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Abstract: This paper reports the development of a simple and efficientde flat shell el-
ement with six degrees of freedom per node for the analysighatrary shell structures. The
element is developed by incorporating a strain smoothiclgriigue into a flat shell finite el-
ement approach. The membrane part is formulated by appilfgngmoothing operation on
a quadrilateral membrane element using Allman-type iatatfpn functions with drilling
DOFs. The plate-bending component is established by a catidin of the smoothed cur-
vature and the substitute shear strain fields. As a resalhehding and a part of membrane
stiffness matrices are computed on the boundaries of simgatklls which leads to very ac-
curate solutions, even with distorted meshes, and possfletion in computational cost.
The performance of the proposed element is validated andenated through several
numerical benchmark problems. Convergence studies angarisan with other existing
solutions in the literature suggest that the present elemeificient, accurate and free of

lockings.

Keyword flat shell, strain smoothing method, shear-locking fresi-farder shear deforma-

tion theory, drilling degrees of freedom.

1 Introduction

The wide application of shell structures in engineeringcpca has caught the interests of
many researchers in the fields of analysis and design of duettiges. A great body of
research work has been proposed over several decades sawardevelopment of simple

and efficient shell finite elements through three major apgmes: (1) the curved shell



elements based on classical shell theory with curvilineardinates; (2) the degenerated
shell elements derived from three-dimensional solid efgsand (3) the flat shell elements

obtained by the combination of the membrane and bendingvimiraof plate elements.

In general, it is difficult to identify which shell elementtise most advantageous. Among
these approaches, the flat shell elements are regarded le bsost attractive as they can
be readily built by combining existing plate and membramegrents. They have been used
extensively because of the simplicity in their formulatidime effectiveness in performing
computation and the flexibility in applications to both $teid folded plate structures. In
addition, the performance of the flat shell elements forktiicthin structures also signifi-
cantly improved with the aid of Reissner-Mindlin kinematithe incorporation of drilling
degrees of freedom (lura and Atluri, 1992) and the variai@ninciples governing rotations
(Atluri, 1980; Atluri and Cazzani, 1994; Atluri, 1984; Sake, lura, and Atluri, 2003).

Although triangular flat elements are most efficient for diizing arbitrary shell geome-
tries, quadrilateral elements are usually used owing tio fetter performance with respect
to convergence rates than that of triangular elements (hdéBathe, 2004). The difficulty
in the development of the four-node shell element is thah fiements are too stiff and
suffer from locking phenomenon. This phenomenon origmétem the shortcoming in the
interpolation of the displacement. Two well-known lockitygpes that may occur in four-
node flat elements in analysis of shell structures are (liréimsverse shears locking which
arises as the ratio of the thickness-to-characteristigtteof a shell becomes small (e.g.
t/L <1/100), and (2) the membrane locking which occurs when coardstorted meshes

are used, especially in bending dominated problems.

With the development of shell elements, many methods hase peposed to circumvent
these disadvantages. For a summary, the readers are defer(¥ang, Saigal, Masud,
and Kapania, 2000). Techniques to handle shear-lockingramty adopted are the re-
duced/selective integration (Hughes, Cohen, and Hardeirg;1Zienkiewicz, Taylor, and
Too, 1971; Stolarski and Belytschko, 1983). However, it read to the possible mani-

festation of hourglass modes and stabilization matriceseqguired to remove these spu-



rious modes (Belytschko and Tsay, 1983; Belytschko, Lim, @say, 1984). An alterna-
tive scheme for dealing with the shear-locking problem eshigbrid/mixed formulation in
which separate interpolations are used for the stressesliapldicements (Lee and Pian,
1978; Noor and Peters, 1981). In another approach to akkestzear locking, the assumed
natural strain method (ANS) first proposed in (MacNeal, 19882), is generally reported
to be an efficient method utilizing complete numerical inéign rules. In this approach,
the transverse shear strains are interpolated from thiadepent-dependent strains defined
at the mid-side of element edges to reduce transverse stod@nd. Based on this concept,
some efficient models were presented, including the mixedpolated tensorial component
(MITC) family proposed by Bathe’s group (Dvorkin and Batti®84; Bathe and Dvorkin,
1985) and the discrete strain gap (DSG) elements propos@&isbiioff's group (Bischoff
and Bletzinger, 2001; Koschnick, Bischoff, Camprubi, ametBnger, 2005). Another inter-
esting scheme arising from mixed variational formulatimthe enhanced assumed strain
(EAS) method first presented by (Simo and Rifai, 1990) anth&urdeveloped in the linear
elastic range (Andelfinger and Ramm, 1993; Cardoso, Yoam,vatente, 2006) and non-
linear aspects (Bischoff and Ramm, 1997; Eckstein and Ba®&0; Cardoso, Yoon, and
Valente, 2007). The key point of this method lies in the usa efrain field composed of
a compatible strain field and an enhanced strain field basdigeordu-Washizu variational

principle to reduce shear locking.

