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In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains

propagating in a media with the double dispersion occurring both at small and large wavenumbers.

We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos.

Ocean. Phys. (Engl. Transl.) 17, 55–59 (1981)] which describes both surface and internal long

waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak,

whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For

unidirectional waves propagating in one direction, only the considered set of equations reduces to

the Gardner–Ostrovsky equation which is applicable only within a finite range of wavenumbers.

We derive the nonlinear Schr€odinger equation (NLSE) which describes the evolution of narrow-band

wave-trains and show that within a more general bi-directional equation the wave-trains, similar

to that derived from the Ostrovsky equation, are also modulationally stable at relatively small

wavenumbers k< kc and unstable at k> kc, where kc is some critical wavenumber. The NLSE

derived here has a wider range of applicability: it is valid for arbitrarily small wavenumbers. We

present the analysis of coefficients of the NLSE for different signs of coefficients of the governing

equation and compare them with those derived from the Ostrovsky equation. The analysis shows

that for weakly dispersive waves in the range of parameters where the Gardner–Ostrovsky

equation is valid, the cubic nonlinearity does not contribute to the nonlinear coefficient of

NLSE; therefore, the NLSE can be correctly derived from the Ostrovsky equation. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937362]

It is a well-known fact that plane surface gravity waves on

shallow water are stable with respect to self-modulation,

when k h< 1.363, where k is the wavenumber and h is the

water depth. The same remains basically true for gravity-

capillary waves, if the surface tension effect is not too

strong; however, the criterion of stability in terms of k h
becomes more complicated and depends on surface ten-

sion (Ablowitz and Segur, 1981). The situation becomes

even more complicated for waves in a rotating fluid. In

1981, Shrira derived an equation describing long nonlin-

ear waves in a rotating fluid and, neglecting the small-

scale (Boussinesq) dispersion, obtained the nonlinear

Schr€odinger equation (NLSE) for quasi-harmonic waves.

According to the analysis performed within the NLSE,

surface waves are unstable to self-modulation due to the

influence of rotation at very small wavenumbers k h! 0.

In 2008, Grimshaw and Helfrich found that within the

Ostrovsky equation, which is a particular case of Shrira’s

equation, valid within the certain range of wavenumbers,

k1< k< k2, the modulation instability occurs for relatively

big wavenumbers, when kc< k< k2, whereas at small

wavenumbers k1< k< kc, waves are stable. However,

their analysis seems incomplete in application to real

physical processes, since the cubic nonlinear term is not

included into the Ostrovsky equation, whereas it can con-

tribute to the nonlinear coefficient of NLSE. More accu-

rate analysis based on the Gardner–Ostrovsky equation

containing both quadratic and cubic nonlinearities was

performed by Whitfield and Johnson (2015a; 2015b). The

results obtained in the papers by Shrira (1981), on the one

hand, and Grimshaw and Helfrich (2008), as well as

Whitfield and Johnson (2015a; 2015b), on the other hand,

provide a contradictory conclusion about the modulation

instability of large scale waves; the resolution of the issue

requires more attention. In this work, we revisit the

results obtained in all these papers and derive the NLSE

applicable to quasi-monochromatic waves both with very

small wavenumbers of carrier wave, up to k ! 0, and

with relatively big wavenumbers, when the influence of

small-scale Boussinesq dispersion becomes important. We

present the governing equation in the dimensionless form

containing the dispersion parameters of either sign, so

that the equation is applicable not only to water waves in

a rotating fluid but also to a wider class of nonlinear

waves of any nature. From the derived NLSE,s we deter-

mine then the criterion of modulational stability/instabil-

ity for all possible signs of dispersion coefficients and

show that the results obtained agree well with the findings

of Grimshaw and Helfrich (2008) within the range of

validity of Ostrovsky equation, but contradict to the

results obtained by Shrira (1981) at small k. We also show

that the correction to the nonlinear coefficient in the
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NLSE due to the cubic nonlinear term in the

Gardner–Ostrovsky equation as derived by Whitfield and

Johnson (2015a; 2015b) is actually of the next order of

smallness and can be usually neglected, unless the coeffi-

cient of the quadratic nonlinearity in the

Gardner–Ostrovsky equation is not anomalously small

(such situation can occur, e.g., for internal waves in two-

layer fluid (Ostrovsky et al., 2015)).

I. INTRODUCTION

It is a matter of a well-known fact that unidirectional

trains of shallow-water waves (both surface and internal) are

modulationally stable except the case of a very strong sur-

face tension effect (Ablowitz and Segur, 1981). This result

formally agrees with what follows from the Korteweg–de

Vries (KdV) equation

@g
@t
þ c0

@g
@x
þ ag

@g
@x
þ b

@3g
@x3
¼ 0; (1)

which is applicable to the description of weakly nonlinear

long waves. The coefficients a and b may be of either sign

depending on the nature of waves. In particular, for the sur-

face gravity-capillary waves the coefficients are (Karpman,

1973)

a ¼ 3

2

c0

h
; b ¼ c0h2

6
1� 3r

qgh2

� �
; (2)

where c0¼ (gh)1/2 is the speed of long linear waves, g is the

acceleration due to gravity, h is the fluid depth, r is the sur-

face tension, and q is the fluid density. The dispersion rela-

tion between the wave frequency x and wavenumber k for

infinitesimal amplitude waves in the linearised equation (1)

is well-known (see, e.g., Ablowitz and Segur (1981);

