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Abstract This paper presents a new radial-basis-function (RBF) technique for solving

elliptic differential equations (DEs). The RBF solutions are sought to satisfy (a) the

boundary conditions in a local sense using the point-collocation formulation, and (b)

the governing equation in a global sense using the Galerkin formulation. In contrast to

Galerkin finite-element techniques, the present Neumann boundary conditions are im-

posed in an exact manner. Unlike conventional RBF techniques, the present RBF ap-

proximations are constructed “locally” on grid lines through integration and they are

expressed in terms of nodal variable values. The proposed technique can provide an ap-

proximate solution that is a Cp function across the subdomain interfaces (p–the order of

the DE). Several numerical examples are presented to demonstrate the attractiveness of

the present implementation.

Key words: integrated RBFNs, Galerkin formulation, Neumann boundary conditions,

multiple boundary conditions, domain decomposition

1 Introduction

The mathematical modelling of engineering problems usually leads to sets of ordinary/partial

differential equations (ODEs/PDEs) and their boundary conditions. To seek solutions to

differential problems, for most cases, it is necessary to employ discretisation methods to

reduce the sets of DEs to systems of algebraic equations. Principal discretisation methods

(e.g. finite-difference, finite-element and boundary-element techniques) can be viewed as

variants of the method of weighted residuals that can be stated in three well-known for-

mulations, namely the strong, weak and inverse statements [1]. By means of weighting

functions in a statement, the residuals for the DE and boundary conditions are made small

in some senses. Two popular ways used are (i) the point-collocation approach, where the

residuals are zero at certain points and (ii) the Galerkin-type approach, in which the

residuals are zero in an average sense over the space of interest. Each approach has some
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advantages in certain areas of application. The former is cost-effective as no integrations

are required, while the latter has a smoothing capability owing to its integral nature.

Radial-basis-function (RBF) collocation methods are considered as a powerful tool for

the approximation of scattered data as well as for the solution of differential problems

[2]. RBF collocation methods are capable of approximating arbitrarily-well continuous

functions. A number of RBFs such as the multiquadric and Gaussian basis functions have

spectral approximation power. However, the condition number of the RBF interpolation

matrix also grows rapidly with respect to (a) the decrease in distance between the RBF

centres and (b) the increase in the RBF width. The methods thus, in practice, suffer

from a trade-off between accuracy and stability [3]. Moreover, there is a gap in accuracy

between the RBF solutions to Neumann- and Dirichlet-type boundary-value problems.

To improve the numerical stability of a RBF solution, there are a number of schemes

proposed in the literature: for example, (a) preconditioners (e.g. [4]); (b) local RBF

approximations (e.g. [5,6]); (c) compactly-supported RBFs (e.g. [7]); and (d) domain

decompositions (e.g. [8,9]). Recently, an approximation scheme, which is based on point

collocation, Cartesian grids and one-dimensional integrated RBF networks (1D-IRBFNs),

has been proposed in [10,11]. A problem domain, which can be regular or irregular, is

discretised by a Cartesian grid. Along grid lines, 1D-IRBFNs are constructed to satisfy

the governing DE together with boundary conditions in an exact manner. The “local”

1D-IRBFN approximations at a grid node involve only nodal points that lie on the grid

lines intersected at that point rather than the whole set of nodes. This scheme allows a

larger number of nodes to be employed.

There are very few papers on the use of RBFs in the context of Galerkin approximation

[2]. Galerkin RBF techniques have been considered in [2,12-14]. In those works, con-

ventional RBF approximations were employed. A function is decomposed into RBFs; its

derivatives are then obtained through differentiation. In this study, we present a new nu-

merical scheme, which is based on the Galerkin formulation and 1D-IRBFNs, for solving
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elliptic problems. From a Galerkin-approach point of view, it will be shown that the pro-

posed technique has several advantages: (a) natural boundary conditions are forced to be

satisfied exactly, and (b) multiple boundary conditions are incorporated more efficiently.

From a RBF-approach point of view, it will be shown that (a) the proposed method is

capable of handling much larger data sets, that (b) its accuracy is considerably better

than that of the 1D-IRBFN collocation technique, and that (c) it is able to yield almost

the same levels of accuracy for the solutions of Neumann- and Dirichlet-type problems.

An additional attractiveness of the proposed technique is that it facilitates a higher-order

continuity of the approximate solution across the subdomain interfaces.

