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Abstract: In this paper, Isogeometric analysis (IGA) is effectively integrated with machine learning (ML) to investigate the bearing capacity of strip footings in layered soil 

profiles, with a focus on a sand-over-clay configuration. The study begins with the generation of a comprehensive dataset of 10,000 samples from IGA upper bound (UB) 

limit analyses, facilitating an in-depth examination of various material and geometric conditions. A hybrid deep neural network, specifically the Whale Optimization 

Algorithm-Deep Neural Network (WOA-DNN), is then employed to utilize these 10,000 outputs for precise bearing capacity predictions. Notably, the WOA-DNN model 

outperforms conventional ML techniques, offering a robust and accurate prediction tool. This innovative approach explores a broad range of design parameters, including 

sand layer depth, load-to-soil unit weight ratio, internal friction angle, cohesion, and footing roughness. A detailed analysis of the dataset reveals the significant influence 

of these parameters on bearing capacity, providing valuable insights for practical foundation design. This research demonstrates the usefulness of data-driven techniques 

in optimizing the design of shallow foundations within layered soil profiles, marking a significant stride in geotechnical engineering advancements. 

Keywords: UB limit analysis, Isogeometric analysis (IGA), hybrid deep neural network, Whale optimization algorithm 

 

1. Introduction 

Determining the ultimate bearing capacity of shallow foundations on layered soil systems, particularly those involving sand overlying clay, 

presents an ongoing challenge in geotechnical engineering. The accuracy of these capacity assessments is of paramount importance for the safe and 

efficient design of foundations. However, existing theoretical approaches often fall short of providing precise estimations, highlighting the critical 

need to bridge the gap between theory and practical application (Shoaei et al., 2012). 

Meyerhof's pivotal work in 1974 provided a fundamental conceptual framework for understanding two common scenarios: loose sand over stiff 

clay and dense sand over soft clay (Meyerhof, 1974). In the case of loose sand over stiff clay, the bearing capacity predominantly relates to the top 

layer, and the failure surface remains confined within it. Conversely, when dense sand overlies a soft clay bed, the shear failure zone tends to extend 

into the bottom soft layer, thus creating the challenge of maintaining the continuity of the shear zone at the interface between the two layers. 

Expanding on Meyerhof's insights, Hanna's research in 1982 made a notable contribution to the formulation of ultimate bearing capacity (Hanna, 

1982). Hanna's modifications to Terzaghi's classical equation ensured that the results did not exceed the bearing capacity of the lower stiff layer. He 

introduced modified bearing capacity factors that considered density and overburden terms as functions of the foundation depth (H), width (B), and 

the internal angle of friction. Hanna's work in 1981 extended the analysis to cases where strong sand overlies a weaker clay layer (Hanna, 1981). In 

such scenarios, punching shear theory was applied, defining a failure zone resembling a truncated pyramid that penetrates the bottom layer. Specific 

equations were developed for situations involving strong sand over weak clay, offering a solution to enhance subsoil bearing capacity by replacing 

the top loose sand layer with a stronger alternative e.g. Meyerhof (1974), Hanna and Meyerhof (1980), Okamura et al. (1998), among others. 

While Terzaghi's classical bearing capacity equation and dimensionless bearing capacity factors are sufficient for assessing bearing capacity in 

homogeneous soils, they do not universally apply to layered soil systems. As a result, extensive research has been dedicated to understanding the 

intricacies of bearing capacity in these complex scenarios. Numerous researchers, including Meyerhof (1974), Craig and Chua (1990), Okamura et al. 

(1997), Teh et al. (2008, 2010), and Lee et al. (2013a, b), have made substantial contributions to this ongoing quest. Their work combines both 

experimental testing and theoretical analysis to address the challenges posed by layered soil systems and provide more accurate estimations of 

bearing capacity. 

In the realm of analytical methods, two semi-empirical methods, known as the load-spread method and the punching-shear method, have gained 

prominence for determining bearing capacity in layered soil systems where sand overlies clay. These methods, grounded in the concept of limit 

equilibrium, have demonstrated useful results with reasonable estimates on the conservative side. They were recommended for calculating ultimate 
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bearing capacity in the new ISO standard 19905-1 (Wong et al., 2012). Additionally, Pham and Ohtsuka (2021) conducted a rigorous investigation 

into the bearing capacity of rigid footings on sand over clay using the rigid-plastic finite-element method (RPFEM). Their study highlighted the critical 

role of interface elements and frictional conditions in influencing failure mechanisms. Tang et al. (2017) contributed significantly by assessing model 

factors for bearing capacity calculations through an extensive analysis of centrifuge test data. Their findings shed light on the accuracy and 

applicability of traditional methods across varying soil densities. 

Recent advancements in geotechnical engineering research have introduced analytical and computational methods to tackle the complexities of 

bearing capacity estimation. Analytical limit analysis methods, such as those by Michalowski and Shi (1995), along with finite element limit analysis 

(FELA) methods, have provided UB solutions that offer insights into failure mechanisms (Haghighi et al., 2019; Salimi Eshkevari et al., 2019; Shiau et 

al., 2003). FELA methods, in particular, have enabled the capture of intricate bearing capacity behaviors. Notably, Shiau et al. (2003) employed 

advanced upper and lower bound techniques to determine the ultimate bearing capacity of strip footings on sand over clay, ensuring a ±10% accuracy 

in their results. Their study focused on limit analysis for layered soil-bearing capacity, emphasizing the application of finite elements. More recently, 

Salimi et al. (2019) presented improved bearing capacity for shallow foundations on layered soil profiles with a sand layer over clay using FELA. 

Rajaei et al. (2019) explored improvements in bearing capacity through variations in sand layer characteristics and surcharge pressures, 

underscoring the advantages of a layered substrate over homogeneous clay. Their work led to a simplified yet accurate bearing capacity model that 

considers shear resistance variations in the sand layer relative to the dimensionless undrained strength of the clay layer, proving to be a valuable tool 

for practical applications for working platform design. Their results of FELA analyses have paved the way for the proposal of a comprehensive bearing 

capacity model that seeks to unify Terzaghi's and Meyerhof's solutions.   

Nonetheless, there are limitations associated with traditional finite element method (FEM)-based FELA approaches. These limitations include 

constrained computational capabilities and modeling constraints, which can hinder the comprehensive analysis of bearing capacity in layered soil 

systems. To address these limitations, this study introduces an innovative approach that leverages IGA and upper-bound limit analysis. IGA provides 

a robust framework for modeling complex geometries and has demonstrated significant potential in enhancing limit analysis (Hughes et al., 2005, 

Nguyen and Tran, 2021, Nguyen-Minh et al., 2023). Additionally, this study incorporates Second-Order Cone Programming (SOCP) optimization, 

offering a versatile and powerful tool for upper-bound limit analysis (Makrodimopoulos and Martin, 2007, Nguyen and Vo-Minh, 2022; Nguyen and 

Nguyen-Son, 2022). 

One notable aspect of this study is the utilization of extensive data comprising 10,000 input samples generated by the proposed IGA-UB model, 

covering a wide array of material and geometrical scenarios and conditions. This dataset significantly expands the existing knowledge base in the 

field by feeding robust ML models, which have recently emerged as a valuable tool in geotechnical engineering, particularly in predicting ultimate 

bearing capacity. Recent advancements in geotechnical engineering have demonstrated the efficacy of various ML methods, including decision trees, 

random forests, artificial neural networks, Bayesian learning, and genetic programming, in addressing complex geological conditions. Genetic 

programming, in particular, has shown promise due to its ability to generate explicit equations for geotechnical problems. Studies by Cheng et al. 

(2022, 2023a, b) have validated the feasibility and reliability of genetic programming in predicting field-monitored suction variations, approximating 

shield tunneling-induced surface settlement, and analyzing rainfall-induced soil suction responses. These advancements highlight the potential of 

data-driven approaches in enhancing the accuracy and applicability of bearing capacity assessments in layered soil systems. Researchers have 

explored the application of Artificial Neural Networks (ANNs) and other ML models e.g., Moayedi and Rezaei (2020), Ebid et al. (2022), and Moayedi 

et al. (2019a, b). These models leverage data-driven insights to predict bearing capacity, offering a unique approach compared to classical and 

numerical methods. However, many of these studies have focused primarily on the strength of hybrid ML models, sometimes overlooking aspects 

related to physical interpretation and practical decision-making. Furthermore, the datasets used in these studies have often been limited in scope. 