Some of these approaches mentioned above are also usededyremembrane locking,
especially the selective reduced integration (SRI) tepimiand the EAS method. However
some of them deteriorate significantly when mesh is disdqi@ardoso, Yoon, and Valente,
2006). More works on the problems related to the membrarengof flat shell elements
can be found in the references of (Cook, 1994), (GroenwaltSiander, 1995), (Choi and
Lee, 2003) and (Cui, Liu, Li, Zhao, Nguyen, and Sun, 2008).

A large number of four-node shell element formulations Hasen presented to date, show-
ing good performance, however, there is still room to impréve behaviour of flat shell

elements, in order to enhance the efficiency, accuracy afiist even when meshes are



coarse or elements are badly-shaped. The objective oftthdy & to propose an improved
formulation of a locking-free quadrilateral flat shell elem with six degrees of freedom
per node that is able to reduce the mesh distortion setgiivid enhance the coarse mesh
accuracy. The present flat element is obtained by applyiagsttain smoothing method
(SSM) to a quadrilateral flat shell element with the combicdlearacteristics of a membrane
Allman-type element with drilling DOFs and the assumedistpdate-bending element of
(Bathe and Dvorkin, 1985). The SSM was originally proposgd®hen, Wu, and You,
2001) as a normalization for nodal integration of mesh-tederkin weak form. Based on
this concept, (Liu, Dai, and Nguyen, 2007) first presentedapplication of the SSM to
the 2D elasticity finite element method as a new smoothect fedgment method (SFEM).
Further application of SSM for laminated composite platesils and piezoelectric solids

was presented by (Nguyen-Van, Mai-Duy, and Tran-Cong, 220@8a,b).

In this study, the membrane part of the proposed shell eleisegnhanced by applying
the SSM instead of the use of hierarchical bubble intermoianode. The SSM is also
applied to the curvature of the plate-bending part to imerthe flexural behaviour in the
distorted as well as coarse meshes in particular. With tteafithe SSM, the evaluation of
bending and membrane stiffness matrices are carried outégration along the boundary
of smoothing elements which can give more accurate nuniémiegration even with badly-

shaped elements or coarse meshes and also reduce commaltéitite when compared
with the evaluation of domain integration. Moreover, theorporation of the SSM also

facilitates relatively simple implementation procedureietn makes coding much easier.

In the following sections, a brief review of the four-node faell finite element with drilling
DOFsis firstintroduced. This is followed by the strain sniniiog approach for the flat shell
element. Numerical benchmarks are then conducted to igaéstand assess the perfor-

mance of the proposed 4-node flat shell element before dgathenfinal conclusions.



2 Finite element formulations of the 4-node flat shell elemdrwith drilling degrees of
freedom

2.1 Membrane part

The 4-node membrane element with drilling DOFs (Figure BDesved by combining the
in-plane displacements using Allman-type interpolationctions (Allman, 1984) and the
standard bilinear independent normal (drilling) rotatf@ids. Details of the formulation
can be found in the original reference (Ibrahimbegovic,diayand Wilson, 1990) and only
a brief review is presented here.
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Figure 1: A 4-node quadrilateral element with drilling degs of freedom

The independent rotation field is interpolated as follows.

4
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and the in-plane displacement fields are approximated balthean-type interpolation
8
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where

Xij = Xj—X, Yij =Yi =Y, (3)
Nu(&,n)= 3(1-&)(1+nmn) k=57 (5)
Ne(&.n)= 3(1+&&)(1-n?) k=68 (6)



and the ordered triplet&, i, j) are given by(5,1,2), (6,2,3), (7,3,4), (8,4,1)

The linear strain matrix is given by
4

€m = symnilu = ZleiUb )
i=

whereu; = [u; Vi Gzi]T is the nodal vector and the gradient matd; has the following
form

Nix O NX x
Niy Nix NXy+Nyix

in whichNx, Nyare Allman’s incompatible shape functions defined as

Nx = =(¥ijN —YikNm), 9)

Nyi = S(%jN —XikNm). (10)

| = Ol -

The above indices |, k, |, mcan be expressed in a Matlab-like definition as follows.

i = 1,234, m=i+4;1 =m—1+4xfloor(1/i);
k = modm4)+1; j=I1-4 (12)

where floor(x) rounds the elements afto the nearest integers towards minus infinity and

mod(x,y) is the modulus after division ofbyy.

Furthermore, the skew-symmetric part of the strain tensgj ¢an be expressed as

4
ek = skewu = ZlbiUi + 92, (12)
i=
where
_1% Niy
bl f— ?Ni.X ) (13)

1—16 (—¥ijNiy + YikNmy -+ Xij Ni x — XixNmx) — N;



and the indices, |, k, I, mare defined by Equation (11).

