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Abstract
Honey	bees	play	a	vital	role	in	providing	essential	ecosystem	services	and	contributing	
to	global	agriculture.	However,	the	potential	effect	of	climate	change	on	honey	bee	
distribution	is	still	not	well	understood.	This	study	aims	to	identify	the	most	influential	
bioclimatic	and	environmental	variables,	assess	their	 impact	on	honey	bee	distribu-
tion,	and	predict	future	distribution.	An	ensemble	modelling	approach	using	the	bio-
mod2	package	in	R	was	employed	to	develop	three	models:	a	climate-	only	model,	an	
environment-	only	model,	and	a	combined	climate	and	environment	model.	By	utilising	
bioclimatic	data	(radiation	of	the	wettest	and	driest	quarters	and	temperature	season-
ality)	from	1990	to	2009,	combined	with	observed	honey	bee	presence	and	pseudo	
absence	data,	this	model	predicted	suitable	locations	for	honey	bee	apiaries	for	two	
future	time	spans:	2020–2039	and	2060–2079.	The	climate-	only	model	exhibited	a	
true	skill	statistic	(TSS)	value	of	0.85,	underscoring	the	pivotal	role	of	radiation	and	
temperature	 seasonality	 in	 shaping	 honey	 bee	 distribution.	 The	 environment-	only	
model,	 incorporating	proximity	 to	 floral	 resources,	 foliage	projective	cover,	 and	el-
evation,	demonstrated	strong	predictive	performance,	with	a	TSS	of	0.88,	emphasis-
ing	the	significance	of	environmental	variables	in	determining	habitat	suitability	for	
honey	bees.	The	combined	model	had	a	higher	TSS	of	0.96,	indicating	that	the	combi-
nation	of	climate	and	environmental	variables	enhances	the	model's	performance.	By	
the	2020–2039	period,	approximately	88%	of	highly	suitable	habitats	for	honey	bees	
are	projected	to	transition	from	their	current	state	to	become	moderate	(14.84%)	to	
marginally	 suitable	 (13.46%)	 areas.	 Predictions	 for	 the	 2060–2079	 period	 reveal	 a	
concerning	trend:	100%	of	highly	suitable	 land	transitions	 into	moderately	 (0.54%),	
marginally	(17.56%),	or	not	suitable	areas	(81.9%)	for	honey	bees.	These	results	em-
phasise	the	critical	need	for	targeted	conservation	efforts	and	the	implementation	of	
policies	aimed	at	safeguarding	honey	bees	and	the	vital	apiary	industry.
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1  |  INTRODUC TION

Climate	 is	 a	 major	 factor	 that	 governs	 the	 spatial	 and	 temporal	
distribution	of	a	species	 (Adhikari	et	al.,	2023;	Araújo	et	al.,	2005; 
Pant	et	al.,	2021).	Climate	change	is	referred	to	as	a	systematic	and	
gradual	 change	 in	 average	weather	 conditions	 (Weber,	2010)	 and	
these	changes	have	serious	implications	on	the	distribution,	physi-
ology,	and	proliferation	of	a	wide	range	of	species	including	pollina-
tors	(Vercelli	et	al.,	2021).	The	various	elements	of	climate	change,	
encompassing	 different	 aspects	 of	 temperature,	 rainfall,	 extreme	
events,	 carbon	 dioxide	 concentration,	 and	 ocean	 dynamics,	 are	
expected	 to	 impact	 biodiversity	 across	 all	 levels,	 ranging	 from	 in-
dividual	organisms	to	entire	biomes	(Bellard	et	al.,	2012;	Parmesan	
et	al.,	2011).	At	the	fundamental	tier	of	biodiversity,	climate	change	
has	 the	 capacity	 to	 reduce	 the	 genetic	 diversity	 of	 populations	
through	directional	selection	and	swift	migration.	This,	in	turn,	has	
the	 potential	 to	 influence	 the	 functioning	 and	 resilience	 of	 eco-
systems	(Botkin	et	al.,	2007).	Furthermore,	the	diverse	impacts	on	
populations	are	expected	to	alter	the	 interconnected	relationships	
within	communities	(Gilman	et	al.,	2010;	Walther,	2010).	Essentially,	
the	 reaction	of	 certain	 species	 to	 climate	change	may	 result	 in	 an	
indirect	 influence	on	species	that	rely	on	them.	An	examination	of	
9650	interspecific	systems,	encompassing	pollinators	and	parasites,	
indicated	that	approximately	6300	species	could	face	extinction	as	
a	consequence	of	the	disappearance	of	their	associated	species	(Koh	
et	al.,	2004).	Thus,	in	order	to	survive	under	changing	climatic	con-
ditions,	any	species	has	to	either	cope,	adopt	 in	situ,	or	shift	 from	
the	current	geographical	 locations	 (Maggini	et	al.,	2011).	This	em-
phasises	 the	 importance	 of	 predicting	 the	 future	 distribution	 of	 a	
species	 under	 changing	 climate	 since	 such	 predictions	 can	 inform	
scientists	and	decision	makers	about	future	risks.	In	turn,	this	would	
enable	the	development	of	risk	mitigation	strategies	to	reduce	the	
impact	of	climate	change	on	biodiversity.

The	 pollinator	 species	 that	 is	widely	 used	 globally	 to	 enhance	
agricultural	production	 is	 the	European	honey	bee	or	 the	western	
honey	bee	(Apis mellifera)	(Hung	et	al.,	2018;	Potts	et	al.,	2010),	here-
after	referred	to	as	the	honey	bee.	The	honey	bee	is	ranked	number	
one	as	the	most	frequent	pollinator	for	crops	worldwide	and	floral	
species	 in	natural	habitats	 (Hung	et	al.,	2018).	The	threat	 imposed	
by	climate	change	on	honey	bees	 is	multi-	faceted,	with	significant	
influences	 on	 diseases,	 parasites,	 predators,	 parasitoids,	 viruses,	
pesticide	use	 (Cornelissen	et	al.,	2019;	Le	Conte	&	Navajas,	2008; 
Varikou	et	al.,	2020;	Vercelli	et	al.,	2021;	Zawislak	et	al.,	2019),	and	
most	importantly,	the	plants	on	which	honey	bees	forage	(Goulson	
et	 al.,	 2015).	 These	 issues	 have	 a	 huge	 impact	 on	 the	 behaviour,	
physiology	and	distribution	of	honey	bees	(Goulson	et	al.,	2015).	The	
future	 changes	 in	 honey	 bees	with	 respect	 to	 the	 population	 and	

geographic	distribution	can	have	impact	on	ecology,	and	agriculture.	
Shifts	in	the	distribution	of	honey	bees	with	changing	climate	imply	
the	importance	of	understanding	the	future	distribution	patterns	for	
conservation	purposes,	preserving	the	ecosystem	dynamics	and	re-
lated	social	systems	(Bonebrake	et	al.,	2018;	Pecl	et	al.,	2017).

The	distribution	of	bees	 is	hugely	 impacted	by	climate	and	en-
vironmental	 factors	 (Le	Conte	&	Navajas,	2008).	Specifically,	 their	
geographical	 presence	 is	 linked	 to	 the	 abundance	 of	 flowering	
plants,	given	that	honey	bees	forage	on	nectar	and	pollen	as	their	
primary	sources	of	food	(Tennakoon	et	al.,	2023).	Honey	bee	forag-
ing	 is	significantly	 influenced	by	climatic	 factors,	 including	rainfall,	
low	 temperatures,	 and	 high	winds	 (Rowland	 et	 al.,	2021).	 Climate	
conditions,	 encompassing	 temperature	 and	 precipitation	 patterns,	
further	determine	the	availability	of	floral	resources,	ultimately	af-
fecting	the	foraging	success	of	honey	bees	(Anderson	et	al.,	2012; 
Dorji	et	al.,	2020).	Moreover,	climatic	conditions	play	a	pivotal	role	
in	 shaping	 the	 prevalence	 and	 propagation	 of	 diseases	 and	 para-
sites	affecting	honey	bees	(Giliba	et	al.,	2020;	Rowland	et	al.,	2021; 
Switanek	et	al.,	2017).	Extreme	temperatures	have	the	potential	to	
disrupt	their	foraging	and	flight	capabilities	(Clarke	&	Robert,	2018).	
While	only	a	limited	number	of	studies	have	attempted	to	model	the	
distribution	of	the	European	honey	bee	(Otto	et	al.,	2016),	numer-
ous	 investigations	 into	 land	 suitability	 assessment	 for	 honey	bees	
have	revealed	that	a	diverse	array	of	factors,	primarily	encompass-
ing	the	availability	of	pollen	and	nectar	sources,	plays	a	pivotal	role	
in	identifying	the	optimal	habitat	locations	for	honey	bees	(Gallant	
et	al.,	2014;	Smart	et	al.,	2016).

