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A B S T R A C T

Influence Maximization (IM), targeting the optimal selection of 𝑘 seed nodes to maximize potential information
dissemination in prospectively social networks, garners pivotal interest in diverse realms like viral marketing
and political discourse dissemination. Despite receiving substantial scholarly attention, prevailing research
predominantly addresses the IM problem within the confines of existing networks, thereby neglecting the
dynamic evolutionary character of social networks. An inevitable requisite arises to explore the IM problem
in social networks of future contexts, which is imperative for certain application scenarios. In this light, we
introduce a novel problem, Influence Maximization in Future Networks (IMFN), aimed at resolving the IM
problem within an anticipated future network framework. We establish that the IMFN problem is NP-hard
and advocate a prospective solution framework, employing judiciously selected link prediction methods to
forecast the future network, and subsequently applying a greedy algorithm to select the 𝑘 most influential
nodes. Moreover, we present SCOL (Sketch-based Cost-effective lazy forward selection algorithm Optimized
with Labeling technique), a well-designed algorithm to accelerate the query of our IMFN problem. Extensive
experimental results, rooted in five real-world datasets, are provided, affirming the efficacy and efficiency of
the proffered solution and algorithms.
1. Introduction

In the era of advancing communication and electronic technologies,
social networks – such as Twitter, Facebook, and Instagram – have
witnessed exponential growth, seamlessly intertwining with the fabric
of daily lives. This proliferation has facilitated the dissemination of
information among network participants, engendering a plethora of
applications spanning viral marketing, public opinion shaping, citizen
safety education, and political opinion distribution, each wielding a
substantial impact on everyday living. Within this milieu, scrutinizing
the process of information spread in social networks garners paramount
significance. Among the myriad research topics in this domain, In-
fluence Maximization (IM) [1–4] emerges as one of the most fervent
areas of study. The IM problem endeavors to select 𝑘 nodes as seed
nodes, with the objective of maximizing the spread of information (or
influence) within social networks, all while adhering to a constrained
budget.

∗ Corresponding author.
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The IM problems need to be solved under a specific influence diffu-
sion model, the classic influence diffusion models including the Inde-
pendent Cascade (IC) model [5,6], the Linear Threshold (LT) model [7],
and the Weighted Cascade (WC) model [1], etc. Among them, the IC
model is the most popular one due to its simplicity and applicability.
Many methods have been proposed to solve IM problem based on these
influence diffusion models. In [8], they categorized these methods into
three groups: Simulation-based methods [9,10], Sketch-based meth-
ods [11–13], and Proxy-based methods [14–16]. However, to the best
of our knowledge, most of the existing methods solve IM problems in
current existing social networks, but in the real world, the topology of
a social network evolves over time [17,18], and it is inevitable to solve
influence maximization problem in future social networks sometimes.
For instance, when formulating marketing plans for the upcoming year,
predicting the network structure and selecting the most influential seed
nodes in future networks become crucial for achieving better marketing
effects. An illustration of a future network can be seen in Fig. 1, where
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Fig. 1. An example of future network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 1(b) highlights the appearance of new links represented by blue
lines and denotes disappearing links using dashed lines.

Based on the aforementioned discussion, we introduce the problem
of Influence Maximization in Future Networks (IMFN). The objective
of the IMFN problem is to identify the 𝑘 most influential seed nodes
within a future social network, presenting two primary challenges:
(1) predicting the future period’s social network topology, and (2)
efficiently identifying the 𝑘 most influential seed nodes within this
future social network.

In this paper, we present a solution framework to address the
dual challenges mentioned above. Our framework begins by utilizing
a well-chosen link prediction technique proposed in [19] to predict the
future social network; subsequently, a greedy algorithm is utilized to
identify the 𝑘 most influential seed nodes, moreover, to optimize the
efficiency of greedy algorithm while ensuring quality, we also propose
an improved algorithm called Sketch-based Cost-effective lazy forward
selection algorithm Optimized with Labeling technique(SCOL) .

The contributions of this paper can be summarized as follows:

1. We define the IMFN problem aimed at identifying the 𝑘 most
influential seed nodes in a future social network. We have pro-
vided a precise definition, demonstrated that it is NP-hard under
the Independent Cascade (IC) Model, and shown that the spread
function 𝐼(𝑆,𝐺𝑡+1) is monotone and submodular.

2. We propose a predictive framework for solving the IMFN prob-
lem, which involves predicting the future social network using
a well-chosen link prediction method, followed by solving the
IMFN problem using a greedy algorithm.

3. To further enhance the efficiency of the aforementioned frame-
work, we propose the well-designed SCOL algorithm optimized
by a labeling technique. Notably, the SCOL algorithm provides
theoretical guarantees for quality.

4. We provide extensive experimental results on five real-world
datasets under two classic IC models, demonstrating the effec-
tiveness and efficiency of the SCOL algorithm.

The rest of this paper is organized as follows: Section 2 introduces
the notations used and provides an overview of related works. Sec-
tion 3 defines the IMFN problem and offers a thorough analysis of
the problem. The solution framework for IMFN problem is provided
in Section 4. Section 5 describes the details of the proposed SCOL
algorithm. Experimental results are presented in Section 6. Section 7
is the conclusion.

2. Preliminary

The notation frequently used in this article is summarized as fol-
lows.

In this paper, we define a directed graph 𝐺 as 𝐺 = (𝑉 ,𝐸), where
𝑉 is the vertex set and 𝐸 is the associated edge set. Furthermore, 𝐺
𝑡+1

2 
denotes the predicted graph at future time point 𝑡 + 1, while 𝐼(𝑆,𝐺)
is the number of vertices(nodes) that are activated by 𝑆 in graph 𝐺,
𝐸(𝐼(𝑆,𝐺)) is the expected number of 𝐼(𝑆,𝐺), 𝑂𝑃𝑇 is the maximum
expected spread of seed set whose size is 𝑘. 𝜃 is the number of generated
subgraphs.

