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ABSTRACT COVID-19 caused by the transmission of SARS-CoV-2 virus taking a huge toll on global
health and caused life-threatening medical complications and elevated mortality rates, especially among
older adults and people with existing morbidity. Current evidence suggests that the virus spreads primarily
through respiratory droplets emitted by infected persons when breathing, coughing, sneezing, or speaking.
These droplets can reach another person through their mouth, nose, or eyes, resulting in infection. The
‘‘gold standard’’ for clinical diagnosis of SARS-CoV-2 is the laboratory-based nucleic acid amplification
test, which includes the reverse transcription-polymerase chain reaction (RT-PCR) test on nasopharyngeal
swab samples. The main concerns with this type of test are the relatively high cost, long processing time,
and considerable false-positive or false-negative results. Alternative approaches have been suggested to
detect the SARS-CoV-2 virus so that those infected and the people they have been in contact with can be
quickly isolated to break the transmission chains and hopefully, control the pandemic. These alternative
approaches include electrochemical biosensing and deep learning. In this review, we discuss the current
state-of-the-art technology used in both fields for public health surveillance of SARS-CoV-2 and present
a comparison of both methods in terms of cost, sampling, timing, accuracy, instrument complexity, global
accessibility, feasibility, and adaptability to mutations. Finally, we discuss the issues and potential future
research approaches for detecting the SARS-CoV-2 virus utilizing electrochemical biosensing and deep
learning.

18 INDEX TERMS SARS-CoV-2, COVID-19, PCR, deep learning, electrochemical biosensor.

I. INTRODUCTION19

The Director-General of the World Health Organization20

(WHO) declared the SARS-CoV-2 a pandemic on 12 March21

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

2020 [1]. SARS-CoV-2 is extremely contagious and spreads 22

similarly as SARS-CoV-1, by direct physical contact through 23

respiratory droplets or touching of contaminated surfaces, 24

as well as indirect contact by aerosolized SARS-CoV-2 [2]. 25

Current evidence shows a significant proportion of those who 26

are capable of transmitting the virus have no or barely visible 27
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symptoms while carrying the very high viral load [3]. This28