The paper is organised as follows. Brief reviews of the Galerkin formulation and 1D-

IRBFNs are given in Sections 2 and 3, respectively. The Galerkin 1D-IRBFN method is

presented in Section 4, followed by several numerical examples in Section 5 to demonstrate

the attractiveness of the proposed method. Section 6 concludes the paper.

2 Galerkin approach

The Galerkin-type approach is well documented in the literature. The reader is referred

to, see, for example, [1,15,16], for a full comprehensive description. A brief review of this

approach is given below.

Consider a boundary-value problem defined by a linear DE and its boundary conditions

L(ū) = 0, x ∈ Ω, (1)

B(ū) = 0, x ∈ Γ, (2)

where ū is the field/dependent variable (the overbar denotes the exact solution), L and

B the prescribed known operators, Ω the domain of interest and Γ the boundaries of the
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domain Ω.

An approximate solution, denoted by u, to the set of (1) and (2) can be sought in the

form

ū(x) ≈ u(x) =
N∑

i=1

αiφi(x), (3)

where {αi}
N

i=1 is the set of unknown coefficients and {φi(x)}N

i=1 the set of linearly-independent

functions. The terms φi are usually referred to as the trial/basis/approximating functions.

Assume that a function u is constructed to satisfy the DE (1) at every point on the domain

Ω, it leads to ∫

Ω

wL(u)dΩ = 0, (4)

for any function w that is bounded on Ω .

Similarly, assume that the function u also satisfies the boundary conditions (2), it follows

that ∫

Γ

w̃B(u)dΓ = 0, (5)

for any bounded function w̃. The functions w and w̃ are often referred to as the weight-

ing/test functions.

Under assumptions (4) and (5), the approximate solution u is also the exact solution

ū itself, and the system defined by (1) and (2) is equivalent to the following integral

statement ∫

Ω

wL(u)dΩ +

∫

Γ

w̃B(u)dΓ = 0, (6)

that is satisfied for all bounded functions w and w̃.

However, in practice, one is able to employ finite sets of w and w̃ which result in an

approximate solution.

If the weighting functions w and w̃ have sufficient degrees of continuity, integrations by

5



parts can be applied to derivative terms in (6), leading to other integral statements,

namely the weak and inverse forms, that can be expressed as

∫

Ω

C(w)D(u)dΩ +

∫

Γ

E(w̃)F (u)dΓ = 0, (7)

where the order of continuity required for the u solution is reduced. One can thus use ei-

ther (6) or (7) to determine the approximate solution u. These integral forms of weighted

residuals will allow the approximation to be conducted subdomain by subdomain. Dif-

ferent types of w and w̃ will constitute different numerical approaches (e.g. point collo-

cation, subdomain collocation and Galerkin-type ones). For the Galerkin-type approach,

the weighting functions are chosen from the same set of functions as the trial functions.

This approach usually leads to symmetric matrices.

3 One-dimensional integrated RBFNs

Consider a univariate function f(x). The basic idea of the integral RBF scheme [17] is to

decompose a pth-order derivative of the function f into RBFs

dpf(x)

dxp
=

N∑

i=1

wigi(x), (8)

where {wi}
N

i=1 is the set of network weights, and {gi(x)}N

i=1 the set of RBFs. For a

convenient description of the integral scheme, we replace the notation gi(x) with the

notation I
(p)
i (x) that contains information about derivative order of f . By integrating
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(8), lower-order derivatives and the function itself are then obtained

dp−1f(x)

dxp−1
=

N∑

i=1

wiI
(p−1)
i (x) + c1, (9)

dp−2f(x)

dxp−2
=

N∑

i=1

wiI
(p−2)
i (x) + c1x + c2, (10)

· · · · · · · · · · · · · · ·

df(x)

dx
=

N∑

i=1

wiI
(1)
i (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!
+ · · · + cp−2x + cp−1, (11)

f(x) =
N∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · + cp−1x + cp, (12)

where I
(p−1)
i (x) =

∫
I

(p)
i (x)dx, I

(p−2)
i (x) =

∫
I

(p−1)
i (x)dx, · · · , I

(0)
i (x) =

∫
I

(1)
i (x)dx, and

{c1, c2, · · · , cp} are the constants of integration.

Unlike conventional differential schemes, the starting point of the integral scheme can

vary in use, depending on the particular application under consideration. The scheme

is said to be of order p, denoted by IRBFN-p, if the pth-order derivative is taken as the

starting point.