2.1. Independent Cascade (IC) model

IC model [5,6] is the most widely used influence propagation model
due to its simplicity and applicability. Here we use a graph 𝐺(𝑉 ,𝐸) to
represent a social network and then describe the propagation process
under the IC model. In graph 𝐺, nodes 𝑉 = (𝑣0,… 𝑣𝑖) represent the
participants of the social network, and edges 𝐸 = (𝑒0,… 𝑒𝑗 ) indicate
connections between these participants. At time point 𝑡 = 0, a certain
number of nodes are selected as the initial seed set 𝑆 and are activated,
while all other nodes remain inactive. In subsequent time points 𝑡 = 𝑖,
each newly activated node at time point 𝑡 = 𝑖 − 1 has one chance
to activate its neighbors with a probability of 𝑃 (𝑢, 𝑣). This process
continues until no new nodes can be activated, then the propagation
process is completed. The total number of nodes activated during this
process is denoted as 𝐼(𝑆,𝐺). From the discussion above, one can
see that the propagation process under the IC model is very close to
real-world propagation scenarios.

2.2. Link Prediction (LP)

Link prediction is a technique that aims to predict the existence
of links between nodes in future networks by analyzing current net-
work topology and node attributes, thus serving as valuable tools for
predicting the future network structure. In [20], they classified the
link prediction methods into three categories: similarity-based meth-
ods [21,22], maximum likelihood methods [20], probabilistic models
based methods [23,24]. Among these, similarity-based methods are
the prevailing approach, operating on the assumption that nodes with
higher similarity are more likely to be connected in the future. Hence,
the key to these methods lies in devising effective measures of node sim-
ilarity. Nowadays, neural networks are widely utilized across various
fields [25–27] due to their exceptional ability to learn nonlinear fea-
tures. Researchers have increasingly explored different neural network
architectures for link prediction tasks, in this paper, we employ the
method proposed in [19] for future network prediction. This method
first assigns labels to each node using the ‘‘label trick’’ technique
and then feeds them into a graph neural network (GNN) which will
learn the node representations, and finally address the link prediction
problem effectively.

2.3. Influence Maximization(IM)

IM aims to find 𝑘 nodes in a social network as the seed set, which
will get the maximum information spread after information propaga-
tion under a certain influence diffusion model (e.g., IC model). Let
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𝐼(𝑆,𝐺) be the number of vertices activated by 𝑆 in graph snapshot 𝐺
n the above influence propagation process under the IC model. The IM
roblem aims to find a size-𝑘 seed set 𝑆 with the maximum expected
pread 𝐸(𝐼(𝑆,𝐺)). We define the IM problem as follows:

efinition 1 (IM Problem [1]). Given a directed graph snapshot 𝐺 =
(𝑉 ,𝐸), an integer 𝑘, the IM problem aims to find an optimal seed set
𝑆∗ satisfying,

𝑆∗ = arg max
𝑆⊆𝑉 ,|𝑆|=𝑘

𝐸(𝐼(𝑆,𝐺)) (1)

Let 𝑂𝑃𝑇 be the maximum expected spread of any size-𝑘 seed
set, then we have 𝑂𝑃𝑇 = 𝐸(𝐼(𝑆∗, 𝐺)). In Formula (1), 𝐼(𝑆,𝐺) rep-
resents the information spread, which usually refers to the number
of activated nodes after the information propagation process. Under
the IC model, the propagation process is stochastic, and each node is
activated according to a probability 𝑃 (𝑢, 𝑣); thus we usually simulate
the propagation process multiple times (e.g., 10,000 times), and then
use the expected value 𝐸[𝐼(𝑆,𝐺)] to approximate the specific value
of 𝐼(𝑆,𝐺). Various algorithms have been proposed to solve the IM
problem defined in Formula (1). Among these, the most classical and
well-known approach is the Greedy algorithm [1], which selects a
node with the maximum marginal spread gain in each round until
the top 𝑘 nodes are chosen. Although the Greedy algorithm is easy
to interpret and has a theoretically guaranteed approximation ratio,
its computational complexity is high, so various improved algorithms
have been developed. One notable improved algorithm is the Cost-
Effective Lazy Forward selection (CELF) algorithm proposed by [9].
CELF algorithm calculates the upper bound of each node’s spread 𝐼[⋅] in
the first iteration according to the submodularity, in subsequent itera-
tions, many nodes with small spread 𝐼[⋅] are pruned, thus significantly
reducing computational complexity. Compared with the Greedy algo-
rithm, CELF achieves a performance improvement of approximately
700 times. Later, C. Zhou et al. [10] proposed the UBLF method,
which gave a tighter upper bound for each node’s spread 𝐼[⋅] based on
the propagation probability matrix, further reducing the computational
complexity.

Different from the simulation-based methods mentioned above, S.
Cheng et al. [11] presented the StaticGreedy method, which replaces
Monte Carlo simulations with a certain number of sketch subgraphs,
resulting in computational efficiency improvement, the improved Stat-
icCELF method was also proposed in the same work to further im-
prove the performance of StaticGreedy. Later, the representative re-
verse reachable sketch-based algorithms [12,13,28] were proposed and
gained widespread attention. These reverse reachable sketch-based
algorithms operate under the assumption that the more influential
a node is, the more nodes can be reached from it, based on this
assumption, C. Borgs et al. [12] first defined the Reverse Reachable
Set (RRS). After obtaining a sufficient number of random RRS, the
𝑘 nodes that cover the most RRS are selected as the seed set. Later,
Y. Tang et al. [13,28] presented TIM/IMM, which provided a lower
boundary for the number of RRS needed to guarantee the quality.
It should be noted that although the reverse reachable sketch-based
algorithms are faster, they require large memory spaces to store the
RRS. All the methods mentioned above have a theoretical guarantee
for quality. There are also some proxy-based methods that are highly
efficient. DegreeDiscount in [14] adopted degree discount heuristics to
handle the influence overlaps, which improve the performance of initial
degree-based methods. NCVoteRank in [16] employed the coreness
based VoteRank method, which takes into account the voting abilities
of different nodes to select the most influential nodes. FIP in [29]
extracted the candidate nodes based on community structure, which
decreased the search space for selecting final seed nodes. Although
these methods are efficient, they lack quality guarantees and their
performance may fluctuate in different scenarios. Meanwhile, there