The variational formulation suggested by (Hughes and Br&289) is described as
1 T 1 2 T

My(u,6,) =+ / €l DinemdQ + >y / (Es— 6,)2dQ — / uTfdQ. (14)
2J)a 2" Jo Q

Minimization of Equation (14) results in the element menmeratiffness matriX mem ,

which is the sum of matriX, and a penalty matri®, as follows.
Kimem= K+ Py = | BEDnBrdQ-+y [ bTbdQ. (15)
Q Q

The positive penalty parametgrin Equation (15) is problem dependent. However, the
formulation is reported to be insensitive to the valug wfhich is taken as the shear modulus
value §/ = G) (Hughes, Brezzi, Masud, and Harari, 1989; Ibrahimbegovaylor, and
Wilson, 1990). Many recent numerical studies showed thatstnaller value ofy (i.e.
value of y/G between 1/10000 and 1) appeared to give more accuratecssutiong,
Geyer, and Groenwold, 2006; Liu, Riggs, and Tessler, 20@@pielli, 2004). In this
study,y/G = 1/1000 is used.

2.2 Plate-bending part

For the plate bending component of the flat shell elementylindlin-Reissner type 4-node

plate element is employed (Figure 2).

Figure 2: A 4-node quadrilateral plate bending element



The displacement field is approximated as

u=[w 6 8" ZlNu., (16)

whereN; is the bilinear shape function as in Equation (4) ane- [w; 6, 6] is the nodal

displacement vector of the element.

The corresponding approximation of curvature is given by

By x
K= = Bpu, a7
y
Byy + Byx
where
0 Nx ©O
Bhi = 0 0 Ny |- (18)
0 Ni,y Ni7x

The shear strain is approximated with independent intatjppi schemes in the natural

coordinate system as

v
HEEHERI
v

in which

1-¢) 0 (145 O ]

N= 2[ 0 (1-n) 0 (1+n) (20)

Jis the Jacobian matrix and the midside nodes A, B, C, D areslwWwigure 2. Expressing
vy, V5 andyg, g in terms of the discretized fields we obtain the shear matrix

gsi:\]_l{ Nig DBUNig DIPNig ]

21

where

bill = fiX.hff» bil2 = Eiy!\g> bi21 = r]ix!_fb bi22 = r]iY!_ ) (22)



inwhich& € {—-1,1,1, -1}, e {-1,-1,1,1}
and(i,M,L) € {(1,B,A);(2,B,C);(3,D,C); (4.D,A)}.
Then through the direct application of variational prinef the element plate-bending stiff-

ness matrix can be obtained as follows.

Kp=Kp+Ks= /BEDbBbdQJr/BlDSBSdQ, (23)
Qe Qe

whereDs, Dy are material rigidity matrices for bending and shear, retiypely.

2.3 Construction of a flat shell element

The plate bending and membrane formulations presente@ ialibve sections can be com-

bined to form a four-node shell element as shown in Figure 3.

SHELL ELEMENT = MEMBRANE ELEMENT + PLATE-BENDING ELEMENT

Figure 3: A 4-node quadrilateral flat shell element

When all nodes of the flat shell element are placed in the hiakitess plane of the shell,
the stiffness matrix of a shell element can be formed by caingithe plate stiffness and
membrane stiffness obtained independently as follows.

K 0
K flat = [ gem Ko ] . (24)

For some shells with double curvature, it may not be possileave four nodes of the flat
shell element on the same plane (warped geometries) andtladinent stiffness must be
modified before transformation to the global referenceesydby using the rigid link cor-

rection suggested by (Taylor, 1987). For the rigid link ection, the mean plane is formed
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by connecting central points of each side and distancesdestthe mean plane and each
nodes are taken to be the saff#| = h). Then, the following displacement transformation
equation at each noddas employed to transform the nodal variables to the projeéit

element variables

uf 1 0 0 0 00O Uj
v 0 1000 0] v
w 0O 01000 W
I _ i _ I —\W.(:
ql - e)lq - O Z| 0 1 O O QXi - W|q|7 (25)
& -z 0 00 1 0|]| 8
6, L 0 0000 1] 6

whereW is the projection matrix and defines the warpage offset at each nogerpen-

dicular to the flat mean plane as shown in Figure 4.