Evaluation of (8)-(12) at a set of collocation points {xj}
N

j=1 leads to

d̂pf

dxp
= Î

(p)
[p] α̂, (13)

̂dp−1f

dxp−1
= Î

(p−1)
[p] α̂, (14)

· · · · · · · · ·

d̂f

dx
= Î

(1)
[p] α̂, (15)

f̂ = Î
(0)
[p] α̂, (16)

where the subscript [.] and superscript (.) are used to denote the order of the IRBFN
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scheme and the order of the corresponding derivative function, respectively;

Î
(p)
[p] =




I
(p)
1 (x1), I

(p)
2 (x1), · · · , I

(p)
N (x1), 0, 0, · · · , 0, 0

I
(p)
1 (x2), I

(p)
2 (x2), · · · , I

(p)
N (x2), 0, 0, · · · , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(p)
1 (xN), I

(p)
2 (xN), · · · , I

(p)
N (xN), 0, 0, · · · , 0, 0




,

Î
(p−1)
[p] =




I
(p−1)
1 (x1), I

(p−1)
2 (x1), · · · , I

(p−1)
N (x1), 1, 0, · · · , 0, 0

I
(p−1)
1 (x2), I

(p−1)
2 (x2), · · · , I

(p−1)
N (x2), 1, 0, · · · , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(p−1)
1 (xN), I

(p−1)
2 (xN), · · · , I

(p−1)
N (xN), 1, 0, · · · , 0, 0




,

· · · · · · ,

Î
(0)
[p] =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
N (x1),

x
p−1

1

(p−1)!
,

x
p−2

1

(p−2)!
, · · · , x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
N (x2),

x
p−1

2

(p−1)!
,

x
p−2

2

(p−2)!
, · · · , x2, 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(0)
1 (xN), I

(0)
2 (xN), · · · , I

(0)
N (xN),

x
p−1

N

(p−1)!
,

x
p−2

N

(p−2)!
, · · · , xN , 1




;

α̂ = (w1, w2, · · · , wN , c1, c2, · · · , cp)
T ;

and

d̂kf

dxk
=

(
dkf1

dxk
,
dkf2

dxk
, · · · ,

dkfN

dxk

)T

, k = {1, 2, · · · , p},

f̂ = (f1, f2, · · · , fN)T ,

in which dkfj/dxk = dkf(xj)/dxk and fj = f(xj) with j = {1, 2, · · · , N}.

The use of integrated basis functions is expected to avoid the problem of reduction of

convergence rate caused by differentiation [18]. Numerical studies, e.g. [19-21], have

shown that the integral collocation approach is more accurate than the differential col-
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location approach. Recently, theoretical studies [22] have confirmed superior accuracy of

integrated RBFNs over differentiated RBFNs.

4 Galerkin IRBFN technique

For Galerkin finite-element techniques, a weak statement (7), where the continuity re-

quirement for the field variable u is reduced, is a preferred option. Piecewise polynomials

of low order such as linear and quadratic interpolations are generally used as approxi-

mating and weighting functions in numerous small subdomains called elements. In the

case that the shape functions ϕi are algebraic polynomials, only the field variable changes

continuously throughout the entire domain, and its high derivatives (e.g. second and

higher-order derivatives for linear elements) are not defined. Essential boundary condi-

tions are incorporated into the approximate solution prior to the process of discretising

the DE, while natural boundary conditions are imposed by means of weighted residual (i.e.

the second term in (7)). It should be emphasised that the natural boundary conditions in

the weak formulation are approximated rather than identically satisfied. In engineering

practice, such a partial satisfaction of the boundary conditions tends to give poor results

for surface fluxes or tractions which make the overall results unreliable for many cases [1].

In the present Galerkin 1D-IRBFN technique, we use a Cartesian grid to generate the

finite trial and test spaces. One dimensional IRBFNs are employed to represent the field

variable and its derivatives on grid lines. The RBF solutions are constructed to satisfy

the boundary conditions using the point-collocation approximation and the governing DE

using the Galerkin approximation. A distinguishing feature here is that the networks

are sought to satisfy a priori the derivative boundary conditions in an exact manner.

There is thus no need to use the second term in (6) and (7). As the trial functions

are infinitely-differentiable global functions, the present Galerkin 1D-IRBFN technique

permits the employment of (6) to solve the differential problem of any order. Moreover,
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any derivative of the field variable is defined and continuous throughout the entire domain.