Species	 distribution	 modelling	 (SDM),	 also	 known	 as	 ecologi-
cal	niche	modelling	or	habitat	suitability	modelling,	is	gaining	more	
popularity	over	 the	other	 tools	of	 analysis	 available	 for	 ecologists	
to	 predict	 the	 distribution	 of	 species	 (Tikhonov	 et	 al.,	2020).	 The	
aim	of	SDM	is	to	provide	an	insight	on	the	spatio-	temporal	assem-
bly	of	a	species	and	the	anticipated	future	distribution	against	the	
climatic	and	environmental	changes	(Guisan	&	Rahbek,	2011).	Most	
importantly,	 SDM	 can	 be	 used	 not	 only	 for	 natural	 ecosystems	
but	 also	 for	 human	 managed	 ecosystems	 (Woodin	 et	 al.,	 2013).	
Throughout	 history,	 people	 have	 consistently	 observed	 associa-
tions	 between	 species	 distribution	 and	 the	 physical	 environment	
(Elith	&	Leathwick,	2009).	Although	early	scientific	writings	leaned	
heavily	 on	 qualitative	 descriptions	 (Grinnell,	 1904),	 contemporary	
approaches	extensively	employ	numerical	models	to	depict	patterns	
and	 make	 predictions.	 SDMs	 encompass	 the	 compilation	 of	 data	
on	 species	 occurrences,	 correlating	 these	 occurrences	 with	 envi-
ronmental	 factors,	 and	 producing	maps	 that	 forecast	 species	 dis-
tributions	in	the	past,	present,	or	future	(Pecchi	et	al.,	2019).	Most	
importantly,	SDM	can	be	used	not	only	for	natural	ecosystems	but	
also	for	human	managed	ecosystems	(Woodin	et	al.,	2013).

T A X O N O M Y  C L A S S I F I C A T I O N
Agroecology,	Ecosystem	ecology
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Honey	 bees	 are	 the	most	 commonly	 used	 species	 in	 the	 bee-
keeping	industry	in	Australia,	making	an	annual	contribution	of	$14.2	
billion	 to	 the	 economy	 (Agrifutures	 Australia,	 2022).	 This	 study	
models	the	distribution	of	honey	bees	based	on	bioclimatic	and	en-
vironmental	variables	and	predicts	their	future	distribution	for	two	
different	time	spans	in	the	future	(i.e.	2020–2039	and	2060–2079)	
within	the	context	of	Australia.	More	specifically,	the	objectives	of	
this	study	are	the	following:	(1)	to	identify	the	bioclimatic	and	envi-
ronmental	predictor	variables	that	contribute	the	most	to	the	distri-
bution	of	honey	bees,	and	to	quantify	their	relative	impact	on	honey	
bee	distribution;	(2)	to	assess	the	predictive	performance	of	an	en-
semble	approach	in	modelling	the	distribution	of	honey	bees	using	
bioclimatic	 and	environmental	 variables,	 and	 (3)	 to	 investigate	 the	
potential	impact	of	climate	change	on	honey	bee	distribution	under	
2020–2039	 (referred	 to	 as	 2030)	 and	 2060–2079	 (referred	 to	 as	
2070)	climate	conditions.	This	study	introduces	several	innovations:	
(1)	it	is	the	first	to	use	an	ensemble	approach	for	assessing	the	dis-
tribution	of	Apis mellifera	in	relation	to	bioclimatic	and	environmen-
tal	variables;	(2)	it	employs	a	relatively	high-	resolution	climate	data	
(250 m);	and	(3)	 it	evaluates	the	distribution	of	Apis mellifera	under	
changing	climate	conditions,	considering	two	future	time	spans.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

As	 the	 study	 area,	 a	 sub-	section	 of	 Southern	 Queensland,	
Australia	 that	 covers	 an	 extent	 of	 37,650 km2	 encompassing	 the	
four	 Local	 Government	 Areas	 of	 Toowoomba,	 Southern	Downs,	
Goondiwindi,	 and	Western	 Downs	 (Figure 1)	 was	 selected.	 The	
Queensland	 agricultural	 sector	 contributes	 over	 $10	 billion	 an-
nually	to	the	national	economy	(Business	Queensland,	2022)	and	
accounts	 for	 9.7%	of	 the	 country's	 total	 honey	production,	 pro-
ducing	 approximately	 37,000	 tonnes	per	 annum	 (Department	 of	
Agriculture	Fisheries	and	Forestry,	2023).	Most	 importantly,	 the	
study	area	was	chosen	to	include	approximately	35%	of	the	total	
managed	 apiary	 sites	 in	 Queensland's	 primary	 honey-	producing	
region	 (Queensland	 Spatial	 Catalogue,	2021),	 while	 also	 captur-
ing	 variations	 in	 climate,	 topography,	 land	 cover,	 and	 land	 use	
(Queensland	Spatial	Catalogue,	2014).

This	 area	 exhibits	 significant	 climate	 variations,	 ranging	 from	
warm	 temperate	 conditions	 in	 Toowoomba	 and	 Southern	 Downs	
to	 hot	 arid	 conditions	 in	 Goondiwindi	 and	 Western	 Downs.	 For	

F I G U R E  1 Elevation	map	and	the	apiary	site	locations	in	the	study	area.
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example,	in	Stanthorpe,	Southern	Downs,	the	mean	minimum	tem-
perature	during	winter	is	1.1°C	while	the	mean	maximum	tempera-
ture	 in	 summer	 can	 reach	27.4°C.	The	mean	annual	 rainfall	 in	 the	
same	area	is	764.2 mm.	In	contrast,	Miles,	Western	Downs	experi-
ences	a	minimum	temperature	of	3.6°C	during	winter,	with	a	mean	
maximum	 temperature	 of	 33.3°C	 in	 summer.	 The	 mean	 annual	
rainfall	in	Miles	is	643.4 mm	(Australian	Bureau	of	Statistics,	2022).	
Topographical	features,	such	as	slope,	aspect,	and	elevation,	also	ex-
hibit	 significant	differences	among	various	 localities.	For	 instance,	
the	elevation	is	higher	in	Southern	Downs	and	the	Toowoomba	re-
gion	ranging	from	690	to	1200 m	above	mean	sea	level,	while	most	
parts	of	the	Western	Downs	and	Goondiwindi	are	situated	in	com-
paratively	 lower	 elevated	 areas	 encompassing	 200–300 m	 above	
mean	sea	 level.	The	 land	use	map	 in	the	study	area	primarily	con-
sists	 of	 regional	 ecosystems	 (basically	 composed	 of	 remnant	 and	
non-	remnant	 forests),	 rangelands	and	agriculture,	 collectively	cov-
ering	98%	of	the	total	extent	with	roughly	equal	percentages.	The	

secondary	level	classification	system	of	the	land	use	map	reveals	a	
diverse	 array	 of	 land	 use	 categories,	 spanning	 residential,	 agricul-
tural,	mining	areas,	and	nature	conservations.

2.2  |  Overview of the research methods

The	overview	of	the	research	methods	used	in	this	study	is	shown	
in	 Figure 2.	 The	 modelling	 procedure	 of	 this	 study	 follows	 the	
ODMAP	(overview,	data,	model,	assessment	and	prediction)	proto-
col	introduced	by	Zurell	et	al.	(2020).	Honey	bee	occurrence	data,	
along	with	the	most	influential	bioclimatic	and	environmental	vari-
ables,	were	utilised	to	develop	three	distinct	models,	a	climate-	only	
model,	an	environment-	only	model	and	a	combined	climate	and	en-
vironment	model.	The	climate	model,	utilising	data	spanning	from	
1990	to	2009,	was	projected	for	the	time	intervals	of	2020–2039	
and	2060–2079.

F I G U R E  2 Overview	of	the	research	methods.