Figure 4: The projection of a warped shell element into a fleamplane

The local element stiffness matrix, considering the waymfiects, is obtained as follows
Kiocal = WK fIatWT- (26)

Then the element stiffness in the global reference sy&tgigaa is obtained via the rotation

matrix R

KgIobaI = RTKIocalR- (27)
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3 Strain smoothing approach for flat shell finite element

3.1 Smoothed membrane strain approximation

The membrane strains at an arbitrary poeinttan be obtained by using the following strain

smoothing operation

Em(xc) = / Em(X)D(X —xc)dQ, 28)
Qc

where e, is the membrane strain obtained from displacement comifiigtibondition as
given in Equation (7)Qc is the smoothing cell domain on which the smoothing opemnatio
is performed Qc may be an entire element or part of an element as shown ind-igur
depending on the stability analysis (Liu, Dai, and NguydiQ7); ® is a given smoothing

function that satisfies at least unity properfy®dQ = 1 and, in the present work is defined

Qc
as
1 xeQ
D(x— Xc) = { 0/Ac Qc, (29)
X ¢ Qc,
in whichAc = | dQ is the area of a smoothing cell (subcell).
Qc
(0,0,1,0) (0,0,1,0)
(0,0,0,1) D 0.0,0,1) OOIE2)
8 0,0,1/2,1/2) s 1%
| 2
1/2,0,0.12 Q¢
AP1200.12) T Q¢ (0,112,12.005 ¢ (172.0.0.1/2)5 Q(l: %1(”4‘]’4‘]‘4»”4) Qe0,1/2,112,0)
|
4 (1/2,1/2,0,0) (3/4,14.0.0)
(1.00.0) B %0 (1,0.0,0) 121200 © (0.1.0.0)
1-subcell (nc=1) 2-subcell (nc=2)

® Fieldnodes O Integration nodes  x Spurious nodes

Figure 5: Subdivision of an element int@e smoothing cells and values of bilinear shape
functions at nodes

Substituting® into Equation (28) and applying the divergence theorem, aareget the
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smoothed membrane strain
(2o L
2Ac Jac \0%; 0% 2Ac Jre

Em(Xc) = (uinj 4+ ujny)dr, (30)

whererl ¢ is the boundary of the smoothing cell.

Introducing the finite element approximationwgf = [u v 6,]T into Equation (30) gives

Em(Xc) = Bm(Xc)Um, (31)
where
Uni = [Ui Vi B4, (32)
~ 1 Nin, O N X Ny
Bmi(xc) = A_c 0 Niny Ny ny dr. (33)
e\ Niny Nine  Nxny+Nying

Applying Gauss integration along 4 segments of the boundamyf the smoothing domain

Qc, the above equation can be rewritten in algebraic form as

nG
n=

nG
0 lenNi (Xpn)ny O
nG anG

3 WaNixon)Mly 3 Wi (Xon)h - O

Bi(xc) — A—lc

O,
™M »

nG

0 0 > WaNX (Xpn) Ny
n=1
1 4 nG
+— 0 O > WnNYi(Xpn)ny (34)
AC b=1 n=1

nG nG
0 O zlwan(xbn)ner lenNy.(an)nx
n= n=

wherenG is the number of Gauss integration pointg, the Gauss point and, the cor-
responding weighting coefficients. The first term in Equat{B84), which relates to the
in-plane translations (approximated by bilinear shapetfons), is evaluated by one Gauss
point (NG = 1). The second term, associated with the in-plane rotafiapgroximated by

guadratic shape functions), is computed using two GausgpniG = 2).
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The smoothed membrane element stiffness matrix can benebtais

Kmem=Km+Py = [oBIDmBmdQ+y ob"bdQ
nc . ~ )
= 2, BhcDmBmcAc + ¥ o bTbdQ (35)

in which nc is the number of smoothing cells. To avoid numerically ostdffening the
membrane, one smoothing calic= 1) is used in the present formulation. Higher numbers
of smoothing cells will lead to stiffer solutions and the @@y may not be enhanced
considerably. The penalty matrik, is integrated using a 1-point Gauss quadrature to

suppress a spurious, zero-energy mode associated withiltheyd OFs.

3.2 Smoothed plate-bending strain approximation

In a similar way, by using the same constant smoothing faneti as for membrane strain,

the smoothed curvature matrix can be obtained as

- 1
R (xc) :/ K(X)D(X — xc)dQ = —/ (8n; + Bn)dr. (36)
QC ZAC I—C

Then the relationship between the smoothed curvature freldtze nodal displacement is
written as
K (xc) = Bo(xc)up, (37)
where

Ui = [W B4 8], (38)
N 1 s 0O Nnk O
Bbi(XC) = — 0 0 Niny dr. (39)

Aclre\ 0 Niny Ning

Using integration with one-point Gauss quadrature to etalthe above equation over four

boundary segment of the smoothing cell we obtain

Z 0 0 N; (XE) Ny |lbc. (40)

b=

Bui(Xc) = -
bi(Xc) =
e\ 0 NSy Ni(XE)ny
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Finally, the plate-bending element stiffness matrix in &tpn (23) can be transformed as

follows

nc
Rp=Rp+Ks= <.Z BngBbACJr/BgDSBSdQ. (41)
=1
Qe

In Equation (41), the shear terky is still computed by 2 2 Gauss quadrature while the
element bending stiffnesé;, is computed by one Gaussian point along each segment of the
smoothing cells of the element. In this study, two smootleetis (1\c = 2) as shown in
Figure 5 are used for calculating the smoothed bendinghet# matrix of the element in

order to ensure the rank sufficiency.