is noteworthy because asymptomatic COVID-19 patients are29

infectious and may act as silent drivers for the transmission30

of the virus.31

Pathogenic coronaviruses (CoVs) are a type of positive-32

sense single-stranded RNA (+ssRNA) viruses [4]. Among33

the CoVs (previously identified MERS-CoV, SARS-CoV,34

and the novel one) SARS-CoV-2 is the most pathogenic.35

Figure 1 shows the structure of SARS-CoV-2 and its mode36

of host entry [5]. The spike protein on CoVs have two37

domains: SP1 binding to host cell receptors and SP2, the38

fusion peptide, facilitating viral cell entry. The angiotensin-39

converting enzyme 2 (ACE2) receptor on the cell mem-40

brane is the major receptor for SP1. Among the three CoVs41

(HCoV-NL63, SARS-CoV, and SARS-CoV-2) which use42

ACE2 to enter the host cell, the binding affinity of S1 toACE243

is the highest in SARS-CoV-2 and lowest in HCoV-NL63 [6].44

In other words, ACE2 is used by SARS-Cov-2 to enter the45

cell, which is the first stage of the virus multiplication cycle.46

When SARS-CoV-2 binds to ACE2, it further prevents ACE247

from regulating angiotensin II signaling, thus increasing the48

level of angiotensin II to damage blood vessel linings and49

injure tissues.50

For the purposes of public health surveillance of51

SARS-CoV-2 in humans, nucleic acid amplification tests,52

most commonly the reverse transcription polymerase chain53

reaction (RT-PCR) assay, using nasal-swab samples is54

the WHO-recommended validation assay [7]. On average,55

the RT-PCR test results can take two to five days due to the56

time taken in the collection and transportation of samples to57

the labs. Although RT-PCR test is the gold standard, it has58

several limitations, including the cost of operation since the59

RT-PCR machines are expensive and long processing time.60

Moreover, there have also been reports of false-negative and61

false-positive results from the RT-PCR tests [8], [9].62

A global call was issued for the effective diagnosis, treat-63

ment of SARS-CoV-2, and measures to control the spread of64

infection. For a better prognosis of COVID-19, early detec-65

tion of disease is crucial. RT-PCR tests were the first to66

be developed and widely used when the COVID-19 pan-67

demic broke out. Many approaches have been proposed68

as an alternate replacement for the RT-PCR test. Aside69

from viral genome detection, serologic tests such as ELISA70

(enzyme-linked immunosorbent assay) [10], LFA (lateral71

flow immunoassay) [11], and chemiluminescent (CLIA) [12],72

and chest CT scans combined with clinical symptoms have73

been used to diagnose the SARS-CoV-2. Besides these tests,74

researchers have also used novel approaches to reduce the75

cost of testing and offer more reliable test results. Among76

them, electrochemical biosensing- and deep-learning-based77

approaches stand out as illustrated in Figure 2 [13], [14],78

[15], [16]. In this review, we evaluate these two different79

approaches as potential alternatives for more accurate and80

affordable SARS-Cov-2 diagnostic tests.81

Electrochemical biosensors are analytical tools that mea-82

sure the concentration of an analyte of interest in a83

complex sample matrix, they can be used to detect 84

viruses [17], cancers cells [18], bacteria [19], and small 85

biomolecules such as glucose, dopamine, uric acid, and ascor- 86

bic [20], [21]. Electrochemical biosensors have been exten- 87

sively studied for their unique advantages, such as portability, 88

low cost, fast response, and high sensitivity, over other analyt- 89

ical devices [22]. The electrochemical biosensors produce a 90

signal by interacting with receptors/bioreceptors and the par- 91

ticular analyte to produce or consume ions or electrons. This 92

causes a change in the electrical properties of the electrolyte 93

solution. The change in the electrical current or potential of 94

the electrolyte solution ismeasured using functionalized elec- 95

trodes, which generate an electrical signal that is correlated 96

to the amount of target analyte in the test sample [23], [24]. 97

Many recent studies have shown that electrochemical biosen- 98

sors can be utilized for SARS-CoV-2 diagnosis [25]. In gen- 99

eral, deep-throat saliva and nasopharyngeal samples [26] can 100

be tested with or without the extraction of genetic material 101

from SARS-CoV-2, improving the time taken for rapid diag- 102

nosis. For example, Raziq et al. vortexed the clinical sam- 103

ples from nasopharyngeal in lysis buffer to release proteins 104

and reduce the inferencing species [14]. On the other hand, 105

Beduk et al. developed an electrochemical immunoassay for 106

the detection of SARS-CoV-2 using serum samples without 107

any pre-treatment [27]. 108

There is a high demand for deep learning-based approaches 109

in various research fields such as medical [28] and agri- 110

culture [29]. Recently, deep-learning-based models (DLMs) 111

were extensively studied for the diagnosis of the SARS-CoV- 112

2 [30], [31], [32], [33]. The developed DLMs consist of 113

data collection, data preparation, feature extraction, and lastly 114

model evaluation [34]. Data collection is the first and crucial 115

step. The quantity and quality of the computed tomography 116

(CT) and X-ray lung images collected are used to validate the 117

success of the developed model. The data preparation stage 118

mostly includes data augmentation, noise removal, and resiz- 119

ing the input image [35]. The processed data are then divided 120

into training, test, and validation sets. The model is developed 121

using the training dataset, and its optimization is checked gen- 122

erally using a cross-validation technique [36]. The optimized 123

model is then run on the test set to validate its performance on 124

the unseen data. Feature extraction is the process of reducing 125

the dimensionality in which the initial raw data are processed 126

to more manageable groups by maintaining accuracy and 127

still describing the original dataset. Finally, the developed 128

model is evaluated using various metrics, such as accuracy, 129

confusing matrix, sensitivity, specificity, precision, F1-score, 130

etc. [37]. 131

X-ray and CT are the most widely used imaging modali- 132

ties in the field of artificial intelligence (AI) for the accurate 133

diagnosis of SARS-CoV-2 [38]. The manual interpretation of 134

medical images by radiologists is a time-consuming process 135

and it is prone to human errors and bias. Recently, AI technol- 136

ogy is evolving in the medical diagnosis of various diseases. 137

Deep learning [15], machine learning [39], data science [16], 138

the internet of things [40], and big data [41] are the main 139
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FIGURE 1. Schematic illustration of SARS-CoV-2 structure and its mode of host entry. Adapted with permission from
Elsevier, Copyright (2022), 5234941355836 [5].

FIGURE 2. The percent of research articles on detection/diagnosis of
SARS-CoV-2 related research since the start of the pandemic. (Source: ISI
Web of KnowledgeSM, 01/20/22).

subsets of AI that are used to reduce the severity of the140

COVID-19 pandemic. The main advantage of AI techniques141

is to speed up the diagnoses while significantly decreasing142

the medical costs. Among the AI technologies, deep learning143

techniques have gained more popularity, especially in the144

medical field. Notably, convolutional neural network (CNN),145

a deep learning basedmodel, is widely used in image process-146

ing applications. CNNs extract the high-level image features147

and convert the data into a high-dimensional and non-linear148

space, which can help solve various challenging problems149

in biomedical applications by achieving human-level accu-150

racies [42] or even beyond in some cases [43].151

This review aims to demonstrate the use of electrochemical152

biosensors and deep learning to detect SARS-CoV-2.Here,the153

survey article comprehensively reviews and compares elec-154

trochemical biosensing and deep learning methods as poten-155

tial diagnostic tools for SARS-CoV-2. The strengths and156

limitations of these two techniques are discussed along with 157

ways to minimize the limitations and increase the use of elec- 158

trochemical sensors to combat with SARS-CoV-2. Finally, 159

the future research directions in both fields as potential tools 160

to reduce the dependency of RT-PCR tests and help minimize 161

the severity of the pandemic are discussed. 162

II. BASIC PRINCIPLES 163

A. STATE-OF-THE-ART RT-PCR FOR SARS-COV-2 164

DIAGNOSIS 165

Influenza (flu) and Coronaviruses are typically identified by 166

examining their genomes, particularly their ribonucleic acid 167

(RNA) sequences [44]. The PCR process multiplies DNA 168

sequences in a quick period, considerably improves the capa- 169

bility of infectious diseases diagnosis. Variants of PCR tech- 170

niques, such as end-point PCR, quantitative PCR (qPCR), 171

digital PCR have been developed and employed in diagnos- 172

tics since its development [45]. A real-time reverse transcrip- 173

tion step precedes the PCR (RT-PCR) for coronaviruses, as it 174

does for other RNA viruses, and transcribes the RNA into 175

cDNA. Due to its sensitivity and specificity, the PCR test 176

has become the method of choice to detect SARS-CoV-2. 177

It is theoretically capable of identifying a single copy 178

of virus, resulting in a shorter diagnostic window than 179

immunoassays. 180

Reliable laboratory diagnosis is vital to slow down of the 181

respiratory diseases. When the COVID-19 pandemic broke 182

out, RT-PCR diagnostics were the first to be developed and 183

widely used. RT-PCR is commonly used to discover causal 184

viruses from respiratory secretions in cases of acute respi- 185

ratory illness [46]. The US Centers for Disease Control and 186

Prevention, WHO, Chinese Center for Disease Control and 187

Prevention, and commercial enterprises have each developed 188

RT–PCR kits [47]. The test is minimally invasive and usually 189
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performed using nasal swabs, throat swabs, and tests of saliva190