From an engineering viewpoint, one would prefer to work in the physical space. The

present approximate solution is sought in terms of nodal variable values rather than the

usual network weights. The boundary conditions including derivative information are

imposed through the conversion process of the network-weight space into the physical

space. RBFNs involve two types of data sets, namely centre and collocation points. In

the context of point-collocation approximation, RBFNs tend to result in the most accu-

rate approximations when the two sets of points are identical. Here, the collocation points

are chosen to be the centres themselves. Unlike conventional differential formulations, the

integral RBF formulation has the ability to generate additional coefficients (the constants

of integration). This feature thus facilitates the addition of extra equations to the conver-

sion system to represent extra information such as the natural boundary conditions and

even the governing equation at the boundary points. The presence of integration con-

stants thus guarantees that all RBFs are used for function approximation. In contrast,

for conventional differentiated RBFNs, the enforcement of derivative function values is

done at the price of the non-consideration of the function at some RBF centres, which

significantly deteriorates the accuracy of the RBF scheme.

Consider a grid line. The conversion system for an 1D-IRBFN scheme of order p can be

described as 


û

ê


 =




Î
(0)
[p]

K̂


 α̂ = Cα̂, (17)

where ê, whose length can be up to p, is a vector representing extra information (e.g.

normal derivative boundary conditions); ê = K̂α̂; û, Î
(0)
[p] and α̂ defined as before; and

C the conversion matrix. It can be seen from (17) that the approximate solution u is
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collocated at the whole set of centres. Solving (17) for α̂ yields

α̂ = C−1




û

ê


 , (18)

where C−1 is the inverse or pseudo-inverse of C, depending on its dimension. Substitution

of (18) into (8)-(12) leads to

u(x) =
(
I

(0)
1 (x), I

(0)
2 (x), · · ·

)
C−1




û

ê


 , (19)

∂u(x)

∂x
=
(
I

(1)
1 (x), I

(1)
2 (x), · · ·

)
C−1




û

ê


 , (20)

· · · · · · · · · · · · · · · · · · · · · · · ·

∂pu(x)

∂xp
=
(
I

(p)
1 (x), I

(p)
2 (x), · · ·

)
C−1




û

ê


 . (21)

They can be rewritten in the form

u(x) =
N∑

i=1

ϕi(x)ui + ϕN+1(x)e1 + ϕN+2(x)e2 + · · · , (22)

∂u(x)

∂x
=

N∑

i=1

dϕi(x)

dx
ui +

dϕN+1(x)

dx
e1 +

dϕN+2(x)

dx
e2 + · · · , (23)

· · · · · · · · · · · · · · · · · · · · · · · ·

∂pu(x)

∂xp
=

N∑

i=1

dpϕi(x)

dxp
ui +

dpϕN+1(x)

dxp
e1 +

dpϕN+2(x)

dxp
e2 + · · · . (24)

The Galerkin weighting process applied to (1) produces the results

∫

Ω

ϕiL(u) = 0, (25)

where the values of i depend on the problem under consideration as will be discussed
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later. The system of equations, (25), can then be used to solve for the nodal value of the

variable u.

5 Numerical results

Numerical results are presented for second- and fourth-order DEs in one and two dimen-

sions. A DE of order p is discretised using the 1D-IRBFN-p scheme. For all numerical

examples presented in this study, we employ the multiquadric basis function

I
(p)
i (x) =

√
(x − ci)2 + a2

i , (26)

where ci and ai are the centre and the width/shape-parameter of the ith RBF. Moreover,

the latter is simply chosen to be the grid size. A 1D-IRBFN-based collocation method is

also employed to provide the basis for the assessment of accuracy of the present Galerkin

1D-IRBFN method. An important difference between the two 1D-IRBFN methods lies

in the way that the residual for the DE is constructed: the latter reduces the residual

in a global sense, while the former in a local sense. Hereafter, the term 1D-IRBFNs will

frequently be dropped out for brevity.

The accuracy of an approximate solution is measured by means of the discrete relative

L2 norm defined as

Ne =

√∑M

i=1 (ūi − ui)
2

√∑M

i=1 (ūi)
2

, (27)

where ū and u are the exact and computed solutions, respectively, and M is the number

of unknown nodal values of u. Another important measure is the convergence rate of the

computed solution with respect to the centre spacing h

Ne ≈ γhα = O(hα), (28)
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in which α and γ are exponential model’s parameters. Given a set of observations, these

parameters can be found by the general linear least squares technique.

