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ABSTRACT COVID-19 caused by the transmission of SARS-CoV-2 virus taking a huge toll on global
health and caused life-threatening medical complications and elevated mortality rates, especially among
older adults and people with existing morbidity. Current evidence suggests that the virus spreads primarily
through respiratory droplets emitted by infected persons when breathing, coughing, sneezing, or speaking.
These droplets can reach another person through their mouth, nose, or eyes, resulting in infection. The
“gold standard” for clinical diagnosis of SARS-CoV-2 is the laboratory-based nucleic acid amplification
test, which includes the reverse transcription-polymerase chain reaction (RT-PCR) test on nasopharyngeal
swab samples. The main concerns with this type of test are the relatively high cost, long processing time,
and considerable false-positive or false-negative results. Alternative approaches have been suggested to
detect the SARS-CoV-2 virus so that those infected and the people they have been in contact with can be
quickly isolated to break the transmission chains and hopefully, control the pandemic. These alternative
approaches include electrochemical biosensing and deep learning. In this review, we discuss the current
state-of-the-art technology used in both fields for public health surveillance of SARS-CoV-2 and present
a comparison of both methods in terms of cost, sampling, timing, accuracy, instrument complexity, global
accessibility, feasibility, and adaptability to mutations. Finally, we discuss the issues and potential future
research approaches for detecting the SARS-CoV-2 virus utilizing electrochemical biosensing and deep
learning.

INDEX TERMS SARS-CoV-2, COVID-19, PCR, deep learning, electrochemical biosensor.

I. INTRODUCTION 2020 [1]. SARS-CoV-2 is extremely contagious and spreads
The Director-General of the World Health Organization similarly as SARS-CoV-1, by direct physical contact through
(WHO) declared the SARS-CoV-2 a pandemic on 12 March respiratory droplets or touching of contaminated surfaces,

as well as indirect contact by aerosolized SARS-CoV-2 [2].

The associate editor coordinating the review of this manuscript and Current evidence shows a significant proportion of those who
approving it for publication was Binit Lukose . are capable of transmitting the virus have no or barely visible
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symptoms while carrying the very high viral load [3]. This
is noteworthy because asymptomatic COVID-19 patients are
infectious and may act as silent drivers for the transmission
of the virus.

Pathogenic coronaviruses (CoVs) are a type of positive-
sense single-stranded RNA (4ssRNA) viruses [4]. Among
the CoVs (previously identified MERS-CoV, SARS-CoV,
and the novel one) SARS-CoV-2 is the most pathogenic.
Figure 1 shows the structure of SARS-CoV-2 and its mode
of host entry [5]. The spike protein on CoVs have two
domains: SP1 binding to host cell receptors and SP2, the
fusion peptide, facilitating viral cell entry. The angiotensin-
converting enzyme 2 (ACE2) receptor on the cell mem-
brane is the major receptor for SP1. Among the three CoVs
(HCoV-NL63, SARS-CoV, and SARS-CoV-2) which use
ACE2 to enter the host cell, the binding affinity of S1 to ACE2
is the highest in SARS-CoV-2 and lowest in HCoV-NL63 [6].
In other words, ACE2 is used by SARS-Cov-2 to enter the
cell, which is the first stage of the virus multiplication cycle.
When SARS-CoV-2 binds to ACE2, it further prevents ACE2
from regulating angiotensin II signaling, thus increasing the
level of angiotensin II to damage blood vessel linings and
injure tissues.

For the purposes of public health surveillance of
SARS-CoV-2 in humans, nucleic acid amplification tests,
most commonly the reverse transcription polymerase chain
reaction (RT-PCR) assay, using nasal-swab samples is
the WHO-recommended validation assay [7]. On average,
the RT-PCR test results can take two to five days due to the
time taken in the collection and transportation of samples to
the labs. Although RT-PCR test is the gold standard, it has
several limitations, including the cost of operation since the
RT-PCR machines are expensive and long processing time.
Moreover, there have also been reports of false-negative and
false-positive results from the RT-PCR tests [8], [9].

A global call was issued for the effective diagnosis, treat-
ment of SARS-CoV-2, and measures to control the spread of
infection. For a better prognosis of COVID-19, early detec-
tion of disease is crucial. RT-PCR tests were the first to
be developed and widely used when the COVID-19 pan-
demic broke out. Many approaches have been proposed
as an alternate replacement for the RT-PCR test. Aside
from viral genome detection, serologic tests such as ELISA
(enzyme-linked immunosorbent assay) [10], LFA (lateral
flow immunoassay) [11], and chemiluminescent (CLIA) [12],
and chest CT scans combined with clinical symptoms have
been used to diagnose the SARS-CoV-2. Besides these tests,
researchers have also used novel approaches to reduce the
cost of testing and offer more reliable test results. Among
them, electrochemical biosensing- and deep-learning-based
approaches stand out as illustrated in Figure 2 [13], [14],
[15], [16]. In this review, we evaluate these two different
approaches as potential alternatives for more accurate and
affordable SARS-Cov-2 diagnostic tests.

Electrochemical biosensors are analytical tools that mea-
sure the concentration of an analyte of interest in a
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complex sample matrix, they can be used to detect
viruses [17], cancers cells [18], bacteria [19], and small
biomolecules such as glucose, dopamine, uric acid, and ascor-
bic [20], [21]. Electrochemical biosensors have been exten-
sively studied for their unique advantages, such as portability,
low cost, fast response, and high sensitivity, over other analyt-
ical devices [22]. The electrochemical biosensors produce a
signal by interacting with receptors/bioreceptors and the par-
ticular analyte to produce or consume ions or electrons. This
causes a change in the electrical properties of the electrolyte
solution. The change in the electrical current or potential of
the electrolyte solution is measured using functionalized elec-
trodes, which generate an electrical signal that is correlated
to the amount of target analyte in the test sample [23], [24].
Many recent studies have shown that electrochemical biosen-
sors can be utilized for SARS-CoV-2 diagnosis [25]. In gen-
eral, deep-throat saliva and nasopharyngeal samples [26] can
be tested with or without the extraction of genetic material
from SARS-CoV-2, improving the time taken for rapid diag-
nosis. For example, Raziq et al. vortexed the clinical sam-
ples from nasopharyngeal in lysis buffer to release proteins
and reduce the inferencing species [14]. On the other hand,
Beduk et al. developed an electrochemical immunoassay for
the detection of SARS-CoV-2 using serum samples without
any pre-treatment [27].