are some works aimed at solving the dynamic influence maximization

3 
(DIM) problem. H. Zhuang et al. [30] developed an Maximum Gap
Probing (MaxG) algorithm to obtain a partially observed dynamic
network by probing a subset of nodes in a social network, then solved
the DIM problem on the partially observed dynamic networks. Y. Wang
et al. [31] proposed the Stream Influence Maximization (SIM) problem,
which aimed to maintain the most influential 𝑘 seeds over dynamic
networks by adopting a sliding window model. B. Peng et al. [32]
studied the DIM problem under incremental model and fully dynamic
model, then provided the boundaries of running time and approxima-
tion rate for both models. However, these works primarily address the
IM problem on known or partially known networks.

To the best of our knowledge, most of the methods mentioned
earlier are applied to solve the IM problem in current existing network.
However, in this paper, we aim to address the Influence Maximiza-
tion problem in Future Networks(IMFN), the definition and detailed
discussion of the IMFN problem will be given in Section 3.

3. Problem definition

In this section, we provide the definition of the IMFN problem and
analyze it in detail.

Definition 2 (IMFN Problem). Give a social network 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) whose
topology evolves over time. If we can predict its’ network topology
𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1) in the future time point 𝑡+1, the IMFN problem aims
to choose 𝑘 nodes in 𝐺𝑡+1 as the seed node set 𝑆∗ which will get the
maximum expected information spread 𝐸(𝐼(𝑆,𝐺𝑡+1)) under a specific
influence diffusion model (e.g. IC model). The IMFN problem can be
formulated using the following equation:

𝑆∗ = arg max
𝑆⊆𝑉𝑡+1 ,|𝑆|=𝑘

𝐸(𝐼(𝑆,𝐺𝑡+1)) (2)

Theorem 1 (NP-hard). The IMFN problem defined in Definition 2 is
NP-hard under the IC model.

Proof. Since the Maximum Cover (MC) problem [33] is NP-hard, if
it is reducible to IMFN problem in polynomial time, then the IMFN
problem is NP-hard; thus, we need to find a solution to reduce the MC
problem to IMFN problem in polynomial time to prove the hardness of
IMFN problem under IC model. During the dissemination process under
IC model,each node 𝑣 is activated by its newly activated neighbors
with a probability of 𝑃 (𝑢, 𝑣), which is a random event. This random
vent can be determined by flipping a coin. According to the analysis
n [1], we can perform the coin-flip operation at the very beginning of
he dissemination process, which is equivalent to doing it during the
rocess. Thus, for the future network 𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1), we perform
he coin-flip operation at the very beginning for each edge 𝑒𝑗 ∈ 𝐸𝑡+1 to
etermine whether the edge is preserved. Subsequently, all the nodes
𝑖 ∈ 𝑉𝑡+1 and the preserved edges form a directed graph 𝐺′. The spread

of a node 𝑣𝑖 can be measured as the number of its children in 𝐺′. In
this stage, we define a set 𝑆 = 𝑆1, 𝑆2, 𝑆3...𝑆|𝑉𝑡+1|, where each set 𝑆𝑖
corresponds to a node 𝑣𝑖 in 𝑉𝑡+1, and the elements of 𝑆𝑖 are the children
of node 𝑣𝑖 in 𝐺′. We also define a set 𝑈 whose elements are all the nodes
in 𝑉𝑡+1. The IMFN problem, which aims to select 𝑘 nodes from 𝑉𝑡+1 as
the seed node set 𝑆∗ that maximizes the spread, is equivalent to the
MC problem which choosing 𝑘 set in 𝑆 = 𝑆1, 𝑆2, 𝑆3...𝑆|𝑉𝑡+1| to cover as
many elements in 𝑈 as possible, thus the MC problem is reduced to the
IMFN problem. Since the above reduction can be done in polynomial
time, we conclude that the IMFN problem is NP-hard under IC model.
Theorem 1 is proved. □

Theorem 2 (Monotonicity and Submodularity). The spread function
𝐼(𝑆,𝐺𝑡+1) in IMFN problem is monotone and submodular, this implies that
if a seed set 𝑆𝑎 ⊂ 𝑆𝑏, then 𝐼(𝑆𝑎, 𝐺𝑡+1) ≤ 𝐼(𝑆𝑏, 𝐺𝑡+1), and for a node

𝑣𝑗 ∈ 𝑉𝑡+1⧵𝑆𝑎, 𝐼(𝑆𝑎∪𝑣𝑗 , 𝐺𝑡+1)−𝐼(𝑆𝑎, 𝐺𝑡+1) ≥ 𝐼(𝑆𝑏∪𝑣𝑗 , 𝐺𝑡+1)−𝐼(𝑆𝑏, 𝐺𝑡+1).



