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Abstract  

 There is a strong link between decision making and environmental stresses. Two dilemmas 

confront decision makers: how and when to adapt to  sea level rise, due to complexities of 

environmental systems and the changing nature of the decision making process.  This process 

is inherently complex and often involves many stakeholders with conflicting views. Considering 

the complexity and dynamic nature of coastal systems, this paper introduces a Spatial 

Temporal Decision framework to assess coastal vulnerability, and the adaptation alternatives 

to SLR. The STD is based upon a combination of: System Dynamics modelling; Geographical 

Information Systems modelling; and multicriteria analyses of stakeholders’ views using the 

Analytical Hierarchy Process. For case study analyses, the City of the Gold Coast located in 

Southeast Queensland, Australia has been selected. The results of the vulnerability assessment 

indicate that, at the end of a 100 year simulation period, approximately 6 % of the landscape in 

the study area will be gradually inundated over time, with 0.5 cm rise per year. However, the 

percentage of the vulnerable area leapt to about 34 % for Scenario 2, and 56 % for Scenario 3, 

which represent 1 cm and 1.5 cm rise per year. Using the information obtained from 

vulnerability assessments, three stakeholder groups (Politicians, Experts and Residents) were 

consulted to determine the goal, criteria and adaptation alternatives for the multicriteria 

analyses. Analyses of survey data reveal that across the three stakeholder groups, 

Effectiveness and Sustainability are the criteria of highest priority. 
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1. Background 

There is overwhelming scientific consensus over the causes and impacts of climate change 

(IPCC, 2007).  Sea level rise (SLR) is one of the most recognized possible impacts of changing 

climate. Coastal areas are economically productive and three times more densely populated 

than the global average (Small and Nicholls, 2003). Clearly, while communities have benefited 

from the many advantages of living in these areas, inevitably they also face the threat of 

natural disasters and specifically from SLR via permanent inundation of low-lying regions, 

inland extension of episodic flooding, increased beach erosion and saline intrusion of aquifers 

(McLean et al., 2001).  

Coastal communities have been adapting to changing conditions throughout history. 

However, faced with increased threats due to SLR, coastal communities must act faster to 

develop more effective management policies. Moreover, the impacts of SLR are not expected 

to be spatially uniform across the world (Nicholls et al., 2007). It is, therefore, essential for 

decision makers (DM) to consider the dynamic and spatial characteristics of these changes in 

assessing the impacts of SLR when making decisions about the future. 

There is a range of analytical tools available to improve decision makers’ (DM) ability to 

understand and evaluate environmental management problems such as simulation models, 

GIS, and experts systems. However, although these tools provide invaluable information for 

decision making, each tool addresses only one aspect of a management problem. Therefore, 

effective decision making, in a dynamic complex environment, requires the expansion of the 

mental modelling boundaries and the development of additional tools to help DMs better 

understand how complex systems behave. Thus, DMs need to integrate each tools’ analytical 

results into a rational choice about what to do, where to do it, and when to do it (Schmoldt, 

2001).  

1.1 Addressing the Vulnerability  

The Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as: “the 

degree to which a system is susceptible to, and unable to cope with, adverse effects of climate 

change, including climate variability and extremes. Vulnerability is a function of the character, 

magnitude, and rate of climate change and variation to which a system is exposed, its 

sensitivity, and its adaptive capacity”  (Parry et al., 2007).  



 

 

This definition incorporates three main variables: (1) exposure; (2) sensitivity; and (3) 

adaptive capacity. Thus, vulnerability is a function of the exposure, sensitivity and adaptive 

capacity of a system. Based on the IPCC definition, many researchers (Dongmei and Bin, 2009; 

Eriyagama et al., 2010; Rosenzweig and Tubiello, 2006; Webersik et al., 2010; Yusuf and 

Francisco, 2009) present vulnerability in the form of the following function: 

 

Eq. 1 

Where, V=Vulnerability, E=Exposure, S=Sensitivity, and AC=Adaptive Capacity. 

In Eq. 1, changes over time and space are not explicitly taken into account. Hence, 

vulnerability assessments, based on the above definition, have assumed that vulnerability is a 

static process and, so, have been conducted with reference to a target year and sea level rise 

prediction (DCCEE, 2009; Wang et al., 2010; Wu et al., 2009).  However, vulnerability is a 

dynamic process and should be considered as a dynamic continuum. Further, as the three 

elements constituting vulnerability interact with each other and change in time and space, so 

does the vulnerability. To include the dynamic and spatial aspects of vulnerability, by 

considering the time and space dependency, vulnerability can be expressed as: 

 

Eq. 2 

Where; t: Temporal dimension, s: Three spatial dimensions (x,y,z). 

V (t,s), in the above definition (Eq. 2), represents four dimensions in describing the 

vulnerability of a particular system, region or group with respect to time and space; it changes 

as time passes. The ultimate goal of vulnerability assessment is to predict the vulnerability and 

provide information and guidance to DMs. Therefore, the use of an appropriate assessment 

approach would strengthen the DMs’ abilities to take appropriate action with speed and 

accuracy. Evidently, dealing with environmental problems requires an approach that can take 

into account human decision making processes, as well as time and space. Therefore, 

integrating vulnerability assessments with decision making process would constitute the fifth 

dimension of vulnerability and adaptation analyses and, as a result, enhance DMs ability to 

take concrete action towards adaptation to climate change.  



 

 

2 Approach  

In the light of the above discussion, this paper introduces a Spatial Temporal Decision 

(STD) framework to assess coastal vulnerability, and the adaptation alternatives to SLR. The 

STD approach takes into account five dimensions of the decision process in coastal areas 

(Figure 1). Space (x,y,z) and time (t) constitute the first four dimensions, and provide a 

common base where all natural and human processes occur. This approach is crucial in 

generating adequate information from which DMs can devise realistic adaptation strategies. 