Karpman (1973); and Ostrovsky et al. (2015))

xðkÞ ¼ c0k–bk3: (3)

It shows that the dispersion appears at relatively large k
(small wavelength k), when the influence of the second term

in the right-hand side is not negligibly small. Such small-

scale (“Boussinesq”) dispersion is typical for long water

waves. The derivation of Eq. (1) is based on the assumption

that the dispersion is weak, so that bk3 � c0k or k � k1,

where k1¼ (c0/jbj)1/2. Depending on the sign of coefficient

b, one can distinguish between the negative dispersion, if

b> 0 (the phase speed Vp � x(k)/k¼ c0�bk2 decreases

with k in this case), and positive dispersion, if b< 0 (the

phase speed increases with k).

There are also physical systems containing the large-

scale (“Coriolis-type”) dispersion which manifests when

k! 0 and disappears when k ! 1. In many physical situa-

tions the large-scale dispersion is small and of the same order

of smallness as the small-scale dispersion, so that the com-

bined dispersion relation can be presented in the form

xðkÞ ¼ c0k � bk3 þ c=k; (4)

where c is some constant which can be of either sign, and

c/k� c0k, so that k � k2, where k2¼ (jcj/c0)1/2. The corre-

sponding weakly nonlinear evolution equation generalising

the KdV equation (1) is known as the Ostrovsky equation

(Ostrovsky, 1978; Grimshaw et al., 1998; Grimshaw and

Helfrich, 2008; 2012; and Ostrovsky et al., 2015)

@

@x

@g
@t
þ c0

@g
@x
þ ag

@g
@x
þ b

@3g
@x3

� �
¼ cg: (5)

This equation is applicable for waves of intermediate

spatial scales ffiffiffiffiffiffiffiffiffiffiffiffi
jcj=c0

p
� k�

ffiffiffiffiffiffiffiffiffiffiffiffi
c0=jbj

p
; (6)

when both small-scale and large-scale dispersions are rela-

tively small.

Grimshaw and Helfrich (2008; 2012) using Ostrovsky

Eq. (5) with b> 0 and c> 0 have shown that the large scale

dispersion drastically changes the modulation stability of

quasi-harmonic wave-trains. The nonlinear correction to the

wave frequency remains negative for all wavenumbers as in

the case of KdV equation, but the dispersion coefficient in

the NLSE changes its sign at k¼ kc � (c/3b)1/4 when the

group velocity cg¼ dx/dk attains maximum. Therefore,

the corresponding NLSE remains modulationally stable for

k< kc, but becomes unstable for k> kc. This is in a sharp

contrast to the intuition based on the NLSE derived from the

KdV equation (1). Indeed, at a first glance one can expect an

influence of Coriolis-type dispersion at large scales only, as

it vanishes when k ! 1. At this limit, k ! 1, the small-

scale dispersion predominates, and wave-trains should be

modulationally stable as in the case of KdV equation.

The physical explanation of this apparent contradiction

is in the crucial role of a zero harmonic (the “mean flow”)

generated by the basic wave-train. The nonlinear coefficient

in the NLSE usually consists of contributions from both the

second and zero harmonics. However, the zero harmonic is

beyond the range of applicability of the Ostrovsky equation

(see above), which formally requires the zero total “mass” of

a perturbation (see, e.g., Grimshaw et al. (1998)). Therefore,

the zero harmonic cannot contribute to the nonlinear coeffi-

cient, and the second harmonic provides the nonlinear coeffi-

cient in the NLSE of the opposite sign in comparison with

that derived from the KdV equation, where both zero and

second harmonics contribute jointly (this will be clearly seen

from the analysis presented in the Appendix).

As the Ostrovsky equation is approximate and has a lim-

ited range of validity, the issue of modulation stability of

wave-trains remained uncertain thus far, because at very

small wavenumbers the situation with the modulation stabil-

ity could be different, and contribution of the zero harmonic

into the nonlinear coefficient of NLSE might be important

again. Therefore, the problem of modulation stability of

wave-trains should be resolved within the framework of

more accurate equations in the long-wave limit. Moreover,

for the analysis of modulation stability of waves in the real

physical systems (e.g., water waves, or plasma waves) the

KdV model equation is, obviously, insufficient, because it
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contains only the quadratic nonlinear term, whereas cubic

nonlinear terms usually provide the same order contribution

to the nonlinear coefficient of NLSE.

The analysis of modulation stability of long water waves

in a rotating fluid was undertaken as earlier as 1981 by

Shrira, who derived a set of shallow-water equations and

investigated modulation stability of quasi-monochromatic

waves, ignoring however the small-scale dispersion. His

analysis predicts the modulation instability of wave-trains at

very small wavenumbers; this does not match with the result

of Grimshaw and Helfrich (2008; 2012). Thus, the problem

of modulation stability of water waves requires thorough

consideration which motives the current study.