To fill these knowledge gaps, this paper presents a novel approach leveraging the extensive dataset produced by the -UB IGA model. This research 

introduces a hybrid Deep Feedforward Neural Network (DFNN) optimized using the WOA proposed by Mirjalili and Lewis (2016). DFNN, a 

fundamental model in deep learning (DL), is designed to hierarchically learn complicated data representations through multiple layers of 

transformation (Najafabadi et al., 2015; Goodfellow et al., 2016). The discretization method using IGA streamlines the generation of large datasets by 

automatically varying input parameters, thereby automating the process substantially. This capability not only enables the creation of extensive 

datasets, which would be prohibitively time-consuming to compile manually for each scenario, but also ensures their independence from subjective 

biases inherent in manual data collection. Such a rigorously generated dataset expands the scope of ML analyses, effectively addressing the 

aforementioned challenges in optimizing the design of strip footings on subsurfaces composed of sand over clay. Furthermore, the hybrid DFNN-WOA 

model enhances our predictive capabilities by optimizing complex, non-linear relationships within the dataset. WOA's efficient exploration of 

hyperparameter space complements DFNN's ability to extract meaningful patterns from the data, leading to more accurate predictions of bearing 

capacity. This integrated approach not only advances the state-of-the-art in geotechnical engineering but also underscores the potential of ML in 

optimizing shallow foundation designs. 

To bridge the gap between advanced numerical methods and ML, this research seeks to deepen our understanding of load-bearing mechanisms 

in layered soil systems and facilitate precise and informed decision-making in practical engineering design applications. Furthermore, our approach 

focuses on developing a user-friendly predictive tool that simplifies complex analyses compared to traditional methods. By automating data 

generation and analysis through IGA and ML, our study streamlines the process of assessing bearing capacity in layered soil profiles. This not only 

improves the accuracy of predictions but also enhances practical usability, allowing engineers to make informed decisions in geotechnical design 
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without the heavy computational demands. This effort supports the sustainable development of infrastructure in an increasingly complex world and 

highlights the potential for more precise and data-driven approaches to tackle longstanding challenges in geotechnical engineering. 

2. Problem definition 

The schematic representation of the plane strain bearing capacity problem is shown in Fig. 1. In this scenario, a strip footing with a width B is 

positioned atop a sand layer characterized by a thickness H1, an internal friction angle φ′, a unit weight γ, and an additional surcharge q. Beneath the 

sand layer lies a substantial bed of clay, possessing an undrained shear strength cuo and extending to a depth H2. Although the physical-mechanical 

properties of clayey soil are highly complex (Nikbakht et al., 2022), this study assumes that the shear strength of the clay increases with depth z2, 

with the rate of this increase represented by the gradient 𝜌. It's essential to note that the analysis focuses exclusively on the short-term stability of 

the footing. Consequently, the sand layer is presumed to be fully drained, while the clay bed is considered undrained. 

Previous investigations conducted by Shiau et al. (2003) have formulated the ultimate bearing capacity of the two-layer foundation problem in 

a dimensionless expression: 

𝑝

𝐵
= 𝑓 (

𝐻1

𝐵
,
𝑞

𝐵
,′,

𝑐uo

𝐵
,

𝐵

𝑐uo
)        (1) 

where the average limit pressure p serves as a pivotal parameter. The expressions for the bearing capacity ratios (p/γB) are presented in 

dimensionless terms, considering H1/B, q/γB, φ′, cuo/γB, and ρB/cuo, with separate investigations into the influence of footing roughness. The 

parameter ranges adopted for the study are set as follows: H1/B ranges from 0.125 to 2, q/γB ranges from 0 to 1, φ′ ranges from 20° to 50°, cuo/γB 

ranges from 0.2 to 5, and ρB/cuo ranges from 0 to 1.  

 

H1

B

cuo

cu (z2) = cuo + × z2

Undrained clay layer 2:

cuo, 

H2

Drained sand layer 1:

 ', 

Bearing capacity: p/B

p is the average limit pressure q = Df

z2

 
Fig. 1. Problem notation. 

 

This research combines IGA, UB limit analysis, and SOCP to determine the bearing capacity calculations of sand over clay. The UB solution is 

derived by imparting a unit downward velocity to the nodes on the footing. In cases modeling a perfectly rough foundation, these nodes are 

constrained to prevent horizontal movement (u = 0). Conversely, for a smooth base, these nodes are allowed horizontal movement. The methodologies 

for UB limit analysis using simplex strain elements and SOCP were originally outlined by Makrodimopoulos and Martin in 2007. The IGA concept, 

introduced by Hughes et al. in 2005, is integrated into our approach. B-spline basis functions are employed to precisely model the geometry, 

simultaneously serving as the foundation for the solution space in line with the isoparametric concept. Further elaboration on these details will be 

discussed in subsequent sections. 

3.  IsoGeometric and UB analyses 

3.1. Isogeometric analysis (IGA) 

IGA and Finite Element Analysis (FEA) are both numerical techniques used in computational mechanics. While they share similarities such as 

using the isoparametric concept, there are key differences between the two approaches. IGA diverges from the conventional method by selecting a 
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basis that precisely represents the geometry, whilst utilizing it as a foundation for approximating the required fields. In traditional FEA, the analysis 

follows the geometry, while in IGA, the geometry dictates the analysis.  

The concept of IGA, proposed by Hughes et al. (2005), employs B-spline basis functions to construct an exact geometric model, thereby 

introducing a higher-order approach to FEA. For the element analysis, the bivariate B-spline basis functions RI(ξ,η) = Ri,j(ξ,η) are also used to 

approximate the displacement fields. This is the same concept as the shape functions in a traditional FEA (Nguyen-Thoi et al., 2023; Ly et al., 2024): 

𝒖 = [𝑢
𝑣
] = ∑ 𝑅I

ncp
I=1 (,) [𝑢I

𝑣I
] = 𝑹(,)  d  (I = 1, 2,…,ncp)                         (2) 

where (uI,vI) denote the values of the displacements at the control point PI (Pi,j) and ncp is the number of control points. 

The displacement vector d of control points is stored in the following order: 

𝒅 = [𝑢1 𝑢2 … 𝑢ncp 𝑣1 𝑣2 … 𝑣ncp]𝐓                               (3) 

Strains are therefore given by 

(,) = 𝑹(,)  𝒅 = 𝑩(,)  𝒅                                (4) 

where B(ξ,η) = R(ξ,η) is the strain-displacement matric, which changes with the value of R(ξ,η). 

3.2. UB analysis as SOCP 

The UB analysis, formulated as SOCP by Makrodimopoulos and Martin in 2007, was briefly discussed in Nguyen-Minh et al. (2023, 2024). After 

introducing an approximation of the displacement and using the smoothened strains, the UB limit analysis problem for the plane strain can be 

formulated as 

𝜆+ = min (∑ 𝑐𝐴e
nel
e=1 𝑡ecos𝜑 −𝑊ext

0 (𝑢̇))                                (5a) 

Subject to 
𝑊ext(𝑢̇) = 1

𝑢̇ = 0  𝑜𝑛 𝛤𝑢

𝜀̇̃xx
e

+ 𝜀̇̃yy
e

= 𝑡esin𝜑               (𝑒 = 1,2, … , 𝑛𝑒𝑙)

‖𝜌‖e ≤ 𝑡e                                  (𝑒 = 1,2, … , 𝑛𝑒𝑙)}
 

 

   (5b) 

where nel is the number of elements in the whole investigated domain. And the fourth constraint in Eq.(5b) represents the optimization problem in 

the form of a SOCP problem, so that a large-scale problem can be solved efficiently. 