The flat shell element stiffness matrix in Equation (24) ertihewritten as

y; Rmem O
Kflat = [ > ] - (42)
& 0 Kp

This forms the basis of a new four-node quadrilateral elémamed MISQ24 (Mixed In-

terpolation Smoothing Quadrilateral element with 24 DOBsganalysis of shell structures.

4 Numerical results and discussions

In this section, several benchmark problems are preseatedlidate and demonstrate the
performance of the MISQ24 flat element in shell structuralsis. The developed element
performance is compared with that of a fairly complete setlér four-node shell elements
in the literature. The list of shell elements used for corgoar with the proposed element

is outlined in Table 1.
4.1 Scordelis-lo (Barrel vault) roof

The Scordelis-Lo roof provides one of the standard testsgess the performance of shell
elements in a combined bending-membrane problem with tmebrene action being dom-

inant. The roof is modelled as a short cylinder shell, lodaedelf-weight and supported by
rigid diaphragms at the curved edges while the straight®dgefree. Geometric, material

data and boundary conditions of the problem are shown inithe& 6.
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Table 1: List of shell elements used for comparison in thegmestudy.

Name Brief description

DKQ-4 4-node discrete Kirchoff quadrilateral element cdiyibr, 1987)

SRI-4 bilinear degenerated shell element, with selectadriced integration
of (Hughes and Liu, 1981)

RSDS-4 bilinear resultant-stress degenerated-shellegiemvith uniform re-
duced integration and stability (Liu, Law, Lam, and Belyiso, 1986)

URI-4 4-node uniformly reduced integrated element (Belyk®», Wong, and
Stolarski, 1989)

QPH quadrilateral shell element with physical hourglasstrd of (Be-
lytschko and Leviathan, 1994)

IBRA-4 4-node shell element with drilling DOFs developed @grahimbe-
govic and Frey, 1994)

MITC4 4-node fully integrated shell element based on assusiear strain
field of (Dvorkin and Bathe, 1984)

Mixed bilinear element with mixed formulation for membraaed bending
stress and full 2x2 quadrature of (Simo, Fox, and Rifai, 2989

MIN4T 4-node flat shell with drilling DOFs via explicit Kirdioff constrains
(Liu, Riggs, and Tessler, 2000)

NMS-4F defect-free 4-node flat shell element with drillin@B (Choi and Lee,
1999)

XSHELL41/42 4-node quasi-conforming flat shell elementhwdtiling DOFs (Kim,
Lomboy, and Voyiadjis, 2003)

QC5D-SA 4-node flat shell with drilling DOFs and 5-point quatdre by (Groen-
wold and Slander, 1995)

SHELL63 4-node thin shell element with drilling DOFs in (AMS, 1998)

T029 4-node Mindlin shell element in (Samtech, 2003)

Sauer 4-node element proposed by (Sauer, 1998)

GruWag 4-node element proposed by (Gruttmann and Wagn@s,) 20

According to (MacNeal and Harder, 1985), the theoretichlevdor the vertical deflection
at the center of the free edge is 0.3086, but a slightly lovednes 0.3024 seems to have
become the reference solution for many publications. kghidy the latter value is used to
normalize numerical results. Taking advantage of symmetrly a quadrant of the roof is
discretized and analyzed. Two typical types of mesh, nametyN uniform elements and

N x N distorted elements are shown in Figure 7.

Table 2 shows the normalized deflections at the midpointefrée edge (point B) obtained
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Y( rigid diaphragm

t=0.25

@ =40°

L=50 R=25
q =90/ unit area
E =4.32x10°
v=0

(@) (b)
Figure 7: The Scordelis-Lo roof: (a) typical regular mesH é) irregular mesh.

by the present element with different meshes, together thidke of other 4-node shell el-
ements available in the literature. The results show tleptlsent elements perform quite
well in both types of mesh in comparison with the referendatsm and other shell ele-
ments. The convergence of stress resultants obtained formnglements is also presented
in Table 3.