Below the problem of modulation stability of quasi-

monochromatic wave-trains is re-examined on the basis of

the 2D shallow-water model set of equations derived by

Shrira (1981) and augmented by the terms representing the

Boussinesq dispersion. We derive the 2D NLSE and study a

stability of quasi-monochromatic wave-trains with respect to

longitudinal and transverse modulations for various signs of

coefficients of the NLSE. The results obtained can be applica-

ble not only to water waves, but in the wider context, includ-

ing plasma waves, waves in solids, in optical media, etc.

II. THE GOVERNING EQUATIONS AND DISPERSION
RELATIONS

We start with the following set of equations applicable

(after appropriate scaling) both to surface and internal waves

in the Boussinesq approximation (Ostrovsky, 1978; Shrira,

1981; and Grimshaw et al., 1998)

@g
@t
þr? hþ gð Þq½ � ¼ 0; (7)

@q

@t
þ q � r?ð Þqþ f � q½ � þ c2

0

h
r?gþ s h

@2r?g
@t2

¼ 0; (8)

where g is the perturbation of a free surface in a non-

stratified fluid or perturbation of an isopycnal surface (sur-

face of equal density) in a stratified fluid, q¼ (u, t) is the

depth averaged fluid velocity with two horizontal compo-

nents, longitudinal u and transverse t, f¼ fn, where f¼ 2X
sinu is the Coriolis parameter, X is the angular frequency of

Earth rotation, u is the local geographic latitude, n is the unit

vector normal to the Earth surface, and r?¼ (@/@x, @/@y).

Other parameters in Eqs. (7), (8) are c0—the speed of long

linear waves, h—the fluid depth, and s—the dispersion

parameter. In the case of surface waves the long-wave speed

c0 ¼
ffiffiffiffiffi
gh
p

, and s¼ (1� 3r/q gh2)/3, whereas for internal

waves in two-layer fluid c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dq
q g h1h2

h1þh2

q
and s¼ h1h2/3h2,

where h1 and h2 are thicknesses of the upper and lower layers

correspondingly, and Dq¼ q2�q1 is the difference of layer

densities (in the Boussinesq approximation both these den-

sities are assumed close to each other (q1 	 q2¼q), while

the product Dq g is assumed to be finite).

In one-dimensional case when all variables depend on

one spatial coordinate x this set of equations can be reduced

to one bi-directional equation for the transverse velocity t
(Shrira, 1981). If we put

g ¼ h

f

@t
@x
; u ¼ � 1

f þ tx

@t
@t
; (9)

where indices t and x here and below stand for the corre-

sponding derivatives, then we obtain

ttt � c2
0txx þ f 2t� s h2tttxx ¼

tttx

f þ tx

� �
t

þ f

2

ttð Þ2

f þ txð Þ2

" #
x

:

(10)

For perturbations of relatively small amplitude, the non-

linear terms in the right-hand side can be simplified, and

Eq. (10) can be reduced to

ttt � c2
0txx þ f 2t� s h2tttxx

	 1

f
ttttx þ 2tttxtð Þ � 1

f 2
ttt txð Þ2 þ 4tttxtxt þ ttð Þ2txx

h i
:

(11)

By introducing new variables s¼¼ ft/�jCj, n¼ (x/h)

(jB/sj)1/2, w¼ t (jB/sj)1/2/(Ahf), where A¼B¼C¼ 1, one

can present Eq. (11) in the dimensionless form

wss � C2wnn þ Cw� Bwssnn

¼ Aðwsswn þ 2wswsnÞ � U½wssðwnÞ2

þ 4wswnwsn þ ðwsÞ2wnn�; (12)

where C2¼ (c0/hf)2(jBC/sj) stands for the normalised

characteristic wave speed, and U¼A2 (we prefer to keep

letter U rather than A2 to track the contribution of nonlinear

terms in the final equation). For further estimates we put

C¼ 34.3 assuming that h¼ 1000 m, g¼ 9.8 m/s (c0¼ 99 m/s),

f¼ 5 � 10�3 s�1, s¼ 1/3, and B¼C¼ 1.

In what follows we will not restrict ourselves to the par-

ticular choice of dimensionless coefficients A¼B¼C¼ 1 as

above, but will assume that these coefficients can be of either

sign with the moduli equal to unity. Then Eq. (12) or its uni-

directional analogue, the Ostrovsky equation (see below) can

be considered in a much wider context. In particular, the

coefficient B can be negative for magnetosonic waves in a

rotating plasma (Obregon and Stepanyants, 1998) or for

capillary waves in a liquid fluid layer (Karpman, 1973) (see

Eq. (2)); the coefficient C is usually positive, but can be

negative in a rotating stratified ocean with shear flows (Alias

et al., 2014a; 2014b).

For unidirectional waves propagating, for instance, to

the right only, one can derive from Eq. (12) the following

Gardner–Ostrovsky equation (Ostrovsky, 1978; Grimshaw

et al., 1998; and Ostrovsky et al., 2015)

@

@n
@w

@t
þ C

@w

@n
þ af

@f
@n
� a1f

2 @f
@n
þ b

@3f

@n3

 !
¼ rf; (13)

where f¼ @w/@n (in terms of Eq. (9) this is just the normal-

ised variable g: f¼ (g/Afh)(B C/s)1/2], a¼ 3AC/2, a1¼ 3UC,

b¼BC/2, and r¼C/2C.