For this reason, it is essential to incorporate the first four dimensions into the fifth dimension, 

the element of human decision making (h).  

 

Figure 1  Five dimensional STD framework. 

Thus, developing STD is based upon a combination of: System Dynamics (SD) modelling; 

Geographical Information Systems (GIS) modelling; and multicriteria analyses of stakeholders’ 

views using the Analytical Hierarchy Process (AHP) (Saaty, 1980). The cyclic STD process 

consists of: 1) Identification of the problem; 2) Vulnerability assessment by using Dynamic 

Spatial Model (DSM) which combines a spatial model (GIS) and a temporal model (SD); 3) 

Evaluating potential adaptation strategies by using a Multiple Criteria Decision Aid (MCDA) 

approach, based on information obtained from the previous step; 4) Test the solution using 

the dynamic simulation model to see if the preferred adaptation strategies are adequate 



 

 

enough to provide an effective solution; and 5) Refine the model to eliminate or reduce any 

weakness in the solution. 

2.1 Understanding and Treatment of Uncertainties   

There is a range of uncertainty types, often resulting from incomplete scientific 

understanding of the various processes. Indeed, some uncertainties are caused by the 

processes themselves, which function in space and time, and so cannot be captured by the 

models. As a consequence, the uncertainties cannot be reduced. The adequate treatment of 

uncertainties is a crucial aspect in the development and application of integrated assessment 

models. According to Robinson (2003),  uncertainty about the future stems from three 

sources: 1) The lack of knowledge about system conditions and underlying dynamics; 2) The 

prospects for innovation and surprise, and 3) The nature of human decision-making.  

From a positivist perspective, the first two sources of uncertainty can be overcome and 

reduced by progressively improving the models and including more variables (Mannermaa, 

1991). However, system theorists question the validity of the positivist approach, arguing that 

it is theoretically impossible to pre-state all possible future outcomes for most real systems. 

According to them, behaviour of complex systems is non-linear, chaotic, and sensitively 

dependent on the initial conditions and contexts, which are not fully known (Kay et al., 1999).  

Swart et al. (2009) provide a useful review of how uncertainty has been treated in the 

assessments of the IPCC, and how this treatment has evolved over time. Firstly, uncertainty, as 

described in the IPCC Third Assessment Report, occurs as a result of problems with: The data 

(i.e. errors in the data, random sampling errors, and biases); The models (i.e. the processes are 

known, but the functional relationships or errors in the structure of the model are unknown; 

the structure is known, but the values of some important parameters are unknown or are 

erroneous; the historical data and model structure are known, however, the reasons for 

believing in the parameters or the model structure will change over time); and Other sources 

of data or information (i.e. the use of inappropriate spatial/temporal units; uncertainty due to 

projections related to human behaviour; and the ambiguously defined concepts and 

terminology, etc.). 

Although uncertainty is an essential aspect in policy and decision making processes, a 

formal treatment of uncertainty is difficult to achieve. Hence, in recognising the potentially 



 

 

critical influence of uncertainties, the authors have adopted a variety of measures in designing 

the model in a two phase step. In the first phase, uncertainties surrounding the vulnerability 

assessment models have been addressed through the use of scenarios, sensitivity analysis, and 

performance tests. In the second phase, to address the temporal and spatial uncertainties 

surrounding the decision process, the model output of vulnerability analysis was incorporated 

into the MCDA analysis, then a sensitivity analysis is conducted to further minimise the 

uncertainties. 

2.2 Model Development 

Depending on the rate of the SLR, an area that is now subject to a 1 in 100 year flood risk 

may, in time, and with a high enough SLR, face more frequent flood events, or become 

permanently inundated (McInnes et al., 2000). As a result, the boundary of the coastal flood 

plain will shift inland over time. Thus, the ability to identify low-lying areas is a crucial factor in 

any coastal region vulnerability assessment. Further, coastal inundation and flooding, 

stemming from SLR and associated extreme events, can be modelled by establishing the 

interactions between time and space to capture the changes in a coastal system. Importantly, 

the physical processes such as overland flow, and proximity to and connectivity of the area 

with neighbouring areas should be considered essential for modelling inundation. The 

direction of the flooding, between the adjacent grid-cells, depends on the difference in 

elevation between them.  

In order to capture the fundamental dynamic processes of inundation the area under 

consideration is subdivided into a cellular (i x j) grid to simulate how flood water spreads 

between adjacent cells. Each cell represents a specific area corresponding to one of four cover 

types: Sea, Waterways, Pond, or Land. The transition rules, which describe the relationships 

between the cells and the criteria showing how the states of a cell are to change, regulate the 

behaviour of the system. Based on the following equation, the flood water diffusion from one 

cell to another is projected:   

 Eq. 3 

Where, F is, either flooded (1) or not flooded (0); CE is the cell elevation; CT (xi,j) is the 

cover type, either inundated L or not inundated W; CT (xn,m) is the adjacent cells cover types, 



 

 

either L land (or other cover types other than sea) or W sea (or became sea due to inundation); 

X represents a grid cell; (n,m) refers to all adjacent cells to i,j (i.e.: i,j-1, i,j+1, i+1,j and i-1,j). 

2.2.1 Dynamic Spatial Model (DSM): Linking GIS with SD 

SD allows us to model, describe and better understand the behaviour of complex systems, 

and thus, to identify and manage the information related to these systems. GIS are spatial data 

processing systems capable of storing, retrieving and displaying various type of data. Given the 

strength of SD in representing the temporal processes, especially with restricted spatial 

modelling capabilities, the association of SD and GIS produces a synergy effect. As a result, 

addition of a spatial dimension to SD would enable modellers to explicitly; 1) simulate system 

structure that is heterogeneous over space, as well as 2) consider how spatial interactions 

affect systems themselves (BenDor and Kaza, 2012). As spatial detail improves model accuracy, 

visualisation and usability for simulating changes in time and space, a number of researchers 

have proposed the use of a versatile approach, which considers many aspects of the problem 

by combining GIS with SD (Ahmad and Simonovic, 2004; Gharib, 2008; Grossmann and 

Eberhardt, 1992; Ruth and Pieper, 1994; Sahin and Mohamed, 2010; Zhang, 2008).  