or other bodily fluids [48].191

It has been a global and concerted effort to establish192

the RT-PCR tests for the diagnosis of SARS-CoV-2 in a193

short period. However, significant drawbacks were reported194

for its global usage, including high operating costs due to195

the high cost of RT-PCR instruments and extended pro-196

cessing times. Some people, particularly young toddlers,197

find deep nasal swabs painful as well. Furthermore, false-198

negative, and false-positive results from RT-PCR assays have199

been reported [49]. There have also been reports of positive200

RT-PCR cases in patients recovered from COVID-19 [50].201

B. STATE-OF-ART ELECTROCHEMICAL BIOSENSING FOR202

COVID-19 DIAGNOSIS203

Electrochemical biosensors typically consist of three-204

electrode systems: working (WE), reference (RE), and205

counter (CE) electrodes. The CE completes the circuit and206

allows the charge to flow, while the RE provides a steady207

potential to regulate the WE’s potential. The WE is a hybrid208

of a biomolecular recognition device and a physiochemi-209

cal transducer that serves as a transduction element [51].210

It can be modified with nano-engineered materials (e.g.,211

graphene, 2D nanomaterials, MXenes, metal oxides, or poly-212

mers) and biomolecules (e.g., enzymes, antibodies, proteins,213

or aptamers) for the detection of specific analytes with high214

sensitivity [52], [53], [54], [55].215

Based on existing nano-engineered materials identifiable216

by their unique morphological, mechanical, and physico-217

chemical properties through versatile chemical functional-218

ization, nanomaterial-derived technology offers a promising219

approach to cope with the pandemic issue. Therefore, the220

modified WE can offer enhanced stability, selectivity, and221

sensitivity towards SARS-CoV-2. In a typical electrochemi-222

cal SARS-CoV-2 biosensor, SARS-CoV-2 interacts with WE223

in an electrolyte solution, causing a difference in potential,224

current, electrochemical impedance, or capacitance. An elec-225

trochemical workstation senses the difference in the sig-226

nal, which is then used to detect SARS-CoV-2 presence.227

Potentiometry, amperometry, electrochemical impedance,228

and capacitance are the four types of electrochemical sensors229

based on these signals. Electrochemical sensors attract great230

interest because they can be easily miniaturized. The elec-231

trochemical workstation can be built as portable device for232

on-site monitoring, where a computer or a handheld device233

(smartphones, laptops, etc.) equipped with the required soft-234

ware platforms can be used to analyze the tests data [56].235

A robust, responsive, accurate, and on-site detection tool236

is essential in stopping the worldwide COVID-19 pandemic.237

Electrochemical methods are known for their low cost and238

fast analysis. While electrochemical biosensors may offer239

high selectivity, sensitivity, and reliability towards target ana-240

lyte in complex media, it is also important to think of afford-241

ability, time of analysis, and sampling methods to promote242

widespread testing even in resource-limited settings.243

To address the need for better sampling methods, noninva- 244

sive ways of screening may be an ideal approach for the iden- 245

tification of biomarkers in body fluids, including urine, saliva, 246

tears, sweat, and breath for the screening of SARS-CoV-2. 247

For example, Alefeef et al. recently reported a paper-based 248

electrochemical sensor to detect SARS-CoV-2 [57]. In their 249

design (Figure 3A), gold nanoparticles (AuNPs) were capped 250

with highly specific antisense oligonucleotides (ssDNA) 251

to target viral nucleocapsid phosphoprotein (N-gene). The 252

issue with this prototype is that it requires RNA isolation 253

from SARS-CoV-2, which makes it unsuitable for on-site 254

detection. Yakoh et al. introduced a paper-based electro- 255

chemical biosensor using spike protein receptor-binding 256

domain (SP RBD) of SARS-CoV-2 as a recognition group 257

(Figure 3B) [58]. After immobilization of the SP RBD on the 258

electrode surface, the square-wave voltammetry (SWV) tech- 259

nique was utilized for the detection of SARS-CoV-2. Unfor- 260

tunately, the detection limit of this electrochemical sensor 261

prevented the detection of SARS-CoV-2 in the actual nasal 262

swab specimens. 263

One of the most promising studies on electrochemical 264

detection of SARS-CoV-2 was carried out in [17]. In their 265

study, the silicon dioxide layer was first placed on a silicon 266

wafer, followed by 25-nm-thick thermally deposited titanium 267

layers, and finally, a 350-nm-thick gold layer deposited via 268

electron-beam assisted gold evaporation and patterned with 269

photolithography to fabricate a platform (a chip). A redox 270

probe (ferrocene) modified DNA was then attached to the 271

chip, followed by the antiSARS-CoV-2 spike S1 antibody 272

linked to the amine-terminated DNA. The as-fabricated chip 273

was tested using chronoamperometry and the results were 274

obtained in minutes. This is the first study that used undiluted 275

saliva samples for the detection of SARS-CoV-2. 276

Besides its short analysis time and easy sampling method, 277

the biosensors have about nine months of shelf-life [59]. 278

In another study, Seo et al. reported a field-effect tran- 279

sistor (FET)-based electrochemical biosensor to detect 280

SARS-CoV-2 in clinical samples without requiring sample 281

pretreatment or labeling [60]. As shown in Figure 3C, the FET 282

was coated with a graphene layer andmodifiedwith a specific 283

antibody against SARS-CoV-2 spike protein. The biosensor 284

was very sensitive to SARS-CoV-2 antigen protein and could 285

distinguish the virus from the MERS-CoV antigen protein. 286

Raziq et al [14] used a gold-based thin-film electrode as 287

a disposable sensor chip modified by SARS-CoV-2 nucle- 288

oprotein (ncovNP) molecularly imprinted polymer (MIP) 289

to form an artificial receptor for the detection of ncovNP 290

(Figure 3D). The sensor was designed to detect ncovNP 291

which shows a linear response of up to 111 fM with 292

detection and quantification limits of 15 fM. A portable 293

potentiostat was utilized to test the as-fabricated sensor 294

with nasopharyngeal swab samples of COVID-19 positive 295

patients. Although the swab samples had to be vortexed for 296

30 min in a lysis buffer to release the viral protein before 297

each test, the MIP technology is still very attractive due to 298

its rapid, low-cost and sensitive detection capabilities, and 299
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TABLE 1. Summary table of the reviewed biosensors for COVID-19 detection.