K. Zhang et al.

m

C
𝑀
t
g
o
t
t
H
t
A

5

a
T
t
c
i
s
i
L
r
a

5

Array 24 (2024) 100366 
Proof. At the very beginning of the dissemination process under IC
odel in future network 𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1), we perform the same coin-

flip operation as that in the proof of Theorem 1, then we get a directed
graph 𝐺′. The spread 𝐼(𝑆,𝐺′) of a seed set 𝑆 can be denoted as the
number of its children in 𝐺′. For a seed set 𝑆𝑎 ⊂ 𝑆𝑏, it is evident that
𝐼(𝑆𝑎, 𝐺′) ≤ 𝐼(𝑆𝑏, 𝐺′). Thus, the spread function 𝐼(𝑆,𝐺′) is monotone.
Furthermore, since the non-negative linear combination of monotone
functions is also monotone, the spread function 𝐼(𝑆,𝐺𝑡+1) in IMFN
problem is also monotone.

Inspired by the work in [1], we adopt the same method to prove
that the spread function 𝐼(𝑆,𝐺𝑡+1) in IMFN problem is submodular.
Referring to the same graph 𝐺′ mentioned earlier, we define the set
𝑆𝑐ℎ𝑖𝑙𝑑 as the set of children nodes of set 𝑆, and 𝑉 𝑐ℎ𝑖𝑙𝑑

𝑗 as the set
of children nodes of node 𝑣𝑗 . For a node 𝑣𝑗 ∈ 𝑉𝑡+1 ⧵ 𝑆𝑎 and set
𝑆𝑎 ⊂ 𝑆𝑏, the marginal gain of node 𝑣𝑗 with respect to set 𝑆𝑎 is
denoted as 𝐼(𝑆𝑎 ∪ 𝑣𝑗 , 𝐺′) − 𝐼(𝑆𝑎, 𝐺′), whose value is equal to |𝑉 𝑐ℎ𝑖𝑙𝑑

𝑗 | −
|𝑆𝑐ℎ𝑖𝑙𝑑

𝑎 ∩ 𝑉 𝑐ℎ𝑖𝑙𝑑
𝑗 |. Similarly, the marginal gain of node 𝑣𝑗 with respect

to set 𝑆𝑏 is denoted as 𝐼(𝑆𝑏 ∪ 𝑣𝑗 , 𝐺′) − 𝐼(𝑆𝑏, 𝐺′), whose value is
equal to |𝑉 𝑐ℎ𝑖𝑙𝑑

𝑗 | − |𝑆𝑐ℎ𝑖𝑙𝑑
𝑏 ∩ 𝑉 𝑐ℎ𝑖𝑙𝑑

𝑗 |, it is obvious that |𝑆𝑐ℎ𝑖𝑙𝑑
𝑏 ∩ 𝑉 𝑐ℎ𝑖𝑙𝑑

𝑗 | ≥
|𝑆𝑐ℎ𝑖𝑙𝑑

𝑎 ∩ 𝑉 𝑐ℎ𝑖𝑙𝑑
𝑗 |, thus 𝐼(𝑆𝑎∪𝑣𝑖, 𝐺′)−𝐼(𝑆𝑎, 𝐺′) ≥ 𝐼(𝑆𝑎∪𝑣𝑗 , 𝐺′)−𝐼(𝑆𝑎, 𝐺′).

Consequently, the spread function 𝐼(𝑆,𝐺′) is submodular. Moreover,
since the non-negative linear combination of submodular functions is
also submodular, the spread function 𝐼(𝑆,𝐺𝑡+1) in IMFN problem is
submodular. Hence, Theorem 2 is proven. □

According to Theorem 1, the IMFN problem is NP-hard,thus one
cannot solve IMFN problem in polynomial time. Fortunately based on
Theorem 2, the spread function 𝐼(𝑆,𝐺𝑡+1) in IMFN problem is mono-
tone and submodular,so we can take advantage of these properties of
𝐼(𝑆,𝐺𝑡+1) and then give the approximation of optimal solution by using
the Greedy algorithm.

4. The basic framework for IMFN

Based on the definition and analysis in Section 3, we now introduce
the basic solution framework for IMFN problem. The framework con-
sists of two steps: (1) utilizing the well-chosen link prediction method
to predict the future network topology 𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1) in the future
time point 𝑡 + 1; (2) employing the Greedy algorithm to obtain the
seed set 𝑆, which is the approximation of the optimal seed set 𝑆∗. The
detailed process is described in Algorithm 1.

In Algorithm 1, we first predict the future network 𝐺𝑡+1 by using
the link prediction method proposed in [19] (line 1). Next, the greedy
algorithm is utilized to select the node 𝑣𝑗 ∈ 𝑉𝑡+1 ⧵𝑆 with the maximum
marginal spread gain in each iteration(line 4–7). Here 𝑉𝑡+1 represents
the nodes in the graph 𝐺𝑡+1, while 𝑆 denotes the selected seed node set
which is initially empty. The marginal gain is denoted by 𝑀(𝑣𝑗 )(line
6). Subsequently, the selected node 𝑣𝑗 is added to the seed set 𝑆 (line
8). This process continues until 𝑘 seed nodes are chosen. The greedy
algorithm described in Algorithm 1 guarantees an approximation of the
optimal solution with a factor of (1 − 1∕𝑒) which can be expressed by
Inequality (3).

𝐼(𝑆,𝐺𝑡+1) ≥ (1 − 1∕𝑒)𝐼(𝑆∗, 𝐺𝑡+1) (3)

In Inequality (3), 𝑆∗ represents the optimal seed set, and 𝑆 denotes
the seed set selected using Algorithm 1. Although the greedy algorithm
presented in Algorithm 1 provides a theoretical guarantee for solving
IMFN problem, it suffers from a significant drawback: its computational
complexity is excessively high, severely limiting its applicability, even
in medium-sized networks.