For perturbations of infinitesimal amplitudes, the nonlin-

ear terms on the right-hand side of Eq. (12) can be omitted,
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then the following dispersion relation of the linearised equa-

tion can be obtained for t
 exp[i(x t� kx)]:

x2 ¼ C2k2 þ C
1þ Bk2

: (14)

In the intermediate range of wavenumbers where �jCj/C
� k � 1/�jBj, the dispersion relation can be approximated

by the first three terms of the Laurent series (cf. Eq. (4))

x ¼ Ck � bk3 þ r

k
� Ck � BC

2
k3 þ C

2Ck
: (15)

In particular, when r¼ 0 (C¼ 0) we obtain from Eq. (15)

the dispersion relation (3) in the dimensionless variables.

Plots of the dispersion relations (14) and (15) are shown in

Fig. 1 for different values of parameters B and C and

C¼ 34.3. As one can see from these plots, the dispersion rela-

tion (15) approximates well the dispersion relation (14) in the

intermediate range of wave numbers indicated above.

Therefore, the non-physical singularity which appears at k¼ 0

in Eq. (15) with jCj ¼ 1 is actually beyond the range of its

applicability and is just an artefact of approximate character

of the dispersion relation. The more accurate Eq. (14) does

not have such singularity and is valid up to k¼ 0 inclusive.

From dispersion relations (14) and (15), one can readily

obtain the group velocities Vg � dx/dk

Vg ¼
k C2�BCð Þ

1þBk2ð Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2k2þC
p ; VgO ¼C� 3bk2� r

k2
; (16)

where Vg pertains to Eq. (14) and VgO pertains to Eq. (15).

Plots of group velocities are shown in Fig. 2 for

B¼C¼ 1 and B¼C¼�1. All other combinations of signs

are not shown in the figure to avoid a mess.

Critical points of group velocities (16) (maxima, min-

ima, or inflection points depending on signs of parameters B

and C) occur at k¼ kc and k¼ kcO, respectively, where

kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
3B

1þBC
3C

� �s24
3
5� C

C

vuuut ; kcO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

ffiffiffiffiffiffi
C
3B

rs
(17)

(notice that the critical points are real if C/B> 0).

III. THE NONLINEAR SHRODINGER EQUATION
AND MODULATION INSTABILITY

In this section, we analyse the stability of quasi-

monochromatic wave-trains of small amplitude w� 1 within

the framework of NLSE written for the dimensionless vari-

able f¼ @w/@n in the form

i
@w
@s
þ p

@2w

@n2
þ qjwj2w ¼ 0; (18)

where p(k) and q(k) are the dispersion and nonlinear coeffi-

cients, respectively; they depend on the central wavenumber

of the carrier wave and coefficients of the governing equa-

tion. The details of the derivation of this equation from

Eq. (12) are presented in the Appendix. Notice that the dis-

persion coefficient p(k) can be readily obtained directly from

the dispersion relations (14), p(k)¼ (1/2)(@2x/@k2) (see, e.g.,

Karpman (1973); Ablowitz and Segur (1981); and Ostrovsky

and Potapov (1999)). When the NLSE (18) is derived from

the Gardner–Ostrovsky equation (13), then the correspond-

ing dispersion coefficient pO(k) can be obtained from the

dispersion relations (15). Thus, we have

FIG. 1. Dispersion curves as per Eqs. (14) and (15) for different coefficients

B and C. Lines 1 in panels (a) and (b) pertain to Eq. (14) with C¼ 1; lines 2

in panels (a) and (b) pertain to Eq. (15) with the same C¼ 1 (r¼ 1.46

� 10�2); in panel (b) line 3 pertains to Eq. (14) and line 4 to Eq. (15) with

C¼�1 (q¼�1.46 � 10�2). Dashed lines in panels (a) and (b) represent the

dispersionless dependence x¼C k.

FIG. 2. Group velocities as per Eqs. (16) for different coefficients B and C.

Line 1 pertains to Vg with B¼C¼ 1; line 2 pertains to VgO with the same

parameters B and C; line 3 pertains to Vg with B¼C¼�1; line 4 pertains to

VgO with the same parameters B and C; and line 5 pertains to Vg with B¼ 1

and C¼ 0. Dashed horizontal line illustrates the limiting dispersionless case

Vg¼C, and dashed vertical line shows the position of maximum in line 2.

123113-4 Nikitenkova, Singh, and Stepanyants Chaos 25, 123113 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.231.113.85 On: Tue, 15 Dec 2015 16:06:18



p kð Þ ¼ C2 � BC
2

C� 2BCk2 � 3BC2k4

1þ Bk2ð Þ5=2
C2k2 þ Cð Þ3=2

; (19a)

pO kð Þ ¼ �3bk þ r

k3
� C

2k
�3Bk2 þ C

C2k2

� �
: (19b)

The expression for the coefficient pO(k) can be obtained

from Eq. (19a) as the first terms of Taylor series on small

parameters Bk2 � 1 and C/C2k2 � 1. Figure 3 shows the

comparison of coefficients p(k) and pO(k) with each other

and with the coefficient pK(k)¼�3bk � �3BCk/2 that fol-

lows from NLSE derived from the KdV equation.