highly selective receptors [61]. It may even be used to detect300

SARS-CoV-2 mutations. With the above-mentioned advan-301

tages, electrochemical biosensors are potential candidates for302

rapid detection of COVID-19.303

Table 1 summaries the key parameters of the electrochemi-304

cal biosensors for the detection of SARS-CoV-2 discussed in305

this review.306

C. STATE-OF-THE-ART IN DEEP LEARNING FOR307

SARS-COV-2 DIAGNOSIS308

Chest X-ray and chest CT imaging modalities play a key role309

in the diagnosis of COVID-19 and controlling the pandemic.310

Radiologists use images from CT and X-ray scans to diag-311

nose COVID-19 as shown in Figure 4 [63]. X-ray is an inex-312

pensive imaging technique and it poses a low-risk radiation313

hazard to human health [64]. However, it may be difficult to314

diagnose the stage of infection just by looking at the X-ray315

scans. This is due to the similarity of white spots, which may 316

consist of water and pus that are associated with other lung 317

diseases, such as tuberculosis. On the other hand, CT scans 318

offer more precise detection but are more expensive than 319

X-ray imaging [65], [66]. However, the detection accuracy 320

from CT scans is still not satisfactory and defective in the 321

diagnosis of COVID-19. Other techniques, in addition to the 322

CT scan, can help improve the accuracy of the COVID-19 323

diagnosis [67]. Between these two imaging modalities, X-ray 324

imaging is usually preferred since X-ray imaging poses less 325

radiation, is cheaper and more accessible than CT imaging in 326

hospitals. 327

In this section, only the state-of-the-art DLMs using 328

CT and X-ray imaging modality for COVID-19 diagno- 329

sis are reviewed. The use of deep learning to assist the 330

diagnosis stage of COVID-19 is divided into three main 331

tasks, namely, classification, detection, and segmentation. 332
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FIGURE 3. Various electrochemical SARS-CoV-2 biosensor platforms: A) paper-based electrochemical sensor chip detecting viral RNA extraction.
Reprinted (adapted) fromal [57], part of the ACS COVID-19 subset. Copyright 
 2022, American Chemical Society. B) paper-based electrochemical
biosensor detecting whole virus, Reprinted (adapted) with permission from Elsevier, Copyright (2022), 5234950785940 [58], C) a field-effect
transistor-based electrochemical biosensor device to detect SARS-CoV-2, Reprinted (adapted) from [60], part of the ACS COVID-19 subset. Copyright 


2022, American Chemical Society, D) a MIP-based electrochemical sensor for detection of SARS-CoV-2 nucleoprotein, Reprinted (adapted) with
permission from Elsevier, Copyright (2022), 5234970620799 [14].

Classification task involves predicting the absence or pres-333

ence of diseases, for example, classification of a brain334

tumor [68] or skin lesion [69]. The object detection is an335

automated method for locating the focal lesions in the medi-336

cal image, for example, cerebral micro bleeding in magnetic337

resonance (MR) images [70]. Lastly, segmentation comprises338

sets of targeted pixels or voxels that include a structure of339

interest, for example, retinal vessel segmentation formulated340

by Fu et al. [71] through fully CNNs and fully connected341

conditional random fields (CRFs). Supervised and unsuper-342

vised learnings are the most common machine-learning con-343

cepts used for classification, detection, and segmentation344

tasks. In supervised learning, learning is conducted by map-345

ping from inputs to outputs using pre-labeled data, while346

unsupervised learning does not involve labeled data such as347

clustering [72].348

Apostolopoulos and Mpesiana achieved 96.8 % accu-349

racy with the dataset of X-ray images in the classification350

of Covid-19 using VGG19 architecture [73]. Their image351

classes include only COVID-19 vs. pneumonia vs. normal.352

Transfer learning, a method where pre-trained models are353

used to transfer already learned features, was also adopted354

in their model, which helped in achieving remarkable results355

in detecting COVID-19. However, they did not consider data356

leakage that may come frommultiple images belonging to the357

FIGURE 4. An illustration of X-ray and CT scans of patients. Adapted from
reference [63] (CC BY).

same patient, whichwould directly affect the accuracy of their 358

suggested model. Ozturk et al. developed the DarkCovidNet 359

model and achieved an accuracy of 98.1% for binary classifi- 360

cation (COVID-19 vs. no-finding), and an accuracy of 87.0% 361

for multi-class classification (COVID-19 vs. pneumonia vs. 362

no-findings) [74]. In their model, a heat map of X-ray images 363

was produced and interpreted by radiologists, and it was con- 364

cluded that their model could assist radiologists and reduce 365

the clinical workload in hospitals. They had used a limited 366

number of datasets at the time of publicationwhen developing 367

the model, hence the model would require a larger dataset 368

for future use. The researchers effort to limit the severity 369

of the pandemic are affected by the lack of datasets when 370

developing deep learning-based models [75]. The generative 371

adversarial network (GAN) has helped to generate synthetic 372
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X-ray images andminimized the effect of limited datasets that373

