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Abstract

The Philippines is one of the most vulnerable countries in the world to the potential impacts
of climate change. To fully understand these potential impacts, especially on future hydro-
logical regimes and water resources (2010-2050), 24 river basins located in the major agri-
cultural provinces throughout the Philippines were assessed. Calibrated using existing
historical interpolated climate data, the STREAM model was used to assess future river
flows derived from three global climate models (BCM2, CNCM3 and MPEHS5) under two
plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th cen-
tury). Results predict a general increase in water availability for most parts of the country.
For the A1B scenario, CNCM3 and MPEHS5 models predict an overall increase in river flows
and river flow variability for most basins, with higher flow magnitudes and flow variability,
while an increase in peak flow return periods is predicted for the middle and southern parts
of the country during the wet season. However, in the north, the prognosis is for an increase
in peak flow return periods for both wet and dry seasons. These findings suggest a general
increase in water availability for agriculture, however, there is also the increased threat of
flooding and enhanced soil erosion throughout the country.

Introduction

Due to its geographical setting, the Philippines is naturally vulnerable to hydrometeorological
hazards such as tropical cyclones, flooding, droughts, and rain-induced landslides. These
environmental hazards are aggravated by human activities such as deforestation and
improper land use planning. Moreover, the Philippines is one of the most vulnerable coun-
tries to the impacts of climatic change [1] due to its high level of risk exposure and limited
resources for adaptation [2].
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Furthermore, climate change represents a serious threat to the Philippines which is heavily
reliant on agriculture for food security and economic growth. The livelihood of millions is
threatened by the potential effects of climate change as current agricultural practices are
adapted primarily to the prevailing climate. Under predicted climate change, current agricul-
tural practices may become unsustainable due to changing rainfall patterns or temperature
rises that reduce the viability of certain crop types. Therefore, an understanding of future sea-
sonal variability in rainfall patterns and thus hydrological regimes under the impacts of climate
change, is critically important in deciphering the ability of catchments to reliably supply irriga-
tion water.

In order to forecast the impact of climate change, the Intergovernmental Panel of Climate
Change (IPCC) has produced various future scenarios from which greenhouse gas emissions
(GHG) are estimated and global climate models (GCMs) developed. Some studies have used
the data to assess the effects of a warmer climate on flood risk at a global or continental scale
[3, 4]. Despite the plethora of GCMs running numerous scenarios, these GCMs are however
too coarse to assess the impact of climate change at a country scale let alone for examining spe-
cific hydrological basins within a country.

Consequently, the Food and Agriculture Organization (FAO) developed an integrated suite
of climate models for assessing the impact of climate change on agriculture at the national
level. The MOdelling System for Agricultural Impacts of Climate Change (MOSAICC) is a
generic methodology designed to assess the impact of climate change on agriculture, by incor-
porating crop yields, water resources, macro-economic and downscaled climate data.

The MOSAICC framework was deployed in this study to assess the potential impact of cli-
mate change on river flows under various climate scenarios up to 2050 for the Philippines. A
time-series of historical interpolated downscaled climate data of hydrological simulations for
model calibration was also used. Data from three GCMs (BCM2, CNCM3, MPEHS5) with two
likely scenarios each (A2 and A1B), were then input into the hydrological model.

Materials and Methods

Study area

The Philippines (Fig 1) is an archipelago made up of >7,000 islands with a total area of
300,000 km?. There are three main island groupings: Luzon in the north (141,000 km?),
Visayas in the middle (57,000 km?) and Mindanao in the south (102,000 km?). The Philippines
contains 421 principal river basins, 18 of which are considered major river basins, each with a
minimum watershed area of 1,400 km?>. These river basins are important sources of freshwater
resources for meeting agricultural, commercial and domestic demands.

The climate of the Philippines can be divided into four distinct categories using the modified
Coronas classification [5-7], as shown in Fig 1. Climate Type I is characterized by a distinct
dry period from November to April and a wet season from May to October. Type II results in
rainfall being evenly distributed throughout year, but with a very pronounced rainy season
from November to January. In Type III, the seasons are not very pronounced, but a relatively
dry period prevails from November to April. Finally, in Type IV, precipitation is evenly distrib-
uted throughout the year. In this analysis, we used the modified Coronas classification as the
basis of making the distinction between dry and wet months.