Since strains change with the value of R(ξ,η) (see Eq. (4)), Nguyen-Minh et al. (2024) proposed a framework to obtain the smoothed strains of 

IGA element e as below: 

𝜺̇̃ = [𝜺̇̃𝐱𝐱
𝐞 𝜺̇̃𝐲𝐲

𝐞 𝜺̇̃𝐱𝐲
𝐞 ]

𝑇
= 𝑩̇̃𝐞𝒅𝐞 (𝒅𝐞 = constant)        (6) 

𝑩̇̃𝐞 =

[
 
 
 𝑹̇̃𝟏,𝒙 𝑹̇̃𝟐,𝒙 𝑹̇̃𝟑,𝒙 𝑹̇̃𝟒,𝒙 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝑹̇̃𝟏,𝒚 𝑹̇̃𝟐,𝒚 𝑹̇̃𝟑,𝒚 𝑹̇̃𝟒,𝒚

𝑹̇̃𝟏,𝒚 𝑹̇̃𝟐,𝒚 𝑹̇̃𝟑,𝒚 𝑹̇̃𝟒,𝒚 𝑹̇̃𝟏,𝒙 𝑹̇̃𝟐,𝒙 𝑹̇̃𝟑,𝒙 𝑹̇̃𝟒,𝒙]
 
 
 

                           (7) 

𝑅̇̃I,x =
1

𝐴e
∫ 𝑅̇I,x𝑑𝛺e𝛺e

            𝑅̇̃I,y =
1

𝐴e
∫ 𝑅̇I,y𝑑𝛺e𝛺e

           𝐴e = ∫ 𝑑𝛺e𝛺e
; I = 1,2,3,4      (8)   

In this research, IGA is utilized for calculating internal power dissipation, where the domain Ω is divided into nel elements. It is noteworthy that 

the final constraint in Eq. (5) is formulated in the quadratic form, enabling the application of the conic interior point optimizer from the academic 

Mosek to address the optimization problem.  

3.3. Numerical simulation 

Fig. 2 illustrates a typical UB mesh for the problem of a surface footing on a layered clay profile, incorporating the applied velocity boundary 
conditions. Due to the problem's symmetry, the analysis is performed with half of the region, where L = 10B and H = H1 + H2 = 5B. The model is 
represented by using B-spline basis functions with identical polynomial orders in both directions, i.e., p = q = 1. The total number of elements, denoted 
as nel, is determined by multiplying the number of elements in the ξ and η directions, represented by nx and ny, respectively.  
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nel = nx × (ny1+ny2) = 20×(4+6) = 200

Knot vectors:

x direction: X  =                        

h direction: H = {0,0,1,2,...,8,9,10,10}

Rough: u = 0, v = constant

Smooth: v = constant 

u = v = 0

H
 =

 5
B

L = 10B

nx elements

B/2

 
Fig. 2. IGA mesh and displacement boundary conditions in case 200 elements. 

 

When conducting an analysis, mesh refinement is often needed to improve solution accuracy. In IGA, this is done by knot insertion. It entails 
introducing new knot values between existing ones, resulting in additional elements. Noting that knot insertion does not alter either the geometry or 
the parametrization of the curve, instead, it increases the number of control points. The success of this process relies on a specific selection criterion 
for the new control points.  

Fig. 3 presents a schematic of the mesh when nel = nx  ny = nx  (ny1+ny2) = 20  (4+6) = 200 elements. Initially, there are nel = nx  ny = 1  2 = 2 
elements, and the number of initial control points (the red points in Fig. 3a) are (1+p)  (2+q) = 6, where p = q = 1.  

 

(d) Knot insertion:    {1,2,...,18,19}

nel = nx × (ny1+ny2) = 20×(4+6) = 200

Knot vectors:

 direction: X  = {0,0,1,2,...,18,19,20,20}

 direction: H = {0,0,1,2,...,8,9,10,10}

(a) The initial elements

nel = nx × (ny1+ny2) = 1×(1+1) = 2

Knot vectors:

 direction: X  = {0,0,20,20}

 direction: H = {0,0,6,10,10}

(b) Knot insertion:`  {1,2,3,4,5}

nel = nx × (ny1+ny2) = 1×(1+6)= 7

Knot vectors:

 direction: X  = {0,0,20,20}

 direction: H = {0,0,1,2,3,4,5,6,10,10}

(c) Knot insertion:`  {7,8,9}

nel = nx × (ny1+ny2) = 1×(4+6) = 10

Knot vectors:

 direction: X  = {0,0,20,20}

 direction: H = {0,0,1,2,3,4,5,6,7,8,9,10,10}

Knot insertion

`  {1,2,3,4,5}

ny2 elements

Knot insertion

`   {1,2,...,18,19}

nx elements

P1,1 (0,0) P2,1 (L,0)

P1,2 (0,H2)
P2,2 (L,H2)

P1,3 (0,H) P2,3 (L,H)

1

2

 
Fig. 3. Schematic of mesh: (a) The initial elements, (b), (c), (d) Knot insertion process for refinement of the mesh. 

 

Table 1 

The coordinates of initial control points for Fig. 3. 

i Pi,1(x,y) Pi,2(x,y) Pi,3(x,y) 

1 (0,0) (0,H2) (0,H) 
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2 (L,0) (L, H2) (L, H) 

 
The coordinates of the initial control points are detailed in Table 1. Knot insertion routines are subsequently employed to refine the mesh, 

resulting in 200 elements as illustrated in Fig. 3b, c, and d. For the generalization of the footing problem, the initial knot vectors are chosen: 

 direction: X =  {0,0, 𝑛x, 𝑛x}

 direction: H =  {0,0, 𝑛y2, 𝑛y, 𝑛y}
}                (9) 

where ny = ny1 + ny2 (where ny1, ny2 are illustrated in Fig. 2). 
The alignment of control points during mesh refinement is determined by a knot insertion routine. As the formulas are based on a single knot 

inserted, the routine is repeated to achieve the desired number of elements. The total number of elements for analysis is nel = nx  ny = nx  (ny1 + ny2) 
= 160  (32 + 48) = 160  80 = 12,800 elements.  

The global knot vectors expand as knots are inserted:  

 direction: X =  {0,0,1,2, … ,158,159,160,160}

 direction: H =  {0,0,1,2, … ,78,79,80,80}
}               (10) 

Finally, an element in parameter space has an area of [i,i+1]×[j,j+1] = [0,1]×[0,1]. Therefore, a mapping between each parent element and the 
parameter space is necessary for using numerical integration.  

The distinct procedural approach of discretization in IGA, illustrated in Fig. 3 compared to traditional FEM, enables the proposed numerical model 
IGA-UB to automatically generate large datasets by systematically varying input parameters. This capability is crucial for capturing a wide range of 
scenarios in geotechnical analyses, particularly in complex soil profiles such as sand over clay configurations.  

4. Numerical results and validation 

To assess the reliability of the proposed IGA-UB model, we start with Fig. 4, which compares the computed bearing capacity factors with those 
reported by Shiau et al. (2003) using FELA. Numerical results have shown a consistent decrease (improved UB) in bearing capacity factor (p/γB) as 
the number of IGA elements (nel) increases. Note the substantial agreement between the improved solutions obtained using the current IGA-UB 
method and those derived from FELA by Shiau et al. (2003). In addition, Table 2 further presents the convergence rate of the bearing capacity factor 
through the IGA-UB method. The maximum CPU time for the refined study involving 12,800 elements is approximately 20.7 seconds. It can therefore 
be concluded that the utilization of the IGA-UB analysis not only significantly reduces the size of the optimization problem but also conserves 
computational resources, rendering it an efficient and dependable method. 
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Fig. 4. Convergence rate of bearing capacity p/B between the present study and those given in Shiau et al. (2003) for H1/B = 1, q/B = 0, φ’ = 40o, rough base. 