In frame (a) lines 1 and 2 pertain to p(k) and pO(k) as

per Eqs. (19a) and (19b), correspondingly, with B¼C¼ 1;

lines 3 and 4 pertain to the case when B¼ 1 and C¼�1;

line 5 shows the coefficient pK(k). The insertion in frame (a)

shows the same lines in the different scale. It is clearly seen

that when k increases, lines 2 and 4 asymptotically approach

line 5, whereas lines 1 and 3 become indistinguishable and

both approach zero.

In frame (b), lines 1 and 2 pertain to p(k) and pO(k),

correspondingly, with B¼�1 and C¼ 1; lines 3 and 4 per-

tain to the case of B¼C¼�1; line 5 shows the coefficient

pK(k). The insertion in frame (b) shows the same lines in

the different scale. Again when k increases, lines 2 and 4

asymptotically approach line 5, whereas lines 1 and 3

become indistinguishable and both of them infinitely

increase with k.

As one can see, in some cases the dispersion coefficient

vanishes at k¼ kc1,2 for Eq. (14) and k¼ kO 	 kc1,2 for Eq.

(15), respectively, where

kc1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
3B

1þ BC
3C

� �s
� C

C

2
4

3
5

vuuut ; kO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

ffiffiffiffiffiffi
C

3B

rs
;

(20)

kc1 pertains to the case B¼C¼ 1, whereas kc2 pertains to the

case B¼C¼�1, and kc1< kO< kc2. In such cases the NLSE

degenerates and it should be augmented by the terms of the

next-order of smallness; then the generalised NLSE can be

derived for wavenumbers in the vicinity of such points (see,

e.g., Obregon and Stepanyants (1998) and Grimshaw and

Helfrich (2008; 2012)).

Let us analyse now the nonlinear coefficient q(k). Its for-

mal derivation from Eq. (12) yields

q kð Þ ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2k2 þ C
p

C A2 � Uð Þ þ C2k2A2 � BUk2 5Cþ 4C2k2ð Þ
� �

1þ Bk2ð Þ3=2
4BC2k4 þ C 1þ 5Bk2ð Þ½ �

: (21a)

Bearing in mind that U¼A2 (see after Eq. (12)), one can

present Eq. (21a) as

qc kð Þ ¼ �3k2A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2k2 þ C
p

C2 1� 4Bk2ð Þ � 5BC½ �

1þ Bk2ð Þ3=2
4BC2k4 þ C 1þ 5Bk2ð Þ½ �

: (21b)

This expression can be compared with the case when the

cubic nonlinearity in Eq. (12) is omitted (U¼ 0)

qq kð Þ ¼ �3A2 C2k2 þ Cð Þ3=2

1þ Bk2ð Þ3=2
4BC2k4 þ C 1þ 5Bk2ð Þ½ �

: (21c)

As one can see, the coefficients (21b) and (21c) are dif-

ferent, in general, and contribution of the cubic nonlinear

term in Eq. (12) into the nonlinear coefficient of NLSE is im-

portant. Moreover, in some cases the quadratic nonlinear

coefficient can vanish (this occurs, in particular, for internal

waves in two-layer fluid with equal layer thicknesses (see,

e.g., Grimshaw et al. (1998)), then the only cubic nonlinear

term contributes into the NLSE coefficient q(k), which

reduces to

qpc kð Þ ¼ 3U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2k2 þ C
p

Cþ Bk2 5Cþ 4C2k2ð Þ½ �
1þ Bk2ð Þ3=2

4BC2k4 þ C 1þ 5Bk2ð Þ½ �
: (21d)

If we consider, however, the range of wavenumbers

when the Ostrovsky equation is applicable, i.e., �jCj/C � k
FIG. 3. The dispersion coefficient in the NLSE (18) as a function of wave-

number for different primitive equations.
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� 1/�jBj (see above), then we obtain from Eqs. (21b) and

(21c) the coefficients of NLSE up to the first-order terms on

small parameters (Bk2
C/C2k2� 1)

qGO kð Þ 	 �3CkA2

4Bk2 þ C=C2k2
1þ C

C2k2

3

2
� U

A2

� ��

� 3

2
Bk2 1þ 8

3

U

A2

� ��
; (22a)

if the cubic terms in Eq. (12) are taken into consideration

qO kð Þ 	 �3CkA2

4Bk2 þ C=C2k2
1þ 3

2

C
C2k2

� Bk2

� �� �
; (22b)

if the cubic terms in Eq. (12) are neglected (U¼ 0), and

qpc kð Þ 	 3CkU 1þ BC=C2 þ C2=C4k4 � 12B2k4

2 C=C2k2 þ 4Bk2ð Þ

" #
; (22c)

if only the cubic terms in Eq. (12) are taken into considera-

tion and the quadratic terms are ignored.

As one can see, if the quadratic terms do not vanish,

then in the lowest order on small parameters the coefficients

qGO(k) and qO(k) do not depend on the cubic terms in Eq.

(13) and exactly coincide with the coefficient derived in

Grimshaw and Helfrich (2008; 2012) and Whitfield and

Johnson (2015a) directly from the Ostrovsky Eq. (13) with-

out cubic nonlinear term (a1¼ 0)

qO kð Þ ¼ qGO kð Þ ¼ � 2

3

a2k3

4bk4 þ r
� �3CkA2

4Bk2 þ C=C2k2
: (22d)

However, in the next order on small parameters, the correc-

tions depend on the cubic terms in the original Eq. (12).