To assess the impact of climate change on the hydrological regime at the country scale, vari-
ous river basins were selected. This was done on the basis of catchment size, climate type, the
availability of historical streamflow data and their importance to agricultural production. A
total of 24 basins were selected, which represent sub-basins of the 18 major river basins in the
Philippines and which are located within in major agricultural provinces. These basins and
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Fig 1. A map of the Philippines showing the coloured climatic type (I-1V) according to the Coronas classification [5-7]. The
darker shaded areas on the map highlight the locations of the 24 basins that were included in this study, while the named points represent
the basin outlets. The bar plot in the upper left corner represents the ranked total area of each of the 24 basins, while the graph in the
lower left corner shows the period of available measured hydrological data used for model calibration for each basin.

doi:10.1371/journal.pone.0163941.9001
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their outlets are shown in Fig 1. The basins selected include: 12 in Luzon, 3 in Visayas and 9 in
Mindanao, with catchment sizes ranging from the San Juan River at 37.82 km® to Pared River
at 26,825 km” (refer to barplot in Fig 1).

Climate models

To obtain reliable estimates of the likely impacts of climate change on the hydrological regime
in the Philippines, determination of the most appropriate GCMs was needed. A further consid-
eration is that GCMs vary both in their sensitivity to different levels of the atmosphere (from
surface to 200hPA) and in their parameterization schemes. Downscaling was performed using
the results from the sensitivity analysis provided by Manzanas (2015).

The MOSAICC framework, was designed to host a variety of GCMs. In this study, three
GCMs appear to be the most effective at simulating climate for the Philippines: ECHAMS5/
MPI-OM (MPEHS5) developed at the Max Planck Institute for Meteorology; BCCR-BCM2.0
(BCM2) from the Bjerknes Centre for Climate Research, and CNRM-CM3 (CNCM3) devel-
oped by the Météo-France (Centre National de Recherches Météorologiques). Furthermore,
these GCMs are well documented by the Program for Climate Model Diagnosis and Intercom-
parison (PCMDI) [8] and IPCC [9].

Based on the four Special Reports on Emissions Scenarios (SRES) from the IPCC Fourth
Assessment Report (AR4), two likely scenarios were selected to simulate future climate change
in the Philippines. The first SRES scenario (A1B) assumes very rapid economic growth, a global
population that peaks in mid-century and the rapid introduction of new and more efficient
technologies. The second scenario (A2) represents the negative extremes of high population
growth, slow economic development and slow technological change. The two scenarios for the
period 2010-2050 were compared with simulations of the 20th century (20C3M; referred to as
baseline hereafter) which included the period 1971-2000. Calibration of the hydrological
model was done using ERA-Interim (1979-2010), the latest global atmospheric reanalysis by
the European Centre for Medium-Range Weather Forecasts [10].

Climate data used in this study include precipitation (P) and potential evapotranspiration
(PET), where the latter was derived from maximum (Tmax) and minimum (Tmin) tempera-
tures [11]. Basconcillo et al. (2015) [12] statistically downscaled three GCMs under the Cou-
pled Model Intercomparison Project Phase 3 (CMIP3) via the FAO-MOSAICC Portal
(http://mosaicc.da.gov.ph). ERA-Interim (1979-2010) is the reanalysis dataset used to gener-
ate climate data in the absence of actual climate observations. The quasi-observations were
used as predictors for calibrating statistical downscaling models, which Manzanas et al.,
(2015) [13] attested to its better performance compared to the JRA-25 (1.125° x 1.125°) when
compared with actual observations in the Philippines. ERA-Interim data was also used as
quasi-observational inputs into the hydrological model because of its spatial and temporal
homogeneity compared to the Philippines weather station observations that contained many
missing values. The atmospheric elements used as predictors are meridional/zonal wind
(U/V), specific humidity (Q) and temperature (T). The identified set of predictors used for
downscaling are—U850, Q850, T1000—for Tmin and Tmax and—U850, U300, Q850, and
T1000—for precipitation. The study downscaled these three variables at the weather station
level using the three selected GCMs. There are 47/33/36 Philippine Atmospheric Geophysical
and Astronomical Services Administration (PAGASA) stations for precipitation/Tmin/
Tmax, respectively. The study also spatially interpolated the station-level downscaled climate
data using the Analyse Utilisant le RELief pour ' HYdromt éorologie (AURELHY) technique
to obtain 10 km-gridded data for the whole country.
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Hydrological model

The hydrological model STREAM (Spatial Tools for River basins and Environment and Analy-
sis of Management options) was used in this study. STREAM is a spatially distributed GIS-
based rainfall-runoff model, specifically suited to assess river flows in data scarce environ-
ments, as it relies on a water balance for stream flow estimations. The model, developed by
Aerts et al., (1999) [14] is optimized for the analysis of the hydrological impact of land use and
climate change in river basins. The model has proven to give reliable results in numerous other
studies in various locations and climatic regimes [15-20].