There is a high demand for deep learning-based approaches
in various research fields such as medical [28] and agri-
culture [29]. Recently, deep-learning-based models (DLMs)
were extensively studied for the diagnosis of the SARS-CoV-
2 [30], [31], [32], [33]. The developed DLMs consist of
data collection, data preparation, feature extraction, and lastly
model evaluation [34]. Data collection is the first and crucial
step. The quantity and quality of the computed tomography
(CT) and X-ray lung images collected are used to validate the
success of the developed model. The data preparation stage
mostly includes data augmentation, noise removal, and resiz-
ing the input image [35]. The processed data are then divided
into training, test, and validation sets. The model is developed
using the training dataset, and its optimization is checked gen-
erally using a cross-validation technique [36]. The optimized
model is then run on the test set to validate its performance on
the unseen data. Feature extraction is the process of reducing
the dimensionality in which the initial raw data are processed
to more manageable groups by maintaining accuracy and
still describing the original dataset. Finally, the developed
model is evaluated using various metrics, such as accuracy,
confusing matrix, sensitivity, specificity, precision, F1-score,
etc. [37].

X-ray and CT are the most widely used imaging modali-
ties in the field of artificial intelligence (AI) for the accurate
diagnosis of SARS-CoV-2 [38]. The manual interpretation of
medical images by radiologists is a time-consuming process
and it is prone to human errors and bias. Recently, Al technol-
ogy is evolving in the medical diagnosis of various diseases.
Deep learning [15], machine learning [39], data science [16],
the internet of things [40], and big data [41] are the main
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FIGURE 1. Schematic illustration of SARS-CoV-2 structure and its mode of host entry. Adapted with permission from
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FIGURE 2. The percent of research articles on detection/diagnosis of
SARS-CoV-2 related research since the start of the pandemic. (Source: ISI
Web of KnowledgeSM, 01/20/22).

subsets of Al that are used to reduce the severity of the
COVID-19 pandemic. The main advantage of Al techniques
is to speed up the diagnoses while significantly decreasing
the medical costs. Among the Al technologies, deep learning
techniques have gained more popularity, especially in the
medical field. Notably, convolutional neural network (CNN),
adeep learning based model, is widely used in image process-
ing applications. CNNs extract the high-level image features
and convert the data into a high-dimensional and non-linear
space, which can help solve various challenging problems
in biomedical applications by achieving human-level accu-
racies [42] or even beyond in some cases [43].

This review aims to demonstrate the use of electrochemical
biosensors and deep learning to detect SARS-CoV-2.Here,the
survey article comprehensively reviews and compares elec-
trochemical biosensing and deep learning methods as poten-
tial diagnostic tools for SARS-CoV-2. The strengths and
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limitations of these two techniques are discussed along with
ways to minimize the limitations and increase the use of elec-
trochemical sensors to combat with SARS-CoV-2. Finally,
the future research directions in both fields as potential tools
to reduce the dependency of RT-PCR tests and help minimize
the severity of the pandemic are discussed.

Il. BASIC PRINCIPLES

A. STATE-OF-THE-ART RT-PCR FOR SARS-COV-2
DIAGNOSIS

Influenza (flu) and Coronaviruses are typically identified by
examining their genomes, particularly their ribonucleic acid
(RNA) sequences [44]. The PCR process multiplies DNA
sequences in a quick period, considerably improves the capa-
bility of infectious diseases diagnosis. Variants of PCR tech-
niques, such as end-point PCR, quantitative PCR (qPCR),
digital PCR have been developed and employed in diagnos-
tics since its development [45]. A real-time reverse transcrip-
tion step precedes the PCR (RT-PCR) for coronaviruses, as it
does for other RNA viruses, and transcribes the RNA into
cDNA. Due to its sensitivity and specificity, the PCR test
has become the method of choice to detect SARS-CoV-2.
It is theoretically capable of identifying a single copy
of virus, resulting in a shorter diagnostic window than
immunoassays.

Reliable laboratory diagnosis is vital to slow down of the
respiratory diseases. When the COVID-19 pandemic broke
out, RT-PCR diagnostics were the first to be developed and
widely used. RT-PCR is commonly used to discover causal
viruses from respiratory secretions in cases of acute respi-
ratory illness [46]. The US Centers for Disease Control and
Prevention, WHO, Chinese Center for Disease Control and
Prevention, and commercial enterprises have each developed
RT-PCR kits [47]. The test is minimally invasive and usually
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performed using nasal swabs, throat swabs, and tests of saliva
or other bodily fluids [48].

It has been a global and concerted effort to establish
the RT-PCR tests for the diagnosis of SARS-CoV-2 in a
short period. However, significant drawbacks were reported
for its global usage, including high operating costs due to
the high cost of RT-PCR instruments and extended pro-
cessing times. Some people, particularly young toddlers,
find deep nasal swabs painful as well. Furthermore, false-
negative, and false-positive results from RT-PCR assays have
been reported [49]. There have also been reports of positive
RT-PCR cases in patients recovered from COVID-19 [50].

B. STATE-OF-ART ELECTROCHEMICAL BIOSENSING FOR
COVID-19 DIAGNOSIS

Electrochemical biosensors typically consist of three-
electrode systems: working (WE), reference (RE), and
counter (CE) electrodes. The CE completes the circuit and
allows the charge to flow, while the RE provides a steady
potential to regulate the WE’s potential. The WE is a hybrid
of a biomolecular recognition device and a physiochemi-
cal transducer that serves as a transduction element [51].
It can be modified with nano-engineered materials (e.g.,
graphene, 2D nanomaterials, MXenes, metal oxides, or poly-
mers) and biomolecules (e.g., enzymes, antibodies, proteins,
or aptamers) for the detection of specific analytes with high
sensitivity [52], [53], [54], [55].