 
Table 2 

The convergence rate of bearing capacity p/B for H1/B = 1, q/B = 0, φ’ = 40o. 

cuo/B 

Bearing capacity p/B (Shiau et al., 

2003) 

Number of IGA elements (nel); Bearing capacity p/B; CPU times (s); Processor: Intel Core i5 (8 CPUs). Memory: 

8192MB RAM 

LB UB Average nel = 3200 nel = 5000 nel = 7200 nel = 9800 nel = 12800 

1 9.26 10.34 9.8 10.196; 6.5 s  10.155; 16.4 s 10.100; 31.3 s 10.059; 67.1 s 10.028; 144.7 s 

2 14.5 16.46 15.48 16.381; 7.7 s 16.219; 29.2 s 16.113; 37.1 s 16.005; 76.6 s 15.927; 204.7 s 

3 18.96 21.74 20.35 21.725; 7.4 s 21.424; 14.5 s 21.217; 32.3 s 21.077; 74 s 20.957; 140.6 s 

4 22.96 26.37 24.67 26.389; 7 s 26.002; 15.1 s 25.732; 33.4 s 25.534; 78.2 s 25.386; 138.2 s 

 
The IGA-UB method demonstrates remarkable precision through a rigorous comparison with the upper-bound and lower-bound results from 

Shiau et al. (2003). Importantly, the bracketed value between these bounds suggests the potential for achieving exact values. Figs. 4 and 5 clearly 
illustrate that the bearing capacity values obtained from the proposed IGA-UB method consistently lie within the bounded range established by Shiau 
et al. (2003). This robust consistency not only validates the accuracy of the IGA-UB model but also highlights its capability to effectively reconcile and 
refine predictions between upper and lower-bound analyses. Such alignment underscores the reliability and robustness of the IGA-UB approach in 
predicting bearing capacity across diverse soil conditions and geometries.   
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Fig. 5. Comparing results of bearing capacity p/B, rough footings. 

 

The comparison is also extended to other well-established approaches, including semi-empirical models proposed by Hanna and Meyerhof 
(1980), displacement FEM solutions by Griffiths (1982) and Burd and Frydman (1997), analytical kinematic predictions by Michalowski and Shi 
(1995), and the multi-rigid-block UB method by Maosong Huang and Hui-Lai Quin (2008). The results obtained from the IGA-UB method are 
consistently aligned with those from these methodologies, as vividly depicted in Fig. 5a, b, and c.  

Furthermore, the bearing capacity values from the numerical model are compared against centrifuge tests conducted by Okamura et al. (1997), 
as illustrated in Fig. 5d. While the results obtained from the IGA-based UB limit model are generally higher than those from the centrifuge model tests, 
there is a remarkable agreement between the numerical model and centrifuge tests for H1/B ratios ranging from 0 to 3. Notably, the failure pressures 
calculated using the UB IGA method closely match the measured failure pressures in these scenarios. This alignment underscores the IGA method's 
accuracy and reliability in analyzing the layered bearing capacity problem. The demonstrated precision and robustness of the IGA method affirm its 
potential as a valuable tool in geotechnical engineering practice, capable of delivering dependable results for complex soil-structure interactions. 
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Fig. 6. Comparison of bearing capacity factor p/B between the present study and those given by Shiau et al. (2003) (H1/B = 0.25, 0.5, 1, 2, rough base). 

 
Fig. 6 provides a direct comparative analysis with the FELA modeling conducted by Shiau et al. (2003). The plots in Fig.6 correspond to specific 

conditions, including φ’ values of 30°, 40°, and 50°, q/γB values of 0 and 1, and H1/B ratios of 0.25, 0.5, 1, and 2 for a perfectly rough footing. It is 
important to emphasize that these results align exceptionally well with the averages derived from the upper and lower bound solutions proposed by 
Shiau et al. (2003). The consistency across different parametric ranges has significantly enhanced our confidence in the reliability and robustness of 
the IGA-UB study, and thus reaffirms the credibility as a valuable resource for geotechnical analyses and design considerations in the field. 

The effect of footing roughness under the conditions of H1/B = 0.5 and q/γB = 0 is shown in Fig. 7 for various φ’ values of 30°, 40°, and 50°. The 
comparisons affirm the excellent agreement between the two methods, in particular for the notable discrepancy between smooth and rough results 
in bearing capacity at φ’ = 30° and cuo/γB = 4. The observed decline in bearing capacity for the smooth footing, approximately halving compared to 
the rough counterpart, aligns consistently with the average of the upper and lower bounds proposed by Shiau et al. (2003). As the friction angle 
increases, the influence of footing roughness diminishes, yielding to the dominant impact of the underlying clay layer. In practical scenarios, footing 
roughness typically falls between perfectly smooth and perfectly rough extremes, with an interface friction angle that commonly ranges from one-
half to two-thirds of the sand friction angle. For practical uses, an average of smooth and rough results would be sufficient for design purposes. 
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Fig. 7. Effect of footing roughness between the present study and those given Shiau et al. (2003). 
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Fig. 8. Effect of increasing with depth for clay between the present study and those given in Shiau et al. (2003). 

 

To assess the impact of the inhomogeneity of undrained strength profiles of soft, normally consolidated clays, two scenarios with values of H1/B 
equal to 0.25 and 2 are examined in Fig. 8 for the linear increase of undrained strength profile, i.e. for ρB/cuo values of 0, 0.5, and 1. Fig. 8 shows that 
clay inhomogeneity has the most significant effect on bearing capacity when H1/B is small. Conversely, for a deeper layer of medium-dense sand (H1/B 
= 2 and φ’ = 30°) on a soft clay (cuo/γB = 1), the bearing capacity remains unaffected by ρB/cuo. This is mostly due to the confined velocity fields within 
the top layer, and therefore the results are independent of the value ρB/cuo. 

Figs. 9-14 showcase a diverse range of failure behavior linked to specific studies on the effects of H1/B, q/γB, φ′, cuo/γB, and ρB/cuo, Overall, the 
failure mechanisms align well with prior research, as evidenced by congruence with Shiau et al. (2003). We start with Fig. 9 by demonstrating the 
effect of H1/B on failure mechanisms using velocity contour plots. The chosen case is for (q/B = 0, ’ = 30o, cuo/B = 1). Results show that the effect 
of soft clay layer on the bearing capacity factor p/B diminishes as the value of H1/B increases. For H1/B =2, the non-zero velocity field is entirely 
contained within the sand layer, resulting in the largest value of p/B for the present study. 

The effect of ’ on failure mechanisms is shown in Fig. 10. For the selected case with (H1/B = 1, q/B = 0, cuo/B = 0.5), the extent of failure zone 
is enlarged as ’ increases. Notably, the change of velocity direction across the layer boundary becomes obvious for a large value of ’ = 50°. On the 
other hand, as shown in Fig. 11, the increased strength ratio cuo/B of clay layer results in a reduced failure zone. This is further accompanied by an 
increase in p/B, as the failure zone tends to be confined within the top sand layer. For the surcharge effect, it is not surprised to see the increased 
bearing capacity factor p/B and the enlarged failure zone as the value of q/B increases in Fig. 12. For clay inhomogeneity B/cuo in Fig. 13, the effect 
is most pronounced when H1/B is the smallest. The same observation applies to the effect of roughness, as shown in Fig. 14 for the case with (H1/B = 
0.5, q/B = 0, ’ = 30o, cuo/B = 4). 

Jo
urn

al 
Pre-

pro
of



H1/B = 0.25

p/B = 4.60

H1/B = 0.5

p/B = 4.84

H1/B = 1

p/B = 6.46

H1/B = 2

p/B = 8.25

 
Fig. 9. Effect of H1/B on failure mechanisms (q/B = 0, ’ = 30o, cuo/B = 1). 
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Fig. 10. Effect of ’ on failure mechanisms (H1/B = 1, q/B = 0, cuo/B = 0.5). 
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Fig. 11. Effect of cuo/B on failure mechanisms (H1/B = 1, q/B = 0, ’ = 40o). 
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Fig. 12. Effect of q/B on failure mechanisms (H1/B = 1, ’ = 40o, cuo/B = 0.5). 
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Fig. 13. Effect of B/cuo on failure mechanisms (q/B = 0, ’ = 30o, cuo/B = 1). 
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Fig. 14. Effect of footing roughness on failure mechanisms (H1/B = 0.5, q/B = 0, ’ = 30o, cuo/B = 4). 