STREAM solves the water balance using a gridded landscape in order to estimate stream
flows. For each basin, derived from a digital elevation map (DEM), the accumulated runoff and
groundwater storage was calculated on a monthly basis. To maintain important topological
features in the digital terrain model while keeping calculation times acceptable, the downscaled
climate data was resized to the same spatial resolution of the DEM at approximately 1 km. No
additional interpolation was applied in this step.

In situ streamflow measurement data were used for model calibration. Data were digitized
from physical records that contained daily runoff, while temporal coverage of the data series
varied for each of the basins. Consecutive years with no missing data were selected for model
calibration, to highlight the difference in temporal coverage. For instance, Fig 1 shows a tempo-
ral resolution of 3 years for the Agus basin, while for the Tukuran basin it is 14 years. As dis-
charges were manually measured, quantifying the accuracy of the data with sufficient precision
was an issue. As such, the degree of accuracy of records were categorized as “excellent”, “good”,
“fair”, or “poor” using the following convention: “Excellent” means about 95% of daily dis-
charges are within +5% difference of the actual gauge height vs height computed from the rat-
ing curve; “Good” is within +10%; and “Fair” is within £15%; while “Poor” means daily
discharges are below the 15% “Fair” accuracy. The median, mean and distributions of monthly
discharge estimates were used for model calibration to account for missing data and variability
in data quality.

Hydrological model calibration was done to ensure measured monthly distributions are in
agreement with the simulated ones. In situ streamflow measurements were used as a reference
to validate the performance of the model. These calibrated model results were then used as a
reference. Two parameters were manually adjusted to define the groundwater fraction and
flow velocity using the precipitation and PET data from the ERA-interim dataset. Due to lim-
ited measured river flow data and the relatively coarse resolution of input data, modelled dis-
charge distributions were compared with monthly distributions of measured data, rather than
comparing exact periods. The model performance was evaluated by determining the coefficient
of determination in comparing the monthly medians of the measured and modelled data and
the volumetric efficiency [21]. The volumetric efficiency was calculated using Eq 1, where VE
denotes the volumetric efficiency, and Q,, and Q, the modelled and observed discharge, respec-
tively, where 1 indicates a perfect score.

vE=1_ 21— Q) (1)

2.Q

Data analysis method

Climate change induced differences were investigated by comparing the A1B and A2 modeled
discharge series with the baseline. Baseline scenarios were generated by GCMs using historical
atmospheric conditions. Comparison between the baseline and scenarios was performed by fit-
ting a Gumbel distribution through the modelled runoft (Q) series and then extracting the
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Gumbel parameters [22]. Fig 2 shows the probability density function (pdf) and cumulative dis-
tribution function (cdf) of three hypothetical Gumbel distribution functions. These were calcu-
lated using Eq 2 (cdf) and Eq 3 (pdf), where y represents the mode, § a scale parameter and the
median (y,,) is given by y — B In(In(2)). The three curvesin Fig 2, show that increases in p
results in higher discharge (Q), while an increase in B results in a larger range. Thus, a change in
U172 or findicates a change in river flow magnitude or river flow variability, respectively.

Q—u
1 Quy ., "F

fQ=ge

(2)

FQ=e* ' 3)

The probability of a specific extreme event can be calculated using the cumulative probabil-
ity (F(Q): Eq 3) can be expressed by its return period y (Eq 4). As such, the maximum flood
(Q) expected within a given number of years (y) can be expressed by Eq 5.

- 1
’T1-FQ

Q——Zl’l(—li’I(l—%))*ﬁ-l-ﬂ (5)

(4)

Results

The results of the STREAM calibrations and seasonal water availability are shown in Fig 3,
where the downscaled average (1979-2010) seasonal water balances (precipitation-evapora-
tion) are shown for four different periods (Dec-Feb, Mar-May, Jun-Aug and Sep-Nov) across
the Philippines, with values mostly positive, and ranging up to 3000 mm. For climate Types I
and III, values are mostly negative during the dry season, which means water from soil storage
is mostly evaporated. The different climate types (see Fig 1) are well represented, with relatively
dry periods for Types I and III in the months Dec-May (two left figures in Fig 3), whereas Type
I1 is relatively wet during these periods. For climate Type IV, the water balance is relatively
even throughout the year, while water availability is higher in mountainous regions compared
to lower elevation areas.