Notice that in the recent paper by Whitfield and Johnson

(2015b) the NLSE was derived from the Gardner–Ostrovsky

equation (15) which was formally considered without the

restrictions on the range of its validity. The nonlinear coeffi-

cient in that paper formally follows from Eq. (22a) if we

assume that Bk2
C/C2k2 � 1, but Bk2U/A2
CU/(AC
k)2
 1.

Figure 4 illustrates the dependence of the nonlinear

coefficient in NLSE on the wavenumber k for different mod-

els. The first big difference in the dependences of the coeffi-

cients q(k) is seen when B¼C¼ 1. The coefficient qc(k)

changes its sign at the point k0¼ (C2/B� 5C)1/2/2C (see line

1 in frame (a)), whereas neither qq(k) nor qO(k) changes their

signs (see lines 2 and 3 in frame (a)). However, at very small

k � 1 the dependences qc(k), qq(k), and qO(k) are close to

each other.

In the case B¼C¼�1, line 5 for qq(k) is qualitatively

similar to line 4 for qc(k), but there is an obvious quantitative

difference between these curves for relatively big values of

k> 0.2 (both these lines go to infinity when k! 1/�(�B)¼ 1).

As in the first case, at small k � 1 the dependences qc(k),

qq(k), and qO(k) are close to each other.

When the coefficients B and C are of opposite sign, then

the nonlinear coefficients change their signs at the point of

singularity k¼K1,2 and k¼KO, where

K1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C

B
1� 25BC

16C2

� �s
� 5C

8C2

vuut
;

KO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2C

ffiffiffiffiffiffiffiffi
�C

B

rs
; (23)

K1 pertains to the case B¼�1, C¼ 1, whereas K2 pertains to

the case B¼ 1, C¼�1 and KO pertains to Eq. (22d). These

three singular points are very close to each other, although

they are ordered in the following way K1<KO<K2.

For the wavenumbers greater than the singular point

all corresponding lines, except line 7, do not change their

signs any more, but line 7 changes its sign at k0 ¼ 1
2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2=B� 5C
p

. The points where the coefficients p(k) and

q(k) change their signs are very important from the point of

view of wave-trains stability with respect to self-modulation;

this will be discussed below.

In the case when the NLSE is derived directly from the

KdV equation the nonlinear coefficient qKdV(k)¼ 9A2C/Bk
depends on the sign of coefficient B and is either positive,

when B> 0, or negative, when B< 0. Notice that the expres-

sion for this coefficient does not follow from Eq. (22d), if

one formally puts C¼ 0. As explained above, the nonlinear

coefficient in the NLSE derived from the KdV equation con-

tains contributions from both the second harmonic and zero

harmonic terms. However, as shown in the Appendix, when

C 6¼ 0 the zero harmonic contributes only into the higher-

order terms (see also Grimshaw and Helfrich (2008; 2012)).

As well known (see, e.g., Karpman (1973); Ablowitz

and Segur (1981); and Ostrovsky and Potapov (1999)), the

stability of quasi-monochromatic wave-trains with respect to

small modulations is determined in the NLSE (18) by the

FIG. 4. The nonlinear coefficient in the NLS equation (18) as a function of a

wavenumber for different basic equations. In frame (a) lines 1, 2, and 3 are

plotted for B¼C¼ 1, lines 4, 5, and 6 are plotted for B¼C¼�1; in frame

(b) lines 7, 8, and 9 are plotted for B¼�C¼ 1, lines 10, 11, and 12 are

plotted for B¼�C¼�1.
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relative sign of nonlinear and dispersive coefficients.

According to the well-known Lighthill criterion (Lighthill,

1965; Ostrovsky and Potapov, 1999; and Zakharov and

Ostrovsky, 2009), the stability occurs when p(k)q(k)< 0, oth-

erwise, when p(k)q(k)> 0, the wave-trains are unstable. In

the latter case the “bright” envelope solitons can exist,

whereas in the former case only “dark” solitons can exist on

the background of a sinusoidal wave (see the references cited

above).

To determine the range of wave-train stability/instability

for the particular choice of parameters B and C and present it

in the vivid form, let us define function F(k)¼ S sign[p(k)q(k)],

where sign(x)¼ 1 if x> 0 and sign(x)¼� 1 if x< 0, S is the

“amplitude” of function sign(x) which will help us to distin-

guish between different lines in Fig. 5. This illustrates the

behaviour of function F(k) for the different sets of parameters

B and C.

Lines 1 in all frames pertain to the NLSE derived from

Eq. (12) with the cubic nonlinear term, whereas lines 2 per-

tain to the NLSE derived from Eq. (12) without cubic nonlin-

ear term (U¼ 0), and lines 3 pertain to the NLSE derived

from the Ostrovsky equation (13) without cubic nonlinear

term (a1¼ 0).