Next, we will analyze the computational complexity of Algorithm 1.
The computation of this algorithm comes from two parts: (1) predicting
the future network using link prediction, and (2) the greedy algorithm
employed for selecting seed sets. Since predicting the future network
does not require excessive time, we will focus on Part 2. For the future
network at time point 𝑡+1, denoted as 𝐺 = (𝑉 ,𝐸 ), according to
𝑡+1 𝑡+1 𝑡+1 s

4 
Algorithm 1: IFMN Algorithm
Input: An evolving network 𝐺𝑖, an integer number 𝑘(the size of

seed set 𝑆), 𝑅(the number of Monte Carlo simulations).
Output: The selected seed set 𝑆 for future network 𝐺𝑡+1.

1 Predict the future network 𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1) in time point 𝑡 + 1
by link prediction method in [19];

2 𝑆 ← ∅;
3 for 𝑖 = 1 ∶ 𝑘 do
4 for 𝑗 = 1 ∶ |

|

𝑉𝑡+1|| do
5 Calculating the marginal gain of node

𝑣𝑗 ∈ 𝑉𝑡+1 ⧵ 𝑆,which is denoted by 𝑀(𝑣𝑗 );
6 𝑀(𝑣𝑗 ) ← 𝑠𝑝𝑟𝑒𝑎𝑑𝑚𝑐(𝑆 ∪ 𝑣𝑗 , 𝐺𝑡+1) − 𝑠𝑝𝑟𝑒𝑎𝑑𝑚𝑐(𝑆,𝐺𝑡+1);
7 Select node with the maximum marginal gain 𝑀(⋅) as the

seed node 𝑣∗;
8 𝑆 ← 𝑆 ∪ 𝑣∗

9 return 𝑆
10 Function spreadmc(𝑆,𝐺𝑡+1)
11 New active set 𝑁𝑆 ← 𝑆;
12 Actived Set 𝐴𝑆 ← 𝑆;
13 Influence=0;
14 for 𝑖 = 1 ∶ 𝑅 do
15 while 𝑁𝑆 ≠ ∅ do
16 Each node 𝑣𝑖 in 𝑁𝑆 have a chance of 𝑃 (𝑢, 𝑣) to

activate its neighbors;
17 Add the activated nodes into 𝐴𝑆 and 𝑁𝑆;
18 Delete 𝑣𝑖 from 𝑁𝑆;
19 Influence ← Influence + |𝐴𝑆|;
20 return Influence/R ;

Algorithm 1, we need to repeat 𝑘 iterations(line 5) to select 𝑘 nodes as
the seed set 𝑆. Within each iteration, there are at most |

|

𝑉𝑡+1|| nodes that
need to calculate the marginal spread gain 𝑀(⋅). Additionally, due to
the stochastic nature of the propagation process, when calculating the
marginal spread gain 𝑀(⋅) of each node, we need to perform 𝑅 Monte

arlo simulations to obtain the expectation of the marginal spread gain
(⋅). In each Monte Carlo simulation, there are at most |

|

𝐸𝑡+1
|

|

edges
hat need to be simulated. Consequently, the overall complexity of the
reedy algorithm in Algorithm 1 is (𝑘 ⋅ |

|

𝑉𝑡+1|| ⋅ 𝑅 ⋅ |
|

𝐸𝑡+1
|

|

). The value
f 𝑅 should be large enough to ensure the submodularity property of
he spread function 𝐼(⋅), typically set to 10 000 [1]. As we can see,
he complexity of Algorithm 1 is too high to be practically applicable.
ence, we proposed the Sketch based CELF Optimized with Labeling

echnique (SCOL) algorithm in Section 4 to improve the efficiency of
lgorithm 1.

. Sketch based CELF optimized with labeling technique

Based on the complexity analysis in Section 4, there are three
pproaches to reduce the computational complexity of Algorithm 1.
he first is to reduce 𝑅 which is the number of Monte Carlo simulations;
he second is to reduce the number of candidate nodes that need to
alculate the marginal spread gain, corresponding to |

|

𝑉𝑡||; and the third
s to reduce the computational complexity of calculating the marginal
pread gain for each candidate node. Taking all of these approaches
nto consideration, we propose the Sketch based CELF Optimized with
abeling technique(SCOL) algorithm in this section. The SCOL algo-
ithm combines sketch technique, CELF method and is optimized with
labeling technique to enhance the efficiency of Algorithm 1.

.1. Sketch technique

The Monte Carlo simulation process under IC model can be de-

cribed as follows: In a social network 𝐺 = (𝑉 ,𝐸) with the seed set 𝑆,
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for each newly activated node 𝑣𝑗 in 𝑉 with a probability of 𝑃 (𝑢, 𝑣) to
ctivate its’ inactive neighbor, we generate a random number between
0, 1), if the number is not greater than 𝑃 (𝑢, 𝑣), then the neighbor
ecomes active; otherwise, it stays inactive. Continue this process until
here are no new nodes that can be activated. At the end of the
ropagation, the total number of active nodes represents the spread
(𝑆,𝐺). Due to the stochastic nature of the propagation process, we
eed to perform the Monte Carlo simulation R times (typically 10 000
imes) to obtain the average spread 𝐸(𝐼(𝑆,𝐺)) as the final result.

The reason why so many Monte Carlo simulations are required to
e performed is that we need to ensure the submodularity of the spread
unction 𝐼(𝑆,𝐺) to guarantee the approximation rate to the optimal
olution. S. Cheng et al. [11] pointed out that we can employ the
ketch technique to maintain the submodularity instead of conducting
umerous Monte Carlo simulations. In the sketch technique proposed
y [11], for a social network 𝐺 = (𝑉 ,𝐸), a subgraph of 𝐺 is constructed
y deleting each edge 𝑒𝑗 in 𝐸 with a probability of 1 − 𝑃 (𝑢, 𝑣), denoted
s a sketch 𝐺𝑖, then repeating the process to construct 𝜃 sketches
0, 𝐺1...𝐺𝜃 . For a given seed set 𝑆, its’ spread can be calculated by
veraging the numbers of nodes reached by 𝑆 in each sketch. Later,
. Li et al. [8] pointed out that 𝜃 should satisfy In Eq. (4) to ensure a
1−1∕𝑒−𝜖) approximation rate of the optimal solution with a probability
f (1 − 1∕ |𝑉 |). Here, 𝜖 is the sampling error.