Calibration results of the hydrological simulations for the 24 basins are shown on the border
of Fig 3. The blue line represents the monthly median of measured runoff values, the shaded
areas are the inter-quartile ranges, while the box-plots show the distribution of modelled run-
off. For all basins, there is close agreement between simulated and measured runoff values in
terms of magnitude, but also seasonal streamflow patterns which are well represented. Correla-
tions between the monthly median measured and simulated runoff, range between R* = 0.60
for Gumain to R* = 0.98 for Agus and Panay. There is a large variation in VE (Eq 1), which
ranges from 0.47 for Tukuran, to a maximum of 0.87 for Panay. Distribution deviations often
result from limited measured river flow data, as these small datasets do not include the wider
distribution of river flows. Given the strength of the predicted vs. observed data for water quan-
tity and seasonality in Fig 3, there is sufficient confidence for using the same set of parameters
to simulate the different GCM scenarios.

Fig 4 compares the yearly averaged water balance (PREC-PET) of the six scenarios (maps)
with the baseline (as a percentage), which reveals an increase in water for most parts of the
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doi:10.1371/journal.pone.0163941.9002

country for both scenarios. However, the A1B displays a larger increase compared to the A2
scenario. The GCMs also highlight a difference in water quantity. The largest increase was
found using MPEHS5, followed by CNCM3 and BCM2 (Fig 4). Spatial differences are also evi-
dent and are consistent for all GCMs and all scenarios. In the northern part of the country, the
highest increase in water availability was expected. When moving south, water excess
decreases, including an expected decrease in water for parts of Mindanao. Patterns of increase
or decrease do not seem related to specific climate types, except for climate Type II, which
shows consistently lower values compared to the rest of the country (refer to Figs 1 and 4).

To evaluate changes in the amount and variability of river flow, the calibrated model was
used to determine y;,, and B (Eq 2), which represents stream flow magnitude and stream flow
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Fig 3. Water balance for the four different seasons according to the interpolated Eraint dataset is shown in the middle. The four
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Fig 4. Yearly average water balance produced by the BCM2, CNCM3 and MPEH5 GCMs for A1B (top row) and A2 (bottom row)
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doi:10.1371/journal.pone.0163941.g004

variability, respectively. For all basins, we found a relationship of R* > 0.98 when using non-
linear regression. Next, the values of y,,, and § were compared with the baseline scenario. The
box-plots of Fig 4 show the results for each scenario. The BCM2 model predicts stream flow
volumes and variability comparable with the current situation, but with a decrease in water
availability for some basins. The CNCM3 and MPEH5 models reveal an increase in river dis-
charge volumes and variability, which are both larger for the A1B scenario compared to A2. At
the yearly timescale, an increase in both volume and variability would be expected for most
basins.

Given that a redistribution of water between the dry and wet season might adversely affect
agricultural practices, the seasonal variability of river runoff was studied in more detail. For the
six different GCM-scenario combinations, the minimum, median, maximum and inter-quar-
tiles of river discharge were calculated for the dry and wet season. Fig 5 reveals if these values
increased (green bar) or decreased (red bar) compared to the baseline scenario for the dry (left)
and wet (right) season. The size of the bar indicates the number of scenarios that experience an
increase or decrease, respectively, whereas no bar indicates an equal number of scenarios that
increased and decreased. For climate Type IV, the year round results were compared, as this
zone has no distinct wet season. The wet season includes maximum rain periods for Type I
(May-Oct) and Type II (Nov-Jan). For climate Type III we used the relatively dry period from
Nov to Apr to distinguish between wet and dry. A very consistent overall increase in stream-
flow is predicted by all GCMs and all scenarios for the whole country in both the dry and wet
season. The scenarios show that the most consistent increase was for Luzon in the wet and dry

PLOS ONE | DOI:10.1371/journal.pone.0163941 October 17,2016 9/14



@' PLOS | ONE

Projected Impact of Climate Change on Hydrological Regimes in the Philippines

Rio Chico Abra Laoag Pared Magat
Leeeebeeeeerreerebeeeen RN RNy 1 el et Leberenereereebeeren
642 24642 4 642 24642 246 642 24642 246 642 24642 246 642 24642 246