As one can see from this figure, in the case shown in

frame (a), the models based on Eq. (12) both with and with-

out cubic nonlinear terms predict the stability of wave trains

at k < kp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3C2 þ BCÞC=B

p
� C

q
=C

ffiffiffi
3
p

and instability

at k> kp. In the meantime, the model based on Ostrovsky

equation (13) without cubic nonlinear term predicts the

boundary between the stability and instability at

k ¼ kO1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=3BC24

p
. Note that kp 	 kO1ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BC=12C2

p
Þ,

if BC � C2. Then, the more accurate model (12) with the

cubic nonlinear term predicts one more boundary between

the stability and instability at k ¼ k01 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2=B� 5C

p
=2C,

k01> kp (see line 1 in frame (a), whereas two other models

do not predict stability at high wavenumbers. Note that the

case shown in frame (a) pertains to gravity water waves in a

rotating fluid.

In the case shown in frame (b), the model (12) with the

cubic nonlinearity predicts modulation instability at very

small k < k02 �
ffiffiffiffiffiffiffi
�C
p

=C, whereas other models do not pre-

dict such instability. Then, there is the range of instability at

k> kp predicted by the models based on Eq. (12) both with

and without cubic nonlinear term, as well as by the model

based on Ostrovsky equation (13) without cubic nonlinear

term at k> kO1.

In the case shown in frame (c), the model (12) with the

cubic nonlinearity predicts two regions of modulation insta-

bility, 0< k< k02 and kp< k< k01, and two regions of stabil-

ity, k02< k< kp and k> k01 (see line 1 in frame (c). In the

meantime, other two models predict only one boundary

between the stability, k< kp (k< kO2), and instability, k> kp

(k> kO2), regions (here kO1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C=4BC24

p
).

And, at last, in the case shown in frame (d), the models

with and without cubic nonlinearity predict the same regions

of wave-train stability k< kp (k< kO2), and instability, k> kp

(k> kO2).

In the case when the NLSE is derived from the KdV

equation the product p(k)q(k)¼�27(AC)2/2< 0, so that the

wave-trains are stable against self-modulations for all k
within the range of validity of KdV equation.

IV. DISCUSSION AND CONCLUSION

Thus, in this paper we have shown that the NLSE

derived from the uniderctional Gardner–Ostrovsky equa-

tion (13) agrees well with the NLSE derived from the more

general Shrira equation (12) within the range of validity of

the Gardner–Ostrovsky equation. Moreover, within this

range the coefficients of NLSE can be correctly obtained

even without the cubic nonlinear terms in the governing

equation (12). Beyond the range of validity of the

Gardner–Ostrovsky equation the existence of ranges of

modulation stability/instability is rather non-trivial and

depends on the signs of small-scale and large-scale disper-

sions characterised by dimensionless coefficients B and C.

In this paper, we have considered all possible signs of non-

linear and dispersive coefficient and presented the com-

plete analysis of the problem for media with double

dispersion. Therefore, our analysis is applicable not only to

water waves in rotating or non-rotating fluids (e.g., various

oceanic waves) but also to plasma waves, waves in solids,

optical fibres, and others.

In application to surface and internal waves in a rotat-

ing ocean (see Fig. 5, frame (a)) our analysis shows

FIG. 5. Ranges of stability (when F(k)

< 0) and instability (when F(k)> 0) of

wave-trains against self-modulation.

Frame (a) pertains to B¼C¼ 1; frame

(b) pertains to B¼C¼�1; frame (c)

pertains to B¼�C¼ 1; and frame (d)

pertains to B¼�C¼�1. For the

meaning of lines see the text.
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that wave-trains are stable against self-modulation at

small wavenumbers less than some critical value k < kp �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3C2 þ BCÞC=B

p
� C

q
=C

ffiffiffi
3
p

ðk < kO1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=3BC24

p
Þ

which depends on the dispersion coefficients of the gov-

erning equations. This is in agreement with the results

obtained in Grimshaw and Helfrich (2008; 2012) and

Whitfield and Johnson (2015a), where the analysis was

performed without cubic nonlinear terms in the limited

range of wavenumbers as per Eq. (6).

A similar analysis can be performed in the two-

dimensional case when all dependent variables are func-

tions of spatial coordinates x and y, so that Shrira’s set of

equations (8), (9) cannot be reduced to one, Equation (10).

In contrast to the non-rotating fluid, the 2D NLSE appears

in this case alone without a complementary equation for

the mean-flow component which is suppressed in the first

order by the influence of Coriolis-type dispersion.

Therefore, instead of the usual Davey–Stewartson set of

equation for a non-rotating fluid of finite depth (Ablowitz

and Segur, 1981), we obtain just a single NLSE. The dis-

persion coefficients px¼ (1/2)(@2x/@kx
2) and py¼ (1/2)

(@2x/@ky
2) of this equation can be easily derived from

the dispersion relation (18), where now k2¼ kx
2þ ky

2. The

new feature of the 2D NLSE is the possibility of the

collapse phenomenon when self-modulation and self-

focussing instabilities occur simultaneously (Zakharov and

Kuznetsov, 2012). This interesting problem is currently

under investigation, and results obtained will be published

elsewhere.
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APPENDIX: DERIVATION OF NLS EQUATION

