1/1000.
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