≥ (8 + 2𝜖) ⋅ |𝑉 | ⋅
log |𝑉 | + log

(

|𝑉 |

𝑘

)

+ 𝑙𝑜𝑔2

𝜖2
(4)

5.2. CELF

The CELF algorithm [9] leverages the submodularity of the spread
function 𝐼(⋅), which implies the marginal spread gain of a node 𝑣 in
each round is not greater than its marginal spread gain in the previous
round, so when selecting the node with the maximum marginal spread
gain in each round, the calculation process of many nodes with smaller
marginal spread gain in the previous round is pruned, thus significantly
reducing the computational workload. In this section, we will use the
CELF method to reduce the number of candidate nodes that need to
calculate the marginal spread gain, which will accelerate the speed of
the process of selecting the most influential nodes.

5.3. Labeling technique

By observing the process of calculating marginal spread gain in the
sketch-based method, we found that when calculating the marginal
spread gain of a node 𝑣 corresponding to seed sets 𝑆, we need to
calculate the spread 𝐼(𝑆) of set 𝑆, and then calculate the spread 𝐼(𝑆∪𝑣)
of 𝑆 ∪𝑣. The marginal spread gain of node 𝑣 is denoted by Formula (5)

𝑀(𝑣) = 𝐼(𝑆 ∪ 𝑣) − 𝐼(𝑆) (5)

pon careful examination of the calculation process, we found that it
nvolved additional calculations for the spread of seed set 𝑆, which
reatly increased the computational cost of calculating the marginal
pread gain of node 𝑣. Based on the observation above, if we can
educe the additional computation of spread of 𝑆, we can reduce
he computation in the process of calculating marginal spread gain.
nspired by the work in [34], we use a labeling technique to reduce the
dditional computation of spread of 𝑆. Specially, in each sketch, we use
flag to mark whether a node is the child of set 𝑆; if yes, 𝑓𝑙𝑎𝑔 = 0,

therwise, 𝑓𝑙𝑎𝑔 = 1. When we calculate the marginal spread gain of
node 𝑣, we adopt a Breadth First Search(BFS) strategy to find the

hildren 𝑣𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 of 𝑣, during which the node with flag equal to 0 will
ot be involved in 𝑣𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, then we get the margin spread gain of 𝑣,

which is the size of 𝑣𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.
Combining the techniques mentioned in Sections 5.1, 5.2, and 5.3,

e proposed the Sketch based CELF Optimized with Labeling tech-

ique(SCOL) algorithm in this section to enhance the efficiency of w
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Algorithm 1. The pseudo-code of SCOL is shown in Algorithm 2. Due
to space limitations, the three sub-functions used in Algorithm 2 are
shown in Algorithm 3.

Algorithm 2: SCOL Algorithm
Input: An evolving network 𝐺, an integer number 𝑘(the size of

seed set 𝑆) .
Output: The seed set 𝑆 for future network 𝐺𝑡+1.

1 Predict the future network 𝐺𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1) in time point 𝑡 + 1
by link prediction method in [19]

2 𝑆 ← ∅ ;
3 Repeatedly Construct 𝜃 sketches

{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

by deleting
each edge 𝑒𝑗 in 𝐸𝑡+1 with a probability of (1 − 𝑃 (𝑢, 𝑣)) ;

4 for 𝑖 ← 1 ∶ 𝜃 do
5 for 𝑛𝑜𝑑𝑒 ∈ 𝐺𝑖

𝑡+1 do
6 𝐹 𝑙𝑎𝑔[𝑛𝑜𝑑𝑒][𝑖] ← 1 ;

7 for 𝑖 ← 1 ∶ |

|

𝑉𝑡+1|| do
8 𝑀(𝑣𝑖) ← 𝑠𝑝𝑟𝑒𝑎𝑑(𝑣𝑖, 𝜃,

{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

) ;

9 𝑣∗ ← argmax𝑣𝑖⊆𝑉𝑡+1 𝑀(𝑣𝑖) ;
10 𝑆 ← 𝑆 ∪ 𝑣∗ ;
11 𝐿𝑎𝑏𝑒𝑙(𝑣∗, 𝜃, 𝐹 𝑙𝑎𝑔,

{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

) ;
12 for 𝑖 ← 2 ∶ 𝑘 do
13 while 1 do
14 Select the node 𝑣𝑚 ∈ 𝑉𝑡+1 ⧵ 𝑆 with the maximum

marginal spread gain 𝑀(⋅) ;
15 𝑀(𝑣𝑚) ← 𝑀𝐺𝑠𝑝𝑟𝑒𝑎𝑑(𝑣𝑚, 𝜃, 𝐹 𝑙𝑎𝑔,

{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

) ;
16 if 𝑀(𝑣𝑚) is the largest one among all the node 𝑣 ∈ 𝑉𝑡+1 ⧵ 𝑆

then
17 Jump out of current while loop

18 𝑆 ← 𝑆 ∪ 𝑣𝑚 ;
19 𝐿𝑎𝑏𝑒𝑙(𝑣𝑚, 𝜃, 𝐹 𝑙𝑎𝑔,

{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

) ;