The nonlinear Schr€odinger equation describing the evo-

lution of wave-trains with the central wavenumber k of a

carrier wave can be derived from Eq. (12) following the

standard approach (see, e.g., Ablowitz and Haut (2009)),

therefore details are reproduced here only briefly. Introduce

the fast phase variable h¼x s� k n, the slow spatial X¼ e n
and temporal T¼ e s variables, as well as the “super-slow”

temporal variable t¼ eT¼ e2s, where e� 1 is a small param-

eter, and present a solution of Eq. (12) in the form of the se-

ries on small parameter e

wðh;X; T; tÞ ¼ ew1ðh;X; T; tÞ þ e2w2ðh;X; T; tÞ

þ e3w3ðh;X; T; tÞ þ ::: (A1)

Substitution of this series into Eq. (12) gives

e x2 � C2k2ð Þ @
2w1

@h2
� Bk2x2 @

4w1

@h4
þ Cw1

� �
þ e2 x2 � C2k2ð Þ @

2w2

@h2
� Bk2x2 @

4w2

@h4
þ Cw2

�

þ 3ax2k
@w1

@h
@2w1

@h2
� 2x

@2w1

@h@T
� 2�2k

@2w1

@h@X
þ 2Bxk

@3

@h3
x
@w1

@X
� k

@w1

@T

� ��

þ e3 x2 � C2k2ð Þ @
2w3

@h2
� Bk2x2 @

4w3

@h4
þ Cw3

� �
þ @

2w1

@T2
� C2 @

2w1

@X2
þ 2C2k

@2w2

@h @X

	

þB
@2

@h2
2xk

@

@h
x
@w2

@X
� k

@w2

@T

� �
þ 4xk

@2w1

@T@X
� x2 @

2w1

@X2
� k2 @

2w1

@T2
� 2xk2 @

2w1

@h@t

� �

þxA 3xk
@w1

@h
@2w2

@h2
þ @w2

@h
@2w1

@h2

� �
þ 2k

@w1

@T

@2w1

@h2
þ 2

@w1

@h
@2w1

@h @T

� �
� x

@w1

@X

@2w1

@h2
þ 2

@w1

@h
@2w1

@h @X

� �� �

þ 2x
@

@h
@w2

@T
þ @w1

@t

� �
þ 6Ux2k2 @w1

@h
@2w1

@h2



þ o e3ð Þ ¼ 0: (A2)

Let us consider a solution to Eq. (A2) in the form of

quasi-monochromatic wave

w1ðh;X; T; tÞ ¼ W1ðX; T; tÞeih þW�1ðX; T; tÞe�ih; (A3)

w2ðh;X; T; tÞ ¼ W2ðX; T; tÞe2ih þW�2ðX; T; tÞe�2ih

þW0ðX; T; tÞ þW�0ðX; T; tÞ; (A4)

where star stands for complex conjugate.

Substitute now solutions (A3) and (A4) into Eq. (A2)

and collect the terms proportional to eih. In the leading order

with respect to e, we obtain the dispersion relation (14).

Collecting then the terms proportional to e2, we obtain

2i �x Bk2þ1ð Þ@W1

@T
þk Bx2�C2ð Þ@W1

@X

� �
eihþ 4C2k2�4x2ð½

�16Bx2k2þCÞW2þ3iAx2kjW1j2�e2ihþCW0þc:c:; (A5)

where c.c. stands for complex conjugate terms.
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Equating to zero the coefficient of eih, we obtain the

simple wave equation

@W1

@T
þ Vg

@W1

@X
¼ 0; (A6)

where Vg is the group speed as per Eq. (16).

Equating then to zero the coefficient of e2ih, we obtain a

relationship between the amplitudes of the first and second

harmonics

W2 ¼
3iAx2kjW1j2

16Bx2k2 � Cþ 4x2 � 4C2k2
: (A7)

In the same approximation, the term W0, which is inde-

pendent of exponent (the mean flow term) vanishes, W0¼ 0;

this is a specific feature of wave systems with the large-scale

dispersion (Shrira, 1981; Obregon and Stepanyants, 1998;

Grimshaw and Helfrich, 2008; 2012; and Whitfield and

Johnson, 2015a; 2015b).

In the next order on the parameter e the coefficient of eih

gives

2ix 1þ Bk2ð Þ @W1

@t
þ C2 þ BVgxk þ Bx2
� � @2W1

@X2

þ 6kx2 iAW2 þ UkjW1j2
� �

W1 ¼ 0: (A8)

Substituting here W2 from Eq. (A7), we obtain the

NLSE in the form

i
@W1

@t
þ p kð Þ @

2W1

@X2
þ Q kð ÞjW1j2W1 ¼ 0; (A9)

where p kð Þ ¼ C2þBVgxkþBx2

2x 1þBk2ð Þ and Q kð Þ ¼ �3k2x
3A2x2�U 4k2 4Bx2�C2ð Þþ4x2�C½ �
1þBk2ð Þ 16Bx2k2�Cþ4x2�4C2k2ð Þ. Coming back to the original vari-

ables s and n and using the relationship between the varia-

bles w and f¼ @w/@n, which in the first approximation for

quasi-monochromatic wave reads f¼ ikw, we finally obtain

Eq. (18) with the coefficients p(k) as per Eq. (19a) and

q(k)¼Q(k)/k2 as per Eq. (21a).
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