5.1 1D problems

5.1.1 Second-order ODE

Find an approximate solution to the ODE

d2ū

dx2
+ ū + x = 0, (29)

on the interval 0 ≤ x ≤ 1, with appropriate boundary conditions. The exact solution of

(29) is assumed to be

ū =
sin(x)

sin(1)
− x, (30)

from which one can easily derive the boundary values at x = 0 and x = 1. This problem

is similar to that in [1]. To generate the finite spaces for the trial and test functions, we

employ 45 sets of uniformly-distributed points, varying from 3 to 91 with increment of 2.

Two types of boundary conditions are considered.

Dirichlet boundary conditions: Both K and ê are set to null. An approximate solution

simply takes the form u(x) =
∑N

i=1 uiϕi(x). The weighting functions are chosen to be

the trial functions that are associated with the unknown nodal values of u. For this case,

they are {ϕ2(x), ϕ3(x), · · · , ϕN−1(x)}. Figure 1 plots the variations of the approximating

functions of IRBFN using N = 6; the interpolating functions {ϕi}
5
i=2 satisfy homogeneous

boundary conditions. Equation (25) leads to a determinate symmetric system of equations

A for (N − 2) unknowns (i.e. the values of u at the interior points). Results concerning

the error (Ne) and the condition number of the system matrix (condA) are given in Figure

2 and Table 1, respectively. The condition numbers are relatively low. The Galerkin and
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collocation solutions converge to the exact solution apparently as O(h3.46) and O(h2.96),

respectively. It can be seen that the Galerkin technique yields much more accurate results

and converges faster than the collocation technique.

Dirichlet (x = 0) and Neumann (x = 1) boundary conditions: We employ one

extra equation to represent the derivative value at x = 1. Expression (22) becomes

u(x) =
∑N

i=1 uiϕi(x) + (duN/dx) ϕN+1(x) that also contains derivative information. The

approximate solution thus satisfy a priori both the Dirichlet and Neumann boundary

conditions in an exact manner. The unknown vector consists of the values of u at {xj}
N

j=2.

As a result, {ϕ2(x), ϕ3(x), · · · , ϕN(x)} are taken as the weighting functions. The condition

numbers of the present system matrix vary from 2.39 × 101 to 7.94 × 104. The Galerkin

and collocation techniques yield a convergence rate of O(h3.54) and O(h1.98), respectively

(Figure 3). The proposed method achieves a very high level of accuracy. At N = 91, the

value of Ne(u) is 2.03 × 10−8; the solution is accurate up to at least 8 significant digits.

Again, the Galerkin approach outperforms the collocation approach regarding accuracy.

It has been generally observed that the RBF results for boundary-value problems involving

Neumann boundary conditions are generally much less accurate than for those involving

only Dirichlet boundary conditions. An attractive point here is that the present RBF

method yield essentially the same degrees of accuracy for both types of problems (Figures

2 and 3).

It is also noted that the use of algebraic polynomials in N equally-spaced points will lead

to the approximations that not only fail to converge in general as N → ∞ but also get

worse at a rate that may be as great as 2N (Runge phenomenon) [23]. It can be seen that

the present global approximations, which are based on uniform centre sets, do not suffer

from this phenomenon.
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5.1.2 Fourth-order ODE

This example is governed by the biharmonic equation

d4ū

dx4
+

d2ū

dx2
+ b = 0, (31)

on the interval −1/2 ≤ x ≤ +1/2, and Dirichlet boundary conditions

ū(−
1

2
) = −

1

2
sin(−

k

2
),

dū

dx
(−

1

2
) = sin(−

k

2
) −

k

2
cos(−

k

2
), (32)

ū(+
1

2
) = +

1

2
sin(+

k

2
),

dū

dx
(+

1

2
) = sin(+

k

2
) +

k

2
cos(+

k

2
), (33)

where b = (4k3 − 2k) cos(kx)−x(k4 −k2) sin(kx). The exact solution to this problem can

be verified to be

ū = x sin(kx). (34)

We employ k = 7π/2 that makes all boundary data nonzero. The present conversion

process involves the enforcement of u at the whole set of centres and du/dx at the

two boundary points, from which the approximate solution will take the form u(x) =
∑N

i=1 uiϕi(x) + (du1/dx) ϕN+1(x) + (duN/dx) ϕN+2(x). The system matrix for solving

{ui}
N−1
i=2 is then generated using the weighting functions {ϕ2(x), ϕ3(x), · · · , ϕN−1(x)}.