In this paper, therefore, the authors employ a DSM approach by loosely coupling GIS and 

SD approaches. The DSM approach utilises GIS to reduce the data preparation and processing 

workloads considerably for use in the SD model, enhance the spatial visualisation, and reveal 

spatial relationships. Meanwhile, the SD model is employed to deal with the dynamics of the 

complex system, revealing its causal structure and the relations of the system component 

while adding temporal dimension to the spatial modelling capability of GIS.  The DSM consists 

of three components: SD (temporal) model, GIS (spatial) model, and the data convertor (Figure 

2). The DSM captures the changes in time and space by obtaining and processing the temporal 

data from the SD and the spatial data from the GIS by exchanging data through the data 

convertor. 

There are three common approaches for coupling GIS and SD; loose coupling, moderate 

integration and tight integration (Gimblett, 2002; Maguire et al., 2005). There are trade-offs 

that are unique to each of the coupling strategies, since each approach has its advantages and 

disadvantages. Although the loose coupling approach has some disadvantages, such as slow 



 

 

execution speed and low simultaneous execution capability, this approach is adopted to link 

SD and GIS in this study by considering some of its overpowering advantages, such as (Fedra, 

2006):  ease of use, both in GIS and SD can be modified and run without any complication; 

 data structures do not have to be matched; data can be transformed to each other’s 

formats through a converter; users are able to make on-the-fly changes more rapidly, and It is 

fast and portable; the SD model can be used with different GIS. 

 

Exogenous Data Input 
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Figure 2 Dynamic Spatial Model Structure 

2.2.1.1 Temporal Model Component: 

 The temporal modelling segment consists of the building, integration and running of two 

types of models: an Inundation Model and a Vulnerability Model. Figure 3 illustrates the overall 

model structure and its submodels.  

These submodels of the temporal components interact with each other through feedback 

links. The Sea level and Population variables are the two key drivers affecting Inundation and 

Vulnerability Models. For the model, a hundred year time horizon is considered as from the 

2010  through to 2110; this scale is consistent with most SLR scenarios developed by the IPCC 

(Meehl, 2007). 
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Figure 3 Model Structure and its submodels 

For building the temporal model, the Vensim DSS (Decision Support System) software was 

chosen because of its flexibility when representing continuous or discrete time, a graphical 

interface, or performing causal tracing, optimization, and sensitivity analysis (Ventana Systems, 

2012). 

2.2.1.1.1 Inundation Model 

Figure 4 shows the inundation model structure and some of the variables assumed to be 

important in a coastal system, and their interactions. As seen in Figure 4, the system comprises 

three state variables; Cell Cover, Elevation and Sea Level. The Sea Level is an exogenous 

variable causing changes in both the Elevation and Cell Cover variables, over time. The model 

assumes a linear increase in the Sea Level over time, based on a range of SLR projections 

ranging from 0.5 m to 1.5 m. The SLR, at a given time, is calculated by:  

 

Eq. 4 

Where: SLt represents the linear Sea Level at time t, dR is the rate of rise at each time step 

dt, and SL0 denotes the initial Sea Level at the beginning of the simulation. 

For modelling purpose, the study area is subdivided into a cellular grid to simulate how 

flood water spreads between adjacent cells, based on the conceptual framework for 

inundation. This grid is then superimposed over the coastal area. Each cell represents a specific 

area corresponding to one of four cover types: Sea, Waterways, Pond, or Land. At each 



 

 

simulation step, the state of each cell is determined by the condition of its neighbours to the 

north, east, south, and west. 

Initial Cover Initial Cell
Elevation

Elevation

Cell Cover
Change

Change Previous

Increase

Sea Level

Rise

Rise Rate

Decrease

Initial Sea Level

 

Figure 4 Inundation model based on cell elevation and cover types 

At each simulation step, as the sea level rises, the elevation of a cell is determined by its 

condition at the previous time step, its border conditions with its neighbours, and the cover 

type of its neighbours (Land, Waterways, Sea, or Pond). The elevation of a cell is determined 

by adjusting the elevation, at the previous time steps, by the flow-in (Increase) and the flow-

out (Decrease) of the cell, according to the properties of the adjacent cells. The Elevation is the 

integral of the net flow of Increase and Decrease, which is mathematically represented by the 

following equation: 

 

Eq. 5 

Where: Et (x,y) denotes cell elevation at location (x,y) at a given time; E0 (x,y) represents 

initial cell elevation at location (x,y); It (x,y) shows the rate of elevation increase at location 

(x,y); and Dt (x,y) indicates the rate of elevation decrease at location (x,y). 

The changes in cell elevation occur when only the Cover Type of a cell is Land, Waterways, 

or Pond, at time step tn, and it is transformed into Sea at the next time step, tn+1. Here, the cell 



 

 

is assumed to be inundated from the rising sea level and, therefore, the elevation of the cell is 

updated, and said to be equal to the Sea Level at the time period tn+1. The Cell Cover is the 

integral of the net flow of Change and Change Previous. Based on the following equation, the 

type of Cell Cover in any given time is determined.   

 

Eq. 6 

Where: CTt (x,y) represents cell cover type at location (x,y) at a given time; CT0 (x,y) 

indicates initial cell cover type at location (x,y); Ct (x,y) denotes rate of cell cover type change at 

location (x,y); and CPt (x,y) denotes the rate of previous cell cover type change at location (x,y). 

As the model runs, the state of the each cell is assessed simultaneously. The Change flows 

into the cell (Stock) and updates the Cover Type of the cell for the present time step (i.e. t1). 