Honey bee presence data 
n = 1,598

Spatial Thinning
(SpThin package in R4.2.2)

Bioclimatic 
variables

n = 35

Environmental
variables

n = 8

Spatial Autocorrelation
(USDM package in R4.2.2)

Bioclimatic variables
n = 3

Environmental variables
n = 3

Ensemble Modelling
using biomod2

Climate-
only model

Environment-
only model

Combined
climate and
environment

model

2000, 2030, and 2070

n = 1,595
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2.3  |  Honey bee presence data

This	 study	 aimed	 to	 utilise	 two	 disparate	 categories	 of	 presence	
data,	including	managed	apiary	site	locations	and	records	of	obser-
vations	derived	 from	different	 sources	 such	as	 the	Atlas	of	 Living	
Australia	 (ALA)	 and	 the	 Global	 Biodiversity	 Information	 Facility	
(GBIF).	The	apiary	site	locations	on	public	lands	were	retrieved	from	
the	Queensland	Spatial	catalogue,	and	the	database	contains	1592	
records.	Occurrence	data	from	1990	to	the	present	year	were	ob-
tained	using	ALA	and	GBIF.	The	study	period	was	selected	 to	en-
compass	the	available	climate	data	from	1990	onwards.	Only	human	
and	machine	observations	were	included,	excluding	preserved	spec-
imens	or	museum	records,	as	these	do	not	accurately	represent	the	
true	geographic	distribution	of	a	 species	 (Araujo	&	Guisan,	2006).	
GBIF	did	not	have	any	presence	or	absence	records	of	Apis mellifera 
for	the	study	area	during	the	specified	time,	while	ALA	had	only	six	
records	of	occurrences.	Thus,	the	bulk	of	the	presence	data	was	ac-
quired	from	the	Queensland	Spatial	Catalogue.

The	spatial	resolution	of	the	environment	and	climate	raster	 lay-
ers	 used	 in	 this	 study	 was	 250 m × 250 m.	 Occurrence	 of	 multiple	
presence	data	within	this	resolution	(within	a	cell)	can	lead	to	spatial	
sampling	 bias	 (Aiello-	Lammens	 et	 al.,	 2015),	 spatial	 autocorrelation	
(Pant	et	al.,	2021)	and	overestimated	measures	of	prediction	accuracy	
(Veloz,	2009).	Therefore,	 the	SpThin	package	 in	R	4.2.2	was	utilised	
to	perform	spatial	thinning	of	the	presence	records	(Aiello-	Lammens	
et	al.,	2015),	with	a	specified	buffer	of	250 m	as	the	minimum	allowed	
distance	between	two	occurrences.	The	 implementation	of	this	buf-
fer	ensured	a	more	transparent	and	controlled	approach,	resulting	in	a	
total	of	1595	records	after	removing	only	three	from	the	initial	dataset.	
This	can	be	attributed	to	the	fact	that	the	managed	apiary	site	loca-
tions,	which	 serve	as	 the	primary	occurrence	data	 in	 this	 study,	 are	
established	while	maintaining	a	reasonable	distance	between	two	sites	
in	accordance	with	government	regulations	(Biosecurity	Act,	2014).

2.4  |  Bioclimatic and environmental variables

For	 this	 study,	 initially,	 eight	 environmental	 variables	 that	 impact	
honey	bees	and	the	apiary	industry	were	selected	based	on	the	ex-
isting	literature.	These	variables	included	regional	ecosystems/flora	
criterion	(Sarı	et	al.,	2020),	 foliage	projective	cover	 (FPC),	 land	use	
(Otto	et	 al.,	 2016),	 land	 cover	 (Clermont	 et	 al.,	 2015),	 topographi-
cal	 features	 (slope,	 aspect,	 elevation),	 and	 distance	 to	water	 bod-
ies	 (Zoccali	 et	 al.,	 2017).	 A	 more	 comprehensive	 explanation	 of	
the	 biological	 relevance	 of	 these	 criteria	 to	 beekeepers'	 decision-	
making	have	been	provided	in	the	study	by	Tennakoon	et	al.	(2023).	
Bioclimatic	 variables	derived	 from	 temperature	 and	 rainfall	 values	
are	often	used	in	SDM,	representing	annual	trends,	seasonality,	and	
extremes	 in	 these	climate	 factors.	Thirty-	five	bioclimatic	variables	
covering	the	time	periods	1990–2009,	2020–2039,	and	2060–2079	
at	a	 finer	scale	 (250 m × 250 m)	were	sourced	from	the	New	South	
Wales	 (NSW)	 and	 Australian	 Capital	 Territory	 (ACT)	 Regional	
Climate	Modelling	(NARCliM)	database	(Hutchinson	&	Xu,	2015).

All	the	variables	selected	for	modelling	were	tested	for	multicol-
linearity	using	the	USDM	(Uncertainty	Analysis	for	Species	Distribution	
Models)	package	(Imdadullah	et	al.,	2016)	on	the	R	platform.	Two	indi-
cators,	namely	 the	correlation	coefficient	and	variance	 inflation	 fac-
tor	 (VIF),	 were	 employed	 as	measures	 of	 multicollinearity.	 Principal	
component	analysis	is	a	powerful	tool	used	to	overcome	the	problem	
of	multicollinearity	(Lafi	&	Kaneene,	1992;	Sulaiman	et	al.,	2021).	Yet,	
in	this	study,	 in	 line	with	the	objectives	of	 identifying	the	most	con-
tributing	 variables	 and	 quantification,	 principal	 component	 analysis	
was	opted	for	correlation	coefficient	and	VIF.	Multicollinearity	can	in-
crease	uncertainty	in	model	parameters	and	decrease	the	predictive	
performance	 of	 the	model	 (De	Marco	 &	 Nóbrega,	 2018).	 Variables	
with	a	correlation	coefficient	greater	than	0.8	and	a	VIF	higher	than	
5	were	excluded	from	further	analysis,	following	previous	studies	on	
SDM	(Diao	&	Wang,	2014;	Fois,	Bacchetta,	et	al.,	2018;	Fois,	Cuena-	
Lombraña,	 et	 al.,	 2018).	 All	 eight	 environmental	 variables	 were	 re-
tained,	while	only	 four	bioclimatic	variables	 (i.e.,	Bio4,	Bio15,	Bio24,	
Bio25)	 remained	 after	 conducting	 multicollinearity	 testing.	 During	
the	model	formation	process,	the	number	of	predictor	variables	was	
reduced	 (Breiner	et	 al.,	 2015)	by	 iteratively	 removing	 the	 least	 con-
tributing	variables	to	mitigate	overfitting	(Zeng	et	al.,	2016).	This	was	
achieved	through	scrutinisation	of	the	variable	importance	scores	to	
identify	those	with	minimal	impact,	and	they	were	designated	for	re-
moval.	The	selection	of	variables	for	exclusion	was	guided	by	their	indi-
vidual	contributions	to	the	overall	accuracy	of	the	model.	The	variables	
used	for	the	final	model	formation,	along	with	their	sources,	are	listed	
in	Table 1,	whilst	Figures 3–6	visualise	these	variables.	ArcMap	10.8.2	
was	used	to	create	raster	layers	with	a	cell	size	of	250 m × 250 m	and	
the	WGS84	projection.

2.5  |  Species distribution modelling: ensemble 
approach using biomod2

Biomod2	(Thuiller	et	al.,	2016)	 is	extensively	used	across	different	
locations	around	the	world	in	distribution	modelling	of	a	wide	range	
of	taxa	mostly	using	presence	only	data	and	environment	and	climate	
factors	(Hallgren	et	al.,	2019).	Biomod2	permits	running	10	different	
modelling	 algorithms	 (Appendix	 S2),	model	 calibration,	 evaluation,	
building	ensembles,	ensemble	forecasting	and	visualisation	of	data	
and	results	(Thuiller	et	al.,	2016).