Based on existing nano-engineered materials identifiable
by their unique morphological, mechanical, and physico-
chemical properties through versatile chemical functional-
ization, nanomaterial-derived technology offers a promising
approach to cope with the pandemic issue. Therefore, the
modified WE can offer enhanced stability, selectivity, and
sensitivity towards SARS-CoV-2. In a typical electrochemi-
cal SARS-CoV-2 biosensor, SARS-CoV-2 interacts with WE
in an electrolyte solution, causing a difference in potential,
current, electrochemical impedance, or capacitance. An elec-
trochemical workstation senses the difference in the sig-
nal, which is then used to detect SARS-CoV-2 presence.
Potentiometry, amperometry, electrochemical impedance,
and capacitance are the four types of electrochemical sensors
based on these signals. Electrochemical sensors attract great
interest because they can be easily miniaturized. The elec-
trochemical workstation can be built as portable device for
on-site monitoring, where a computer or a handheld device
(smartphones, laptops, etc.) equipped with the required soft-
ware platforms can be used to analyze the tests data [56].

A robust, responsive, accurate, and on-site detection tool
is essential in stopping the worldwide COVID-19 pandemic.
Electrochemical methods are known for their low cost and
fast analysis. While electrochemical biosensors may offer
high selectivity, sensitivity, and reliability towards target ana-
lyte in complex media, it is also important to think of afford-
ability, time of analysis, and sampling methods to promote
widespread testing even in resource-limited settings.
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To address the need for better sampling methods, noninva-
sive ways of screening may be an ideal approach for the iden-
tification of biomarkers in body fluids, including urine, saliva,
tears, sweat, and breath for the screening of SARS-CoV-2.
For example, Alefeef er al. recently reported a paper-based
electrochemical sensor to detect SARS-CoV-2 [57]. In their
design (Figure 3A), gold nanoparticles (AuNPs) were capped
with highly specific antisense oligonucleotides (ssDNA)
to target viral nucleocapsid phosphoprotein (N-gene). The
issue with this prototype is that it requires RNA isolation
from SARS-CoV-2, which makes it unsuitable for on-site
detection. Yakoh et al. introduced a paper-based electro-
chemical biosensor using spike protein receptor-binding
domain (SP RBD) of SARS-CoV-2 as a recognition group
(Figure 3B) [58]. After immobilization of the SP RBD on the
electrode surface, the square-wave voltammetry (SWV) tech-
nique was utilized for the detection of SARS-CoV-2. Unfor-
tunately, the detection limit of this electrochemical sensor
prevented the detection of SARS-CoV-2 in the actual nasal
swab specimens.

One of the most promising studies on electrochemical
detection of SARS-CoV-2 was carried out in [17]. In their
study, the silicon dioxide layer was first placed on a silicon
wafer, followed by 25-nm-thick thermally deposited titanium
layers, and finally, a 350-nm-thick gold layer deposited via
electron-beam assisted gold evaporation and patterned with
photolithography to fabricate a platform (a chip). A redox
probe (ferrocene) modified DNA was then attached to the
chip, followed by the antiSARS-CoV-2 spike S1 antibody
linked to the amine-terminated DNA. The as-fabricated chip
was tested using chronoamperometry and the results were
obtained in minutes. This is the first study that used undiluted
saliva samples for the detection of SARS-CoV-2.

Besides its short analysis time and easy sampling method,
the biosensors have about nine months of shelf-life [59].
In another study, Seo er al. reported a field-effect tran-
sistor (FET)-based electrochemical biosensor to detect
SARS-CoV-2 in clinical samples without requiring sample
pretreatment or labeling [60]. As shown in Figure 3C, the FET
was coated with a graphene layer and modified with a specific
antibody against SARS-CoV-2 spike protein. The biosensor
was very sensitive to SARS-CoV-2 antigen protein and could
distinguish the virus from the MERS-CoV antigen protein.

Raziq et al [14] used a gold-based thin-film electrode as
a disposable sensor chip modified by SARS-CoV-2 nucle-
oprotein (ncovNP) molecularly imprinted polymer (MIP)
to form an artificial receptor for the detection of ncovNP
(Figure 3D). The sensor was designed to detect ncoviNP
which shows a linear response of up to 111 fM with
detection and quantification limits of 15 fM. A portable
potentiostat was utilized to test the as-fabricated sensor
with nasopharyngeal swab samples of COVID-19 positive
patients. Although the swab samples had to be vortexed for
30 min in a lysis buffer to release the viral protein before
each test, the MIP technology is still very attractive due to
its rapid, low-cost and sensitive detection capabilities, and
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TABLE 1. Summary table of the reviewed biosensors for COVID-19 detection.

Sensory Array Electrochemical Biomarker Recognition LOD Linear range Time Reference
Method Element
Paper-based elec- Voltammetry N-gene Viral ssDNA 231 585.4- >5 [57]
trochemical sen- copiesp L 5.854x107 min
sor chip copiespL
Lateral flow- Square-wave IgG and SPRBD 0.11 ng/mL 1-1000 ng/mL 30 [58]
based assays voltammetry IeM min
Electrochemical Chronoamperometrhole antiSARS- 4%x103 viral 4x103-4x107 vi- 5 [17]
chip virus CoV-2 spike particles per ral particles per min
S1 antibody mL mL
FET FET-current re- Whole antiSARS- 1.6x101 1.6x101- N/R [60]
sponse virus CoV-2 spike pfu/mL 1.6x104 pfu/mL
S1 antibody
MIP-based Differential ncovNP Synthetic re- 15fM 0-111 fM 30 [14]
disposable sensor pulse ceptor min
chip voltammetry
Laser-scribed Differential SARS- anti-SARS- 2.9 ng/mL 5.0-500 ng/mL 1-5 [27]
graphene based pulse CoV-2 CoV-2 S1 min
disposable sensor  voltammetry spike antibody
protein
Aerosol-Jet Electrochemical S1 and S1 and RBD 2.8x1015 1 fM - 1 nM 10s [62]
Nanoprinted 3D impedance RBD antibodies S1H SDH, 1 ™M - 1
Electrodes spectroscopy 16.9x1015 nM (RBD)
(RBD)

highly selective receptors [61]. It may even be used to detect
SARS-CoV-2 mutations. With the above-mentioned advan-
tages, electrochemical biosensors are potential candidates for
rapid detection of COVID-19.

Table 1 summaries the key parameters of the electrochemi-
cal biosensors for the detection of SARS-CoV-2 discussed in
this review.