Camiling

Dry Wet
Leeenebeeerrerrebeeeen
642 24642 246 Laoag
D)
_ Pared
Gumain 1 .
— - Ara
| Gaf‘ano 642 24642 246
L]
— . Magat
- 16
[UIUUUU Ul Cangling
642 24642 4
o Chico
San Juan o
Gumain °
- Bulacan
- —_— .
14 San Juan
—_— | S L]
Pangalaan Yabo
— e .
LELELE et @2
42 246 3
T
3
Pangalaan 12 4
— — Pagay
I I °
- - Ulian
Das-ay
— — L]
Uy IIIIIIIIIII?IIII 10 1
642 24642 246
Panay
- ® Wawa
Agusan Canyon
— ® e
Cagayan oro
- - 8
Tuk®ran
— H?
IR R RN R RN ARy} Ag.US DaVao
642 24642 246 ® Allah
Ulian o
B
6 0 uayan
— - N
| I T T T T T T 1
— fe 119 120 121 122 123 124 125 126
oo Longitude
642 24642 246

Tukuran Cagayan de Oro  Agusan Canyon Agus Allah
LErene b e LR RNy 1 LR SRR NN RN RN LU RN RN NN [ RN RN AR
642 24642 246 642 24642 246 642 24642 246 642 24642 246 642 24642 246

Ganano

i
2 24642

I
64

Bulacan

&2
=

T
24642

bt
o=

Yabo

ULy
642 2

11
4642 2

11
46

Das-ay

i :III U
24642 246

I
42 246

Fig 5. For each basin under each scenario, the minimum, median, maximum and upper and lower quintiles
were calculated and compared with the baseline scenario. An increase in streamflow was indicated with a green
bar and a decrease with a red bar. The different lengths of the horizontal bars indicate the number of scenarios with an
increase or decrease for the dry (left) and wet (right) season.

doi:10.1371/journal.pone.0163941.9005
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season, whereas results for Visayas and Mindanao in the dry season are less consistent. No
clear trend was found when comparing the different climatic types. In general, there was an
overall increase in water availability for the wet and dry season in the Philippines. The smallest
increase, and potentially a projected decrease in current rainfall, was observed in the eastern-
most regions of Visayas and Mindanao for all model runs.

A general increase in water availability might be beneficial for the agricultural sector but
there are other potential problems in the form of flooding during intense rainfall and higher
peak flows. Therefore, the return periods (2, 10, 100 years; Eq 5) of peak flows were investigated
and compared with baseline scenarios. Fig 6 reveals the percentage increase or decrease of
return flows for each basin in the dry and wet season. For the dry season, an increase in peak
flows were found for the CNCM3 and MPEH5 models in Luzon, whereas the magnitude of
return flows would remain unchanged according to the BCM2 model. It was also expected that
Luzon will experience the most dramatic increase in peak flows for all scenarios. Luzon and
Viscayas can expect an increase in return flow compared to the baseline in the dry and wet sea-
son (see Fig 6). For Visayas and Mindanao, return periods are predicted to increase in the dry
season, but remain similar to the current wet season.

Discussion

The water balance calculations show an overall increase in water quantity for both the wet and
dry seasons with river flow distributions revealing an overall increase in water availability. The
data reveals a clear north-south trend rather than a trend associated with different climatic
types. The northern part of the country (Luzon) is expected to experience a dramatic increase
in peak river runoff, while Visayas and Mindanao are predicted to experience an increase in
river discharge that is not associated with higher peak flows. Areas with climate Type IV will
experience the least impact from climate change, apart from a small increase in water quantity
and return periods of high water levels. However, due to data scarcity, hydrological simulations
were only performed for three basins in Visayas and nine in Mindanao. Moreover, no repre-
sentative basin from climate Type II was included.

The projected increase in water availability would benefit the agricultural sector, especially
in the dry season when water is scarce. Furthermore, these near-future projections show a
reduction in vulnerability to drought of rainfed cropping systems, which may facilitate the
expansion of the current irrigated cropping systems in the wet season. However, the large
increase in return floods in Luzon might jeopardize this advantage. An increase in extreme
rainfall events will aggravate water induced soil erosion in highland areas [23], especially at the
onset of the growing season when fields are bare. Low-lying areas on the other hand will be
exposed to increased flood risk. The order of magnitude of this flood risk is especially concern-
ing. Given these projections, it is evident that adaptation measures for flood control such as
sustainable land management, ecosystem services and infrastructural works are necessary to
reduce climate change impacts.