2.5.1  |  Appendix	S2:	An	overview	of	the	different	
modelling	algorithms	available	in	biomod2

Even	 though,	 some	 algorithms	 such	 as	 rectilinear	 envelope	 and	
distance-	based	 envelope	 can	 handle	 presence-	only	 data,	 most	 of	
the	modelling	 algorithms	 utilise	 both	 presence	 and	 absence	 data.	
Moreover,	 it	 is	proven	that	the	presence–absence	models	perform	
better	than	presence-	only	models	(Elith	et	al.,	2006).	However,	col-
lecting	absence	data,	particularly	for	mobile	species,	and	ensuring	its	
accuracy	when	compared	with	presence	data,	can	be	a	challenging	
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6 of 19  |     TENNAKOON et al.

task	 (MacKenzie	 &	 Royle,	 2005).	 Researchers	 rely	 on	 pseudo	 ab-
sence	or	background	data	 to	enhance	 the	predictive	performance	
of	 the	 model.	 For	 this	 study,	 5000	 pseudo-	absence	 points	 were	
generated	using	biomod2	 in	R	4.2.2,	 taking	 into	consideration	 the	
varying	 number	 of	 pseudo-	absence	 points	 required	 for	 each	 al-
gorithm	 (Barbet-	Massin	 et	 al.,	 2012).	 The	 decision	 to	 use	 5000	
pseudo-	absence	points	 reflects	 the	 intention	 to	establish	a	 robust	
and	well-	balanced	dataset	for	training	the	SDM	model.	Equal	weight	
was	assigned	to	the	presence	and	absence	points,	and	the	process	of	
generating	pseudo-	absences	was	repeated	three	times	to	alleviate	
random	bias.	A	training	dataset	was	used	to	estimate	the	predictive	
power	of	the	model,	ensuring	that	the	training	data	are	not	spatially	
autocorrelated	with	test	data	(Allouche	et	al.,	2006).	In	cases	where	
independent	data	 is	unavailable	 for	 training	 the	models,	 the	origi-
nal	dataset	is	divided	into	two	parts:	training	data	and	testing	data.	
The	honey	bee	presence	and	pseudo-	absence	data	were	divided	into	
training	(80%)	and	testing	(20%)	sets,	following	the	approach	recom-
mended	by	previous	studies	(Chapman	et	al.,	2019;	Hopkins,	2009; 
Laman	et	al.,	2018;	Senay	&	Worner,	2019;	Waldock	et	al.,	2022).	In	

addition	to	the	method	of	random	splitting	of	data,	stratified	sam-
pling	(Marchetto	et	al.,	2023),	K-	fold	cross-	validation,	leave-	one-	out	
cross-	validation,	temporal	split,	and	spatial	split	have	been	employed	
in	 SDM	 research.	 The	modelling	 process	 consists	 of	 a	 total	 of	 90	
model	runs,	which	 includes	10	modelling	algorithms,	three	pseudo	
absence	generation	runs,	and	three	evaluation	runs.	Using	the	en-
semble	modelling	option	available	in	biomod2,	an	ensemble	species	
distribution	model	was	constructed	by	applying	multiple	algorithms	
above	a	selected	threshold.

2.6  |  Model evaluation

Model	 evaluation	 in	 biomod2	 consists	 of	 an	 assessment	 of	 the	
explanatory	 power	 using	 a	 standard	 approach	 associated	 with	
each	 algorithm	 and	 evaluating	 the	 predictive	 power	 of	 the	model	
using	 AUC	 i.e.,	 area	 under	 the	 relative	 operating	 characteristic	
curve	 (ROC)	 (Hanley	 &	McNeil,	 1982),	 Cohen's	 Kappa	 (Monserud	
&	 Leemans,	 1992)	 and	 the	 true	 skills	 statistics	 (TSS)	 (Allouche	

TA B L E  1 Bioclimatic	and	environmental	variables	finally	utilised	for	the	ensemble	modelling.

Predictor variable Rationale Source

Bioclimatic	variables

Bio4	(Temperature	
seasonality)

Temperature	has	a	huge	impact	on	honey	bee	mortality	(Switanek	et	al.,	2017),	
activity	(Abou-	Shaara	et	al.,	2017;	Huang	&	Robinson,	1995),	and	
reproduction	(Rangel	&	Fisher,	2019)

New	South	Wales	(NSW)	and	
Australian	Capital	Territory	
(ACT)	Regional	Climate	
Modelling	(NARCliM)	
(Hutchinson	&	Xu,	2015)

Bio24	(Radiation	of	wettest	
quarter)	(Wm-	2)

Bio25	(Radiation	of	driest	
quarter)	(Wm-	2)

Having	a	significant	amount	of	solar	radiation	is	particularly	desirable	during	
winter	because	the	rate	at	which	bees	leave	the	hive	(bee	egress	rate)	is	
influenced	by	temperature	and	radiation.	Previous	studies	have	observed	
a	reduced	bee	egress	rate	when	exposed	to	low	temperatures	and	limited	
solar	radiation	(Clarke	&	Robert,	2018).	Solar	radiation	is	also	associated	
with	defensive	behaviour	of	honey	bees	(Southwick	&	Moritz,	1987)

Environmental	variables

Regional	ecosystems	(Floral	
resources)

Honey	bees	gather	nectar	and	pollen	from	various	flowering	species,	
which	are	crucial	for	their	survival	and	honey	production.	Hence,	honey	
bees	are	present	in	areas	where	they	have	access	to	floral	resources.	
Furthermore,	when	choosing	a	location	for	an	apiary,	it	is	essential	to	
consider	the	availability	of	food	sources	(nectar/pollen)	for	honey	bees.	
The	Queensland	regional	ecosystems	database	contains	information	about	
vegetation	communities	in	a	specific	bioregion.	Regional	ecosystems	refer	
to	vegetation	communities	in	a	bioregion	that	consistently	correspond	to	
specific	combinations	of	geology,	landform,	and	soil	(Sattler	&	Williams,	
1999).	This	database,	therefore,	serves	as	an	excellent	resource	to	identify	
the	floral	species	suitable	for	honey	bees	in	a	particular	ecosystem.	The	
same	methodology	used	to	rate	regional	ecosystems	by	Tennakoon	
et	al.	(2023)	was	used	in	the	present	study

Regional	Ecosystems	Maps	
–	Queensland	Spatial	
Catalogue:	Queensland	
Government	(https://	qldsp	
atial.	infor	mation.	qld.	gov.	au)

Foliage	projective	cover	
(FPC)

FPC	refers	to	the	proportion	of	the	ground	surface	taken	up	by	the	vertical	
projection	of	foliage	(Queensland	Spatial	Catalogue,	2014).	Foliage	is	an	
important	factor	related	with	honey	bee	foraging	being	an	indicator	of	
food	sources	available	for	honey	bees	and	the	incoming	solar	radiation	
(Specht,	1981;	Steven	et	al.,	1986)

Queensland	Spatial	Catalogue:	
Queensland	Government	
(https://	qldsp	atial.	infor	
mation.	qld.	gov.	au)

Elevation Elevation	is	closely	correlated	with	floral	resources	and	climatic	factors	that	
affect	honey	bees

GEODATA	9	Second	Digital	
Elevation	Model	(DEM-	9S)	
Version	3	from	Geoscience	
Australia	(https://	ecat.	ga.	gov.	
au)	(Hutchinson	et	al.,	2008)
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F I G U R E  3 Bioclimatic	and	
environmental	variables	(a)	Temperature	
seasonality	maps	of	1990–2009,	2020–
2039	and	2060–2079;	(b)	Radiation	of	
wettest	quarter	(Bio24)	maps	of	1990–
2009,	2020–2039	and	2060–2079;	(c)	
Radiation	of	driest	quarter	(Bio25)	maps	of	
1990–2009,	2020–2039	and	2060–2079;	
(d)	Environmental	variables	(Distance	to	
regional	ecosystems	(floral	resources),	
FPC	and	elevation).
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8 of 19  |     TENNAKOON et al.

F I G U R E  4 (a)	TSS	scores	of	individual	algorithms	and	the	ensemble	model	(climate-	only);	(b)	TSS	scores	of	individual	algorithms	and	the	
ensemble	model	(environment-	only);	(c)	TSS	scores	of	individual	algorithms	and	the	ensemble	model	(combined).
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    |  9 of 19TENNAKOON et al.

et	 al.,	 2006).	AUC	considers	 two	 aspects:	 sensitivity,	which	 is	 the	
proportion	of	presences	correctly	predicted	as	presence,	and	speci-
ficity,	which	is	the	proportion	of	absences	correctly	predicted	as	ab-
sences.	AUC	can	range	from	0	to	1,	with	a	practical	range	of	0.5–1.	
A	value	of	0.5	indicates	a	random	model,	while	a	value	of	1	indicates	

a	perfect	model	(Hallgren	et	al.,	2019).	Several	studies	on	SDM	have	
applied	 AUC	 as	 it	 eliminates	 the	 perceived	 subjectivity	 linked	 to	
threshold	 selection	 in	 the	 process.	 Yet	 the	 literature	 has	 strongly	
criticised	AUC	as	a	misleading	measure	of	the	performance	of	predic-
tive	distribution	models	(Jiménez-	Valverde,	2012;	Lobo	et	al.,	2008,	

F I G U R E  5 Response	curves	of	bioclimatic	variables	in	the	climate-	only	model.