20 return S

In Algorithm 2, the future network 𝐺𝑡+1 is predicted using link
prediction method in [19](Line 1), then we construct 𝜃 sketches (Line
3) based on the network 𝐺𝑡+1. According to [8], the value of 𝜃 should
satisfy the In Eq. (4) to ensure a (1 − 1∕𝑒− 𝜖) approximation rate of the
optimal solution. The flag of each node in each sketch is initialized
to be 1 (Lines 4–6). We calculate the marginal spread gain of each
node (Lines 7–8) as its’ upper boundary and select the node with the
maximum marginal spread gain as the first seed node to be added to
the seed set 𝑆 (Lines 9–10). Next, we repeat the following operations in
each round: select the node 𝑣𝑚 ∈ 𝑉𝑡+1 ⧵ 𝑆 with the maximum marginal
spread gain 𝑀(⋅) and update its marginal spread gain which is denoted
as 𝑀(𝑣𝑚) by using Function 𝑀𝐺𝑠𝑝𝑟𝑒𝑎𝑑(⋅) shown in 3 (Lines 14–15),
f 𝑀(𝑣𝑚) is the largest one among all the nodes 𝑣 ∈ 𝑉𝑡+1 ⧵ 𝑆, jump
ut of the current while loop, and add the node 𝑣𝑚 to the seed set

(Line 18). Otherwise, continue with the current while loop. Each
ime we select a seed node, the flag 𝐹 𝑙𝑎𝑔[⋅][⋅] of all nodes in each
ketch should be updated (Line 11 and Line 19) by using the Function
𝑎𝑏𝑒𝑙(⋅) in Algorithm 3. Finally, after 𝑘 − 1 rounds, 𝑘 seed nodes are

elected as the seed set 𝑆. As observed, the proposed SCOL method
tilizes the sketch technique to reduce the number of Monte Carlo
imulations and adopts the CELF method to minimize the number of
andidate nodes required for calculating the marginal spread gain, also
mploys the labeling technique to accelerate the speed of calculating
he marginal spread gain of each candidate node. Consequently, the
COL algorithm significantly decreases the computational complexity,

hich is demonstrated by the experimental results in Section 6.
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Algorithm 3: Three sub-functions used in Algorithm 2

1 Function spread(𝑆, 𝜃,
{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

)
2 influence ← 0 ;
3 for 𝑖 ← 1 ∶ 𝜃 do
4 children ← The number of nodes reached by S in 𝐺𝑖

𝑡+1;
5 influence ← influence + children ;
6 return influence/𝜃 ;

7 Function Label(𝑣, 𝜃, 𝐹 𝑙𝑎𝑔,
{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

)
8 for 𝑖 ← 1 ∶ 𝜃 do
9 𝑄𝑢𝑒𝑢𝑒 ← 𝑣;
10 while Queue not empty do
11 𝑛𝑜𝑑𝑒𝑐𝑢𝑟 ← 𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ;
12 for 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ the direct children of nodecur do
13 if Neighbor is not visited then
14 𝐹 𝑙𝑎𝑔[𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟][𝑖] ← 0;
15 𝑄𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟);

16 Function MGspread(𝑣, 𝜃, 𝐹 𝑙𝑎𝑔,
{

𝐺0
𝑡+1, 𝐺

1
𝑡+1...𝐺

𝜃
𝑡+1

}

)
17 influence ← 0 ;
18 for 𝑖 ← 1 ∶ 𝜃 do
19 if 𝑣 ∈ 𝐺𝑖

𝑡+1 then
20 if 𝐹 𝑙𝑎𝑔[𝑣][𝑖] ≠ 0 then
21 influence ← influence+1 ;
22 while Queue not empty do
23 𝑛𝑜𝑑𝑒𝑐𝑢𝑟 ← 𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ;
24 for 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ the children of nodecur do
25 if 𝐹 𝑙𝑎𝑔[𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟][𝑖] ≠ 0 then
26 if Neighbor is not visited then
27 influence ← influence+1 ;
28 𝑄𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟);

29 return influence/𝜃 ;

6. Experimental result

In this section, we present the experimental results for IFMN prob-
lem based on the widely used IC model. Four state-of-the-art algo-
rithms: StaticCELF (denoted as SC) [11], IMM [13], DegreeDiscount
(denoted as DD) [14], and NCVoteRank (denoted as NCVR) [16] were
chosen as the baselines for comparison. Five real-world datasets1:
EmailEuCore, AskUbuntu, Superuser, Wikitalk and StackOverflow were
used to conduct the experiments. The experiment results were pre-
sented from two perspectives: (1) effectiveness, measured by the total
spread (number of nodes activated) achieved by the selected seed set
𝑆, (2) efficiency, denoted by the running time of each method. The
experiments were conducted on an HP workstation equipped with an
i7-12700 processor, 32 GB of memory, and an RTX3060 graphics card.
The software environment used was Python 3 based on the Windows
10 operating system.

6.1. Datasets and parameters setting

The selected five real-world datasets are typical temporary networks
whose properties are shown in Table 1. In particular, the datasets
Wikitalk and StackOverflow are too large to be simulated on our exper-
imental platform. Therefore, for these two datasets, we extracted the

1 http://snap.stanford.edu/data/index.html.
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Table 1
Dataset characteristic.

Name Type Nodes Temporal
edges

𝐷𝑒𝑔𝑟𝑒𝑒𝑎𝑣𝑔 Time span

EmailEuCore Directed, temporal 986 332 334 25.28 803
AskUbuntu Directed, temporal 79 155 327 513 2.01 2047
Superuser Directed, temporal 94 548 479 067 2.52 2769
Wikitalk Directed, temporal 28 491 293 329 3.6 1260
StackOverflow Directed, temporal 51 989 706 676 12.10 400

data of 1260 days and 400 days for our experiments, respectively. All
selected datasets were divided into 20 snapshots, with each snapshot
corresponding to a specific time point 𝑡 = 𝑖. We then utilized the
ink prediction method proposed in [19] to predict the future network
𝑡+1 = (𝑉𝑡+1, 𝐸𝑡+1). To evaluate the effectiveness and efficiency of the

ive algorithms, we set the size of the selected seed set 𝑆 to be 10, 20,
30, 40, and 50, respectively. For the StatciCELF and SCOL algorithms,
𝜃 was set to 200. For the IC model, two classic models: trivalency
model [35] and constant model [1,35] were adopted. In trivalency
model, the probability of each edge was randomly selected from 0.001,
0.01, and 0.1, while in constant model, the probability of each edge
was empirically set to be 0.03. The total spread of 𝑆 selected by each
algorithm was obtained by 10,000 Monte Carlo simulations.