The numerical convergence is also plotted in Figure 8. Adeaseen, the convergence rate
of the present element for both types of mesh is nearly elguntiat is also observed that the
MISQ24's rate of convergence is slightly slower than thathef SRI-4 element. However,
it is interesting to note that the MISQ24 element appearsotove&rge monotonically to
the reference solution even with a highly distorted meshnv€mence rate of the present

element in this problem indeed appear quite satisfactory.
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Table 2: The Scordelis-Lo roof: displacements at point Bpradized by 0.3024

Model Mesh
4x4 8x8 12x 12 16x 16

MISQ24 (regular mesh) 1.1912 1.0420 1.0154 1.0063
MISQ24 (irregular mesh) 1.1925 1.0422 1.0155 1.0066
SRI-4 0.964 0.984 - 0.999
RSDS-4 1.201 1.046 - 1.010
T029 (SAMCEF) 0.976 0.986 - 0.993
NMS-4F 1.047 1.005 - 0.997
QPH 0.940 0.980 - 1.010
DKQ-4 1.048 1.005 - 0.996
IBRA-4 1.047 1.005 - 0.997
URI-4 1.219 1.054 - 1.017

Table 3: The Scordelis-Lo roof: Stress resultants (bendimtymembrane components)

Mesh ME NS N
4x4 -2.162E3 -3.210E3 6.810E4
8x8 -2.081E3 -3.379E3 7.372E4
16x 16 -2.062E3 -3.400E3 7.372E4

4.2 A pinched cylinder with end diaphragms

In this section, a pinched cylinder with end diaphragms issatered. This problem is re-
garded as one of the most severe tests for the performanhke efément with the presence
of both in-extensible bending and complex membrane stdtesess. The cylinder is sup-
ported by rigid diaphragms at both ends and pinched with fpaosite radial concentrated
loads at the middle of the length. The geometrical and nadtproperties of the cylinder

are depicted in Figure 9.

Owing to symmetry, only one octant of cylinder is modelledhaa mesh of uniform ele-

ments as well as distorted elements. Two typical meshesinghd analysis are shown in

Figure 10.
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SRI-4
—%— - RSDS-4
—+— IBRA-4
—%— - T029
- b — NMs-4F
—%— QPH
.=y~ DKQ-4
Fl - UR4
—6— MISQ24-re
—o— MISQ24-ir

Ioglo(relatlve error of \g)

14 16 18 2 22 2.4 26 2.8
Ioglo(number of nodes)

Figure 8: The Scordelis-Lo roof: Convergence behaviour

The theoretical solution of the radial deflection at the Inggoint (point C) given by Ted
(Belytschko and Leviathan, 1994) is8248x 10°°. The present numerical results with
meshes of 4« 4, 8x 8, 12x 12 and 16x 16 elements are compared versus other solutions
from the literature using 4—node quadrilateral elementsth® numerical results, normal-
ized with respect to the analytical value, are given in theldd. It is observed that the
performance of the present element is in excellent agreewidémthe analytic solution for
both types of mesh and are better than other shell elemenssdeved in this study. The
convergence of stress resultants at the loaded point eloktdiy uniform elements is also
reported in Table 5.

The convergence behaviours of all cited elements are atstegltogether in Figure 11.
As it can be seen, the MISQ24 elements yield the most rapidiwerging solutions to
theoretical value. In the case of highly distorted elemeibis particularly interesting to
point out that the present element faces no difficulties emging at the same rate as some
of the most efficient contemporary four-node shell elemestag uniform elements. The
MISQ24’s convergence rate is even slightly better than tHEIS. 63 element used in the

commercial finite element software ANSYS for this problem.
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t=3

L =600

R =300
P=1

E =3.0x10°
v=0.3

rigid diaphragm

Figure 9: A pinched cylinder with end diaphragms: Geomeiry material data

.
R
SR TSR
T RSOy,
\t\: O\ “\‘“

@) (b)
Figure 10: A pinched cylinder with end diaphragms: (a) tgpregular mesh and (b) irreg-
ular mesh.

4.3 A pinched hemispherical shell with ahg® hole

Figure 12 shows the hemispherical shell with afl i8le subjected to concentrated diamet-
rical loads of opposite signs every®id the equatorial plane. This problem is a very useful
example to check the ability of the element to handle rigidybmtation about the normal
to the shell surface and the inextensible bending modesll &bments with membrane
locking cannot correctly solve this problem. Taking adeget of symmetry, a quadrant of

the shell is modelled with uniform elements.

Table 6 shows numerical results for the radial displacenagniie loading pointyy) for
different elements. The values are normalized with theribalbvalue of 0.094 reported by

(MacNeal and Harder, 1985). All normalized radial displaeats are also plotted in Fig-