F I G U R E  6 Response	curves	of	environmental	variables	in	the	environment-	only	model.
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10 of 19  |     TENNAKOON et al.

2010).	 The	 Kappa	 statistic	 evaluates	 the	 degree	 to	which	models	
predict	occurrence	at	a	level	that	exceeds	what	would	be	expected	
by	 chance	 (Monserud	 &	 Leemans,	 1992).	 The	 Kappa	 statistic	 can	
have	values	ranging	from	−1	to	+1.	Values	of	0	or	below	indicate	ran-
dom	performance,	while	a	value	of	+1	indicates	perfect	agreement	
(Allouche	et	al.,	2006).	The	TSS	considers	both	omission	(proportion	
of	presences	identified	as	absences)	and	commission	errors	(propor-
tion	of	absences	identified	as	presences),	and	has	a	range	of	−1	to	+1,	
where	a	value	of	+1	indicates	perfect	agreement,	and	values	of	zero	
or	less	indicate	performance	no	better	than	random.	Unlike	Kappa,	
TSS	is	not	influenced	by	prevalence.	Additionally,	TSS	is	unaffected	
by	the	size	of	the	validation	set,	and	two	methods	with	equal	perfor-
mance	will	have	equal	TSS	scores	(Allouche	et	al.,	2006).

2.7  |  Model development

In	 this	 study,	 three	 models	 namely	 the	 climate-	only	 model,	 the	
environment-	only	 model,	 and	 the	 combined	 climate	 (1990–2009)	
and	 environment	model	 were	 developed.	 The	 climate-	only	model	
was	developed	using	the	three	most	influential	bioclimatic	variables	
for	honey	bees,	namely	Bio4	(temperature	seasonality),	Bio24	(radia-
tion	of	the	wettest	quarter),	and	Bio25	(radiation	of	the	driest	quar-
ter).	Only	individual	models	with	a	TSS	greater	than	0.7	were	utilised	
for	 ensemble	 model	 building.	 The	 three	 environmental	 variables	
with	the	highest	contribution	to	the	model,	i.e.,	proximity	to	regional	
ecosystems	(floral	resources),	foliage	projective	cover,	and	elevation	
were	used	in	building	the	environment-	only	model.	Unlike	the	TSS	
values	of	individual	algorithms	pertaining	to	the	climate-	only	model,	
the	TSS	values	of	algorithms	 in	environment-	only	model	were	 less	
than	0.7.	Thus,	a	cut-	off	TSS	of	0.6	was	selected	when	building	the	
ensemble	environment-	only	model.	The	combined	climate	and	envi-
ronment	model	was	developed	by	incorporating	the	environmental	
and	bioclimatic	variables	from	both	environment-	only	and	climate-	
only	models.	These	variables	included	foliage	projective	cover,	prox-
imity	to	regional	ecosystems,	elevation,	Bio4,	Bio24,	and	Bio25.

2.8  |  Generation of suitability maps for current and 
projected climate change

Suitability	 maps	 were	 generated	 using	 biomod2	 for	 each	 sce-
nario	 under	 consideration,	 namely:	 climate-	only	 (1990–2009),	
environment-	only,	 and	 the	 combined	 climate	 and	 environment	
model.	 Using	 ensemble	 forecasting,	 suitability	 maps	 for	 the	 two	
future	scenarios,	 i.e.,	2020–2039	and	2060–2079	were	generated.	
Each	output	map	was	divided	into	four	suitability	classes,	based	on	
the	criterion	namely:	highly	suitable	(with	a	probability	of	occurrence	
exceeding	 75%),	 moderately	 suitable	 (with	 a	 probability	 of	 occur-
rence	ranging	from	50%	to	75%),	marginally	suitable	 (with	a	prob-
ability	of	occurrence	between	25%	and	50%),	and	not	suitable	(with	
a	probability	of	occurrence	less	than	25%).	For	this	manual	method	
of	reclassification,	the	reclassify	tool	in	ArcMap	10.8.2	was	utilised.

3  |  RESULTS

3.1  |  Model performance

3.1.1  |  Climate-	only	model

Among	the	algorithms	used	 in	ensemble	modelling,	 random	forest	
(RF)	had	the	highest	average	TSS	value	of	0.77,	followed	by	classifi-
cation	tree	analysis	(CTA)	with	a	value	of	0.72,	while	surface	range	
envelope	(SRE)	had	the	lowest	TSS	of	0.27.	Algorithms	such	as	artifi-
cial	neural	networks	(ANN),	generalised	additive	model	(GAM),	gen-
eralised	 boosting	method	 (GBM),	 generalised	 linear	model	 (GLM),	
multivariate	adaptive	regression	spines	(MARS),	and	MAXENT	also	
had	average	TSS	values	less	than	0.7	(Figure 4).	Consequently,	these	
algorithms	were	excluded	from	ensemble	modelling.	Radiation	vari-
ables	including	Bio24	and	Bio25,	had	the	highest	contribution	to	the	
model,	each	accounting	 for	35.57%	and	37.73%	respectively.	Bio4	
or	the	temperature	seasonality	contributed	to	the	model	by	26.70%.	
According	to	the	response	curve	pertaining	to	probability	of	honey	
bee	occurrences	and	radiation	in	the	wettest	quarter,	the	optimum	
radiation	for	honey	bees	is	25 Wm−2.	Based	on	the	response	curve	
for	radiation	in	the	driest	quarter,	honey	bee	occurrences	display	a	
fluctuating	pattern	as	the	radiation	increases,	with	sudden	increases	
and	 declines	 but	 an	 overall	 increasing	 trend.	 However,	 the	 opti-
mum	radiation	value	for	honey	bees	in	the	driest	quarter	or	winter	
is	observed	as	16 Wm−2.	It	is	apparent	that	honey	bee	occurrences	
are	 limited	when	 the	 temperature	 seasonality	 or	 Bio4	 ranges	 be-
tween	1.6	and	1.7.	Otherwise,	the	pattern	remains	relatively	stable	
(Figure 5).	The	ensemble	climate-	only	model	exhibited	strong	pre-
dictive	performance,	achieving	a	TSS	of	0.85,	an	AUC	of	0.98,	and	
a	 Kappa	 value	 of	 0.72.	 The	 same	 bioclimatic	 variables	were	 used	
to	project	the	model's	predictions	 into	the	2020–2039	(2030)	and	
2060–2079	(2070)	periods.

3.1.2  |  Environment-	only	model

GBM	had	the	highest	average	TSS	value	of	0.63,	while	RF	and	ANN	
also	performed	comparatively	well	in	modelling	honey	bee	presence	
data	against	environmental	variables,	 achieving	an	average	TSS	of	
0.62.	MARS	demonstrated	good	performance	as	well,	with	a	TSS	of	
0.61,	slightly	 lower	than	that	of	GBM,	RF,	and	ANN.	On	the	other	
hand,	MAXENT	had	a	TSS	of	0.6.	 SRE,	 similar	 to	 the	 climate-	only	
model,	 demonstrated	 the	 least	 predictive	 performance,	 achieving	
a	TSS	of	0.31	 (Figure 4).	 FPC	made	 the	most	 significant	 contribu-
tion	to	the	model,	accounting	for	57.36%	of	the	total.	Following	was	
the	distance	to	regional	ecosystem	or	floral	 resources,	which	con-
tributed	34.10%.	The	elevation	had	the	least	impact	on	the	model,	
contributing	 only	 8.54%	 to	 the	model.	 According	 to	 the	 response	
curve	for	regional	ecosystems,	honey	bee	occurrences	are	optimised	
near	the	regional	ecosystems	with	floral	resources	for	honey	bees.	
There	was	a	sharp	decline	as	the	distance	from	regional	ecosystems	
increases.	The	probability	of	honey	bee	occurrences	increases	with	
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FPC	and	reaches	 its	peak	when	FPC	 is	0.3.	Beyond	this	point,	 the	
curve	 remains	 stable.	 Elevation	displays	 a	 rather	 constant	 pattern	
but	with	a	spike	between	375	and	425 m	(Figure 6).	The	ensemble	
environmental-	only	model	 showed	 strong	 predictive	 performance	
similar	to	the	climate-	only	model,	with	a	TSS	of	0.88,	an	AUC	of	0.98,	
and	a	Kappa	value	of	0.75.