C. STATE-OF-THE-ART IN DEEP LEARNING FOR
SARS-COV-2 DIAGNOSIS

Chest X-ray and chest CT imaging modalities play a key role
in the diagnosis of COVID-19 and controlling the pandemic.
Radiologists use images from CT and X-ray scans to diag-
nose COVID-19 as shown in Figure 4 [63]. X-ray is an inex-
pensive imaging technique and it poses a low-risk radiation
hazard to human health [64]. However, it may be difficult to
diagnose the stage of infection just by looking at the X-ray
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scans. This is due to the similarity of white spots, which may
consist of water and pus that are associated with other lung
diseases, such as tuberculosis. On the other hand, CT scans
offer more precise detection but are more expensive than
X-ray imaging [65], [66]. However, the detection accuracy
from CT scans is still not satisfactory and defective in the
diagnosis of COVID-19. Other techniques, in addition to the
CT scan, can help improve the accuracy of the COVID-19
diagnosis [67]. Between these two imaging modalities, X-ray
imaging is usually preferred since X-ray imaging poses less
radiation, is cheaper and more accessible than CT imaging in
hospitals.

In this section, only the state-of-the-art DLMs using
CT and X-ray imaging modality for COVID-19 diagno-
sis are reviewed. The use of deep learning to assist the
diagnosis stage of COVID-19 is divided into three main
tasks, namely, classification, detection, and segmentation.
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biosensor detecting whole virus, Reprinted (adapted) with permission from Elsevier, Copyright (2022), 5234950785940 [58], C) a field-effect
transistor-based electrochemical biosensor device to detect SARS-CoV-2, Reprinted (adapted) from [60], part of the ACS COVID-19 subset. Copyright ©
2022, American Chemical Society, D) a MIP-based electrochemical sensor for detection of SARS-CoV-2 nucleoprotein, Reprinted (adapted) with

permission from Elsevier, Copyright (2022), 5234970620799 [14].

Classification task involves predicting the absence or pres-
ence of diseases, for example, classification of a brain
tumor [68] or skin lesion [69]. The object detection is an
automated method for locating the focal lesions in the medi-
cal image, for example, cerebral micro bleeding in magnetic
resonance (MR) images [70]. Lastly, segmentation comprises
sets of targeted pixels or voxels that include a structure of
interest, for example, retinal vessel segmentation formulated
by Fu et al. [71] through fully CNNs and fully connected
conditional random fields (CRFs). Supervised and unsuper-
vised learnings are the most common machine-learning con-
cepts used for classification, detection, and segmentation
tasks. In supervised learning, learning is conducted by map-
ping from inputs to outputs using pre-labeled data, while
unsupervised learning does not involve labeled data such as
clustering [72].

Apostolopoulos and Mpesiana achieved 96.8 % accu-
racy with the dataset of X-ray images in the classification
of Covid-19 using VGG19 architecture [73]. Their image
classes include only COVID-19 vs. pneumonia vs. normal.
Transfer learning, a method where pre-trained models are
used to transfer already learned features, was also adopted
in their model, which helped in achieving remarkable results
in detecting COVID-19. However, they did not consider data
leakage that may come from multiple images belonging to the
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same patient, which would directly affect the accuracy of their
suggested model. Ozturk et al. developed the DarkCovidNet
model and achieved an accuracy of 98.1% for binary classifi-
cation (COVID-19 vs. no-finding), and an accuracy of 87.0%
for multi-class classification (COVID-19 vs. pneumonia vs.
no-findings) [74]. In their model, a heat map of X-ray images
was produced and interpreted by radiologists, and it was con-
cluded that their model could assist radiologists and reduce
the clinical workload in hospitals. They had used a limited
number of datasets at the time of publication when developing
the model, hence the model would require a larger dataset
for future use. The researchers effort to limit the severity
of the pandemic are affected by the lack of datasets when
developing deep learning-based models [75]. The generative
adversarial network (GAN) has helped to generate synthetic
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X-ray images and minimized the effect of limited datasets that
challenged the accuracy of the deep-learning models in the
diagnosis of COVID-19 [76]. Sethy and Behera developed
a model using a deep feature and support vector machine
(SVM) with X-ray images, showing an average of 95.3%
accuracy out of 20 independent executions [77]. In their
model, deep features were extracted from the Resnet50 layer
and then fed into SVM for the classification of COVID-19
vs pneumonia vs healthy people. SVM was shown to be
an effective technique for the diagnosis of COVID-19 [78].
Resnet50 is also an effective backbone that is being used for
the development of neural networks in various biomedical
applications [79]. However, the best performing pre-trained
neural network models require a comprehensive evaluation
as reported in [80] and [81] to diagnose COVID-19 using
X-ray images. Yoo et al. utilized a decision tree classifier for
the detection of COVID-19 [32]. Since there is a shortage
of datasets at the time of the outbreak, data augmentation
techniques, such as rotation angle, horizontal flip were suc-
cessfully implemented in their model to enlarge the dataset
and simulate various attributes of visual perception. Three
classifiers were used, which achieved an accuracy of 98%
and 80 % for the first and second decision trees, whereas
95 % accuracy was obtained in the third tree using X-ray
images. In their study, the first tree classifies the X-ray images
as normal and abnormal, while the second and third trees
classify the abnormal cases which show the signs of tuber-
culosis. Panwar et al. proposed nCovNet, a neural network-
based technique, and achieved an average accuracy of 88%
for the detection of COVID-19 positive patients using X-ray
images of lungs [31].

CT imaging has also been used for the diagnosis of
COVID-19. Wang et al. developed a weakly supervised
deep-learning-based framework using 3D CT volumes which
included 499 CT volumes for training and 133 CT volumes
for testing, with an accuracy of 90% [82]. Singh et al. pro-
posed a CNN-based model where its initial parameters were
tuned using multi-objective differential evolution to classify
positive and negative COVID-19 cases using CT imaging
modality with an average accuracy of 90% [83]. Ahuja et al.
proposed a model that consisted of three different phases
which were data augmentation using wavelets, COVID-19
detection, and abnormality localization. In their research,
Resnet18 had shown superior performance in the detection
of the COVID-19 with an accuracy of 99.4% by the means of
transfer learning [84].

