
The Inference Graph of Cybersecurity Rules

Dawood Sheniar
Faculty of HES

University of Southern Queensland
Toowoomba, Australia

dawoodsallemhussian.sheniar@usq.edu.au

Nabeel Hadaad
Faculty of HES

University of Southern Queensland
Toowoomba, Australia

NabeelMahdy.Hadaad@usq.edu.au

Ron Addie
Faculty of HES

University of Southern Queensland
Toowoomba, Australia
ron.addie@usq.edu.au

Abstract—The concept that cybersecurity architecture is the
discovery, definition and validation of rules is introduced. The
new concept of inference graphs for illustrating the relationship
between cybersecurity rules is defined. Three increasingly
complex examples of inference graphs for systems needing
cybersecurity architecture are presented, including the detailed
proofs which form the basis of these inference graphs, in
some cases. The software which has been developed to support
the development and use of cybersecurity inference graphs is
described including details of the public server where it can
be used. It is shown that cybersecurity inference graphs can
significantly contribute to development of, and validation of
cybersecurity and also that rigorous validation of cybersecurity
is not necessarily as difficult as previously thought.

Keywords—Cybersecurity rules, inference graph, security de-
sign, proof, stakeholder security analysis, cybersecurity architec-
ture, Netml.

I. INTRODUCTION

Cybersecurity is essentially the enforcing of the rules
required by the stakeholders of the system under con-
sideration. The collection of cybersecurity rules forms a
graph, in which the vertices represent cybersecurity rules,
and the edges represent inference, in the sense that the
collection of vertices with edges terminating at a certain
vertex, V for example, correspond to the set of rules which
are sufficient to prove the rule corresponding to V . This
representation of cybersecurity provides a way to develop
cybersecurity architecture[10]. These diagrams can also be
used in security design, as a way to validate security designs,
for documentation, and as a way to visualise and develop
alternative designs.

Cybersecurity systems have used Knowledge Graphs
(KG) to store and retrieve data to make decisions about
cyber-attacks [9], [8], [5], [3]. Graphical representation of
logical or structural properties of computer systems is a
well established practice in computer science [4]. Inference
graphs, as introduced and explained in this paper, provide a
graphical representation of cybersecurity architecture.

A. Objectives of this research

The aim of this research is to develop concepts and
tools which assist cybersecurity professionals to define the
security objectives of their systems, the rules which enforce
this security, and the reasoning behind the choice of these
rules. The concepts and tools we propose and illustrate in this
paper will be shown to be sufficient to record and analyse
these rules, both the objectives and the rules which are

enforced, and to ensure that there are no logical flaws in the
system which has been designed. Note that we assume our
cybersecurity objectives include the control of all important
risks.

In Example 1 of Section III, we see how a key design
objective is achieved rigorously by a clever decision which
emerges from the use the cybersecurity inference graph of
this system. Example 2 is based on a cybersecurity weakness
in a web service administered by one of the authors, which
was analysed and solved previously [12] so in this case the
inference graph is used to illustrate the proofs which were
developed then. In Example 3, finding the correct proofs was
a complicated task which was facilitated by the use of the
inference graph of rules and objectives of the system.

B. Stakeholder Analysis

Stakeholder analysis [7], [11], [6] begins by identifying
those who influence or who are influenced by decisions or
outcomes of the system. There are several ways to classify
stakeholders some of which depend on their threat potential.

As set out in [6], the most important reason for a careful
stakeholder analysis, from the point of view of this paper,
is that if we are able to identify a sufficient set of rules to
ensure the willing participation of each stakeholder, and if
we can enforce these rules, then the system is self-evidently
secure. Through experience, stakeholders may, during the
lifetime of a system, discover that there are rules which were
not initially obvious and which need to be added to their
required rule set. This should not inhibit us from attempting
to identify as complete as possible a set of stakeholder
rules. Furthermore, if sufficient care is taken with stakeholder
analysis, discoveries of missing rules should be infrequent.

C. The Netml system

Netml is a cloud-based system developed by the Univer-
sity of Southern Queensland and City University of Hong
Kong. It is used by students to analyse, design, and simulate
networks [1], [2]. It is freely available for use (in the cloud)
at https://netml.org. The Netml system is used in this
research to create and modify inference graphs.

A tool which enables graphical editing of inference
graphs is essential because the layout of an inference graph
can improve its clarity and usefulness considerably, and
the only practical way to develop this layout is by manual
editing. In addition, the tools developed in this research,
which are described in Section IV, may be used via the
most recent version of the public Netml server.