3.1.3  |  Combined	climate	and	environment	model

Just	like	in	the	climate-	only	model,	in	the	combined	model,	RF	was	
the	best-	performing	 algorithm	with	 an	 average	TSS	 score	of	0.76.	
CTA	and	GBM	also	had	average	TSS	values	of	0.72	and	0.71,	respec-
tively.	Comparable	to	the	other	two	models,	SRE	displayed	the	low-
est	TSS	of	0.38	(Figure 4).	A	TSS	threshold	of	above	0.7	was	chosen	
to	construct	the	combined	model.	The	greatest	contribution	to	the	
model	 came	 from	Bio24	 (radiation	 in	wettest	 quarter),	 accounting	
for	27.74%,	followed	by	distance	to	regional	ecosystems	(floral	 re-
sources)	and	foliage	projective	cover	(FPC)	with	approximately	equal	
percentages	of	21.25	and	21.63	correspondingly.	The	contribution	
of	Bio25	(radiation	in	driest	quarter)	accounted	for	18.36%.	On	the	
other	 hand,	 Bio4	 (temperature	 seasonality)	 and	 elevation,	 which	
were	the	least	influential	variables	in	the	model,	had	values	of	5.44%	
and	5.58%,	respectively.	As	per	the	combined	model,	the	predictor	
variables	behave	 similarly	 to	 the	 individual	models.	The	 combined	
climate	and	environment	model	demonstrated	strong	predictive	per-
formance,	with	a	high	TSS	score	of	0.96,	a	near-	perfect	ROC	score	
of	0.99,	and	a	Kappa	value	of	0.92.	Therefore,	it	is	evident	that	the	
prediction	of	honey	bee	occurrences	can	be	enhanced	by	using	both	
environmental	and	climate	variables	together	in	the	same	model	as	
the	predictor	variables.

3.2  |  Land suitability for honey bees

Based	on	the	climate-	only	model,	the	area	classified	as	highly	suit-
able	experiences	a	drastic	decline	of	approximately	88%	from	the	in-
itial	period	of	2000	to	the	projected	period	of	2030	(Table 2).	These	
areas	were	 relegated	 into	 the	moderately	 suitable	 and	marginally	

suitable	 categories.	 Furthermore,	 this	 highly	 suitable	 area	 is	 com-
pletely	lost	from	2030	to	2070.	Conversely,	the	moderately	suitable	
area	demonstrates	an	increase	of	58%	from	2000	to	2030	but	ex-
periences	a	significant	 loss	of	96%	from	2030	to	2070,	suggesting	
a	potential	 future	 loss	of	areas	with	high	and	moderate	suitability.	
The	 area	 classified	 as	 marginally	 suitable	 has	 more	 than	 doubled	
between	2030	and	2070.	However,	there	is	a	decrease	in	the	area	
classified	as	not	suitable	from	2000	to	2030	by	9%,	followed	by	an	
increase	of	15%	from	2030	to	2070.	It	is	worth	noting	that	the	not	
suitable	area	is	significantly	large	when	compared	to	other	suitability	
categories.

In	 the	 context	 of	 the	 environment-	only	model,	 the	 highly	 and	
moderately	 suitable	area,	which	accounts	 for	24%	of	 the	 total	ex-
tent,	surpasses	the	same	area	pertaining	to	any	other	climate	sce-
nario	 or	 the	 combined	 model	 in	 size.	 The	 climate-	only	 model	 for	
2030	indicates	a	significantly	lower	value	of	only	15%	for	the	highly	
and	moderately	 suitable	 area,	making	 it	 the	 second-	largest	 value.	
On	 the	 other	 hand,	 the	marginally	 and	 not	 suitable	 area	 resulted	
by	 environment-	only	model	 is	 comparatively	 smaller,	 representing	
76%	of	the	total	extent.	 In	comparison,	this	value	 increases	to	ap-
proximately	85%	for	the	2000	and	2030	climate	scenarios	as	well	as	
the	combined	model,	with	a	remarkably	high	value	of	99%	projected	
for	2070.	This	indicates	that	the	study	area	offers	more	favourable	
environmental	 conditions	 for	 honey	 bees	 compared	 to	 suitability	
based	on	climatic	factors	alone.	When	compared	with	the	combined	
climate	 and	 environment	 model,	 the	 highly	 and	 moderately	 suit-
able	areas	are	larger	in	the	environment-	only	model,	while	they	are	
smaller	in	the	climate-	only	model	(Figures 7	and	8).

The	number	of	 honey	bee	occurrences	was	 recorded	 for	 each	
suitability	class	using	the	sample	tool	in	ArcMap.	The	results	show	
that	the	highest	number	of	honey	bee	locations,	accounting	for	ap-
proximately	72%,	was	found	in	the	highly	suitable	class	of	the	cur-
rent	climate-	only	model	(2000).	However,	this	number	experiences	
a	significant	decline	over	the	timeline	from	2000	to	2070,	 indicat-
ing	 a	 complete	 loss	 of	 highly	 suitable	 areas	 by	 2070.	 In	 contrast	
to	 the	 area	 distribution	 within	 each	 suitability	 class	 between	 the	
environment-	only	and	combined	models,	the	number	of	occurrences	
in	the	highly	suitable	area	is	higher	in	the	combined	model	compared	
to	the	environment-	only	model.	Only	eight	honey	bee	occurrences	

TA B L E  2 Suitable	area	(km2)	for	honey	bees	based	on	climate-	only	(2000,	2030,	2070),	environment-	only,	and	combined	environment	
and	climate	model.

Classification

Climate- only

Environment- only
Combined (environment 
and climate)1990–2009 (2000) 2020–2039 (2030) 2060–2079 (2070)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Highly	suitable 1832 4.86 227 0.6 0 0 3748 9.96 2056 5.47

Moderately	suitable 3546 9.42 5588 14.84 207 0.54 5159 13.72 3476 9.24

Marginally	suitable 2936 7.80 5068 13.46 6611 17.56 4486 11.93 2980 7.92

Not	suitable 29,336 77.92 26,767 71.10 30,832 81.90 24,220 64.39 29,101 77.37

Total 37,650 100 37,650 100 37,650 100 37,613 100 37,613 100
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12 of 19  |     TENNAKOON et al.

F I G U R E  7 Suitability	maps	for	honey	bees:	Climate-	only	scenario	in	1990–2009,	2020–2039	and	2060–2079.

F I G U R E  8 Suitability	maps	for	honey	bee	habitat:	environment-	only	and	combined	(Climate	and	Environment)	scenarios.
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    |  13 of 19TENNAKOON et al.

were	found	in	the	not	suitable	area	under	the	climate-	only	scenario.	
However,	this	number	increases	by	approximately	89%	in	2070,	in-
dicating	a	significant	loss	of	highly	and	moderately	suitable	areas	for	
honey	bees	in	terms	of	climate	(Table 3).

4  |  DISCUSSION

4.1  |  Predictive performance of the models and 
contribution of predictor variables

The	 TSS,	 AUC,	 and	 KAPPA	 values	 of	 the	 climate-	only	 ensem-
ble	model	were	 0.85,	 0.98,	 and	 0.72,	 respectively,	 indicating	 that	
the	model	 was	 robust	 with	 strong	 predictive	 power.	 A	 TSS	 value	
greater	than	0.8	and	AUC	value	higher	than	0.9	indicate	an	excellent	
model	 (Hosmer	&	 Lemeshow,	2000;	 Lin	&	Chiu,	 2018;	 Pittman	&	
Brown,	2011),	while	a	Kappa	value	of	0.61	to	0.8	exhibits	substantial	
performance	 (Landis	&	Koch,	1977;	Viera	&	Garrett,	2005),	which	
is	 the	case	 in	 the	current	scenario.	Anyway,	TSS	 is	argued	to	be	a	
more	 reliable	measure	 in	 assessing	 the	 predictive	 performance	 of	
species	distribution	models.	 This	 is	 because	TSS	possesses	 all	 the	
advantages	of	Kappa	while	not	being	affected	by	the	prevalence	of	
a	species,	unlike	Kappa	(Allouche	et	al.,	2006).	Among	the	10	model-
ling	algorithms	utilised,	RF	had	the	highest	TSS	value,	which	agrees	
with	the	outcome	of	previous	studies	where	an	ensemble	approach	
is	 employed	 to	 model	 species	 distribution	 (Marmion,	 Parviainen,	
et	al.,	2009;	Williams	et	al.,	2009).	SRE	was	excluded	from	further	
analysis	 due	 to	 its	 poor	 performance	 in	 predicting	 the	 honey	 bee	
distribution	which	was	indicated	by	a	TSS	value	of	0.27.	SRE	is	not	
commonly	used	in	recent	literature	due	its	lower	performance	when	
compared	 with	 other	 modelling	 algorithms	 used	 in	 SDM	 (Pecchi	
et	 al.,	 2019).	 CTA	 which	 was	 included	 in	 ensemble	 model	 of	 the	
current	study	due	to	a	TSS	value	greater	 than	0.7,	 is	gaining	more	
popularity	in	SDM	and	is	argued	to	provide	a	favourable	trade-	off,	
offering	comparable	accuracy	to	GLM	or	GAM	(Thuiller	et	al.,	2003).