A number of uniform centre sets, namely 5, 7, 9, · · · , 45 points, are employed. Figure 4

shows that the accuracy of the Galerkin method is far superior to that of the collocation

method. For example, a convergence rate is O(h6.31) for the former and O(h4.24) for the

latter. The present technique produces system matrices with their condition numbers

being 2.69 × 101 to 5.85 × 105.

A comparison of the results shown in Figures 2 and 4 indicates that the convergence for

fourth-order ODE is much faster than that for second-order ODE. On the other hand,

it can be seen that the matrix condition numbers for fourth-order ODE are higher than
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those for second-order ODE. Nevertheless, the present Galerkin matrices associated with

fourth-order problems still exhibit relatively-low condition numbers.

5.2 2D problems

5.2.1 Dirichlet boundary conditions

This example is concerned with the following Poisson equation

∂2ū

∂x2
+

∂2ū

∂y2
+

2π2

1 + 2π2
cos(πx) cos(πy) = 0, (35)

defined on the domain −1 ≤ x, y ≤ 1 and subject to Dirichlet boundary conditions. This

problem has the following exact solution

ū(x, y) =
1

1 + 2π2
cos(πx) cos(πy). (36)

A uniform grid of Nx ×Ny points (N = NxNy) is employed to generate the trial and test

spaces. The field variable ū is approximated in the form

u(x, y) =
Nx∑

i=1

Ny∑

j=1

ϕ
(x)
i (x)ϕ

(y)
j (y)ui,j, (37)

where ϕ
(x)
i (x) and ϕ

(y)
j (y) are the known basis functions derived from integrating one-

dimensional RBFs associated with the x and y directions, respectively; and ui,j is the

value of u at the intersection of the ith horizontal grid line and the jth vertical grid line.

In (37), the basis functions are products of 1D-IRBFs in each direction.

A determinate system of algebraic equations for the interior nodal values of u is generated
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by making the following residual equal to zero

Rr,s =

∫

Ω

ϕ(x)
r (x)ϕ(y)

s (y)

(
Nx∑

i=1

Ny∑

j=1

∂2ϕ
(x)
i (x)

∂x2
ϕ

(y)
j (y) +

Nx∑

i=1

Ny∑

j=1

ϕ
(x)
i (x)

∂2ϕ
(y)
j (y)

∂y2

)
ui,jdxdy

+

∫

Ω

ϕ(x)
r (x)ϕ(y)

s (y)

(
2π2

1 + 2π2
cos(πx) cos(πy)

)
dxdy, (38)

where r = (2, 3, · · · , Nx − 1) and s = (2, 3, · · · , Ny − 1).

For the present computation, double integrals in (38) are replaced with repeated integrals,

and their evaluation is then carried out using Gaussian points on grid lines.

As shown in Figure 5, error reduces rapidly with decreasing h for both the Galerkin

and collocation solutions. The former outperforms the latter regarding accuracy and

convergence rate. Furthermore, Table 2 indicates that condition numbers of the present

system matrix are relatively low. For example, its value is only 1.30 × 104 for the case of

using 5041 RBFs.

5.2.2 Neumann boundary conditions

This problem is exactly the same as the previous one, except that Dirichlet boundary

conditions prescribed along the two horizontal boundaries are replaced with Neumann

ones.

The approximate solution can be sought in the form

u(x, y) =
Nx∑

i=1

ϕ
(x)
i (x)

(
ϕ

(y)
1 (y)ui,1 + · · · + ϕ

(y)
Ny

(y)ui,Ny
+ ϕ

(y)
Ny+1(y)

∂ui,1

∂y
+ ϕ

(y)
Ny+2(y)

∂ui,Ny

∂y

)
,

(39)

where ∂ui,1/∂y and ∂ui,Ny
/∂y with i = (1, 2, · · · , Nx) are also considered as nodal values.

In addition, the present indices r and s in the residual equation that is similar to (38) will

run from 2 to (Nx − 1) and from 1 to Ny, respectively. In comparison with the previous
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problem, it can be seen that more algebraic equations are generated here. Figure 6

indicates that the accuracy of the Galerkin solution is far superior to that of the collocation

solution. The condition numbers of the Galerkin approach are relatively low, varying from

3.24 × 100 to 1.16 × 104.