Subsequently, Change Previous removes the Cover Type of the cell at the previous time step 

(i.e. t0). This is necessary to assign only one Cover Type value to the cell for each time step. For 

example, if the Change alters the Cover Type of a cell from Land to Water at time step (t1), 

then Change Previous discards the previous cover type value (Land) from the cell.  

2.2.1.1.2 Vulnerability Model 

Vulnerability to SLR results from a combination of various factors, such as high population 

density along the coast, and the susceptibility of coastal regions to coastal storms, as well as 

other effects of climate change. Therefore, an accelerated SLR could fundamentally change the 

state of the coast and, as a result, coastal environments and human populations will be 

affected significantly. In the final building step of the temporal model component, the 

Vulnerability model is developed to estimate the potential impacts of SLR (Figure 5). The 

critical vulnerability of coastal areas to coastal storms (in the short term) and SLR (in the long 

term) relates to flooding. Therefore, the vulnerability assessment (VA) needs to focus on 

people and properties. Hence, two VA indicators are selected: 1) People at Risk over time due 

to coastal flooding, and 2) Area at Risk (loss of land)due to inundation and coastal flooding 

First, the number of people who live in the area is calculated based on two stocks in the 

model: The Population (P0) that resides in the area at the beginning of simulation, and the 



 

 

Residents (Rt), which is the integral factor of the Population Increase (Pt). The model 

determines the changes in the population living in the area using the following equation:  

 
Eq. 7 

Where: Rt (x,y) indicates people reside at location (x,y) at a given time; P0 (x,y) denotes 

initial number of people reside at location (x,y); and Pt (x,y) represents rate of population 

increase at location (x,y). 
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Figure 5 Vulnerability model for people and property at risk 

Then, People at Risk are calculated by multiplying the sum of Flooded Cells with the Cell 

Size: 

 

Eq. 8 

Where: VPt (x,y) is vulnerable people at a given time; Rt (x,y) denotes people residing at 

location (x,y) at a given time; Cs represents a constant value showing size of each grid cell; and 

FCt (x,y) shows flooded cells at location (x,y) 

Then, the Area at Risk is calculated by multiplying the sum of the Flooded Cells with the 

Cell Size: 



 

 

 

Eq. 9 

Where: At (x,y) is vulnerable area at a given time; Cs represents a constant value showing 

size of each grid cell; and FCt (x,y)  shows flooded cells at location (x,y) 

2.2.1.2 Spatial Model Component 

Spatial analysis is a set of methods whose results change when the locations of the objects 

being analysed change (Longley, 2005). Importantly, spatial analysis derives information from 

the data using the spatial context of the problem and the data. Spatial modelling involves the 

use of disaggregated spatial data and relationships in order to understand spatial forms and 

process (BenDor and Kaza, 2012). That is, it deals with space. GIS is the main tool used in the 

spatial analysis. In this study, the ArcInfo 9.3.1 is used to develop the spatial model (ESRI, 

2009), which is connected to the simulation model through the data convertor and file monitor 

application developed for this framework by the authors. 

There are two main ways to spatially model sea level rise and subsequent coastal 

inundation. Geospatial data depicts the real world in two forms, which leads to two distinct 

approaches: the object-based model, and the field-based model (Goodchild, 1992). The object-

based method uses contour lines; it is usually suitable for a very rapid and simple risk 

assessment over large areas. However, it does not take into account the presence of 

intervening topographic ridges or other features (e.g. man-made defences) that can separate a 

low-lying area from the source of flooding (Brown, 2006).  That is, since a contour-line method 

relies solely on elevation data, inaccuracies arise when deriving a vulnerable zone based on 

this method because it does not consider connecting cells. The Raster model, as Lo and Yeung 

(2007) define it, is one of the variants of the field based models of geospatial data modelling. It 

is best employed to represent spatial phenomena that are continuous over a large area. For 



 

 

example, the Raster data model uses a regular grid to cover the space; the value in each cell 

represents the characteristic of a spatial phenomenon at the cell location. In computing 

algorithms, a raster can be treated as a matrix with columns and rows (x- y coordinates), and 

its values can be stored into a 2D array. These characteristics hence make integration of GIS 

and SD easier, especially since SD can easily use array variables for data manipulation, 

aggregation, and analysis. Therefore, the raster data model was selected for spatial modelling. 

The basic elements of a raster model include the cell value, cell size, raster bands, and spatial 

reference (Chang, 2006). Each cell in a raster has a value (integer or floating) representing the 

characteristic of a spatial phenomenon at the location denoted by its column and row (x,y).  

Depending on the data type, both integer and floating point rasters are used in spatial 

modelling. For example, the research considers a sea level rise of 0.5-1.5 cm. Thus, a floating-

point raster is more suitable for the elevation data, as rise of sea level represents continuous 

numeric data with decimal digits, i.e. 10.125 m, 10.124, and so forth. However, the integer 

values are used for land cover rasters, i.e. 1 for Sea, 2 for Waterways, 3 for Pond, and 4 for 

Land. 

Essentially, the cell size determines the resolution of the raster model. As a larger raster 

cannot provide the precise location of the spatial features, the model result may not be 

satisfactory. Nevertheless, the smaller cell size can address these problems; although their use 

increases the data volume and data processing time, considerably. There are always trade-offs 

between the quality of the model outcomes and the processing time. In this study, a 5 m cell 

size is used for the modelling. The elevation data are the most critical elements in assessing 

the potential impacts of rising sea level. The uncertainty of the elevation data affects the 

delineation of the coastal elevation zones. Most elevation datasets have vertical accuracies of 

several meters or even tens of meters (at the 95% confidence level). Gesch (2009) argues that 

the mapping of submeter increments of sea-level rise is highly questionable, especially if the 



 

 

elevation data used have  vertical accuracy of a meter or more (at the 95 %).  That is, the 

elevation uncertainty is much smaller for the more accurate elevation data. To keep the 

analysis reasonably manageable, this study has focused on the vertical accuracy. Therefore, to 

acquire more accurate results, the research used 5 m DEM with 0.1 m vertical accuracy. 