This study provides a general assessment of plausible climate change impacts on hydrology
and water resources in the Philippines. However, for the available data, the relatively coarse
scale of the climate data and the nationwide approach, specific aspects such as land cover
changes or hydraulic infrastructure that might significantly impact local hydrology were not
explicitly accounted for in this study. The hydrology model is a simple water balance model
without sophisticated water routing. The estimations presented of river flows are at the basin
outlet but does not include spatio-temporal dynamics within the basin. Important climatologi-
cal features such as tropical cyclones and EI Ni # o and La Ni 7 a events were also not specifi-
cally considered in this study. The effects associated with these events are embedded in the

PLOS ONE | DOI:10.1371/journal.pone.0163941 October 17,2016 11/14



@° PLOS | ONE

Projected Impact of Climate Change on Hydrological Regimes in the Philippines

Rio Chico Abra Pared Magat Ganano
. . . . .
. . . . .
o - ___o W ___o o >. T _>_o ________ _>__0 W - e
. . . . .
o ----. ________ ----o ------------- . W ----o | ----o T
. . . . .
8Bog88 oy s 8og888c8g g & : 8 o388 cga 8 o288 088
Camili
Dry Wet
MPEH5 A2
MPEH5 A1B
Laoag b | F=--Y%-----
18 — . Pared CNCM3 A2
. CNCM3 A1B
Alra BCM2 A2
} BCM2 A1B
Ganano R > éu"} . f
¢ o828 o g 3 %
L]
Magat
16
Carqiling
o Chico
o .
_x" Bul;can
_____ . Return period (years)
14 San Juan
. -— 2
________ Pangalaan Yabo — 10
° w100
— D
] 10
2 = 100
©
-
12 4
Pagay
°
Ulian
Das-ay
)
10
Hijo
® Wawa
Agusan Canyon
.o
Cagayan oro
8 -
Tuk®ran
H&o
Agus Da%ao
L]
® Allah
)
. a Buayan Davao
N
T T T T T T T 1
119 120 121 122 1238 124 125 126
Longitude
Tukuran Cagayan de Oro  Agusan Canyon Agus Allah
. . . . .
. . . . .
____________ . N ___—t Y G __—-' YT _—-_t A B —__—o TTTTTTT T
. . . . .
_____________ . Y _____l BN ____>. I _____o I A __>__0 T T
. . . . .
§ o828 9:5%@&; 3 %éggﬁo&s 80388 o883 %éaé’ﬁé&s § o828

Fig 6. The 2 (black, blue), 10 (red, turquoise) and 100 (green, pink) year return flows were calculated for all
scenarios in the 24 basins. An increase or decrease in return flow is expressed as a percentage compared to the
baseline scenario. Return flows for the dry period are shown in the white box and return periods of the wet season in
the gray box (note the difference in scale). The dots on the right of each plot indicate the GCM and scenario used
(refer to the legend).

doi:10.1371/journal.pone.0163941.9006
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GCMs and cannot be accounted for seperately. A more direct link between the climate models,
downscaling techniques and hydrological model would facilitate the investigation of a wider
range of options.

Future studies might utilize a similar methodology to study the impacts of climate change
on water resources for a wider array of climate scenarios and downscaling techniques using the
next generation of climate models. Results for specific basins should be interpreted as a trend
rather than absolute changes, as GCMs have some inherent uncertainties. While the down-
scaled climate projections include many of the local climatological features, they can still be
considered as rather coarse from a hydrological perspective. However, it is reassuring that
closely located basins show similar trends in terms of changes in magnitude and variability.

Conclusion

Three GCMs with two different scenarios each show a clear increase in river flows for the wet
and dry season in the Philippines. While the minimum river flow levels were found to increase,
so did flow variability, due largely to higher magnitude maximum flows. Climate change effects
for Visayas and Mindanao are expected to be relatively mild compared to Luzon, where a dra-
matic increase in return intervals for maximum river flow rates is predicted. Benefits of an
increase in availability of water resources could be jeopardized by pronounced water-induced
soil erosion and enhanced risks of future floods.
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