challenged the accuracy of the deep-learning models in the374

diagnosis of COVID-19 [76]. Sethy and Behera developed375

a model using a deep feature and support vector machine376

(SVM) with X-ray images, showing an average of 95.3%377

accuracy out of 20 independent executions [77]. In their378

model, deep features were extracted from the Resnet50 layer379

and then fed into SVM for the classification of COVID-19380

vs pneumonia vs healthy people. SVM was shown to be381

an effective technique for the diagnosis of COVID-19 [78].382

Resnet50 is also an effective backbone that is being used for383

the development of neural networks in various biomedical384

applications [79]. However, the best performing pre-trained385

neural network models require a comprehensive evaluation386

as reported in [80] and [81] to diagnose COVID-19 using387

X-ray images. Yoo et al. utilized a decision tree classifier for388

the detection of COVID-19 [32]. Since there is a shortage389

of datasets at the time of the outbreak, data augmentation390

techniques, such as rotation angle, horizontal flip were suc-391

cessfully implemented in their model to enlarge the dataset392

and simulate various attributes of visual perception. Three393

classifiers were used, which achieved an accuracy of 98%394

and 80 % for the first and second decision trees, whereas395

95 % accuracy was obtained in the third tree using X-ray396

images. In their study, the first tree classifies theX-ray images397

as normal and abnormal, while the second and third trees398

classify the abnormal cases which show the signs of tuber-399

culosis. Panwar et al. proposed nCovNet, a neural network-400

based technique, and achieved an average accuracy of 88%401

for the detection of COVID-19 positive patients using X-ray402

images of lungs [31].403

CT imaging has also been used for the diagnosis of404

COVID-19. Wang et al. developed a weakly supervised405

deep-learning-based framework using 3D CT volumes which406

included 499 CT volumes for training and 133 CT volumes407

for testing, with an accuracy of 90% [82]. Singh et al. pro-408

posed a CNN-based model where its initial parameters were409

tuned using multi-objective differential evolution to classify410

positive and negative COVID-19 cases using CT imaging411

modality with an average accuracy of 90% [83]. Ahuja et al.412

proposed a model that consisted of three different phases413

which were data augmentation using wavelets, COVID-19414

detection, and abnormality localization. In their research,415

Resnet18 had shown superior performance in the detection416

of the COVID-19 with an accuracy of 99.4% by the means of417

transfer learning [84].418

Ardakani et al. also analyzed 10 different pre-trained mod-419

els, and reported that Resnet-101 and Xception illustrated420

superior performance in distinguishing the COVID-19 from421

non-COVID-19 cases [33] with an accuracy of 99% using CT422

images, while the accuracy of radiologist diagnoses was 86%.423

In addition, the developed CovidCTNet also demonstrated424

90% accuracy in comparison to the radiologist’s accuracy rate425

which was 70% on CT images [85]. Various models have426

been commonly constructed on pre-trained models, such as427

Resnet-50 as in[86] and [87] to diagnose COVID-19 using428

CT images. Another iteration of Resnet-50 was developed 429

along with a feature pyramid network design developed by 430

Rahimzadeh et al. using very large CT images (48260 images 431

from 282 healthy people, and 15589 images from 95 patients 432

with COVID-19) [88]. In their model, around 99% accuracy 433

was achieved over 7996 test images which was the largest 434

dataset used for COVID-19 diagnosis. As the use of transfer 435

learning reduces the chance of the model to overfit, He devel- 436

oped a self-trans-based approach in which the contrastive 437

self-supervised learning with transfer learning was integrated 438

synergistically to learn unbiased features which achieved 439

86% accuracy with DenseNet-169 using CT images [89]. 440

The most popular Deep learning architectures for 441

COVID-19 detection are shown in Table 2. COVID-19, 442

Healthy, and Pneumonia are referred to as Multiclass, whilst 443

COVID-19 and Healthy are referred to as Binary. VGG19, 444

Resnet, Yolo, and Inceptions are deep learning models that 445

have been pre-trained and have been used as backbone to 446

build deep learning approaches. 447

III. COMPARISON OF ELECTROCHEMICAL BIOSENSING 448

AND DEEP LEARNING FOR PUBLIC HEALTH 449

SURVEILLANCE OF SARS-COV-2 450

The early and fast diagnosis of COVID-19 is crucial to com- 451

bat the rapid spread of COVID-19 globally. In this section, the 452

state-of-the-art in deep learning and electrochemical biosen- 453

sors will be discussed in terms of cost, sampling, timing, 454

accuracy, instrument complexity, global accessibility, feasi- 455

bility, and adaptability to mutations. 456

A. COST 457

APCR test kit consists of a combination of chemicals, nucleic 458

acid extraction kits, and other elements. A PCR test usu- 459

ally costs about $60 for patients [90]. This cost can vary 460

greatly from country to country depending on their econ- 461

omy, resources, and capabilities. Furthermore, due to the 462

COVID-19 pandemic, many countries face a supply shortage 463

of these kits and are unable to acquire them from the manu- 464

facturing countries [91]. 465

As for using deep learning models, the cost of developing 466

these models for COVID-19 diagnosis comes from the pur- 467

chase of a GPU-powered PC and the data collection process. 468

The initial development cost varies based on the training size, 469

model size, and training volume. Once themodel is developed 470

and ready-to-deploy, there are no extra costs to the hospitals 471

or clinics to maintain the system. The variable cost to the 472

patient is the CT and X-ray scans. The costs of CT and X-ray 473

scans vary based on the geographical location of the hospital. 474

For example, in the USA alone, a chest CT scan can range 475

from 1, 072upto3,509 while an X-ray scan can range from 476

82 to 417, depending on the hospital location [92]. It has to 477

be noted that a CT machine is not often available in small or 478

rural hospitals, as compared to a medical X-ray machine. 479

Despite numerous advancements in biosensor technology, 480

glucose biosensor is considered the first biosensor and con- 481

tinues to dominate and accounts for roughly 85% of a $5 482
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TABLE 2. Prominent deep learning architectures developed for COVID-19 detection.; TL: Transfer learning; CNN: Convolutional neural network.