Section II defines and explains the concept of an infer-
ence graph. Section III uses three examples to illustrate their
use. Section IV describes the software tools which have been
developed to enable inference graphs to be readily developed
and managed. Finally, Section V presents conclusions. A
sample of the software which has been developed is pre-
sented in the appendix.

II. INFERENCE GRAPHS

An inference graph shows the relationship of inference
(what implies what) which applies between the different
cybersecurity rules which apply in a system. Examples of
inference graphs are shown in Figures 2 and 4. These will
be explained in Section III.

The following types of rules arise in cybersecurity
analysis: objective, enforced rule, axiom, proposition, and
assumption. An objective is a rule which is required to be
true at all times. An enforced rule is a condition which it is
possible to enforce, and which it has been decided to enforce,
by technical means. For example, access to many systems
is only provided if a user is able to enter a valid username
and password.

An axiom is a condition which is held to be true a priori;
an assumption is a condition which we choose to believe. For
example, under some conditions we assume that users do not
reveal their password to other users. A proposition is a rule
or statement which we define in order to express a useful
stage of reasoning.

An edge in an inference graph connects each of the
rules which are referenced in a proof to the rule which
is proved. Objectives are typically the destination of edges,
while enforced rules usually occur only as the origin of an
edge.

A. Proof as a relationship

The goal of cybersecurity is to guarantee that certain
objectives are maintained. For example, it is likely that
a bank will have, as an objective, that no transactions –
transfers of money from one account to another – occur
except with valid authorization.

The aim of cybersecurity design is to discover or instan-
tiate axioms, assumptions, and enforced rules which enable
us to prove that the objectives are true. Along the way to
doing this there may be some intermediate propositions that
we also wish to prove.

Thus, objectives and intermediate propositions have
proofs. On the other hand, axioms do not have proofs
because these are fundamental truths that are true from
logical principles or, in some cases, because they express
follow from the definition of the predicates they contain,
assumptions are true by assumption (which might not always
hold, but at present we adopt them), and enforced rules are
true because we make sure, in the system, that they are true,
so none of these rule types have proofs. The appearance of a
reference to a proposition, assumption, axiom, objective, or
enforced rule, in a proof, constitutes a relationship between
that rule and the rule being proved. The inference graph has
vertices or nodes corresponding to the rules, and directed

Table I: Rules for a parcel box

Rule Name Details
O1 Parcels cannot be stolen (taken from the box by someone

other than the owner) from the parcel box
O2 Parcels can be retrieved from the parcel box by the owner

of the box
O3 Deliverers are able to store delivered goods in the box

whenever they visit the property with an item to be delivered
A1 The owner of the parcel box does not allow access to the

codes they receive to anyone else
E1 Codes are sent by a secure path to the owner of the parcel

box
E2 Codes are sent by a secure path to the parcel box
E3 Codes for access to the box are generated and stored on the

server in a system which does not provide read access to any
person, agent, or process, except for a process which sends
them to the owner of the parcel box, and to deliverers, and
this process cannot be used to send the codes to anyone else

E4 Parcels cannot be removed from a locked box without a code
for opening it

E5 Parcels can be removed from a locked box by anyone with
the code for opening associated with the parcel it contains

E6 The parcel box can be opened by the code sent to a deliverer,
when, and only when, it is empty.

E7 Deliverers are scheduled to visit the parcel box only when
it is empty.

edges or links from any rule which is referenced in a proof
to the rule which is proved.

In the diagrams which are included below, the different
types of rules are represented by nodes of different shapes
and colours, as indicated in the Legend, shown in Fig. 1.

Figure 1: Legend for Inference graphs

III. EXAMPLES

A. A parcel box

Consider a box for delivering parcels which can be
opened only by the owner and those delivering parcels

The objectives of the system as a whole are:

• Deliverers are able to store delivered goods in the
box whenever they visit the property with an item
to be delivered.

• Goods can not be taken from the box except by the
owner(s) of the box or their agents.

• The owner of the box is fully informed concerning
any deliveries to or removals from the box.

The objective, assumptions, and enforced conditions for
this example are listed in Table I.

The inference graph for these rules is shown in Fig. 2.