A variety of data from different sources is required as inputs to the spatial model. All the 

data layers needed to be in grid (raster) format, with a resolution of 5 x 5 m cell size. By 

working at a high spatial resolution, the model is able to reflect, accurately, the spatial changes 

in inundation resulting from the SLR.  This approach provides a convenient way for describing 

the geo-processing procedure in GIS. Hence, based on this approach, we begin by converting 

the shape-files to the raster format, then reclassifying, and correcting their projection and, 

finally, unifying the coordinate system by using the model builder (Figure 6). The vector data 

are, consequently, converted to a raster format.  

 

Figure 6 Vector to raster conversion using the Model Builder  

The Model Builder is a graphical tool for automating a model through the use of a work 

flow. Spatially, the size of the raster cell generated was based on the minimum mapping unit 

(5x5m) to match the DEM data. The attribute assignments are based on the centroid of the 

cell. Australian Bureau of Statistic (ABS) data on dwellings and the Digital Cadastral Database 



 

 

(DCDB) are also converted to a raster format. Uncertainty, however, exists regarding where 

the population resides within the census parcel. Therefore, in the current study, the vulnerable 

population is estimated as a percentage of the census population, based on the inundated 

parcels. 

2.2.2 Data Convertor  

The loose coupling approach involves the transfer of data between the GIS and SD. Hence, 

it is necessary to establish, create and manipulate data files, so that they can be exported or 

imported between the spatial and temporal components of the model. The data in the files 

can be stored in several file formats. Different file formats have different characteristics, 

depending on a range of factors, such as the source of the data, and the software architecture. 

As the STM combines two different modelling approaches, it is useful to choose a device 

independent file format which can be usable by both applications, regardless of their hardware 

or software platforms. Therefore, in the current study, the device independent ASCII file 

format for GIS, and the .cin and tab text file formats for SD are chosen for the cross-platform 

exchange of data. When exchanging data between two applications, it is necessary to convert 

the data formats into the right file format, as used by the applications (i.e., ASCII  .cin, 

and/or .cin  ASCII). To assist with this process, a converter program is developed.  

The converter program involves two separate applications: the data converter and the file 

monitor. The data converter software automates the format transition between the ArcGIS 

and SD data formats. First, it converts the ArcGIS text (ASCII) files to SD text files (.cin), and 

then it converts the files from the SD .tab files back to the ArcGIS .txt files. All code for the data 

converter is written in C++ under Visual Studio 2008, using the Microsoft.NET framework 

version 2.0. As a console application, it takes its commands via program arguments. 

2.2.3 Decision Model  



 

 

Decision making is a process of selecting from among several alternatives, based on 

various (usually conflicting) criteria. Information on priority alternatives is vital in aiding DMs 

to design more effective adaptation options and better management plans to reduce the 

adverse effects of SLR. The current study will use the MCDA technique because it is the most 

suitable approach by which to identify the priority of adaptation alternatives. Several 

multicriteria decision aid techniques are suitable for comparing multiple criteria, 

simultaneously, and for providing a solution to a given problem. While there are no better or 

worse techniques, some techniques are better suited to a particular decision problem 

(Haralambopoulos and Polatidis, 2003).  

The AHP technique, despite some criticisms, has been selected for the current study. 

Criticisms of the AHP include; Difficulty of conversion from verbal to numeric scale; 

Inconsistencies imposed by the 1 to 9 scale; Number of comparisons required may be large 

(Macharis et al., 2004; Ramanathan and Ganesh, 1995).  However, AHP, owing to its flexibility 

to be integrated with different techniques, enables the user to extract benefits from all the 

combined methods and, hence, achieve the desired goal in a better way (Vaidya and Kumar, 

2006). In addition, the AHP is set apart from other MCDA techniques because of the unique 

utilisation of a hierarchy structure to represent a problem in the form of a goal, criteria and 

alternatives (Saaty and Kearns, 1985). This allows for a breakdown of the problem into various 

parts for pair wise comparisons, which uses a single judgement scale. Thus, the AHP has been 

widely used to solve various decision problems. Examples of the recent AHP applications 

include: Awasthi and Chauhan (2011); Bottero et al. (2011); Crossman et al. (2011); Chen and 

Paydar (2012); Do et al. (2012); and Gao and Hailu (2012).  

The underlying concept of the AHP technique is to convert subjective assessments of 

relative importance to a set of overall scores or weights (Saaty, 1980). When making decisions 

it is necessary to ensure that the alternatives selected for further 

consideration/implementation are consistent with the value systems and preferences of the 

stakeholders (Basson and Petrie, 2007). The large body of the literature emphasises the 

importance of stakeholder participation in the decision making process on environmental 

issues, which are complex, uncertain, and vary in time and space (Adger et al., 2007; Lim et al., 

2004; van den Hove, 2000; Willows and Connell, 2003). Jakeman and Letcher (2003) also 

emphasise the importance of stakeholders’ involvement in the model validation process.  

Although there are many definitions, in the literature, for the term stakeholder, in the current 



 

 

study, the following IPCC definition is used as it refers to (Parry et al., 2007):  ‘people or 

organisations, who have an investment, financial or otherwise, in the consequences of any 

decisions taken’. Here, three key stakeholder groups, within the study area, were included in 

the decision making process: Expert, Residents, and Politicians. 

To achieve and facilitate a workable process to reduce the vulnerability of an area and a 

population to SLR, a hierarchical (AHP) structure was designed (Figure 7). The hierarchical 

elements, goal, criteria and alternatives are identified and finalised through stakeholders’ 

consultation in the study area.  The specific goal used in the AHP structure is to reduce SLR 

vulnerability. To clarify further, this goal implies the identification and evaluation of adaptation 

alternatives in an attempt to reduce the negative impacts from SLR. It encompasses the idea 

behind the entire effort to reduce the negative impacts from climate change, specifically SLR. 