Ardakani ef al. also analyzed 10 different pre-trained mod-
els, and reported that Resnet-101 and Xception illustrated
superior performance in distinguishing the COVID-19 from
non-COVID-19 cases [33] with an accuracy of 99% using CT
images, while the accuracy of radiologist diagnoses was 86%.
In addition, the developed CovidCTNet also demonstrated
90% accuracy in comparison to the radiologist’s accuracy rate
which was 70% on CT images [85]. Various models have
been commonly constructed on pre-trained models, such as
Resnet-50 as in[86] and [87] to diagnose COVID-19 using
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CT images. Another iteration of Resnet-50 was developed
along with a feature pyramid network design developed by
Rahimzadeh et al. using very large CT images (48260 images
from 282 healthy people, and 15589 images from 95 patients
with COVID-19) [88]. In their model, around 99% accuracy
was achieved over 7996 test images which was the largest
dataset used for COVID-19 diagnosis. As the use of transfer
learning reduces the chance of the model to overfit, He devel-
oped a self-trans-based approach in which the contrastive
self-supervised learning with transfer learning was integrated
synergistically to learn unbiased features which achieved
86% accuracy with DenseNet-169 using CT images [89].

The most popular Deep learning architectures for
COVID-19 detection are shown in Table 2. COVID-19,
Healthy, and Pneumonia are referred to as Multiclass, whilst
COVID-19 and Healthy are referred to as Binary. VGG19,
Resnet, Yolo, and Inceptions are deep learning models that
have been pre-trained and have been used as backbone to
build deep learning approaches.

IIl. COMPARISON OF ELECTROCHEMICAL BIOSENSING
AND DEEP LEARNING FOR PUBLIC HEALTH
SURVEILLANCE OF SARS-COV-2

The early and fast diagnosis of COVID-19 is crucial to com-
bat the rapid spread of COVID-19 globally. In this section, the
state-of-the-art in deep learning and electrochemical biosen-
sors will be discussed in terms of cost, sampling, timing,
accuracy, instrument complexity, global accessibility, feasi-
bility, and adaptability to mutations.

A. COST

A PCR test kit consists of a combination of chemicals, nucleic
acid extraction kits, and other elements. A PCR test usu-
ally costs about $60 for patients [90]. This cost can vary
greatly from country to country depending on their econ-
omy, resources, and capabilities. Furthermore, due to the
COVID-19 pandemic, many countries face a supply shortage
of these kits and are unable to acquire them from the manu-
facturing countries [91].

As for using deep learning models, the cost of developing
these models for COVID-19 diagnosis comes from the pur-
chase of a GPU-powered PC and the data collection process.
The initial development cost varies based on the training size,
model size, and training volume. Once the model is developed
and ready-to-deploy, there are no extra costs to the hospitals
or clinics to maintain the system. The variable cost to the
patient is the CT and X-ray scans. The costs of CT and X-ray
scans vary based on the geographical location of the hospital.
For example, in the USA alone, a chest CT scan can range
from 1, 072upt03,509 while an X-ray scan can range from
82 to 417, depending on the hospital location [92]. It has to
be noted that a CT machine is not often available in small or
rural hospitals, as compared to a medical X-ray machine.

Despite numerous advancements in biosensor technology,
glucose biosensor is considered the first biosensor and con-
tinues to dominate and accounts for roughly 85% of a $5
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TABLE 2. Prominent deep learning architectures developed for COVID-19 detection.; TL: Transfer learning; CNN: Convolutional neural network.

Deep Learning Technique Dataset Accuracy  Classification  Reference
TL using VGG X-ray images 96.8% Multiclass [73]
DarkCOVIDnet using Yolo  X-ray images 98.1% Binary [74]
TL using Resnet X-ray images 95.3% Multiclass [77]
CNN CT-Scan 90% Binary [83]
Inception based Resnet CT-Scan 99% Bonary [33]

billion market [93]. Due to an existing market in the area of
electrochemical biosensors, sensor platforms for the diagno-
sis of SARS-CoV-2 can be manufactured in great volume at
a low cost. The initial upfront costs for the electrochemical
SARS-CoV-2 biosensors are from (i) potentiostat and (ii) a
single-use disposable electrode. The price for a large com-
mercial potentiostat varies from $1,000 to $13,000, however,
they are heavy, expensive, and time-consuming for trained
person, and are not applicable to the point-of-care analy-
sis [94]. On the other hand, a miniaturized potentiostat allows
for point-of-care analysis, which facilities faster test results.
A miniaturized potentiostat can be obtained at a much lower
cost (between $30-$200) for initial investment by the govern-
ment or companies [94], [95].

When a large commercial potentiostat is used to run the test
samples, the single-use disposable sensor array costs around
3—10. However, when a miniaturized potentiostat is used, the
cost of a single-use disposable electrode is much lower at
around $0.50 due to the smaller size of the electrode. It must
be noted that there are additional costs tied to the electro-
chemical biosensors for the diagnosis of SARS-CoV-2. These
costs include but are not limited to the following: chemi-
cals, antibodies, enzymes, proteins, etc. The additional costs
are dependent on the designed sensor array for specific and
sensitive detection in a complex medium. In some arrays,
the sample must be pre-treated to extract nucleic acid before
testing which would increase the cost of running the tests.
A biosensor-based COVID-19 detection test may range from
about 3-10 USS$ to a patient, which can be further used by
using electrodes and the production of sensors at a massive
scale. In sum, in terms of cost, electrochemical sensors have
more advantages than PCR and deep learning—based imaging
systems.

B. SAMPLING
During a CT scan, several X-ray beams and electronic X-ray
detectors move around the patient. These devices monitor
the amount of radiation absorbed by the individual’s body.
During the scan, the exam table will shift, causing the X-ray
beam to generate a series of images from various angles.
This vast amount of data is processed by a special computer
program to produce two-dimensional cross-sectional images
of the body. This process is repeated several times to produce
several slices until a detailed image of the region of interest
is created. Chest CT scan is commonly used for the diagnosis
of COVID-19. A CT scan provides more information than a
standard X-ray.

During an X-ray scan, small amounts of radiation are used
to produce images of the body’s organs, tissues, and bones.
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It can detect abnormalities in the airways, blood vessels,
and lungs when focused on the chest. Getting a chest X-ray
does not require much planning on the part of the patient.
The X-ray is performed in a special room equipped with a
movable X-ray camera mounted on a long metal arm, where
the patient is positioned next to a “plate.” This plate would
contain an X-ray film or a special sensor that captures the
images and saves them to a computer to be analyzed by the
radiologist.