Figure 2: Inference graph of rules for a parcel box

This example illustrates the way in which assumptions
can, and should, influence design of a system. If we assume
that deliverers can be trusted implicitly, there is no need to
ensure that deliverers can only open a parcel box when it is
empty. If, on the other hand, we do not make this assumption,
the system will need to ensure that deliverers cannot open a
parcel box which contains a parcel. This approach is more
secure, but a little more difficult to manage. In the past,
assuming that deliverers can be implicitly trusted would not
seem unreasonable, but in future, as the range of delivery
options increases, such an assumption might come to seem
unnecessary and unrealistic.

The decision to schedule deliveries to take place only
when the parcel box is empty was made, in the development
of this system, in conjunction with, and under the influence
of the cybersecurity inference graph. Objective O1 could
be ensured by assuming that deliverers can be trusted, but
a significantly better design results by searching for an
alternative to this risky assumption.

B. A password reset system

Consider a portal which maintains accounts for users of
its services and which has a password reset service, such as
discussed in [12]. The rules which apply to the stakeholders
of a service for which a password reset service is available
are listed in Table II.

Figure 3: Inference graph of rules for a password reset
system

Table II: Rules for the tickets in a password reset system

Rule Name Details
O1 Users are able to reset their password by receiving a ticket by

email and using this ticket at the website within 30 minutes,
assuming that they provide an incorrect ticket at most twice.

O2 Agents/persons other than a valid user cannot use this system
to reset the password of a user.

A1 Ticket’s sent to users are received by email within 1 minute.
A2 Only persons/agents who know a user’s email password can

access email sent to the user within the last 30 minutes.
A3 The user’s password cannot be guessed.
A4 The user is the only person/agent who knows their email

password.
A5 The possibility of an attacker intercepting a ticket on the

user’s email client, during its 30 minutes of valid life is
negligible.

A6 The possibility guessing a ticket in fewer than 10,000
attempts is negligible.

A7 The server administrator never acts in a way to subvert the
intentions of the system he/she administers.

E1 Use of an invalid ticket to reset a password three times
or more in 10 minutes, for a certain user, causes any
outstanding tickets for that user to become invalid.

E2 Tickets supplied 31 minutes after generation are no longer
valid.

E3 When a ticket is successfully used, it will not be valid in
future.

E4 If a user supplies a valid ticket, at the service web site,
they can use this site to set their password to a new setting,
without knowing the existing password.

E5 Any user can cause a ticket to be generated and sent to the
user’s previously registered email address, by appropriate
actions at the service web site.

E6 The only way to reset a password is by supplying a valid
password reset ticket.

E7 The only way to generate a password reset ticket is by the
password reset service.

E8 Password reset tickets cannot be accessed by any user
other than the administrator, on the server where they are
generated.

The key requirements for this system are O1 and O2 in
this table, i.e. the service can be used to change passwords,
but users can only change passwords for their own accounts.
Such systems are vulnerable to logical errors, as discussed
in [12]. An inference graph for this system, which can be
used to guide its validation, is shown in Fig. II.

C. Signatures

The validity of the signature of a document can be
checked by the digital signature algorithm. Once this check-
ing has been done, we can be confident that a person who
has, in their posession, the private key of a certain digital
certificate signed the document.

What is being checked here is not that the signer is
the author, but that they are the signer, of the document.
Suppose we want to check that Joan is a signatory of a
certain document, d. It is not sufficient to merely check the
signature, with the document, and a certain certificate. The
validity of the signature also needs to be checked, and this
in turn requires additional checks. A proof of the statement
“Joan is a valid signatory of document d”, which undertakes
all these needed checks, is illustrated in Fig. 4. The rules
which are used, in this checking process, are described in
Table III.

With the help of the predicates in Table IV and the names
of the objects listed in Table V, the axioms, listed informally
in Table III, can now be written, more formally as follows:

Table III: Rules for signatures

Rule Name Details
O1 Joan is a valid signatory of document jdoc.
E1 The document d has signature ds.
E2 Document d is valid according to the digital signature

ds,which uses certificate jc
E3 Joan has certificate jc.
E4 The certificate jc has signature jcs.
E5 Certificate jc is valid according to signature jcs which uses

certificate cc
E6 CA has certificate cc
E7 cc has signature cs
E8 cc has signature cs which is valid according to certificate

vc
A1 If A is a valid authority, c is a certificate with signature s

and the signature s is valid according to A, then c is a valid
certificate.

A2 If A has certificate c, d has signature s, certificate c is valid
and the signature s is valid according to c, then A is a
signatory of d.