billion market [93]. Due to an existing market in the area of483

electrochemical biosensors, sensor platforms for the diagno-484

sis of SARS-CoV-2 can be manufactured in great volume at485

a low cost. The initial upfront costs for the electrochemical486

SARS-CoV-2 biosensors are from (i) potentiostat and (ii) a487

single-use disposable electrode. The price for a large com-488

mercial potentiostat varies from $1,000 to $13,000, however,489

they are heavy, expensive, and time-consuming for trained490

person, and are not applicable to the point-of-care analy-491

sis [94]. On the other hand, a miniaturized potentiostat allows492

for point-of-care analysis, which facilities faster test results.493

A miniaturized potentiostat can be obtained at a much lower494

cost (between $30-$200) for initial investment by the govern-495

ment or companies [94], [95].496

When a large commercial potentiostat is used to run the test497

samples, the single-use disposable sensor array costs around498

3−10. However, when a miniaturized potentiostat is used, the499

cost of a single-use disposable electrode is much lower at500

around $0.50 due to the smaller size of the electrode. It must501

be noted that there are additional costs tied to the electro-502

chemical biosensors for the diagnosis of SARS-CoV-2. These503

costs include but are not limited to the following: chemi-504

cals, antibodies, enzymes, proteins, etc. The additional costs505

are dependent on the designed sensor array for specific and506

sensitive detection in a complex medium. In some arrays,507

the sample must be pre-treated to extract nucleic acid before508

testing which would increase the cost of running the tests.509

A biosensor-based COVID-19 detection test may range from510

about 3-10 US$ to a patient, which can be further used by511

using electrodes and the production of sensors at a massive512

scale. In sum, in terms of cost, electrochemical sensors have513

more advantages than PCR and deep learning–based imaging514

systems.515

B. SAMPLING516

During a CT scan, several X-ray beams and electronic X-ray517

detectors move around the patient. These devices monitor518

the amount of radiation absorbed by the individual’s body.519

During the scan, the exam table will shift, causing the X-ray520

beam to generate a series of images from various angles.521

This vast amount of data is processed by a special computer522

program to produce two-dimensional cross-sectional images523

of the body. This process is repeated several times to produce524

several slices until a detailed image of the region of interest525

is created. Chest CT scan is commonly used for the diagnosis526

of COVID-19. A CT scan provides more information than a527

standard X-ray.528

During an X-ray scan, small amounts of radiation are used529

to produce images of the body’s organs, tissues, and bones.530

It can detect abnormalities in the airways, blood vessels, 531

and lungs when focused on the chest. Getting a chest X-ray 532

does not require much planning on the part of the patient. 533

The X-ray is performed in a special room equipped with a 534

movable X-ray camera mounted on a long metal arm, where 535

the patient is positioned next to a ‘‘plate.’’ This plate would 536

contain an X-ray film or a special sensor that captures the 537

images and saves them to a computer to be analyzed by the 538

radiologist. 539

On the other hand, nasopharyngeal, and oropharyn- 540

geal swabs are routinely taken and studied to detect the 541

SARS-CoV-2 virus. Urine, feces, sputum, plasma serum, and 542

whole blood are also studied, but not as widely due to the 543

difficulty of sampling for both patients and health care work- 544

ers [96]. In most studies, the sampling principle relies on the 545

extraction of viral RNA from the samples. This is considered 546

a more reliable approach compared to CT and X-ray imaging 547

because viral RNA can be detected 2–3 days before symp- 548

toms appear and can last for up to 25–50 days depending on 549

the severity of the disease [97]. 550

Alternatively, the surface antigens or whole virus particles 551

from patients’ swab samples can be detected without any 552

prior treatment using an electrochemical biosensor, which is a 553

possible time and cost-saving approach [60], [98]. In addition 554

to nasopharyngeal, and oropharyngeal swab samples for the 555

electrochemical detection of SARS-CoV-2, Miripour et al., 556

have used sputum samples for real-time tracing of 557

SARS-CoV-2 [99]. Reactive oxygen species (ROS) by mito- 558

chondria are overproduced as a result of SARS-CoV-2- 559

induced lung cell dysfunction and by tracing ROS in spu- 560

tum samples, SARS-CoV-2 can be detected with more than 561

97% accuracy. PCR tests samples are usually taken from 562

Nasopharyngeal, and oropharyngeal swabs, which may cause 563

discomfort to the patient, as well as suffer from false posi- 564

tives and false negatives. In DLMs, the patients are exposed 565

to radiations during CT-scans or X-rays. However, electro- 566

chemical sensors can be designed for nasopharyngeal, and 567

oropharyngeal swabs urine, feces, and whole blood. These 568

sensors are much more flexible and harmless, compared to 569

PCR and DLMs. 570

C. TIME REQUIRED FOR DIAGNOSIS 571

The time taken for the deep-learning-based diagnosis of 572

COVID-19 depends on the imaging modality used. A CT 573

scan takes less than 30 s, and the whole procedure, 574

including exam planning, takes about 30 min. For X-ray, the 575

chest is photographed from two perspectives: from the back 576

and the side. The patient is positioned with hands-on-hips and 577
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chest pressed against the image plate by the technologist. The578