5. DNN 

Fig. 15 shows the typical process of DNN method. The structure of the DNN typically comprises three essential components: the input layer, the 
hidden layer, and the output layer, within which interconnected processing units are incorporated. Nonlinear transformations are applied to the input 
data at each layer, resulting in a distinctive representation at the output layer. Assuming that the neural network consists of V layers, with the stability 
number denoted as V, the output signal of the lth layer can be expressed as follows:   

𝑧j
l = 𝑓(𝑤j

T𝑎j
l−1 + 𝑏j), 𝑙 = 1,2,3,4, … , 𝑉          (11) 

The output signal at the lth layer in the DNN is influenced by various factors. To begin with, the activation function f is applied to the input data. 
Furthermore, the weight vector describes the collective impact of all units within the same hidden layer, while represents the output signal from the 
preceding (l-1)th layer. Lastly, bj signifies the bias parameter of the jth unit within the current (l)th layer. These combined factors collectively contribute 
to the ultimate output signal of the DNN at each layer, consequently influencing the final prediction made by the model. 

In the realm of regression problems, the meticulous selection of parameters stands as a pivotal determinant of model performance. As discussed 
by Nguyen et al. (2022), These vital parameters may include (i) the number of neurons; (ii) the number of layers; (iii) the activation function of choice, 
which includes options such as Relu, tanh, selu, and sigmoid; iv) the optimizer algorithm, offering selections like Adam, Nadam, RMSprop, and Adamax; 
and v) the learning rate. The optimization of these hyper parameters was conducted through the utilization of the WOA, giving rise to the development 
of the WOA-DNN model, a specialized framework engineered to achieve precise predictions. 

In order to assess the accuracy of the model's predictions, the training regimen for the DNN involves the minimization of the loss function. In this 
study, the chosen loss function is Mean Square Error (MSE), a widely adopted metric for quantifying the dissimilarity between predicted and actual 
values. The preference for MSE arises from its straightforwardness, computational efficiency, capacity to detect outliers, and congruence with the 
Gaussian error distribution assumption frequently encountered in traditional DNN models (Wani et al. 2020). In addition to MSE, the model's 
predictive accuracy is evaluated using standard metrics such as Mean Absolute Error (MAE) and the Coefficient of Determination (R2). These 
established metrics furnish a holistic comprehension of the model's performance, providing valuable insights into predictive accuracy and identifying 
potential areas for further enhancement if deemed necessary. 
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Fig. 15. Typical topology of deep neural networks. 

5.1. WOA 

The WOA comprises three fundamental steps, namely for encircling preys, bubble-net attacking model, and searching for prey. They are 
discussed below (Mirjalili and Lewis, 2016). 

5.1.1. Encircling Preys 

In this step, the algorithm takes inspiration from humpback whales when they encircle their prey. As they close in on potential prey, the whales 
follow a spiral path and generate bubbles along the way. The underlying idea is that the randomly generated candidate solutions are expected to be 
in proximity to the optimal or best candidate solution. Leveraging this concept, the other candidate solutions aim to adjust their positions closer to 
the optimal candidate. This behavior is mathematically represented by the following equations: 

𝑫⃗⃗ = |𝑪⃗⃗ ⋅ 𝑿∗⃗⃗ ⃗⃗ (𝒕) − 𝑿⃗⃗ (𝒕)|           (12) 

𝑿⃗⃗ (𝒕 + 𝟏) = 𝑿∗⃗⃗ ⃗⃗ (𝒕) − 𝑨⃗⃗ ⋅ 𝑫⃗⃗            (13) 

where (𝑡) represents the current iteration; 𝑿∗⃗⃗ ⃗⃗ (𝒕) denotes the position vector of the best solution obtained thus far; 𝑿⃗⃗ (𝒕) signifies the position vector 

at the current iteration;  represents the absolute value, and “” signifies element-wise multiplication. It is essential to note that 𝑿∗⃗⃗ ⃗⃗  should be updated 

whenever a superior solution is discovered during each iteration. 

Vectors 𝑨⃗⃗ , 𝑪⃗⃗  represent coefficient vectors and are computed as follows:  

𝑨⃗⃗ = 2𝒂⃗⃗ ⋅ 𝒓⃗ − 𝒂⃗⃗             (14) 

𝑪⃗⃗ = 2 ⋅ 𝒓⃗               (15) 

where 𝒂⃗⃗  linearly decreases from 2 to 0 over the course of iterations encompassing both exploration and exploitation phases. The vector 𝒓⃗  is a random 

vector within the range [0,1]. 

5.1.2. Bubble-Net Attacking Model 

Fig. 16 illustrates the mathematical models for the Shrinking Encircling and Spiral Updating Position mechanisms, which emulate the Bubble-
Net Attacking method inspired by humpback whales. The Shrinking Encircling mechanism operates by reducing the value of vector 𝒂⃗⃗   throughout the 

iterations, as described in Eq. (14). It's important to note that the fluctuation range of vector 𝑨⃗⃗  is also decreased alongside vector 𝒂⃗⃗  . In other words, 

𝑨⃗⃗  becomes a random value within the interval [-a, a]. By setting random values for 𝑨⃗⃗  in the range [-1, 1], the candidate solution's new position is 
updated between its current position and the best position obtained so far. 
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Fig. 16. Mathematical Models for Position Update Mechanisms: a) the shrinking encircling mechanism; b) the spiral updating position mechanism. 

In Fig. 16b, the distance between the whale's position (X, Y) and the prey's position (X*, Y*) is initially calculated. A spiral equation is then created 
to mimic the helix-shaped movement of humpback whales, and it is defined as follows:  

𝑫′⃗⃗⃗⃗ = |𝑿∗⃗⃗ ⃗⃗ (𝒕) − 𝑿⃗⃗ (𝒕)|           (16) 

𝑿⃗⃗ (𝒕 + 𝟏) = 𝑫′⃗⃗⃗⃗ ⋅ 𝑒𝑏𝑙 ⋅ cos (2𝜋𝑙) + 𝑿⃗⃗ ∗(𝒕)          (17) 

where b represents a constant that defines the shape of the logarithmic spiral, l is a random number within the interval [-1, 1], and “⋅” denotes element-

by-element multiplication. 

Humpback whales exhibit the behavior of swimming around their prey within a shrinking circle while also following a spiral-shaped path. This 
behavior is simulated in the model by assuming a 50% probability to choose between the Shrinking Encircling mechanism or the Spiral model to 
update the position of the whales during optimization. The mathematical model is defined as follows:  

𝑿⃗⃗ (𝒕 + 𝟏) = {
𝑿∗⃗⃗ ⃗⃗ (𝒕) − 𝑨⃗⃗ ⋅ 𝑫⃗⃗ ,      if 𝑝 < 0.5

𝑫′⃗⃗⃗⃗ ⋅ 𝑒bl ⋅ cos (2𝜋𝑙) + 𝑿∗⃗⃗ ⃗⃗ (𝒕),      if 𝑝 ≥ 0.5
                     (18) 

where 𝑝 is a random number in the range [0,1]. 

 

5.1.3. Searching for Prey 

To search for prey, a similar approach to the Shrinking Encircling mechanism is applied. However, in this case, the 𝑨⃗⃗  vector with |𝑨⃗⃗  |>1 is utilized, 

and the position 𝑿rand 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ of a randomly selected whale from the current population replaces the position 𝑿∗⃗⃗ ⃗⃗ (𝒕) of the best candidate solution. This 

means that the whale can move far away from the reference whale, emphasizing exploration and enabling the WOA algorithm to perform a global 
search. The mathematical model is expressed as follows:  

𝑫⃗⃗ = |𝑪⃗⃗ ⋅ 𝑿rand ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑿⃗⃗ (𝒕)|,           (19) 

𝑿⃗⃗ (𝑡 + 1) = |𝑿rand ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑨⃗⃗ ⋅ 𝑫⃗⃗ |           (20) 

where 𝑿rand 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the position vector of a whale chosen randomly from the current population.  

 Some of the possible positions around a particular solution with |𝐴  |>1 is depicted in Fig. 17. 
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Fig. 17. Exploration mechanism implementation of WOA algorithm. 