A3 VA is a valid authority with certificate vc
A4 If A has certificate c and c is valid, then A is a valid authority

with certificate c
P1 cc is a valid certificate.
P2 CA is a valid authority with certificate cc.
P3 jc is a valid certificate.

Table IV: Predicates used to validate signatures

Predicate Meaning
HasSig(x,y) x is a document and y is its signature
IsValidAccTo(x,y,z) x is a signature for document y which is valid

according to certificate z
IsSignatory(d,A) A is a signatory of the document d
HasCert(A,c) c is a certificate owned by A
IsValidCert(x) x is a valid certificate
IsValidAuthority(X,xc) X is a valid a certificate authority with cer-

tificate xc

A1: ∀A,c,s,ac : IsValidAuthority(A,ac) ∧
HasSig(c,s)
∧IsValidAccTo(s,ac,A)⊃ IsValidCert(c).

A2: ∀A,d,c,s : HasCert(A,c)∧HasSig(d,s)
∧IsValidCert(c)∧
IsValidAccTo(s,d,c)⊃ IsSignatory(d,A).

A3: IsValidAuthority(VA,vc).

A4: ∀A,c : HasCert(A,c) ∧ IsValidCert(c) ⊃
IsValidAuthority(A,c).

Notice that Axiom A4 asserts that anyone with a valid
certificate is a valid authority. In a more detailed account,
certificates need to include a list of specific capacities
that are granted by the certificate, which will then allow
some certificates to empower their owners to sign other
certificates, as well as documents, and others to only sign
documents. This feature of certificates has been omitted from
this example in the interest of simplicity.

Some key objects which are referenced by name in Table
III are listed, with their explanations, in Table V. When the
informal statements listed in Table III are stated in formal
logic we need to use certain predicates, the definitions of
which are provided in Table IV.

D. A proof

Let us now review the proofs of P1, P2, P3 and O1. Note
that although these proof are conceptually simple, actually

Table V: Names of objects and entities which appear in the
proof that Joan is the signatory of the document

Name Description
CA Certisign digital certificate authority
VA Verisign
cc The certificate owned by Certisign which

authorizes them as a certificate signing au-
thority

jc Joan’s certificate
ds The signature on Joan’s document
jdoc The document of Joan

finding them and including all details is not so easy, and
the proofs given here required several iterations, due to
the discovery of logical flaws present in the first attempts.
Such logical flaws can be the basis for attacks if they are
not discovered by software developers. In cases where the
need for absolute rigour is paramount, finding all the details
required for a proof to be algorithmically verified may be
warranted.

Finding the proofs of all the propositions and objectives
in this example was achieved with the aid of the inference
graph of their relationships.

Proof of P1

To prove that a certificate is a valid, we can use Axiom
A1 with VA in place of A, cc in place of c, vc in place
of ac, and cs in place of s. The process of generating a
specific version of an axiom in this way is a feature of the
predicate calculus which is needed here and explains why
we need the predicate calculus, not just the propositional
calculus, to correctly model the logic of this system. With
these substitutions, Axiom A1 becomes:

IsValidAuthority(VA,vc)∧HasSig(cc,cs) (1)
∧IsValidAccTo(cs,vc,VA)⊃ IsValidCert(cc).

The antecedent conditions of this specialized axiom are A3,
E7 and E8. Two of these conditions are enforced, and the
other is an axiom. Hence the conclusion of (1) follows,
which is what we wished to prove.

Figure 4: Graph of cybersecurity rules and their interdepen-
dencies for proof that Joan is a signatory of document d

Proof of P2

This follows from A4, with P1 and E6 to confirm the
antedent conditions.

Proof of P3

To prove that certificate jc is a valid, we can use Axiom
A1 again this time with CA in place of A, jc in place of c, cc
in place of ac, and js in place of s. With these substitutions,
Axiom A1 becomes:

IsValidAuthority(CA,cc)∧HasSig(jc,js)
∧IsValidAccTo(js,cc,CA)⊃ IsValidCert(jc).

The antecedent conditions of this specialized axiom are P2,
E7 and E8. Two of these conditions are enforced, and the
other is an axiom. Hence the conclusion of (1) follows,
which is what we wished to prove.