On the other hand, nasopharyngeal, and oropharyn-
geal swabs are routinely taken and studied to detect the
SARS-CoV-2 virus. Urine, feces, sputum, plasma serum, and
whole blood are also studied, but not as widely due to the
difficulty of sampling for both patients and health care work-
ers [96]. In most studies, the sampling principle relies on the
extraction of viral RNA from the samples. This is considered
a more reliable approach compared to CT and X-ray imaging
because viral RNA can be detected 2-3 days before symp-
toms appear and can last for up to 25-50 days depending on
the severity of the disease [97].

Alternatively, the surface antigens or whole virus particles
from patients’ swab samples can be detected without any
prior treatment using an electrochemical biosensor, which is a
possible time and cost-saving approach [60], [98]. In addition
to nasopharyngeal, and oropharyngeal swab samples for the
electrochemical detection of SARS-CoV-2, Miripour et al.,
have used sputum samples for real-time tracing of
SARS-CoV-2 [99]. Reactive oxygen species (ROS) by mito-
chondria are overproduced as a result of SARS-CoV-2-
induced lung cell dysfunction and by tracing ROS in spu-
tum samples, SARS-CoV-2 can be detected with more than
97% accuracy. PCR tests samples are usually taken from
Nasopharyngeal, and oropharyngeal swabs, which may cause
discomfort to the patient, as well as suffer from false posi-
tives and false negatives. In DLMs, the patients are exposed
to radiations during CT-scans or X-rays. However, electro-
chemical sensors can be designed for nasopharyngeal, and
oropharyngeal swabs urine, feces, and whole blood. These
sensors are much more flexible and harmless, compared to
PCR and DLMs.

C. TIME REQUIRED FOR DIAGNOSIS

The time taken for the deep-learning-based diagnosis of
COVID-19 depends on the imaging modality used. A CT
scan takes less than 30 s, and the whole procedure,
including exam planning, takes about 30 min. For X-ray, the
chest is photographed from two perspectives: from the back
and the side. The patient is positioned with hands-on-hips and
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chest pressed against the image plate by the technologist. The
patient’s side is against the image plate in the second view,
with arms elevated. The entire chest x-ray examination takes
about 15 min.

Early isolation of infection is key for the prevention of
transmission. Unlike the RT-PCR tests and deep-learning
approaches, many of the electrochemical biosensors designed
for the detection of SARS-CoV-2 are rapid on-site tests. This
means patients or their samples are not required to be in a
laboratory for testing which saves time, and the results can
be obtained as quickly as 10s [62]. For biosensors designed to
detect viral RNA, extra time is required to extract RNA before
testing and in this case, results can be obtained at least 30 min
due to the sample collection [100], [101]. As a result, biosen-
sors are more helpful than PCR and deep learning-based
imaging systems in terms of diagnosis time.

D. ACCURACY

The accuracy of the DLMs for COVID-19 diagnosis was dis-
cussed in detail in section 2.2. Most DLMs demonstrate great
accuracy for the diagnosis of COVID-19. For instance, Apos-
tolopoulos and Mpesiana [73], Ozturk et al. [74], and Sethy
and Behera [77] achieved an accuracy of 96.8%, 87.0%, and
95.3%, respectively for multi-class classification (COVID
vs. Normal vs. Pneumonia) with X-ray images. During the
outbreak, CT imaging is also used to diagnose COVID-19.
Wang et al. achieved an accuracy of 90% [82] for COVID-19
classification and lesion localization, Singh et al. achieved
an average accuracy of 90% to classify COVID-19 positive
and negative cases [83], Ahuja et al. achieved an accuracy
of 99.4% in the detection of the COVID-19 [84] using CT
imaging modality. Ardakani et al. looked at ten different
pre-trained models and found that Resnet-101 and Xception
performed better than the others in identifying the COVID-
19 and non-COVID-19 cases with a 99% accuracy using CT
images [33]. In their study, the accuracy of detection by radi-
ologists was 86%, which is 13% lower than the established
neural network model. There are other studies that show even
higher (22%) accuracy with deep learning models compared
to radiologists evaluation of CT scans [85].

Most electrochemical biosensors show great accuracy,
selectivity, and reproducibility towards target analytes due to
the specific biological recognition reaction at the WE sur-
face. The sensors designed for the detection of SARS-CoV-2
rely on the interaction between receptor-antibody (e.g.,
ACE2-SP1) or oligonucleotide against the target DNA or
RNA [26]. Although these interactions are very specific, there
may be certain issues that affect the accuracy and the sensitiv-
ity of the fabricated SARS-CoV-2 such as genetic mutations,
and the complex nature of the samples.

For example, Zhao et al. designed an electrochemical
biosensor based on a smartphone for targeting RNA of
SARS-CoV-2 [96]. When they tested their biosensor with a
total of 88 RNA extracts from sputum, throat swabs, urine
samples, plasma samples, feces samples, oral swabs, serum
samples, whole blood samples, and saliva samples which

VOLUME 10, 2022

were obtained from 25 confirmed SARS-CoV-2 patients and
eight recovered patients, their accuracy changed dramatically
based on the sample type. For example, sputum, feces, whole
blood, and saliva samples resulted in 100% true positive,
while serum samples had only 40% true positive. There are
also other works published with more than 92% accuracy
using untreated saliva samples, which is a great sample prop-
erty to use on a large scale [17], [60], [101].

E. INSTRUMENT COMPLEXITY

DLM:s are run through a host computer that receives images
from either CT or X-ray machines. Hence, the models devel-
oped by deep learning techniques do not add any complex-
ity to the existing systems. However, the imaging modality
used within the system is a significant parameter that has
a direct impact on the complexity of the whole diagnosis
procedure. An X-ray machine mainly consists of an X-ray
generator and an image detector. The main parts of the X-ray
generator are tube, high voltage generator, control console,
and the cooling system. A CT scanner mainly consists of four
main components. gantry (frame) houses the X-ray source,
detectors, patient port (a large opening in the middle), subject
table, and a computer system that gathers all data from the
detectors. Finally images are produced based on the captured
data [102]. A CT scanner must move around the patient being
scanned; hence, an X-ray equipment is much smaller and less
complicated than a CT machine.