Fig. 18 illustrates the graphical methodology of the proposed WOA-DNN. As discussed earlier, IGA's discretization facilitated automatic and 
random data generation using the MATLAB parfor loop, significantly reducing data generation time. Each input parameter was randomly sampled 
within specified ranges outlined in the manuscript, ensuring a diverse dataset that covers realistic variations encountered in practical applications. 
This efficient data generation enabled the creation of a large, varied dataset crucial for robust training of the WOA-DNN model. This dataset enhances 
the model's capability to capture complex patterns and dependencies, ensuring accurate predictions of bearing capacity in layered soil profiles.  

 
Fig. 18. The graphical methodology of the proposed WOA-DNN. 

5.2. Data Acquisition and Model development 

5.2.1. Preprocessing data 

The bearing capacity dataset for sand on clay profile has a total of 10,000 samples.  Table 3 presents an extensive statistical summary of both the 

input and output variables employed in this dataset. These statistical attributes are fundamental for comprehending the dataset's underlying 

characteristics, offering a foundational reference for dataset analysis and interpretation. The input variables (X1 to X6) demonstrate a broad range of 

values; whereas, the means and standard deviations provide valuable insights into the central tendency and dispersion of these variables. Particularly 

noteworthy is the skewness of these variables, all of which are approximately zero. This proximity to zero indicates that the data is fairly 

symmetrically distributed and does not exhibit significant skewness in either direction. 

Conversely, when we examine the output variable (Y), i.e., the bearing capacity (p/B), a more constrained range is observed. The bearing 

capacity factor varies from a minimum of 1.18133 to a maximum of 96.58333. The mean value of 17.80979 indicates that, on average, the bearing 

capacity factor centers around this value. The standard deviation, at 16.30221, underscores the variability of these values around the mean. It's 

important to note the negative skewness value (-1.34078), which implies a slight leftward tail in the distribution. This suggests that some lower 

values deviate from the overall trend, indicating that there may be instances with bearing capacity factors significantly below the mean. 
Table 3 

The statistical description of the input and output variables. 

Variables Unit Notation Min Mean Std Skewness Max 

H1/B - X1 0.12578 1.08398 0.54532 -0.03121 1.99940 

q/B - X2 0.00009 0.50104 0.28867 -0.01256 0.99979 

’ - X3 20.00145 35.00181 8.63392 -0.00014 49.98221 

cuo/B  - X4 0.20034 2.59182 1.38300 0.00778 4.99891 

B/cuo  - X5 0.00007 0.49289 0.28991 0.02874 0.99984 

Roughness - X6 0.00000 0.50000 0.50000 0.00000 1.00000 

p/B - Y 1.18133 17.80979 16.30221 -1.34078 96.58333 
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This comprehensive statistical description provides insights into the data's central tendencies, variabilities, and distribution shapes, facilitating 

informed analysis and interpretation. It serves as a crucial reference point for understanding the dataset's distribution and characteristics, further 

enhancing its utility for investigating this stability problem.  

Further, the dataset undergoes a normalization process, accomplished with the Minmaxscaler function, scaling the data within the range (0,1) 

prior to DNN model training. The distribution and statistical characteristics of each feature are presented in Fig. 19, providing valuable insights into 

the data's properties. Moreover, an examination of variable correlations has also been conducted. See Fig. 20 for a heatmap visualization. The results 

obtained from this analysis emphasize the paramount influence of the variable "φ’" on bearing capacity prediction, highlighting its pivotal role in the 

predictive model. Following closely is "cuo/γB", displaying a correlation coefficient of 0.44. Additionally, variables "H1/B" and "q/γB" exhibit 

correlations of 0.34 and 0.23, respectively, indicating their moderate yet notable contributions to the bearing capacity prediction. 

Conversely, the variables "B/cuo" and "roughness" demonstrate minimal impact on bearing capacity prediction, with correlation values 

approaching zero, specifically at 0.05. This suggests that their influence on the predictive model is negligible, making them relatively less critical in 

determining bearing capacity. 
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Fig. 19. Distribution of Each Variable Normalized in the range [0, 1]: (a) H1/B, (b) q/B, (c) ’, (d) cuo/B, (e) B/cuo, and (f) Roughness. 

 
Fig. 20. Correlation of Variables. 

5.2.2. Model development 

To ensure the reliability and robustness of the model performance, a rigorous 10-fold cross-validation technique is applied. The WOA-DNN is 

utilized to optimize hyperparameters for accurate predictions. This technique serves a dual purpose – it provides a robust assessment of the model's 

performance and offers a valuable platform for fine-tuning model hyperparameters. This approach would ensure that the predictive model is well-

optimized and capable of delivering accurate and dependable results. These hyperparameters include: (i) Number of neurons in the range [5, 100], 

(ii) Number of layers in the range [1, 4]; (iii) Activation functions: Relu, tanh, selu, sigmoid, (iv) Optimizer algorithms: Adam, Nadam, RMSprop, 

Adamax, and (v) Learning rate in the range [0.01, 0.5].  

Through the WOA, the optimal hyperparameters are determined as follows: number of neurons = 100; number of layers = 4; activation function 

= 'Relu'; optimization algorithm = 'Adamax'; and learning rate = 0.01.  

The performance of the proposed WOA-DNN model is systematically compared with that of an Artificial Neural Network (Nguyen et al., 2023; 

Nguyen et al., 2024; Van Tran et al., 2024), Light Gradient Boosting (LGB) (Ke et al., 2017), Extremely Gradient Boosting (XGB) (Chen and Guestrin, 

2016), and CatBoost (Prokhorenkova et al., 2018). The details of each model's parameters are given in Table 4.  
Table 4  

Model Parameter Information. 

Model Parameter 

LGB n_estimators = 150; num_leaves = 25; learning_rate = 0.15; reg_alpha = 0.02; reg_lambda = 0.02 

(e) (f)
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XGB learning_rate = 0.1; n_estimators = 200; max_depth = 8; subsample = 1; colsample_bytree = 1; gamma = 0.01; min_child_weight = 1 

CatB Iterations = 1000; depth = 8; 

ANN number of neuron = 100; activations = ‘Relu’; optimization algorithm = ‘Adamax ‘  

WOA-DNN number of neuron = 100; number of layers = 4; activations = ‘Relu’; optimization algorithm = ‘Adamax ‘; learning rate = 0.01 

Regarding the influence of hunting party size, we showcase the convergence curves in Fig. 21 for WOA-DNN with varying hunting party sizes set 

at 10, 15, 20, 25, and 30, after 50 iterations. In general, all scenarios display a decreasing trend in stability beyond the 20th iteration, with the hunting 

party of 30 exhibiting the most favorable performance. Notably, all these scenarios successfully achieve a remarkable level of precision, as evidenced 

by the objective functions converging to an impressive accuracy of 10-5. 

 

 
Fig. 21. Convergence curve of different hunting party value on the objective functions. 

In summary, the optimization of the DNN topology through the WOA results a neural network comprising 100 neurons distributed across 4 

layers. This network employs the Rectified Linear Unit (ReLU) activation function, the Adamax optimizer algorithm, and a learning rate set at 0.01. 

5.3. Results and discussion 

Table 5 presents a comparison of evaluation metrics between the WOA-DNN and other models. To assess the performance of the WOA-DNN 

model against conventional ML techniques, we focused on key criteria of model accuracy and generalization. The network architecture parameters 

were optimized using WOA to enhance training efficiency, accuracy, and to mitigate underfitting and overfitting. Subsequently, the model's 

performance was rigorously evaluated using standard metrics including MSE, MAE, and R². K-fold cross-validation was employed to ensure robust 

performance evaluation across different subsets of the data, validating the model's ability to generalize effectively. 

WOA-DNN achieved an exceptionally low MSE of 0.000 on the test dataset, surpassing all other models compared in Table 5. This minimal error 

indicates that WOA-DNN closely fits the actual data points with minimal prediction variance, demonstrating its superior predictive capability. In 

contrast, models such as LGB, XGB, CatBoost, and the standard ANN exhibited higher MSE values, suggesting less accurate predictions compared to 

WOA-DNN.  
Table 5 

 Comparison of evaluation metrics for models using 10-fold cross-validation. 