Proof of O1

To prove that an author is a signatory, we can use Axiom
A2. In the present instance, O1 follows from A2 with Joan
in place of A, jdoc in place of d, ds in place of s, and jc in
place of c. The process of generating a specific version of an
axiom in this way is a feature of the predicate calculus which
is needed here and explains why we need the predicated
calculus, not just the propositional calculus, to correctly
model the logic of this system. With these substitutions, the
axiom becomes:

HasCert(Joan,jc)∧HasSig(jdoc,ds)
∧IsValidCert(jc)∧IsValidAccTo(ds,jdoc,jc)
⊃ IsSignatory(jdoc,Joan).

The antecedent conditions of this specialized axiom are P3,
E1, E2 and E3. Three of these conditions are enforced, and
P3 has already been proved, above. Hence the conclusion of
this axiom follows, which is what we wished to prove.

IV. SOFTWARE

Two scripts have been developed: latex2netml and
netml2latex. These convert between two representations of a
set of rules, in LATEX, and in xml. Fig. 5 shows how a rule
is represented in LATEX, and Fig. 6 shows the form this same
rule takes when it has been translated into xml form. Part
of the main script implementing latex2netml is shown in the
appendix.

The LATEX representation is suitable for textual represen-
tation of rules and their proofs. The Netml representation
allows a cybersecurity rule-set to be represented and edited
graphically. Scripts for conversion in both directions allow
both these representations to be used, in appropriate situa-
tions.

The Netml server (https://netml.org/netml4_69)
can be used as a way to access these scripts and to graph-
ically edit inference graphs. When a file is loaded, if the
filename has the extension .tex, the latex2netml will be
applied to the file and the resulting xml file is then loaded
and displayed. The Netml user-interface can then be used
to modify the layout of the inference graph. The inference
graph can then be saved either as an xml file or as a tex
file.

\begin{objective}s\label{O3}
Deliverers are able to store delivered goods in

the box whenever they visit the↪→

property with an item to be delivered
\end{objective}
\begin{proof}
\ref{E3}\ref{E6}\ref{E7}
\end{proof}

Figure 5: Representation of a rule in LATEX

<node id='O3' type='objective'>
<label>O3</label>
<name>Objective O3</name>
<dependson>E3</dependson>
<dependson>E6</dependson>
<dependson>E7</dependson>
<xposition>642</xposition>
<yposition>325</yposition>
<statement>

Deliverers are able to store delivered goods in
the box whenever↪→

they visit theproperty with an item to be
delivered↪→

</statement>
<proof>

\ref{E3}\ref{E6}\ref{E7}
</proof>

</node>

Figure 6: Representation of a rule in xml

The latex2netml script is able to take either just a tex
file, or both an xml file and a tex file. In the former case the
positions of the nodes in the xml file will be chosen by an
algorithm which attempts to separate nodes from each other
in an effective way. In the latter case, the xml file is used
as a guide for where nodes should be placed. If a file of the
same name is loaded into the public server, the existing xml
file, in the user’s repository, will be used to determine the
node positions.

The shape of the nodes, and their colour, can also be
used, as we have seen in several examples, in Section III, to
represent inference relationships between rules more clearly.

V. CONCLUSION

The proofs required in most cybersecurity problems are
not mysterious. It is often obvious how the statement of
a rule follows from the rules on which it depends. The
challenge in creating systems which are rigorously secure
is more an issue of clarity and attention to detail. Rigorous
proof requires much greater precision of detail than in
normal speech or writing.

It is often sufficient to merely indicate which rules are
required to prove an objective or condition, for the proof to
be obvious. Alternative designs with different assumptions
should be considered, to find the correct balance between
security and convenience. In some cases, despite their sim-
plicity, precisely specifying the details of a proof can be

challenging, and an inference graph helps to achieve the
necessary clarity. In all such cases, an inference graph can
be used to help find and to graphically illustrate the proofs,
once they have been found.

Inference graphs, as defined and illustrated in this paper,
provide a way to visualise and validate cybersecurity rules
and their relationships, in a way which can be very helpful
in cybersecurity architecture and design. Publicly available
tools for inference graphs have been developed.

REFERENCES

[1] Ron Addie, Stephen Braithwaite, and Abdulla Zareer. Netml: a
language and website for collaborative work on networks and their
algorithms. In Proceedings of the Australian Telecommunication
Networks and Applications Conference (ATNAC 2006), pages 1–5.
University of Melbourne, 2006.

[2] Ronald G Addie, Yu Peng, and Moshe Zukerman. Netml: networking
networks. In Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on, pages 1055–1060.
IEEE, 2011.