Instruments used for electrochemical biosensors are less
complex with very low cost compared to CT and X-ray instru-
ments which costs between 15, 000—90,000. For accurate
electrochemical biosensing of SARS-CoV-2, the potentio-
stat is required to ensure signal processing and cell con-
ditioning. Potentiostat devices can be either bench-top or
portable. Portable devices (miniaturized potentiostat) are usu-
ally equipped with a portable mobile device for read-out
which is a great feature to monitor public health surveillance
of SARS-CoV-2 on-site [95], [96]. On the other hand, bench-
top models are not that user-friendly and require skilled per-
sonnel to operate.

F. GLOBAL ACCESSIBILITY AND FEASIBILITY

To date, there is no U.S. Food and Drug Administration
(FDA)-approved system using deep-learning techniques with
CT or X-ray imaging modality to diagnose COVID-19. Apart
from FDA, the employment of DLM for COVID-19 diagnosis
also depends on the acceptance of radiologists and clinicians.
However, there are already FDA-approved software using
DLM, such as the OsteoDetect to analyze X-ray images for
wrist fracture [103], which demonstrates the potential reli-
ability and feasibility of DLM for other types of medical
devices, such as COVID-19 diagnosis.

Global accessibility and feasibility of the DLMs will
depend on access to good imaging facilities in the hospitals.
Therefore, access to CT and X-ray machines is one of the
important concerns when it comes to the feasibility of using
the deep learning models in hospitals. As COVID-19 is
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an infectious disease, where infection safety concerns are
associated with patient transport to CT suites, inefficiencies
implemented in CT room decontamination, and a lack of
CT availability in some areas of the world, portable chest
X-ray would likely be the most widely used modality for
detecting and monitoring lung anomalies [104]. Routine CT
scan for COVID-19 diagnosis is also not recommended by
radiologists unless in-depth investigations on the lung’s con-
ditions are required [105]. Chest X-ray equipment is the most
widely used medical equipment in intensive care units (ICU)
based on a global study of 52 medical institutions [106].
Since X-ray imaging is by far more accessible than CT
scan, the former has the advantage of being globally utilized,
and thus more likely to be used to develop deep-learning
models.

Electrochemical biosensors have been commercially used
as diagnostic instruments for the point-of-care analy-
sis of glucose, uric acid, and cholesterol levels [107].
Therefore, there is an established platform worldwide for
electrochemical biosensors which can be adapted to the
electrochemical SARS-CoV-2 testing by modifying the
sensor array and calibrating portable potentiostats. As a
result, electrochemical SARS-CoV-2 biosensors could be
commercialized and globally accessible to control the
pandemic. There is already a commercially available elec-
trochemical SARS-CoV-2 biosensor based on electrochemi-
luminescence measurement which was granted by the U.S.
Food and Drug Administration-Emergency Use Authoriza-
tion (FDA-EUA) [108]. The North American company
(Roche Diagnostics, Indianapolis, IN) offers a rapid test
(18 min.) compared to RT-PCR or ELISA tests with a 100 %
true positive rate and 99.8% true negative rate using human
serum and plasma samples.

Despite the demonstrated feasibility of electrochemical
SARS-CoV-2 biosensors, the shelf-life and short storage
time of the chemicals may limit its worldwide implementa-
tion. The use of toxic chemicals in the production, lengthy
fabrication procedures, toxic material wastes, costly clean-
room processing requirements, and the inability to incor-
porate enzyme/electrode co-production are other possible
limitations of the system. Furthermore, to use a benchtop
potentiostat, a skilled worker is needed to operate and inter-
pret the data. As aresult, further research is needed to develop
new processes with higher levels of customizability and sen-
sitivities, at a lower cost, and portability for a wider usage of
electrochemical SARS-CoV-2 biosensors. Thus, depending
on a country’s resources and economic size, deep-learning-
based and electrochemical biosensor-based approaches may
be adopted to reduce the cost of testing and false negative and
false-positive results, if the above-mentioned limitations can
be overcome.

G. ADAPTABILITY TO MUTATIONS
The SARS-CoV-2 genome structure was sequenced for the
first time in Wuhan, China in January 2020. Understanding
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SARS-CoV-2 genome sequencing is important to interpret
the virus’s nature and mutation rate, as well as successful
prevention strategies such as vaccines and drugs. Several
investigations have noted the new coronavirus’s genetic
diversity and rapid evolution. Some mutations may have little
or no impact, whereas others may affect the virus’s properties,
such as increased transmissibility. The significant mutations
of Sars-CoV-2 presented in Figure 5 indicate the origin, date
of the first detection, and the main concerns of the variants of
SARS-CoV-2.

The procedure for collection, preservation, storage and
processing of the samples affects the accuracy of RT-PCR.
The lack of proofreading ability in the viral RNA polymerases
results in a high rate of mutation. As a consequence, if the
virus mutates in the targeting genomic region, which happens
often, the precision of these diagnostic methods is adversely
affected [62]. To the best of our knowledge, there are only
few reports on electrochemical detection of SARS-CoV-2
mutations and the study by Beduk er al., stands out from
other work [110]. First, they earlier reported laser-scribed
graphene (LSG) sensors for SARS-CoV-2 [29], then
improved their study by adapting their systems for alpha
(B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants [110].
A machine learning approach was also integrated for quick
interpretation of data with an accuracy of 99.37%. Moreover,
it is possible to design a multichannel biosensor for simulta-
neous detection of SARS-CoV-2 and all mutations using the
associated biorecognition element [111].

On the other hand, the DLMs developed must be adapt-
able to detect mutations since the replication of SARS-CoV-2
genomic information will cause the virus to mutate [112].
The virus’s adaptability to mutations, B.1.1.7, B.1.351, P.1,
B.1.617.2, and B.1.1.519, has recently been proven by
researchers [113]. However, more attention is required in
the area of diagnosis considering the high mutation rate of
the SARS-CoV-2. Apart from developing DLMs to iden-
tify the different variants, estimating the mutation rate using
DLMs has also drawn great attention from researchers world-
wide [114]. This is because by knowing the mutation rate,
scientists will be able to illustrate the risk of emergent
SARS-CoV-2 infection [115]. DLMs can be developed to
detect the mutations and are adaptable to new variants of
SARS-CoV-2 as long as the datasets are accessible [116].
Since the development of the DLMs relies on the dataset
used during the training procedure for the diagnosis of
SARS-CoV-2, the developed models can easily be adapted
to new variants of SARS-CoV-2. This procedure requires an
update on the datasets used during the training process of the
deep learning models.