The criteria used in the decision making process to evaluate the alternatives, with respect to 

the goal, were: Applicability, Effectiveness, Sustainability, Flexibility, and Cost. The five chosen 

adaptation alternatives were: Retreat, Improve Building Design, Improve Public Awareness, 

Build Protective Structures, and Take No Action.   

 

To Reduce Vulnerability to SLR 

Applicability Effectiveness Sustainability Flexibility Cost 

5 Actions 5 Actions 5 Actions 5 Actions 5 Actions 

1) Planned Retreat; 2) Improve Building Design; 3) Improve Public Awareness;  
4) Build Protective Structures; and 5) Take No Action 

 

Figure 7 AHP structure 

3 Implementing the Approach 

For case study analyses, the City of the Gold Coast located in Southeast Queensland, 

Australia has been selected. The area encompasses a diverse range of features including sandy 

beaches, estuaries, coastal lagoons and artificial waterways and is highly vulnerable to SLR. In 

this region, the maximum tidal range is 1.8m, and on average, the coast is affected by 1.5 



 

 

cyclones each year (Boak et al., 2001). Many of the residential areas in the city are filled to the 

1:100 year flood level (Betts, 2002). 

3.1 Vulnerability Assessment 

To determine the effect of changes in vulnerable populations and land areas over time, the 

Cover Type and Elevation data were simulated under a number of SLR. The changes were 

captured in a SD model and exported to a GIS model for visualisation. The inundation layer was 

overlayed with the 2001 Australian Bureau of Statistics census data, which was aggregated by 

census parcel for the area.  

 

Figure 8 Flood maps generated by the model 



 

 

Figure 8 presents a series of flood maps generated by the model. It shows the extent of the 

areas at risk due to rising sea level, over a period of 100 years.  Clearly, as inundation occurs at 

the water – land interface, the land area in close proximity to the sea, and around water 

bodies, were identified as the most vulnerable areas. The rising sea quickly penetrates inland 

through waterways and submerges the vulnerable areas around them, thus, putting the 

people currently living in those areas at risk. 

As shown in Figure 9, at the end of a 100 year simulation period, approximately 6 % of the 

landscape in the study area will be gradually inundated over time, with 0.5 cm SLR per year. 

Importantly, a 0.5 cm SLR does not pose any significant threats to the local population. 

However, this situation dramatically changes with scenarios 2 and 3, which represent 1 cm and 

1.5 cm SLR per year. Indeed, the percentage of the vulnerable area leapt to about 34 % for 

Scenario 2, and 56 % for Scenario 3. The most noticeable changes occur after the first 25 years. 

Further, the rate of inundation becomes much higher after the first 50 years of the simulation 

period for both scenario2 and scenario3. 

 

 

Figure 9 Area at Risk and Population at Risk under three SLR scenarios 



 

 

Although a substantial fraction of the landscape is threatened by the rising SLR, the 

percentage of the population that can be classified as vulnerable is relatively low for Scn2 and 

Scn3 scenarios, only 0.5 % and 7 %, respectively. The answer lies with most of the population 

residing at high altitudes. Nevertheless, the population located near waterways and coastal 

strips was especially vulnerable.  

Indeed, about 6% of the study area landscape will be submerged if the sea level rises a 0.5 

m by 2110 (Figure 9). Hence, the area at significant risk will be increased, up to 34% and 56% 

with a 1 m and 1.5 m rise in sea level, respectively. However, the inundation will, generally, be 

restricted to fringing shorelines and finger waterways margins (Figure 8). Additionally, 

although, up to 56% of the land area will be facing the risk of inundation, the impacts of the 

same SLR scenarios on the residential areas are much smaller. 

3.2 Multi-Criteria Decision Analysis for Adaptation options 

The fifth dimension of the current framework focuses on linking vulnerability assessment 

with the evaluation of adaptation alternatives through the use of AHP. The implementation of 

the MCDM models involved: assigning weights and priorities to the criteria by stakeholders; 

the normalisation of the raw scores to create a common scale of measurement; and the 

calculation of the decision scores used to generate the final output from the models. By using 

the questionnaire, the participants were asked to compare the relative importance of the 

decision alternatives pairwise, with respect to criteria and the goal. The results were obtained 

through the use of Expert Choice11 package for computing relative weights, consistency ratio 

and local and global priorities (Expert Choice, 2008). Additionally, the MS Excel 2007 was also 

been employed for some calculations and data plotting. 

The AHP allows the inconsistency of every participant’s survey responses to be 

represented by the consistency ratio (CR). The resulting CRs are 0.02 for Residents, 0.02 for 

Experts and 0.06 for Politicians – all less than the 10% limit. The result indicates that 

stakeholder groups’ judgements with respect to each criterion and the goal are expected to be 

highly consistent. As seen in Figure 10, regarding the Residents, from the five different 

adaptation alternatives presented in the survey questionnaire, the highest priority alternative 

was Improve Building Design  (0.325 priority), closely followed by Build Protective Structures 

(0.285 priority). 



 

 

The least preferred alternative was Take No Action, followed by Retreat, with priorities of 

0.061 and 0.102 respectively. In contrast, the Experts gave their highest priority to Improve 

Public Awareness with priority of 0.289, while Improve Building Design and Retreat were 

deemed the next most important alternatives with priorities of 0.278 and 0.203, respectively. 

While in accord with the Residents judgements for their least preferred alternative (Take No 

Action had a 0.089), the experts next least preferred alternative was Build Protective Structures 

(0.141 priority). 