Models 
Test Train 

MSE MAE R2 MSE MAE R2 

LGB 1.149 0.778 0.996 0.573 0.566 0.998 

XGB 0.648 0.498 0.998 0.073 0.187 1.000 

CatB 0.377 0.416 0.999 0.122 0.259 1.000 

ANN 1.316 0.834 0.995 1.219 0.802 0.995 

WOA-DNN 0.189 0.314 1.000 0.122 0.261 1.000 

 

The MAE of WOA-DNN on the test dataset is an impressive 0.003, which is the lowest among all models. MAE measures the absolute difference 

between predicted and actual values and is a key indicator of model accuracy. This remarkable accuracy is in stark contrast to other models, which 

generally have higher MAE values, emphasizing WOA-DNN's superiority in providing precise predictions. The R2 value (Coefficient of Determination) 

of WOA-DNN is 0.999, which is the highest among all models, indicating that its predictions exhibit the highest correlation with the actual values on 

the test dataset. This level of predictability sets WOA-DNN apart from the other models, which though performing well, do not match the precision 

achieved by WOA-DNN.  
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Fig. 22 presents regression plots of five different machine-learning models. The models under consideration are XGB, CatBoost, LGB, ANN, and 

the WOA-DNN. This visual representation allows for a clear evaluation of each model's predictive accuracy and how well it fits the actual data.  Results 

show that WOA-DNN stands out as the best model with the most accurate predictions. It closely follows the actual data points, resulting in a regression 

line that aligns almost perfectly with the data. This is a testament to WOA-DNN's remarkable accuracy in estimating the bearing capacity of strip 

footings on layered soils. On the other note, the other models LGB, XGB, and CatBoost, exhibit regression lines that deviate to a greater extent from 

the actual data points. While they perform well, they do not match the level of accuracy achieved by WOA-DNN. This visual representation reinforces 

the numerical results previously presented in Table 5, emphasizing that WOA-DNN surpasses the other models in providing precise and reliable 

predictions for the given dataset. 

 

 

 

 
Fig. 22. Comparing the Best Performance of Four Models in the Regression Plot: (a) XGB, (b) CatB, (c) ANN, (d) LGB, and (e) WOA-DNN. 

Fig. 23 further demonstrates the exceptional performance of the proposed WOA-DNN using the plots of residual value densities for the five 

models. The figure clearly emphasizes the strengths of each model, with particular attention to the densities of residual values. The plot for WOA-

DNN shows a remarkable concentration of residual values around zero, with the highest maximum density of 1.2. This is a significant indicator of the 

(a) (b)

(d)(c)

(e)
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model's exceptional accuracy. It consistently delivers highly precise predictions with minimal deviations from actual values. On the other hand, the 

other models, including XGB, CatBoost, LGB, and ANN, exhibit a broader spread of residual values with lower maximum densities. This highlights that 

the proposed WOA-DNN model surpasses its counterparts in providing more accurate and reliable predictions. 

 
Fig. 23. A comparison of residual value densities for five models in the histogram plot. 

The key findings regarding the accuracy of the WOA-DNN model in predicting the bearing capacity of strip footings are significant. The WOA-

DNN model demonstrated high accuracy with low MSE and MAE values, alongside consistently high R² values, indicating precise predictions. 

Compared to conventional ML techniques, it showed superior accuracy by effectively capturing complex patterns within the data. The model's 

adaptability in optimizing hyperparameters using the WOA allowed for fine-tuning critical parameters, thereby enhancing its predictive capability. 

Furthermore, through rigorous k-fold cross-validation across various material and geometrical scenarios, the WOA-DNN model exhibited 

robustness and ensured reliable performance under diverse conditions. Evaluating its performance across different scenarios of sand layer depth, 

load-to-soil unit weight ratio, internal friction angle, cohesion, and footing roughness, the WOA-DNN demonstrated strong predictive capabilities and 

adaptability. This resilience stems from the diverse dataset generated through random sampling of these parameters, ensuring comprehensive 

coverage of material and geometrical conditions. Consistently achieving high accuracy and reliability, as confirmed by performance metrics and cross-

validation results, underscores the model's effectiveness. These findings highlight the WOA-DNN's potential to accurately predict bearing capacity 

for layered soil profiles by accommodating diverse parameter combinations effectively. 

In conclusion, the optimized architecture facilitated by the WOA not only significantly improves predictive accuracy but also enables robust 

generalization to unseen data, as validated through k-fold cross-validation. This technique involves partitioning the dataset into k subsets, training 

the model on k-1 subsets, and validating it on the remaining subset, iteratively repeating this process with different validation subsets. By evaluating 

the model's performance across multiple folds, we confirmed that WOA-DNN maintains resilience to variations in the training data while sustaining 

high precision. These findings underscore the effectiveness of WOA-DNN in modeling intricate relationships within geotechnical datasets, particularly 

in predicting bearing capacity for layered soil profiles. By minimizing prediction variance and providing reliable estimates across diverse soil 

configurations, WOA-DNN emerges as a promising tool for advancing predictive accuracy and enhancing decision-making in geotechnical engineering 

applications. 

6. Feature Importance 

6.1. SHapley Additive exPlanations 

The Shapley values are often used to shed light on the significance of each feature in predicting soil stability. In Fig. 24, among the six variables, 

φ’ stands out with the highest SHAP value, reaching approximately 0.1. Following closely is cuo/γB, which contributes significantly with a SHAP value 

of approximately 0.06. H1/B plays a notable role with a SHAP value of 0.05, while q/γB has a SHAP value of 0.035. In contrast, the variables roughness 

and ρB/cuo exhibit the least influence, with their SHAP values approaching zero. These results underscore the pivotal role of φ’ in predicting bearing 

capacity, while emphasizing the limited impact of roughness and ρB/cuo on the model's overall performance.  
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Fig. 24. Shapley values for feature importance. 

The findings from the Shapley values analysis provide valuable insights with practical implications for decision-making in selecting design 

parameters. Here are some practical implications of the outcomes:  

 

(1) Internal friction angle φ’: The high SHAP value of φ’ underscores its significant influence on bearing capacity. Designers and engineers 

should pay close attention to the value of the angle of internal friction (φ’) when planning strip footing designs. It's essential to select an 

appropriate φ’ value to ensure the stability and load-bearing capacity of the foundation. 

(2) The strength ratio cuo/γB: The SHAP value of cuo/γB highlights its substantial contribution to bearing capacity. Designers should carefully 

evaluate this parameter when assessing the design, as it plays a crucial role in determining the load-bearing capacity of strip footings. 

(3) The depth ratio H1/B and the surcharge ratio q/γB: H1/B and q/γB also have notable impacts on bearing capacity. Engineers should consider 

these parameters in the design process and adjust them according to project requirements and soil conditions. 

(4) Low Priority on Roughness and ρB/cuo: The low SHAP values for roughness and ρB/cuo indicate their limited influence on bearing capacity. 

While these parameters should not be ignored, designers may allocate less effort in optimizing or adjusting them, especially when 

compared to the more critical factors like φ’ and cuo/γB. 

To make informed decisions, engineers may consider conducting thorough soil testing and data collection, particularly for φ’ and cuo/γB. Accurate 

and precise measurements and assessments of these parameters will lead to more reliable and stable strip footing designs. By understanding the 

relative importance of each feature, they can focus on improving and refining the design parameters that have the most substantial impact on bearing 

capacity. 

6.2. Partial Dependence Plots (PDPs) 

The Partial Dependence Plots (PDPs) are useful tools that can provide valuable insights into how each input variable impacts the bearing capacity 

of strip footings on clayey layers (ref. Fig. 25). The PDPs illustrate the relationship between individual input variables and the output variable, i.e. the 

bearing capacity (p/B). Here's a detailed discussion of the PDPs for each input variable: 

(1) H1/B: The PDP for H1/B shows that varying this parameter from 0.25 to 1.75 leads to a substantial increase in bearing capacity, ranging 

from 15 to 32.5. This indicates that increasing the relative depth of the sand layer compared to the footing width has a significant positive 

effect on the bearing capacity. Designing a deeper sand layer enhances the load-bearing capacity of the foundation. 