On	the	other	hand,	the	environment-	only	model,	 incorporating	
predictor	variables,	proximity	to	regional	ecosystems,	FPC,	and	ele-
vation,	exhibited	a	high	predictive	performance	with	a	TSS	of	0.88,	
an	 AUC	 of	 0.98,	 and	 a	 kappa	 value	 of	 0.75.	 Unlike	 the	 ensemble	
model,	the	TSS	values	of	individual	algorithms	in	environment-	only	
model	were	 less	 than	0.7.	Therefore,	a	 threshold	value	of	0.6	was	

chosen,	while	 for	 the	 other	 two	models	 the	 threshold	was	 set	 as	
0.7.	 If	 the	presence	data	 and	 the	algorithms	 remain	 the	 same	and	
only	the	predictor	variables	are	different,	the	smaller	TSS	values	in	
the	environment-	only	model	can	be	attributed	 to	 the	 lower	effec-
tiveness	of	the	environmental	variables	in	explaining	the	underlying	
patterns	 and	 relationships	within	 the	 data	when	 compared	 to	 the	
climatic	 variables.	 This	 is	 further	 confirmed	 by	 the	 fact	 that,	 ac-
cording	 to	 the	 climate-	only	model,	 a	higher	number	of	honey	bee	
occurrences	 align	with	 the	 highly	 and	moderately	 suitable	 classes	
when	compared	 to	 the	environment-	only	model.	Nonetheless,	 the	
combined	 environment	 and	 climate	model	 also	 displayed	 a	 robust	
predictive	power	with	a	TSS	0.96	of	ROC	0.99	of	and	a	Kappa	value	
of	0.92.	Thus,	it	is	evident	that	combining	climate	and	environmental	
predictor	variables	in	a	model	enhances	the	predictive	performance.	
Moreover,	 to	 enhance	 the	 predictive	 performance	 of	 the	 models	
while	mitigating	problems	associated	with	SDM,	such	as	overfitting,	
several	precautions	were	taken.	These	included	rarefying	the	pres-
ence	 data,	 selection	 of	 a	minimum	number	 of	 predictor	 variables,	
and	 performing	 cross-	validation	 using	 80%	 of	 the	 data	 for	model	
calibration	and	20%	for	validation	(Pant	et	al.,	2021).

According	 to	 the	climate-	only	model,	 the	most	 influential	vari-
ables	 in	 the	 model	 were	 Bio24	 and	 Bio25	 which	 represent	 the	
radiation	of	wettest	quarter	and	radiation	of	driest	quarter,	corre-
spondingly.	Bio4	(temperature	seasonality)	also	exhibits	a	significant	
influence	on	honey	bee	distribution.	This	 is	 consistent	with	previ-
ous	findings	that	solar	radiation	and	temperature	are	the	two	most	
detrimental	 climatic	 factors	 that	contribute	 to	bee	activity	 (Clarke	
&	Robert,	2018).	Moreover,	it	has	been	proven	that	bee	abundance	
is	highest	 in	 the	areas	with	high	solar	 insolation	 (Orr	et	al.,	2021).	
Compared	 to	 the	 significance	 of	 the	 other	 two	 criteria,	 namely	
proximity	 to	 regional	 ecosystems	 and	 FPC,	 in	 constructing	 the	
environment-	only	 model,	 the	 contribution	 of	 elevation	 is	 minimal	
(8.54%).	Nonetheless,	elevation	 remains	a	crucial	 factor	determin-
ing	 honey	 bee	 activity	 and	 has	 been	 extensively	 utilised	 in	 litera-
ture	 concerning	 land	 suitability	 analysis	 for	 apiary	 sites	 (Fazel	 &	
Abdul,	2012;	Maris	et	al.,	2008;	Sarı	et	al.,	2020;	Zoccali	et	al.,	2017).	
Furthermore,	it	was	evident	that	elevation	holds	greater	importance	
when	compared	to	other	topographic	factors	such	as	slope	and	as-
pect.	 The	 outcome	 further	 confirms	 the	 fact	 that	 access	 to	 floral	
resources	is	a	prime	criterion	to	be	considered	when	locating	a	com-
mercial	apiary	site	(Tennakoon	et	al.,	2023).

TA B L E  3 Number	of	honey	bee	occurrences	by	suitability	class	under	each	modelling	scenario.

Classification

Climate- only

Environment- only
Combined (environment 
and climate)1990–2009 (2000) 2020–2039 (2030) 2060–2079 (2070)

Number Percent (%) Number Percent (%) Number Percent (%) Number Percent (%) Number Percent (%)

Highly	suitable 1140 71.93 18 1.13 0 0 745 47.03 1054 66.54

Moderately	suitable 395 24.92 547 4.51 1 0.001 618 39.02 413 26.07

Marginally	suitable 42 2.65 206 13.00 173 10.92 170 10.73 79 4.99

Not	suitable 8 0.5 814 51.36 1411 89.02 51 3.22 38 2.40

Total 1585 100 1585 100 1585 100 1584 100 1584 100
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4.2  |  Response of the spatial distribution of honey 
bees to climate change in Australia

By	 the	 2020–2039	 period,	 approximately	 88%	 of	 highly	 suitable	
habitats	for	honey	bees	are	projected	to	transition	from	their	cur-
rent	state	to	become	moderate	to	marginally	suitable	areas.	Due	to	
climate	change,	this	transformation	is	predicted	to	result	in	a	com-
plete	change	of	highly	suitable	habitats	to	different	categories	by	the	
years	2060–2079.	However,	there	was	a	contrasting	trend	observed	
in	 the	moderately	 suitable	 area,	which	 showed	a	notable	 increase	
of	 58%	 from	 1990–2009	 to	 2020–2039.	 This	 increase	 can	 be	 at-
tributed	 to	 favourable	changes	 in	 climatic	 factors,	 such	as	a	 slight	
decline	 in	temperature	seasonality	 (Bio4)	and	an	 increase	 in	radia-
tion	during	the	wettest	(Bio24)	and	driest	quarters	(Bio25).	However,	
the	projection	from	2020–2039	to	2060–2079	revealed	a	significant	
decline	in	the	moderately	suitable	area,	primarily	due	to	an	increase	
in	temperature	seasonality	and	a	drastic	reduction	in	radiation	dur-
ing	the	driest	quarter.	This	indicates	the	potential	challenges	that	lie	
ahead	for	honey	bee	habitats	due	to	changing	climate.	Additionally,	
while	there	is	a	temporary	decrease	in	the	not	suitable	area	by	the	
2020–2039	period,	 it	subsequently	 increases	by	2060–2079,	high-
lighting	 the	 persistence	 of	 adverse	 climatic	 conditions	 for	 honey	
bees.	Among	the	three	scenarios,	the	environment-	only	model	ex-
hibited	the	largest	extent	of	highly	and	moderately	suitable	areas	for	
honey	bees,	accounting	for	24%	of	the	total	extent.	This	emphasises	
that	 the	environmental	 factors	 in	 the	study	area	are	more	 favour-
able	for	honey	bees	than	the	climatic	factors.	The	combined	climate	
and	environment	model	revealed	a	decrease	of	approximately	9%	in	
this	value,	highlighting	the	limitations	imposed	by	climate	factors	on	
habitat	suitability.