Through Figures 5 (Dirichlet-type problem) and 6 (Neumann-type problem), it can be

seen that the order of accuracy reduces from O(h3.28) to O(h2.60) for the collocation

solution, but slightly increases from O(h3.84) to O(h3.89) for the Galerkin solution. The

proposed technique is able to work well for Neumann boundary conditions without the

need for refining the grid near the boundaries, as is often the case with conventional

techniques. This is a clear advantage of the present implementation.

5.2.3 Helmholtz problem

This test problem, which is taken from [2,13], is governed by

∂2ū

∂x2
+

∂2ū

∂y2
− ū(x, y) + cos(πx) cos(πy) = 0, (40)

on −1 ≤ x, y ≤ 1, with Neumann boundary conditions. Its exact solution is also given by

(36).

Fasshauer [2] provided a MATLAB program for the Galerkin-RBF solution of this problem

(Program 45.1). In this program, conventional 2D-RBF approximations (i.e. the field

variable is represented by 2D-RBFNs, followed by successive differentiations to obtain its

derivatives) are employed. To maintain consistency, we made two minor modifications to

the program: (a) resolution of evaluation grid is chosen to be the same as that of the RBF

centre grid, and (b) errors are computed in the relative L2 norm. Errors and condition

numbers of the system matrix are shown in Figure 7. It can be seen that the matrix

condition number grows much faster with the conventional RBF approach than with the
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proposed RBF approach. Moreover, the solution of the former becomes unstable for small

values of h. In contrast, the error Ne of the present solution reduces consistently with

decreasing h at a rate of O(h3.96).

5.3 Domain decomposition

The most time-consuming part of the proposed technique lies in the computation of

volume integrals to form the algebraic system. One strategy to overcome this problem is

to use domain decomposition. The problem is divided into a number of non-overlapping

subdomains. Relevant RBF matrices are constructed for a generic subdomain and they

can then be directly applied to subdomains involved. A substructuring technique consists

of two main stages: (i) find the solution on the interfaces and (ii) find the solutions to

subproblems defined on subdomains. The interface system can be constructed by requiring

continuity of the field variable and its derivatives of order up to (p − 1) (p−the order of

the DE) across the subdomain interfaces.

The combination of the substructuring technique and the proposed method that is pre-

sented above will lead to an approximate solution u that is a C1 function for second-order

problems (e.g. example in Section 5.1.1) and C3 function for fourth-order problems (e.g.

example in Section 5.1.2).

However, as shown in [24], a Cp solution can be achieved if the DE is enforced to be satis-

fied at the interface points in the subdomain solutions. The solution procedure described

in [24] can be straightforwardly applied here. Satisfaction of the DE on the interfaces can

be made through the transformation of the network-weight space into the physical space.

For simplicity, consider a second-order problem. The presence of integration constants

allows the addition of extra equation representing the DE at the interface points. The

network used for a typical subdomain is thus constructed to satisfy not only the values
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of u at the grid points, but also the DE at the interface points.

Two versions of the present multidomain Galerkin technique are applied to the following

ODE

d2ū

dx2
+

dū

dx
+ ū = − exp(−5x) [9979 sin(100x) + 900 cos(100x)] , 0 ≤ x ≤ 1, (41)

with Dirichlet boundary conditions ū(0) = 0 and ū(1) = sin(100) exp(−5). The exact

solution can be verified to be

ū(x) = sin(100x) exp(−5x). (42)

It is noted that the variation of (42) is highly oscillatory. The domain is partitioned into

6 and 11 subdomains that are then identically represented using grids of {3, 5, · · · , 91}

uniform points. Figure 8 clearly shows that the present C2 solution is, as expected,

more stable and accurate than the C1 solution. It also appears that the convergence rate

is mainly decided by the subdomain solver used, while the accuracy level depends on

continuity order of the solution across the interfaces.