20

Table 4: A pinched cylinder with end diaphragms: displaceimat point C, normalized

by: 18248x 1075

Model Mesh
4x4 8x8 12x 12 16x 16
MISQ24 (regular) 0.6416 0.9411 0.9921 1.0018
MISQ24 (irregular) 0.6478 0.9375 0.9915 1.0010
MIN4T 0.5040 0.8374 - 0.9619
XSHELL41 0.625 0.926 - 0.995
XSHELL42 0.625 0.918 - 0.992
SRI-4 0.373 0.747 - 0.935
RSDS-4 0.469 0.791 - 0.946
SHELLG63(ANSYS) 0.6302 0.9371 - 1.0029
QC5D-SA 0.3759 0.7464 - 0.9300
QPH 0.370 0.740 - 0.930
IBRA-4 0.3704 0.7367 - 0.9343
DKQ-4 0.6357 0.9459 - 1.0160
MITC4 0.3699 0.7398 - 0.9300
Mixed 0.3989 0.7628 - 0.9349
Table 5: A pinched cylinder with end diaphragms: Stressliasis.
Mesh ME o
8x8 1.381E-1 -6.501E-2
12x12 2.060E-1 -7.276E-2
16x 16 2.464E-1 -7.362E-2

ure 13 to assess the convergence behaviour of each elernesm. He seen that the present

element yields the most monotonic convergence towardsfieeance solution while some

other elements do not. The plot also shows that the presemieslt exhibits an excellent

accuracy with a 16 16 mesh. No membrane locking is detected and the performaince

the present element in this problem is remarkable.

4.4 A hypar shell

A hyperbolic paraboloid shell or hypar shell (Figure 14) asposed in (Gruttmann and

Wagner, 2005) is studied. This problem is used to assesseitiermance of element in

dealing with warped geometry and the effect of membraneingckThe geometry of the

hypar shell is defined by the expressina %. The shell is subjected to a uniform loag



21

— P MIN4T
—~A~ . SRI-4

— % — XSHELL41
— % — XSHELL42 |
=+ IBRA-4
— % — RSDS-4 ||
- —%—  SHELL63
— & — QC5D-SA
—#%— QPH
.=y~ DKQ-4
-=<- MITC4

- —Ob—- Mixed
—6— MISQ24-re
—B— MISQ24-ir |

1
o
&l

|
N
T

lO(relemve ?rror of \g)
| [
N o

log
N
o

L L L L
2.2 2.4 2.6 2.8

1.4 1.6 1.8 2
Ioglo(number of nodes)

Figure 11: A pinched cylinder with end diaphragms: Convecgebehaviour

t=0.04
R=10

F=2

E =6.825x10’
v=0.3

Figure 12: A pinched hemispherical shell withi®I®le: Geometry and material data

in the vertical direction with the following boundary cotidns:

w(—L/2,y) =w(L/2,y) =w(x,—L/2) =w(x,L/2) = 0;

ur=ug=0; vce=Vvp=0.

The entire hypar shell is modelled and analysed with unifefements. Table 7 presents
the computed vertical displacement at the center point diffarent models. The analytic
solution for the central deflectiomv§ = 4.6) calculated by (Duddeck, 1962) is used for nor-
malization. Numerical results indicate that the behavafuhe present element is in a close

agreement with other reference solutions. It is observatlttte present element does not
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Figure 13: A pinched hemispherical shell with arf b®le:Convergence behaviour
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Figure 14: A hypa shell: Geometry and material data

show any sign of membrane locking even with coarse meshes.elBiment demonstrates
an excellent performance where the displacement predieicor for the coarse mesh of
8 x 8 elements is about 0.35%.

The displacements presented in Table 7 are also shown gadlghin Figure 15 to assess

the convergence with mesh refinement. As it can be seen frempldl, the present element

does converge more quickly than elements cited here doifopthblem.



Table 6: A hemispherical shell with an%8ole: displacements at point A, normalized by

0.0940

Model Mesh
4x4 8x8 12x 12 16x 16

MISQ24 (regular) 0.7670 0.9798 0.9954 0.9960
MIN4T 0.136 0.651 0.897 -
IBRA-4 0.999 0.991 0.990
XSHELL41 1.027 1.001 - 0.990
XSHELL42 0.266 0.652 - 0.960
QC5D-SA 0.386 0.951 - 0.991
DKQ-4 0.897 0.999 - 0.995
NMS-4F 0.935 0.989 - 0.991
Mixed 0.993 0.987 - 0.988
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Table 7: A hypar shell: central deflectiow for different elements, normalized by 4.6

Model Mesh

4x4 8x 8 16x16 32x32 64x64
MISQ24 0.978 0.994 0.998 0.999 1.000
DKQ-4 0.980 0.989 0.991 - 0.993
Sauer 0.980 0.991 0.996 - 1.000
GruWag 0.983 0.991 0.996 - 1.000

4.5 A partly clamped hyperbolic paraboloid shell

The problem considered in this section is that of a hypechediraboloid shell, clamped
along one side and free on three edges and loaded by selfinw@igure 16). This is a
pure bending dominated problem and known to be a very harfbtelecking behaviour as
suggested in References (Chapelle and Bathe, 1998; Batlileyich, and Chapelle, 2000).
The shell geometry is described by the equatios:x? —y?; (x,y) € [-5; 5]

One symmetric half of the shell, with uniform mesh patterhdloc N/2 elements, is ana-
lyzed in the present work. To the author’s knowledge, themoi analytic solution for this
problem and the reference solution for displacement amihstnergy obtained by (Bathe,
losilevich, and Chapelle, 2000) with a refined mesh of higieo element MITC16, are
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Figure 16: A partly clamped hypar shell: Geometry and makeiata

used for comparison. Two thickness-to-lengtjiL] ratios of 1/100 and 1/1000 are used
to check locking behaviour of the present element. The céedpresults are reported in

Table 8 and Table 9 for displacements and strain energiggecavely.