  

Figure 10 Global criteria and alternative priorities for stakeholders 

The Politicians top two preferred adaptation alternatives were Improve Building Design 

with a priority of 0.457 (the Residents had this alternative as their top priority, while the 

Experts rated it as their second priority), and Retreat with a priority of 0.254, which was one of 

the Residents least preferred alternatives, but the Experts third top priority (Refer to the 

Politicians’ row in Figure 10). Once again, the least preferred option for all three groups was 

Take No Action; however, the Politicians rated, as second to last, the alternative to Build 

Protective Structures, which disagreed with the Residents judgement, but agreed with the 

Experts judgement.  

The criteria priorities were obtained in the same way as the alternative priorities (Figure 

10). From the combined results for each stakeholder group, the two most important criteria to 

consider when making a judgement to reduce the negative impacts of SLR are Effectiveness 

and Sustainability. It appears that the three stakeholder groups uniformly agree about the 

importance of the criteria. For example, Applicability and Flexibility generally rank next highest 



 

 

(with Politicians the exception), while Cost ranks the lowest (with Politicians the exception 

ranking Flexibility last). 

3.3 Model Refinement 

As there is a strong intersection between human decision making and environmental 

stresses, due to the uncertainty of the precise behaviour of complex environmental systems, 

two dilemmas confront DMs: how and when to adapt to SLR. While most decisions inherently 

are flawed to some degree, the decisions still have to be made. In order to improve the chance 

of better decision making, therefore, a robust process that considers the range of risks and 

associated uncertainties is required. 

The temporal model, introduced above, takes into account key variables that predict the 

extent and timing of coastal inundation. However, no variable was available to represent the 

adaptation alternatives. Thus, the model simulations were conducted under the Take No 

Action strategy. By modifying the model, 14 successive simulations were performed, with 

various values, to explore the impact of the Build Protective Structure and Improve Building 

Design adaptation options on vulnerable people and areas, as seen in Figure 11.  To be 

consistent with the modelling framework, the refined model tested the findings of the decision 

analysis. 

Initial Cover Adapted Cell
Protective Structure

Elevation

Cell Cover
Change

Change Previous

Increase

Sea Level

Rise

Rise Rate
Initial Sea Level

Initial Elevation
Protective
Structure

Protective Structure

0 3

Rise Rate

0 1.5

"Population Growth (%)"

-4 4

Current 100 yr SS Height

0 8

Improve Building Design

0 2

Improve
Building
Design

Adapted Cell
Improved Building

Design

Adjacent Cells

Decrease

 

Figure 11 Modified temporal model with Improve Building Design variable 



 

 

First, to test the efficiencies of Build Protective Structure, the model was modified by 

adding a variable to represent an imaginary protective structure along the shoreline. The term 

“Build Protective Structure” refers to coastal engineering activities that reduce the risk of 

flooding and inundation. The heights of the protective structure varied from 0 to 2.5 m to 

estimate the most effective height that provided the best protection. The imaginary wall was 

built by altering the initial elevations of the border cells whose initial cover types were Land 

and adjacent to cells with Sea.Secondly, to test the efficiency of the Improve Building Design 

option, the model was further modified by adding another variable (Improve Building Design).   

A comparison was made of the usefulness of building a 1m or 2m high protective structure 

to reduce vulnerable areas to a 1.5 cm SLR per year. The results showing vulnerabilities under 

three adaptation scenarios; No Action, 1 m and 2 m Protective Structure can be seen in Figure 

12.  The findings show that building protective structures along the coastline does not have 

any effect on reducing the extent of the inundation under Scenario 3, and, therefore, does not 

reduce the vulnerability. Similarly, the overlapping lines also indicate that Protective Structures 

(both, 1m and 2m) will not provide any safeguard for the vulnerable population from rising sea 

level (Figure 12).   

Secondly, to test the efficiency of the Improve Building Design option, the model was 

further modified by adding another variable. The newly added variable, the Improve Building 

Design option covers a wide range of adaptation measures, including (but not limited to) flood 

proofing, elevated building design, and minimum flood level. As it was not possible to test each 

adaptation measure under this category, the focus was specifically on two measures: elevated 

building design and minimum flood level. Further, it was assumed that new building 

regulations would be introduced, and that all existing and new buildings would be modified 

and/or designed accordingly. Based on these assumptions, the initial elevation of each cell 

with a Land cover type was increased by 1 m, and then 2m. 



 

 

Period

2020 1.6% 1.0% 1.0% 0.0% 0.0% 0.0%

2030 3.6% 3.1% 3.1% 0.0% 0.0% 0.0%

2040 4.9% 4.6% 4.6% 0.0% 0.0% 0.0%

2050 9.4% 9.1% 9.1% 0.1% 0.1% 0.1%

2060 16.5% 16.2% 16.2% 0.2% 0.2% 0.2%

2070 26.7% 26.4% 26.4% 0.3% 0.3% 0.3%

2080 35.8% 35.8% 35.5% 0.5% 0.5% 0.5%

2090 42.9% 42.9% 42.6% 0.9% 0.9% 0.9%

2100 47.9% 47.9% 47.6% 1.5% 1.5% 1.5%

2110 55.7% 55.7% 55.4% 7.1% 7.1% 7.1%

No Action
1m Protective 

Structure

2m Protective 

Structure
No Action

1m Protective 

Structure

2m Protective 

Structure

Area @ Risk Population @ Risk

 

Figure 12 Vulnerable area and Population to SLR, with and without Protective Structure 

In contrast to Protective Structures, the Improved Building Design adaption option provides 

the vulnerable population with better protection (Figure 13). As seen in Figure 13, with a 1.5 m 

SLR over a 100 year period, 56% of the land area would be submerged. However, 

implementing the option Improved Building Design reduced the vulnerability down to 6.5%, 

and 0.1 % for a 1 m and 2m building elevation, respectively.  It is clear that elevating structures 

by the amount of the SLR, or more, would keep these structures at the same elevation relative 

to the sea and, thereby, prevent their becoming more vulnerable as the sea level rises.  