patient’s side is against the image plate in the second view,579

with arms elevated. The entire chest x-ray examination takes580

about 15 min.581

Early isolation of infection is key for the prevention of582

transmission. Unlike the RT-PCR tests and deep-learning583

approaches, many of the electrochemical biosensors designed584

for the detection of SARS-CoV-2 are rapid on-site tests. This585

means patients or their samples are not required to be in a586

laboratory for testing which saves time, and the results can587

be obtained as quickly as 10s [62]. For biosensors designed to588

detect viral RNA, extra time is required to extract RNA before589

testing and in this case, results can be obtained at least 30 min590

due to the sample collection [100], [101]. As a result, biosen-591

sors are more helpful than PCR and deep learning-based592

imaging systems in terms of diagnosis time.593

D. ACCURACY594

The accuracy of the DLMs for COVID-19 diagnosis was dis-595

cussed in detail in section 2.2. Most DLMs demonstrate great596

accuracy for the diagnosis of COVID-19. For instance, Apos-597

tolopoulos and Mpesiana [73], Ozturk et al. [74], and Sethy598

and Behera [77] achieved an accuracy of 96.8%, 87.0%, and599

95.3%, respectively for multi-class classification (COVID600

vs. Normal vs. Pneumonia) with X-ray images. During the601

outbreak, CT imaging is also used to diagnose COVID-19.602

Wang et al. achieved an accuracy of 90% [82] for COVID-19603

classification and lesion localization, Singh et al. achieved604

an average accuracy of 90% to classify COVID-19 positive605

and negative cases [83], Ahuja et al. achieved an accuracy606

of 99.4% in the detection of the COVID-19 [84] using CT607

imaging modality. Ardakani et al. looked at ten different608

pre-trained models and found that Resnet-101 and Xception609

performed better than the others in identifying the COVID-610

19 and non-COVID-19 cases with a 99% accuracy using CT611

images [33]. In their study, the accuracy of detection by radi-612

ologists was 86%, which is 13% lower than the established613

neural network model. There are other studies that show even614

higher (22%) accuracy with deep learning models compared615

to radiologists evaluation of CT scans [85].616

Most electrochemical biosensors show great accuracy,617

selectivity, and reproducibility towards target analytes due to618

the specific biological recognition reaction at the WE sur-619

face. The sensors designed for the detection of SARS-CoV-2620

rely on the interaction between receptor-antibody (e.g.,621

ACE2-SP1) or oligonucleotide against the target DNA or622

RNA [26]. Although these interactions are very specific, there623

may be certain issues that affect the accuracy and the sensitiv-624

ity of the fabricated SARS-CoV-2 such as genetic mutations,625

and the complex nature of the samples.626

For example, Zhao et al. designed an electrochemical627

biosensor based on a smartphone for targeting RNA of628

SARS-CoV-2 [96]. When they tested their biosensor with a629

total of 88 RNA extracts from sputum, throat swabs, urine630

samples, plasma samples, feces samples, oral swabs, serum631

samples, whole blood samples, and saliva samples which632

were obtained from 25 confirmed SARS-CoV-2 patients and 633

eight recovered patients, their accuracy changed dramatically 634

based on the sample type. For example, sputum, feces, whole 635

blood, and saliva samples resulted in 100% true positive, 636

while serum samples had only 40% true positive. There are 637

also other works published with more than 92% accuracy 638

using untreated saliva samples, which is a great sample prop- 639

erty to use on a large scale [17], [60], [101]. 640

E. INSTRUMENT COMPLEXITY 641

DLMs are run through a host computer that receives images 642

from either CT or X-ray machines. Hence, the models devel- 643

oped by deep learning techniques do not add any complex- 644

ity to the existing systems. However, the imaging modality 645

used within the system is a significant parameter that has 646

a direct impact on the complexity of the whole diagnosis 647

procedure. An X-ray machine mainly consists of an X-ray 648

generator and an image detector. The main parts of the X-ray 649

generator are tube, high voltage generator, control console, 650

and the cooling system. A CT scanner mainly consists of four 651

main components. gantry (frame) houses the X-ray source, 652

detectors, patient port (a large opening in the middle), subject 653

table, and a computer system that gathers all data from the 654

detectors. Finally images are produced based on the captured 655

data [102]. A CT scanner must move around the patient being 656

scanned; hence, an X-ray equipment is much smaller and less 657

complicated than a CT machine. 658

Instruments used for electrochemical biosensors are less 659

complexwith very low cost compared to CT andX-ray instru- 660

ments which costs between 15, 000−90,000. For accurate 661

electrochemical biosensing of SARS-CoV-2, the potentio- 662

stat is required to ensure signal processing and cell con- 663

ditioning. Potentiostat devices can be either bench-top or 664

portable. Portable devices (miniaturized potentiostat) are usu- 665

ally equipped with a portable mobile device for read-out 666

which is a great feature to monitor public health surveillance 667

of SARS-CoV-2 on-site [95], [96]. On the other hand, bench- 668

top models are not that user-friendly and require skilled per- 669

sonnel to operate. 670

F. GLOBAL ACCESSIBILITY AND FEASIBILITY 671

To date, there is no U.S. Food and Drug Administration 672

(FDA)-approved system using deep-learning techniques with 673

CT or X-ray imaging modality to diagnose COVID-19. Apart 674

from FDA, the employment of DLM for COVID-19 diagnosis 675

also depends on the acceptance of radiologists and clinicians. 676

However, there are already FDA-approved software using 677

DLM, such as the OsteoDetect to analyze X-ray images for 678

wrist fracture [103], which demonstrates the potential reli- 679

ability and feasibility of DLM for other types of medical 680

devices, such as COVID-19 diagnosis. 681

Global accessibility and feasibility of the DLMs will 682

depend on access to good imaging facilities in the hospitals. 683

Therefore, access to CT and X-ray machines is one of the 684

important concerns when it comes to the feasibility of using 685

the deep learning models in hospitals. As COVID-19 is 686
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an infectious disease, where infection safety concerns are687