(2) q/B: The PDP for q/B reveals that varying this parameter from 0 to 1 results in an increase in bearing capacity, ranging from 16 to 26. It 

suggests that an increase in applied load relative to the soil unit weight and footing width contributes positively to the bearing capacity. 

This insight can guide designers in optimizing load distribution on footings for improved performance. 

(3) ’: The PDP for ’ illustrates that varying this parameter from 20° to 45° leads to a substantial increase in bearing capacity, ranging from 

5 to approximately 40. It shows that increasing the internal friction angle of the soil has a highly positive influence on bearing capacity. 

Selecting soils with a higher internal friction angle can significantly enhance foundation performance. 

(4) cuo/B: The PDP for cuo/B demonstrates that varying this parameter from 0.2 to 5 results in an increase in bearing capacity, ranging from 

10 to 30. It highlights that increasing the cohesion of the soil relative to the soil unit weight and footing width has a strong positive impact 

on bearing capacity. This insight can guide designers in selecting or improving soil types for better foundation support. 

(5) B/cuo: The PDP for B/cuo indicates that an increase in this parameter from 0 to 1 leads to a minor increase in bearing capacity, from 20.5 

to 23.5. While the effect is relatively small, it emphasizes that this parameter has a limited effect on the bearing capacity in comparison to 

other design factors. 



cuo/B

H1/B

q/B

Roughness

 B/cuo1

0.00 0.02 0.04 0.06 0.08 0.10
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(6) Roughness: The PDP for footing roughness shows that shifting from a smoother to a rougher footing surface results in an increase in bearing 

capacity, ranging from 21.5 to 23. It highlights the role of surface roughness in enhancing the footing's ability to withstand loads, though 

not significant like other design factors. 

To gain deeper insights into the physical mechanisms influencing load-bearing capacity on layered soils, a comprehensive feature interaction 

analysis between pairs of variables was conducted. This analysis, illustrated in Figs. 26-36, includes both two-dimensional and three-dimensional 

visualizations. These visualizations uncover intricate relationships and dependencies among key variables such as footing roughness, H1/B ratio, q/γB 

ratio, internal friction angle (φ'), cohesion (cuo/γB), and ρB/cuo ratio. 

 

 
Fig. 25. Results of PDPs study: (a) H1/B, (b) q/B, (c) ’, (d) cuo/B, (e) B/cuo, and (f) Roughness. 

The two-dimensional plots highlight the direct impact of footing roughness on variables like H1/B and q/γB, providing a clear view of how 

changes in one variable affect the overall load-bearing capacity in conjunction with another. The three-dimensional plots, on the other hand, offer a 

more comprehensive perspective, illustrating how multiple factors interact simultaneously. 

 
Fig. 26. Feature interaction analysis between H1/B and q/B: (a) 2D visualization and (b) 3D visualization. 
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Fig. 27. Feature interaction analysis between H1/B and : (a) 2D visualization and (b) 3D visualization. 

 
Fig. 28. Feature interaction analysis between H1/B and cuo/B: (a) 2D visualization and (b) 3D visualization. 

 
Fig. 29. Feature interaction analysis between H1/B and B/cuo: (a) 2D visualization and (b) 3D visualization. 
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Fig. 30. Feature interaction analysis between  and q/B: (a) 2D visualization and (b) 3D visualization. 

 

 
Fig. 31. Feature interaction analysis between cuo/B and q/B: (a) 2D visualization and (b) 3D visualization. 

 
Fig. 32. Feature interaction analysis between B/cuo and q/B: (a) 2D visualization and (b) 3D visualization. 
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Fig. 33. Feature interaction analysis between  and cuo/B: (a) 2D visualization and (b) 3D visualization. 

 
Fig. 34. Feature interaction analysis between  and B/cuo: (a) 2D visualization and (b) 3D visualization. 

 

 
Fig. 35. Feature interaction analysis between B/cuo and cuo/B: (a) 2D visualization and (b) 3D visualization. 
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Fig. 36. 2D visualization of Feature interaction between footing roghness and: (a) H1/B, (b) q/B, (c) , (d)cuo/B, and (e) B/cuo (Note: Since footing roughness only has two 

scenarios: smooth or rough; only 2D visualizations are plotted).  

 

These findings are invaluable for optimizing strip footing design. The detailed insights from the feature interaction analysis enable engineers to 

make informed decisions by considering the combined effects of various design parameters. This approach leads to more accurate predictions of 
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bearing capacity and enhances the reliability and safety of foundation designs. The ability to visualize and understand these complex interactions 

supports the development of more effective and efficient geotechnical engineering solutions, ultimately facilitating the optimization of strip footing 

designs for better performance and safety. 

In summary, designers can optimize the bearing capacity of strip footings on clayey layers by manipulating these input parameters. For instance, 

they may opt for a deeper sand layer (H1/B) or select soils with higher internal friction angles (φ') to improve foundation performance. The Partial 

Dependence Plots (PDPs) provide a quantitative understanding of how these changes impact bearing capacity, leading to better design choices and 

safer construction practices. This comprehensive analysis empowers engineers to enhance foundation design, ensuring greater structural integrity 

and stability. 

7. Conclusions 

This study effectively implemented a data-driven approach using the WOA-DNN, optimized by the WOA, to predict the bearing capacity of sand 

over clay. By combining IGA with UB limit analysis, this innovative methodology presents a promising solution for achieving more accurate and 

efficient designs in geotechnical engineering. 

The analysis has clearly demonstrated the significant impact of various design parameters on bearing capacity. Specifically, the depth ratio 

(H1/B), surcharge ratio (q/γB), and internal friction angle (φ’) have been shown to substantially enhance bearing capacity. Designing with thicker 

sand layers, higher surcharge ratios, and soils with greater internal friction angles leads to improved foundation performance. Furthermore, the study 

indicates that an increase in the soil strength ratio (cuo/γB) leads to a corresponding rise in bearing capacity. Although footing surface roughness 

plays a lesser role compared to other factors, it still contributes to improved load-bearing capacity. These insights offer designers and engineers a 

thorough understanding of how to optimize bearing capacity in geotechnical applications. By focusing on key parameters such as H1/B, q/γB, φ’, and 

cuo/γB, design decisions can be made with greater precision, leading to safer and more efficient construction practices. This quantitative analysis of 

parameter impacts aids in developing more effective geotechnical solutions. 

The study also showcased the effectiveness of the WOA-DNN model, inspired by the bubble-net hunting strategy of humpback whales, in tackling 

complex optimization problems in geotechnical engineering. Through extensive experimentation and validation, the research demonstrated the 

model’s superior performance in addressing challenging scenarios that conventional methods often fail to consider effectively. By incorporating 

advanced techniques like feature importance analysis and partial dependence plots, the study offered strong evidence of the model's capacity to 

uncover key insights into the factors influencing bearing capacity determination. The integration of advanced numerical methods with ML not only 

improves current practices but also establishes a foundation for future innovations, aimed at promoting better design outcomes and contributing to 

advancing the field of geotechnical engineering. 

8. Limitations and future works 

This study primarily focuses on static conditions for strip footings on layered soils, representing an initial step in exploring data-driven 

methodologies for bearing capacity analysis. Future research should aim to broaden and refine these methodologies in several key areas. Firstly, 

extending the analysis to incorporate dynamic conditions, such as seismic loading, will be crucial to understanding the full spectrum of foundation 

behavior in varying environmental contexts. Additionally, there is a need to consider more complex practical scenarios, including adjacent footings, 

sloped footings, and footings over voids, under both static and dynamic conditions. 

Moreover, further development of the proposed data-driven approach could benefit from incorporating larger and more diverse datasets. This 

expansion would improve model robustness and enhance its ability to generalize across a wider range of soil types and structural configurations. 

Exploring advanced ML techniques, such as deep reinforcement learning or ensemble methods, could also contribute to refining predictive accuracy 

and resilience in challenging geotechnical scenarios. 

Ultimate goals include the development of user-friendly software tools that integrate these advanced methodologies, making them accessible for 

practical engineering applications. By addressing these future directions, subsequent studies can build on the foundation established by this research, 

advancing the field of geotechnical stability designs to more accurate, reliable, and versatile solutions. 
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