A comparison of PCR, electrochemical biosensors, and
deep-learning-based COVID-19 diagnostic tests are provided
in Table 3 in terms of cost, sampling, the time required for
diagnosis, accuracy, instrument complexity, global accessi-
bility and feasibility, and adaptability to mutations. It is noted
that the cost is given in USD throughout this study.
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TABLE 3. A summary of SARS-CoV-2 diagnostic techniques.

Parameters PCR Electrochemical Biosensors Deep Learning
Cost 60 US$ * $3-$10 for the single-use disposable ¢ Requires only initial cost during deep-
electrodes, plus the cost for the func-  learning-based model development
tionalization of the electrode
* Cost can be reduced to $0.5 with the ¢ CT scan ranging from $1072 up to $3509
size of the electrode [94] and X-RAY scan ranging from $82 to $417
depending on the hospital location in the
USA [92]
Sampling Nasopharyngeal, and oropharyngeal e« Depends on the designed sensor ar-  * CT or X-ray scan
swabs ray: Nasopharyngeal, and oropharyn-
geal swabs urine, feces, sputum plasma
serum, and whole blood [96]
Timing 2-3 Hours « For most samples, a laboratory visitis ¢ The CT scan, including exam planning,
not required takes about 30 min
* Results from portable biosensors can ¢ The entire chest X-ray examination takes
be obtained as quickly as 10-s [62] about 15 min
 Biosensors designed for viral RNA
detection can take at least 30 min [101]
Accuracy From 71 to 98% [109] * Depends on the sampling method and ¢ Ranging from 87% to 97% using X-ray
it ranges from 92 to 100% images depending on the diagnosis tech-
nique [73], [74], [77]
* Ranging from 90% to 99% Depending on
the diagnosis technique using CT scan [82]-
[84]
Instrument * Requires a skilled professional * Bench-rop or portable devices with ¢ The complexity comes only from the imag-
Complexity user-friendly interfaces [95], [96] ing modality used

¢ Costly

» Can be obtained at a very low cost

* X-ray is less complex than CT-scan

Global Accessibility
and Feasibility

* Commercially available

¢ An electrochemical SARS-CoV-2
biosensor is already commercially
available [108]

¢ Due to the cost of each test, it has low
accessibility in low-income countries

* X-ray is more accessible than CT imaging

Portable X-ray has the potential to be em-
ployed widely [104]

Adaptability to Mu-
tations

e Adaptable to the new variants of
SARS-CoV-2

Adaptable to the new variants of
SARS-CoV-2

» Adaptable to the new variants of SARS-
CoV-2.
* Depends on the data availability.

® Q
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FIGURE 5. Current significant mutations of SARS-CoV-2.
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IV. CONCLUDING REMARKS

The current gold standard for monitoring SARS-CoV-2
spread is based on RT-PCR test using nasophyrangeal swab
samples, which is expensive, time-consuming, and produces
a large number of false-positive or false-negative results.
Earlier and faster diagnosis of the SARS-CoV-2 virus can
decrease and slow down the spread of the COVID-19 disease.
In this review, deep-learning models and electrochemical
biosensors were compared to PCR in terms of cost, sampling,
the time required for diagnosis, accuracy, instrument com-
plexity, global accessibility and feasibility, and adaptability
to mutations. Based on the studies reviewed, deep-learning-
based models and biosensors can help minimize the severe
effect of the pandemic. However, the deployment of these
techniques will be dependent on a country’s resources and
economic size as mentioned in this study.

To date, electrochemical SARS-CoV-2 biosensors have
been tested on various kinds of body fluids. According to
a recent study, COVID-19 patients’ exhaled breath contains
a significant amount of SARS-CoV-2 virus [117]. There-
fore, a diagnostic test using exhaled breath as a quick,
non-invasive method in monitoring SARS-CoV-2 infections
would be a tremendous step forward [118], [119], [120].
Since breath analysis has the added advantage of real-time
and point-of-care analysis [121], there has been strong inter-
est in the research community to develop noninvasive exhaled
breath detection techniques using electrochemical enzymatic
biosensors for COVID-19 diagnosis [122]. Electrochemical
enzyme-based biosensors are among the largest commer-
cially available group of biosensors and are of particular
interest in this endeavor following the advancement of nano-
materials used in the biosensors which have resulted in high
analytical sensitivity, stability at reduced costs of testing.
To date, there have not been any reported electrochemical
biosensors for the detection of COVID-19 virus using the
breath as a sample. The demand for biosensors in the field
of diagnostics is enormous, and they will be particularly suc-
cessful in early viral detection.

A recent study reported that mutations in the S pro-
tein, which binds to the ACE2 receptor, may cause muta-
tions in the SARS-CoV-2 virus during transmission among
humans [123]. Tracking the virus variants is important in the
global effort to prevent its spread. A multi-channel electro-
chemical detection system could be designed to detect muta-
tions using associated biorecognition elements [110], [124].
This will help simultaneous detection of SARS-CoV-2 vari-
ants which may not be possible with current testing methods.
In a recent study, the capacity to detect new variants such as
Omicron is demonstrated using a novel plastic optical fiber
(POF) U-shaped probe sensing approach for reliable detec-
tion of SARS-CoV-2 within 15 minutes [125].

Although a DLM can be adapted to the variants of
SARS-CoV-2, the developed state-of-the-art in deep learn-
ing for diagnosis of SARS-CoV-2 should be evaluated on
the variants of SARS-CoV-2. Since the correlations within
the datasets have already been learned by the model, the
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developed models could be still showing promising diagno-
sis results with a cost of a slightly reduced accuracy. For
this, researchers around the world should collaborate and
create a benchmark dataset for SARS-CoV-2 variants to eval-
uate their models. This would speed up the development of
DLMs. A powerful alternative for ending the pandemic can
be the development of a DLM to forecast new strains so that
new vaccinations may be developed to tackle the mutated
virus.

With more publicly available databases, better-performing
DLMs can be developed to accurately diagnose COVID-19.
An accurate ground truth label by the experts is another
area that needs attention when developing deep-learning
models.
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