Figure 17 demonstrate the convergence of displacementteaid energy. It can be seen
that the proposed element MISQ24 performs well, exhibitirsgnsitivity to the decrease

in thickness.
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Table 8: A partly clamped hypar shell: deflection at point Ahwhesh refinement.

t/L=1/100 t/L=1/1000
Mesh
MISQ24 MITC16 MISQ24 MITC16

8x 4 9.9088E-5 - 7.1209E-3 -

16x 8 9.4681E-5 - 6.7129E-3 -
32x16 9.3665E-5 - 6.4677E-3 -

48x 24 9.3501E-5 9.3355E-5 6.4264E-3 6.3941E-3
64x 32 9.3453E-5 - 6.4130E-3 -

Table 9: A partly clamped hypar shell: strain energy with meinement

Mesh t/L=1/100 t/L=1/1000
MISQ24 MITC16 MISQ24 MITC16

8x4 1.8028E-3 - 1.2512E-2 -

16x8 1.7073E-3 - 1.1633E-2 -

32x 16 1.6858E-3 - 1.1155E-2 -

48x 24 1.6822E-3 1.6790E-3 1.1077E-2 1.1013E-2

64x32 1.6812E-3 - 1.1055E-2 -

4.6 A pre-twisted cantilever beam

A pre-twisted cantilever beam shown in Figure 18 is congidén this section. The can-
tilevered beam undergoes ©6f twist over its length. Two load cases are studied: a unit
shear forceP in the width direction and a unit shear forQan the thickness direction. This
example, proposed by (MacNeal and Harder, 1985), is anlertdést for assessing the
element performance when the geometry configuration isedarn the case of isotropic
material, the theoretical deflections at the beam’s tip a@@3%2 (in-plane shed?) and

0.001754 (out-of-plane she@), respectively, for the two load cases.

Table 10 presents the obtained results with mesh refinerogetiter with other numerical
solutions in the literature. It is observed that the MISQRhent has no difficulties in
dealing with warped geometries. Its performance is foundetdoetter than that of some
other elements cited here such as XSHELL42, RSDS-4 and ME&xents.
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Figure 17: A partly clamped hypar shell: (a) Convergencéhefdeflection at point A and
(b) convergence of the strain energy.

5 Conclusions

In this paper, an improved displacement-based 4-node fidit slement with drilling de-
grees of freedom has been developed and reported for gecaligtlinear analysis of shell
structures within the framework of the first-order sheaod®tion theory. The element is
constructed basically by superimposing a membrane elem#éntrilling degrees of free-
dom and an assumed strain plate-bending element. To enti@basic behaviour of the

element, the strain smoothing technique has been perfoimdegendently for membrane
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VX Q (load case 1)

| \P
' (load case 2)

Figure 18: Pre-twisted cantilever beams: geometry andmahtiata.

Table 10: Isotropic pre-twisted cantilever beam: tip disgiments, normalized by424 x
102 for in-plane displacements and by754x 102 for out-of-plane displacements.

Load case Model Mesh
2x6 4x12 4x 24

In-plane MISQ24 0.979 1.006 1.008
DKQ-4 - - 0.996
XSHELL41 - - 0.997
XSHELL42 - - 1.228
RSDS-4 - - 1.411
MITC4 - - 0.996

Out-of plane MISQ24 0.811 0.928 1.015
DKQ-4 - - 0.998
XSHELL41 - - 0.999
XSHELL42 - - 1.473
RSDS-4 - - 1.361
MITC4 - - 0.974

and bending strain parts. This technique allows integna@ssociated with the evaluation
of bending and membrane parts of stiffness matrices, to therpged on the boundaries of
the smoothing cells, which contributes to the high accuche numerical solution. In

some cases of mesh with certain level of distortion, thegmreslement still shows better
performance than that of other finite elements with uniforeshes. The smoothing oper-

ation also prevents numerical over-stiffening of the elethehich helps avoid membrane
locking due to drilling DOFs.

Several numerical benchmark investigations are carri¢tbotalidate and demonstrate the
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efficiency and accuracy of the proposed element. The newhidit slement provides very
excellent results to most of problems when compared witlyéioaolutions and referenced
four-node shell elements in the literature. Itis observed the element is free of membrane
and shear locking and could be a good candidate for geneedll ghuctural analysis in
engineering practice where the range of thickness-tottefdL) ratio is usually from 110

to 1/1000.
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