associated with patient transport to CT suites, inefficiencies688

implemented in CT room decontamination, and a lack of689

CT availability in some areas of the world, portable chest690

X-ray would likely be the most widely used modality for691

detecting and monitoring lung anomalies [104]. Routine CT692

scan for COVID-19 diagnosis is also not recommended by693

radiologists unless in-depth investigations on the lung’s con-694

ditions are required [105]. Chest X-ray equipment is the most695

widely used medical equipment in intensive care units (ICU)696

based on a global study of 52 medical institutions [106].697

Since X-ray imaging is by far more accessible than CT698

scan, the former has the advantage of being globally utilized,699

and thus more likely to be used to develop deep-learning700

models.701

Electrochemical biosensors have been commercially used702

as diagnostic instruments for the point-of-care analy-703

sis of glucose, uric acid, and cholesterol levels [107].704

Therefore, there is an established platform worldwide for705

electrochemical biosensors which can be adapted to the706

electrochemical SARS-CoV-2 testing by modifying the707

sensor array and calibrating portable potentiostats. As a708

result, electrochemical SARS-CoV-2 biosensors could be709

commercialized and globally accessible to control the710

pandemic. There is already a commercially available elec-711

trochemical SARS-CoV-2 biosensor based on electrochemi-712

luminescence measurement which was granted by the U.S.713

Food and Drug Administration-Emergency Use Authoriza-714

tion (FDA-EUA) [108]. The North American company715

(Roche Diagnostics, Indianapolis, IN) offers a rapid test716

(18 min.) compared to RT-PCR or ELISA tests with a 100 %717

true positive rate and 99.8% true negative rate using human718

serum and plasma samples.719

Despite the demonstrated feasibility of electrochemical720

SARS-CoV-2 biosensors, the shelf-life and short storage721

time of the chemicals may limit its worldwide implementa-722

tion. The use of toxic chemicals in the production, lengthy723

fabrication procedures, toxic material wastes, costly clean-724

room processing requirements, and the inability to incor-725

porate enzyme/electrode co-production are other possible726

limitations of the system. Furthermore, to use a benchtop727

potentiostat, a skilled worker is needed to operate and inter-728

pret the data. As a result, further research is needed to develop729

new processes with higher levels of customizability and sen-730

sitivities, at a lower cost, and portability for a wider usage of731

electrochemical SARS-CoV-2 biosensors. Thus, depending732

on a country’s resources and economic size, deep-learning-733

based and electrochemical biosensor-based approaches may734

be adopted to reduce the cost of testing and false negative and735

false-positive results, if the above-mentioned limitations can736

be overcome.737

G. ADAPTABILITY TO MUTATIONS738

The SARS-CoV-2 genome structure was sequenced for the739

first time in Wuhan, China in January 2020. Understanding740

SARS-CoV-2 genome sequencing is important to interpret 741

the virus’s nature and mutation rate, as well as successful 742

prevention strategies such as vaccines and drugs. Several 743

investigations have noted the new coronavirus’s genetic 744

diversity and rapid evolution. Some mutations may have little 745

or no impact, whereas others may affect the virus’s properties, 746

such as increased transmissibility. The significant mutations 747

of Sars-CoV-2 presented in Figure 5 indicate the origin, date 748

of the first detection, and the main concerns of the variants of 749

SARS-CoV-2. 750

The procedure for collection, preservation, storage and 751

processing of the samples affects the accuracy of RT-PCR. 752

The lack of proofreading ability in the viral RNApolymerases 753

results in a high rate of mutation. As a consequence, if the 754

virus mutates in the targeting genomic region, which happens 755

often, the precision of these diagnostic methods is adversely 756

affected [62]. To the best of our knowledge, there are only 757

few reports on electrochemical detection of SARS-CoV-2 758

mutations and the study by Beduk et al., stands out from 759

other work [110]. First, they earlier reported laser-scribed 760

graphene (LSG) sensors for SARS-CoV-2 [29], then 761

improved their study by adapting their systems for alpha 762

(B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants [110]. 763

A machine learning approach was also integrated for quick 764

interpretation of data with an accuracy of 99.37%. Moreover, 765

it is possible to design a multichannel biosensor for simulta- 766

neous detection of SARS-CoV-2 and all mutations using the 767

associated biorecognition element [111]. 768

On the other hand, the DLMs developed must be adapt- 769

able to detect mutations since the replication of SARS-CoV-2 770

genomic information will cause the virus to mutate [112]. 771

The virus’s adaptability to mutations, B.1.1.7, B.1.351, P.1, 772

B.1.617.2, and B.1.1.519, has recently been proven by 773

researchers [113]. However, more attention is required in 774

the area of diagnosis considering the high mutation rate of 775

the SARS-CoV-2. Apart from developing DLMs to iden- 776

tify the different variants, estimating the mutation rate using 777

DLMs has also drawn great attention from researchers world- 778

wide [114]. This is because by knowing the mutation rate, 779

scientists will be able to illustrate the risk of emergent 780

SARS-CoV-2 infection [115]. DLMs can be developed to 781

detect the mutations and are adaptable to new variants of 782

SARS-CoV-2 as long as the datasets are accessible [116]. 783

Since the development of the DLMs relies on the dataset 784

used during the training procedure for the diagnosis of 785

SARS-CoV-2, the developed models can easily be adapted 786

to new variants of SARS-CoV-2. This procedure requires an 787

update on the datasets used during the training process of the 788

deep learning models. 789

A comparison of PCR, electrochemical biosensors, and 790

deep-learning-based COVID-19 diagnostic tests are provided 791

in Table 3 in terms of cost, sampling, the time required for 792

diagnosis, accuracy, instrument complexity, global accessi- 793

bility and feasibility, and adaptability to mutations. It is noted 794

that the cost is given in USD throughout this study. 795
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TABLE 3. A summary of SARS-CoV-2 diagnostic techniques.

FIGURE 5. Current significant mutations of SARS-CoV-2.
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IV. CONCLUDING REMARKS796

The current gold standard for monitoring SARS-CoV-2797

spread is based on RT-PCR test using nasophyrangeal swab798

samples, which is expensive, time-consuming, and produces799

a large number of false-positive or false-negative results.800

Earlier and faster diagnosis of the SARS-CoV-2 virus can801

decrease and slow down the spread of the COVID-19 disease.802

In this review, deep-learning models and electrochemical803

biosensors were compared to PCR in terms of cost, sampling,804

the time required for diagnosis, accuracy, instrument com-805

plexity, global accessibility and feasibility, and adaptability806

to mutations. Based on the studies reviewed, deep-learning-807

based models and biosensors can help minimize the severe808

effect of the pandemic. However, the deployment of these809

techniques will be dependent on a country’s resources and810

economic size as mentioned in this study.811

To date, electrochemical SARS-CoV-2 biosensors have812

been tested on various kinds of body fluids. According to813

a recent study, COVID-19 patients’ exhaled breath contains814

a significant amount of SARS-CoV-2 virus [117]. There-815

fore, a diagnostic test using exhaled breath as a quick,816

non-invasive method in monitoring SARS-CoV-2 infections817

would be a tremendous step forward [118], [119], [120].818

Since breath analysis has the added advantage of real-time819

and point-of-care analysis [121], there has been strong inter-820

est in the research community to develop noninvasive exhaled821

breath detection techniques using electrochemical enzymatic822

biosensors for COVID-19 diagnosis [122]. Electrochemical823

enzyme-based biosensors are among the largest commer-824

cially available group of biosensors and are of particular825

interest in this endeavor following the advancement of nano-826

materials used in the biosensors which have resulted in high827

analytical sensitivity, stability at reduced costs of testing.828

To date, there have not been any reported electrochemical829

biosensors for the detection of COVID-19 virus using the830

breath as a sample. The demand for biosensors in the field831

of diagnostics is enormous, and they will be particularly suc-832

cessful in early viral detection.833

A recent study reported that mutations in the S pro-834

tein, which binds to the ACE2 receptor, may cause muta-835

tions in the SARS-CoV-2 virus during transmission among836

humans [123]. Tracking the virus variants is important in the837

global effort to prevent its spread. A multi-channel electro-838

chemical detection system could be designed to detect muta-839

tions using associated biorecognition elements [110], [124].840

This will help simultaneous detection of SARS-CoV-2 vari-841

ants which may not be possible with current testing methods.842

In a recent study, the capacity to detect new variants such as843

Omicron is demonstrated using a novel plastic optical fiber844

(POF) U-shaped probe sensing approach for reliable detec-845

tion of SARS-CoV-2 within 15 minutes [125].846

Although a DLM can be adapted to the variants of847

SARS-CoV-2, the developed state-of-the-art in deep learn-848

ing for diagnosis of SARS-CoV-2 should be evaluated on849

the variants of SARS-CoV-2. Since the correlations within850

the datasets have already been learned by the model, the851

developed models could be still showing promising diagno- 852

sis results with a cost of a slightly reduced accuracy. For 853

this, researchers around the world should collaborate and 854

create a benchmark dataset for SARS-CoV-2 variants to eval- 855

uate their models. This would speed up the development of 856

DLMs. A powerful alternative for ending the pandemic can 857

be the development of a DLM to forecast new strains so that 858

new vaccinations may be developed to tackle the mutated 859

virus. 860

With more publicly available databases, better-performing 861

DLMs can be developed to accurately diagnose COVID-19. 862

An accurate ground truth label by the experts is another 863

area that needs attention when developing deep-learning 864

models. 865
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