6 Concluding remarks

In this paper, a numerical technique, based on 1D-IRBFNs and Galerkin approximation,

is developed for solving elliptic differential equations. Prior to the process of discretising

the differential equation, all boundary conditions are incorporated into the RBF approxi-

mations in an exact manner. The proposed technique has a clear advantage over Galerkin

finite-element methods in the implementation of Neumann and multiple boundary con-

ditions. In the context of RBF techniques, the proposed technique produces a system

of equations that is often symmetric and has a relatively-low matrix condition number.
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These facilitates the employment of much larger numbers of nodes. To avoid the problem

of high cost associated with the evaluation of volume integrals, the use of domain decom-

position is discussed, where continuity order can be improved. Numerical results have

shown that (a) the proposed technique achieves a high rate of convergence, (b) the accu-

racy of the proposed method is much higher than that of the RBF collocation technique,

and (c) the obtained solutions have similar levels of accuracy for both types of boundary

conditions, Dirichlet and Neumann ones.
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Table 1: 1D problem, Dirichlet boundary conditions: Condition number, condA, versus a
number of RBFs, N , for the Galerkin solution.

N condA N condA
3 1.00e+0 49 3.73e+3
5 1.75e+1 51 4.04e+3
7 6.75e+1 53 4.37e+3
9 1.33e+2 55 4.71e+3
11 1.94e+2 57 5.07e+3
13 2.57e+2 59 5.43e+3
15 3.34e+2 61 5.81e+3
17 4.27e+2 63 6.21e+3
19 5.36e+2 65 6.61e+3
21 6.59e+2 67 7.03e+3
23 7.96e+2 69 7.46e+3
25 9.45e+2 71 7.90e+3
27 1.10e+3 73 8.36e+3
29 1.28e+3 75 8.83e+3
31 1.46e+3 77 9.31e+3
33 1.67e+3 79 9.81e+3
35 1.88e+3 81 1.03e+4
37 2.10e+3 83 1.08e+4
39 2.34e+3 85 1.13e+4
41 2.59e+3 87 1.19e+4
43 2.86e+3 89 1.24e+4
45 3.14e+3 91 1.30e+4
47 3.43e+3
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Table 2: 2D problem, Dirichlet boundary conditions: Condition number, condA, versus a
number of RBFs, N , for the Galerkin solution.

N condA N condA
9 1.00e+0 1521 3.90e+3
25 2.54e+1 1681 4.32e+3
49 1.30e+2 1849 4.75e+3
81 2.69e+2 2025 5.21e+3
121 3.63e+2 2209 5.69e+3
169 4.53e+2 2401 6.19e+3
225 5.72e+2 2601 6.71e+3
289 7.25e+2 2809 7.25e+3
361 9.05e+2 3025 7.82e+3
441 1.11e+3 3249 8.40e+3
529 1.33e+3 3481 9.00e+3
625 1.58e+3 3721 9.63e+3
729 1.85e+3 3969 1.02e+4
841 2.14e+3 4225 1.09e+4
961 2.45e+3 4489 1.16e+4
1089 2.78e+3 4761 1.23e+4
1225 3.13e+3 5041 1.30e+4
1369 3.51e+3
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Figure 1: IRBFN-2’s trial/weighting functions with 6 RBFs.
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Figure 2: 1D problem, Dirichlet boundary conditions, 1D-IRBFNs: Error Ne(u) versus
the centre spacing h for the Galerkin and collocation solutions. They converge as O(h3.46)
and O(h2.96), respectively.
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Figure 3: 1D problem, Dirichlet and Neumann boundary conditions, 1D-IRBFNs: Er-
ror Ne(u) versus the centre spacing h for the Galerkin and collocation solutions. They
converge as O(h3.54) and O(h1.98), respectively.
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Figure 4: 1D problem, biharmonic equation, Dirichlet boundary conditions, 1D-IRBFNs:
Error Ne(u) versus the centre spacing h for the Galerkin and collocation solutions. They
converge as O(h6.31) and O(h4.24), respectively.
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Figure 5: 2D problem, Dirichlet boundary conditions, 1D-IRBFNs: Error Ne(u) versus
the centre spacing h for the Galerkin and collocation solutions. They converge as O(h3.84)
and O(h3.28), respectively.
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Figure 6: 2D problem, Dirichlet and Neumann boundary conditions, 1D-IRBFNs: Er-
ror Ne(u) versus the centre spacing h for the Galerkin and collocation solutions. They
converge as O(h3.89) and O(h2.60), respectively.
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Figure 7: 2D Helmholtz problem, Galerkin formulation: Comparison of the matrix condi-
tion number and error between the Galerkin solutions using integrated and differentiated
RBFs. The latter is obtained using a MATLAB program provided by Fasshauer [2].
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Figure 8: Domain decomposition, second-order problem: Errors of the present C1 and C2

Galerkin solutions for 6 and 11 subdomains.
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