Period

2020 1.6% 0.0% 0.0% 0.0% 0.0% 0.0%

2030 3.6% 0.0% 0.0% 0.0% 0.0% 0.0%

2040 4.9% 0.1% 0.1% 0.0% 0.0% 0.0%

2050 9.4% 0.5% 0.5% 0.1% 0.0% 0.0%

2060 16.5% 0.7% 0.7% 0.2% 0.0% 0.0%

2070 26.7% 1.0% 1.0% 0.3% 0.0% 0.0%

2080 35.8% 1.5% 1.5% 0.5% 0.0% 0.0%

2090 42.9% 1.9% 1.9% 0.9% 0.0% 0.0%

2100 47.9% 4.4% 4.4% 1.5% 0.0% 0.0%

2110 55.7% 6.5% 6.5% 7.1% 0.0% 0.0%

No Action
Improve Bui lding 

Des ign - 1m

Improve Bui lding 

Des ign - 2m
No Action

Improve Bui lding 

Des ign - 1m

Improve Bui lding 

Des ign - 2m

Area @ Risk Population @ Risk

 

Figure 13 Vulnerable area and Population to SLR with and without Improved Building Design 

Further simulations were conducted to compare the effectiveness of adaptation options 

by setting initial values for Rise Rate (max 1.5 cm/y) and Current 100 year SS Height (max 2.5 

m). Using the simulation results, the impacts of the five adaptation options; No Action, 

Protective Structures (1m and 2m) and Improve Building Design (1m and 2m) were compared.  



 

 

The outcomes on vulnerable people and areas are shown in Table 1. Firstly, the Build 

Protective Structure adaptation option was not an effective strategy in reducing vulnerability 

to SLR and associated SS. Secondly, the presence of rivers and canals in the study area nullified 

the effectiveness of any protective structures against SS and SLR, especially when combined 

with heavy rainfall and flash flooding. Thirdly, as the sea level rises, flooding penetrates into 

the same places it has occurred before.  However, the Improve Building Design option offers a 

much better option against SS with a 1.5 cm/year SLR. As demonstrated above, this option has 

the potential to reduce, significantly, the vulnerabilities to a 1.5 m SLR. On the other hand, its 

shielding power diminishes against a 1.5 m SLR combined with SS.  

 

Table 1 Comparing five adaptation alternatives under two scenarios 

1.5 m SLR

1.5 m SLR + 

Storm 

Surge

1.5 m SLR

1.5 m SLR + 

Storm 

Surge

1.5 m SLR

1.5 m SLR + 

Storm 

Surge

1.5 m SLR

1.5 m SLR + 

Storm 

Surge

1.5 m SLR

1.5 m SLR + 

Storm 

Surge

2020 2% 82% 1% 82% 1% 82% 0% 56% 0% 10%

2030 4% 88% 3% 88% 3% 88% 0% 75% 0% 19%

2040 5% 89% 5% 89% 5% 89% 0% 79% 0% 31%

2050 9% 90% 9% 90% 9% 90% 0% 81% 0% 38%

2060 16% 90% 16% 90% 16% 90% 1% 83% 1% 45%

2070 27% 91% 26% 91% 26% 91% 1% 85% 1% 51%

2080 36% 91% 36% 91% 36% 91% 1% 86% 1% 59%

2090 43% 92% 43% 92% 43% 92% 2% 88% 2% 72%

2100 48% 92% 48% 92% 48% 92% 4% 89% 4% 77%

2110 56% 92% 56% 92% 55% 92% 7% 89% 7% 80%

2020 0% 87% 0% 87% 0% 87% 0% 20% 0% 0%

2030 0% 89% 0% 89% 0% 89% 0% 41% 0% 0%

2040 0% 90% 0% 90% 0% 90% 0% 50% 0% 0%

2050 0% 91% 0% 91% 0% 91% 0% 59% 0% 1%

2060 0% 91% 0% 91% 0% 91% 0% 66% 0% 1%

2070 0% 92% 0% 92% 0% 92% 0% 76% 0% 2%

2080 1% 92% 1% 92% 1% 92% 0% 84% 0% 10%

2090 1% 92% 1% 92% 1% 92% 0% 88% 0% 29%

2100 1% 93% 1% 93% 1% 93% 0% 89% 0% 44%

2110 7% 93% 7% 93% 7% 93% 0% 90% 0% 55%

Adaptation Alternatives

Scenarios

Area at Risk (%)

Population at Risk (%)

Simulation 

Period

Take No Action
Protective Structure - 

1m

Protective Structure - 

2m

Improve Bui lding 

Des ign - 1m

Improve Bui lding 

Des ign - 2m

 

Thus, it can be concluded that the findings of the simulation are consistent with the AHP 

findings, that is, the Improve Building Design was ranked as the most preferred option by the 

Residents and Politician, while the Experts voted it the second most preferred option. 



 

 

However, the Politicians and Experts voted the Build Protective Structures as the fourth most 

preferred option, while the Residents ranked it as the second most preferred option. 

4 Conclusion 

An innovative characteristic of the STD approach is its ability to evaluate the decision 

choices prior to their implementation. This is achieved by incorporating the DSM simulation 

results into the decision making process and, then, retesting the information, obtained from 

this process, using the DSM. The model’s ability to pre-evaluate decision choices is an 

important feature; its legacy is that communities can avoid or minimise their decision error, 

and increase their chance of obtaining better decisions.  

The STD approach, in summary, provides a critical tool for obtaining quantitative 

information for managing and making choices with the aim of effective decisions. This 

integrated approach has the capability to: (1) Generate important spatial-temporal 

information required by decision makers (DMs); (2) Provide new insights into complex coastal 

systems; (3) Address multicriteria decision problems involving multiple stakeholders; (4) 

Enable DMs to examine decision alternatives through the use of the Dynamic Spatial Model; 

and (5) Address uncertainties and generate alternative scenarios, based on different user 

inputs. 
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