6.2. Effectiveness evaluation

In this section, we evaluate the effectiveness of five approaches in
terms of total spread (the number of activated nodes), using different
datasets and varying 𝑘 under trivalency model and constant model,
respectively. Fig. 2 illustrate the average total spread achieved by five
algorithms, with 𝑘 varying from 10 to 50 across five distinct datasets
nder trivalency model, and Fig. 3 is the spread achieved under con-
tant model. The vertical axis represents the total spread, and the
orizontal axis represents the size of the selected seed sets. From Fig. 2
e can see that the proposed SCOL algorithm always has almost the

ame total spread as the state-of-the-art algorithms IMM and StaticCELF
hich have theoretical quality guarantees, they have the largest total

pread among all the algorithms used in our experiment. Then is the
CVoteRank algorithm, which has almost the same total spread as
COL on EmailEuCore and AskUbuntu datasets, while its’ total spread is

slightly worse than SCOL on datasets Superuser and StackOverflow, and
he decrease in total spread for NCvoteRank is noticeable on dataset
ikitalk. For the DegreeDiscount algorithm, it has almost the same

otal spread as SCOL on datasets EmailEuCore, AskUbuntu and Superuser.
owever, the total spread decreases rapidly on datasets StackOverflow
nd Wikitalk. From Fig. 2, we can see that there is a similar trend under
he constant model. All of these demonstrate the effectiveness of the
roposed SCOL. This can be attributed to the fact that SCOL combines
he sketch technique, CELF method and is optimized with a labeling
echnique, which provide theoretical guarantees for high quality.

.3. Efficiency evaluation

In this section, we examine the efficiency of five approaches in terms
f running time, utilizing different datasets while varying 𝑘 under triva-
ency model and constant model, respectively. Fig. 4 shows the average
unning time of five algorithms by varying 𝑘 from 10 to 50 in five

different datasets under trivalency model, and Fig. 5 shows the average
running time under constant model. The vertical axis represents the
average running time, and the horizontal axis represents the size of the
selected seed sets. From Fig. 4, we can see that the DegreeDiscount
algorithm consumes the least time, followed by NCVoteRank. However,
as we discussed in Section 6.2, these two algorithms do not have
a theoretical quality guarantee and exhibit significant fluctuations in
performance on different datasets. Among the three algorithms Stat-

icCELF, IMM, and SCOL which have theoretical quality guarantees,

http://snap.stanford.edu/data/index.html
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Fig. 2. Total spread on different datasets with various K under trivalency model.
Fig. 3. Total spread on different datasets with virious K under constant model.
Fig. 4. Time cost of algorithms with varying 𝑘 under trivalency model.
SCOL consumes the least time in almost all the cases, except for
𝑁 = 10, where it consumes slightly more time than IMM on datasets
 b
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Wikitalk and StaticCELF on datasets Superuser, StackOverflow. This is
ecause when 𝑁 is relatively small, the advantages of the labeling
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Fig. 5. Time cost of algorithms with varying 𝑘 under constant model.
technique used by SCOL are not fully reflected. Particularly, SCOL is at
most 10.06 times, 3.77times, 3.04 times, 34.46 times, and 2.55 times
faster than StaticCELF on datasets EmailEuCore, AskUbuntu, Superuser,
Wikitalk and StackOverflow, respectively, and is at most 3.66 times, 7.16
times, 8.98 times, 1.26 times, and 19.88 times faster than IMM on
datasets EmailEuCore, AskUbuntu, Superuser, Wikitalk and StackOverflow,
respectively. We can find a similar trend in Fig. 5, which is under the
constant model. Particularly, SCOL is at most 9.5 times, 3.3 times, 3.1
times, 22.03 times, and 2.01 times faster than StaticCELF on datasets
EmailEuCore, AskUbuntu, Superuser, Wikitalk and StackOverflow, respec-
tively, and is at most 3.26 times, 7.67 times, 10.01 times, 2.75 times,
and 20.6 times faster than IMM on datasets EmailEuCore, AskUbuntu,
Superuser, Wikitalk and StackOverflow, respectively. Furthermore, from
Figs. 4 and 5, we can see that as 𝑁 increases, the time consumed by
SCOL does not significantly increase. This can be attributed to the fact
that as 𝑁 increases, the CELF method and labeling technique adopted
by SOCL can greatly reduce the number of candidate nodes and the
computational cost of calculating the marginal spread gain for each
candidate node, respectively. All of these illustrate the superiority of
the proposed SCOL in terms of efficiency.

7. Conclusion

In this paper, we studied the problem of Influence Maximization in
Future Networks (IMFN). The IMFN problem aims to solve the influence
maximization problem in future networks, which is critical for some
important applications such as viral marketing, political opinion dis-
semination, etc. We proposed a basic solution framework for the IMFN
problem, which utilizes a well-chosen link prediction method to predict
the future network and then applies the greedy algorithm to select the
𝑘 most influential nodes as the seed set 𝑆. Furthermore, we introduced
the SCOL algorithm to improve the efficiency of the solution. Finally,
experimental results based on five real-world datasets were provided
to illustrate the effectiveness and efficiency of the proposed algorithm
SCOL. In the future, our focus will be on researching more accurate
link prediction methods and developing even more efficient solutions
to tackle the IMFN problem, especially for super large-scale networks.
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