[3] Yuli Deng, Duo Lu, Dijiang Huang, Chun-Jen Chung, and Fanjie
Lin. Knowledge graph based learning guidance for cybersecurity
hands-on labs. In Proceedings of the ACM Conference on Global
Computing Education, pages 194–200. ACM, 2019.

[4] Luc Engelen and Mark van den Brand. Integrating textual and
graphical modelling languages. Electronic Notes in Theoretical
Computer Science, 253(7):105–120, 2010.

[5] Nirnimesh Ghose, Loukas Lazos, Jerzy Rozenblit, and Ronald
Breiger. Multimodal graph analysis of cyber attacks. In 2019 Spring
Simulation Conference (SpringSim), pages 1–12. IEEE, 2019.

[6] Nabeel Hadaad, Luke Drury, and Ron Addie. Protecting services
from security mis-configuration. In International Telecommunication
Networks and Applications Conference (ITNAC), 2015.

[7] Project Management Institute. A guide to the project management
body of knowledge (pmbok® guide)-(simplified chinese). Project
Management Institute, 2018.

[8] Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, and Aiping Li. A prac-
tical approach to constructing a knowledge graph for cybersecurity.
Engineering, 4(1):53–60, 2018.

[9] Aditya Pingle, Aritran Piplai, Sudip Mittal, and Anupam Joshi.
Relext: Relation extraction using deep learning approaches for
cybersecurity knowledge graph improvement. arXiv preprint
arXiv:1905.02497, 2019.

[10] Neil Rerup. Hands-on cybersecurity for architects : plan and design
robust security architectures. Packt Publishing, Birmingham, UK,
2018.

[11] Kenneth H Rose. A guide to the project management body of
knowledge (pmbok® guide)—fifth edition. Project management
journal, 44(3):e1–e1, 2013.

[12] Dawood Sheniar, Nabeel Hadaad, David Martin, Ron Addie, and
Shahab Abdullah. Experiments and proofs in web-service security.
In International Telecommunication Networks and Applications Con-
ference (ITNAC), 2018.

APPENDIX

The main script latex2netml which converts LATEX files
to Netml files is shown in Listing 1.
#!/bin/bash
if [["$1" == "-h"]]
then

echo "latex2netml [-l] [-o outputfile] [-p
directoryForPositionXMLFile] file1.tex
file2.tex ..."

↪→

↪→

echo "-l to use labels rather than ids to label nodes"
exit 0

fi
if [["$1" == "-l"]]

then shift
echo "latex2netml.pl -f $* \; -l >

˜/tmp/tmp.xml"↪→

if [["$1" == "-o"]]
then shift

outfile=$1
shift

else
outfile="none"

fi
if [["$1" == "-p"]]
then shift

positiondir=$1
shift

else
positiondir="none"

fi
if [[$positiondir == "none"]]
then
latex2netml.pl -f $* \; -l -o /tmp/tmp.xml
else
echo "latex2netml.pl -f $* \; -l -o

/tmp/tmp.xml -p \"$positiondir\" "↪→

latex2netml.pl -f $* \; -l -o /tmp/tmp.xml -p
"$positiondir"↪→

fi
else # echo "latex2netml.pl -f $* \; >

˜/tmp/tmp.xml"↪→

if [["$1" == "-o"]]
then shift

outfile=$1
shift

else
outfile="none"

fi
if [["$1" == "-p"]]
then shift

positiondir=$1
shift

else
positiondir="none"

fi
if [[$positiondir == "none"]]
then
latex2netml.pl -f $* \; -o /tmp/tmp.xml
else
latex2netml.pl -f $* \; -o /tmp/tmp.xml -p

"$positiondir"↪→

fi
fi
xsltproc /usr/bin/addlinks.xsl /tmp/tmp.xml > /tmp/tmp2.xml
xsltproc /usr/bin/addlinks.xsl /tmp/tmp2.xml >

/tmp/tmp3.xml↪→

xsltproc /usr/bin/addlinks.xsl /tmp/tmp3.xml >
/tmp/tmp4.xml↪→

xsltproc /usr/bin/addlinks.xsl /tmp/tmp4.xml >
/tmp/tmp5.xml↪→

if [["$outfile" == "none"]]
then xsltproc /usr/bin/addlinks.xsl /tmp/tmp5.xml
else xsltproc /usr/bin/addlinks.xsl /tmp/tmp5.xml >

$outfile↪→

fi

Listing 1: latex2netml main script

This script invokes a Perl script to convert the LATEX files
to an xml file. This xml file is then processed by the xslt
script addlinks.xsl.