By	2020–2039,	new	moderately	suitable	areas	have	emerged	in	
all	four	regions,	while	most	of	the	highly	suitable	areas	have	transi-
tioned	into	moderately	suitable	or	marginally	suitable	lands.	During	
the	period	from	2030	to	2070,	a	discernible	westward	shift	can	be	
observed	 in	 the	 distribution	 of	marginally	 suitable	 areas,	whereas	
only	 scattered	 patches	 of	 moderately	 suitable	 areas	 are	 found	 in	
Toowoomba,	Western	Downs	and	Southern	Downs.	Over	time,	the	
regions	of	Goondiwindi	that	were	once	highly	and	moderately	suit-
able	are	predicted	to	transition	into	areas	classified	as	marginally	and	
not	suitable.

In	 the	suitability	map	produced	by	ensemble	modelling	 for	 the	
1990–2009	 period,	 97%	 of	 honey	 bee	 occurrence	 records	 were	
found	within	the	highly	suitable	and	moderately	suitable	areas.	This	
high	correspondence	between	the	model	predictions	and	actual	oc-
currences	further	validates	the	accuracy	of	the	model.	However,	a	
significant	decline	is	observed	in	future	projections,	with	the	occur-
rence	records	dropping	to	zero	by	2060–2079.	Remarkably,	by	the	
same	period,	a	substantial	majority,	comprising	89%	of	the	current	
occurrences,	will	be	classified	as	not	suitable,	indicating	a	concern-
ing	shift	 in	habitat	suitability	for	honey	bees.	Regional	ecosystems	
with	 floral	 species	 suitable	 for	honey	bees	are	mainly	 confined	 to	
the	 eastern	 and	 southern	 parts	 of	 the	 study	 area,	 encompassing	
areas	such	as	Goondiwindi,	Western	Downs,	and	Southern	Downs.	

With	the	changing	climate,	it	is	predicted	that	the	habitat	suitability	
for	 honey	 bees	will	 shift	 towards	 the	western	 parts,	where	 there	
are	fewer	favourable	regional	ecosystems	available.	This	implies	the	
vulnerability	 of	 the	 apiary	 industry,	 particularly	 in	 the	 study	 area,	
which	covers	a	significant	portion	of	the	honey-	producing	region	in	
Queensland.

4.3  |  Limitations of the present study and 
recommendations

Species	Distribution	Modelling	(SDM)	can	be	applied	on	both	natural	
and	managed	ecosystems.	This	study	aimed	to	assess	the	impact	of	
climate	change	on	both	managed	and	feral	honey	bee	colonies,	yet	a	
limitation	encountered	was	the	insufficient	availability	of	honey	bee	
occurrence	records	that	can	be	derived	from	reliable	sources.	The	
honey	bee	presence	data	mainly	consists	of	managed	apiary	site	lo-
cations.	While	these	apiary	sites	are	presumed	to	capture	the	natural	
landscape	attributes	suitable	for	honey	bees,	it	will	be	interesting	to	
model	honey	bee	distribution	using	other	“natural”	locations	for	the	
presence	data.

While	the	most	common	approach	in	SDM	studies	is	the	use	of	a	
single	data	split,	it	has	the	drawback	of	potentially	introducing	bias	to	
parameter	estimation	(Araujo	et	al.,	2005).	To	address	this	concern,	
various	 resampling	 methods	 can	 be	 employed,	 including	 random	
subsampling,	K-	fold	cross-	validation,	Jackknife	(leave-	one-	out),	and	
bootstrapping	(Hastie	et	al.,	2009).	It	is	also	advisable	to	explore	the	
utilisation	of	similarity	metrics	such	as	Jaccard	and	Sørensen	indices,	
or	 F-	measure	 indices	 (Leroy	 et	 al.,	 2018),	 as	 potential	 alternatives	
to	address	the	limitations	associated	with	AUC,	TSS,	and	KAPPA	in	
predictive	distribution	models.

Pesticides	 have	 a	 detrimental	 effect	 on	 honey	 bees,	 and	 their	
habitat	suitability	(Krupke	et	al.,	2012;	Tome	et	al.,	2020;	Williams	
et	al.,	2015;	Zhu	et	al.,	2014).	In	this	study,	the	assessment	of	suit-
able	locations	did	not	consider	the	exposure	to	pesticides,	which	is	
recognised	 as	 a	 limitation.	 Therefore,	 it	 is	 recommended	 to	 incor-
porate	 pesticide	 exposure	 as	 a	 factor	 when	 determining	 suitable	
locations	 for	 honey	 bees.	 Furthermore,	 this	 study	 overlooks	 the	
aspect	of	habitat	connectivity	between	suitable	habitats	for	honey	
bees.	It	is	suggested	to	include	an	analysis	of	the	land	use	to	assess	
the	proximity	and	potential	barriers	among	habitats.	Integration	of	
habitat	 connectivity	measures	 into	honey	bee	 species	distribution	
modelling,	will	 provide	 insights	 into	how	 the	arrangement	 and	ac-
cessibility	of	suitable	habitats	influence	honey	bee	populations.	This	
information	will	 contribute	 to	more	accurate	predictions	of	honey	
bee	distribution	and	assist	in	identifying	priority	areas	for	conserva-
tion	and	management	efforts.	Furthermore,	this	study	did	not	take	
into	consideration	the	land	use	changes	when	predicting	future	hab-
itat	suitability	 for	honey	bees.	Therefore,	 it	 is	worthwhile	 to	com-
bine	anticipated	 land	use	changes	with	 the	projected	 future	maps	
to	obtain	more	accurate	 results.	 It	 is	also	advisable	 to	explore	 the	
utilisation	of	similarity	metrics	such	as	Jaccard	and	Sørensen	indices,	
or	 F-	measure	 indices	 (Leroy	 et	 al.,	 2018),	 as	 potential	 alternatives	
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    |  15 of 19TENNAKOON et al.

to	address	the	limitations	associated	with	AUC,	TSS,	and	KAPPA	in	
predictive	distribution	models.

5  |  CONCLUSION

In	this	study,	an	ensemble	modelling	approach	was	employed	for	
developing	 three	 models	 to	 examine	 the	 distribution	 of	 honey	
bees	 based	 on	 various	 predictor	 variables.	 These	 models	 in-
clude	 the	 climate-	only	model,	 the	 environment-	only	model,	 and	
the	 combined	 climate	 and	 environment	model.	 The	 climate-	only	
model	 utilised	 the	 most	 dominant	 climatic	 factors	 that	 impact	
honey	bee	suitability	 such	as	 radiation	 in	 the	wettest	and	driest	
quarters,	as	well	as	temperature	seasonality.	On	the	other	hand,	
the	environment-	only	model	incorporated	the	environmental	vari-
ables	that	primarily	influence	honey	bee	habitat	suitability	such	as	
proximity	to	regional	ecosystems,	foliage	projective	cover,	and	el-
evation.	To	capture	the	collective	influence	of	climate	and	environ-
mental	factors,	the	combined	model	was	developed	by	integrating	
the	variables	used	in	both	the	climate-	only	and	environment-	only	
models.	Using	the	climate-	only	model,	three	suitability	maps	were	
projected	for	the	time	periods	1990–2009,	2020–2039,	and	2060–
2079.	 All	 three	 models	 demonstrated	 strong	 predictive	 perfor-
mances	with	TSS	values	greater	than	0.8.	Under	the	2020–2039	
scenario,	 it	 is	projected	 that	88%	of	 the	highly	suitable	 land	will	
transition	 to	 moderately	 suitable	 (14.84%),	 marginally	 suitable	
(13.46%),	and	not	suitable	 (71.10%)	areas,	 leaving	only	a	0.6%	of	
the	land	as	highly	suitable.	By	the	period	of	2060–2079,	the	highly	
suitable	area	will	undergo	a	complete	transformation,	transitioning	
entirely	into	other	classes:	moderately	suitable	(0.54%),	marginally	
suitable	 (17.56%),	 and	 unsuitable	 (81.9%).	 This	 predicted	 loss	 of	
suitable	habitats,	particularly	in	terms	of	climate	suitability,	high-
lights	 the	 vulnerability	 of	 honey	 bees	 for	 climate	 change.	 Thus,	
this	 decline	 is	 anticipated	 to	have	 significant	 impacts	 on	natural	
ecosystems	and	commercial	apiary	management,	which	is	a	crucial	
contributor	to	the	national	economy.

The	 results	 of	 this	 study	 reveal	 a	 significant	 decline	 in	 the	
suitable	 area	 for	honey	bees	under	 changing	 climate	 conditions.	
Therefore,	this	study	stresses	the	importance	of	mitigating	the	im-
pacts	of	climate	change	on	honey	bee	habitats.	Accordingly,	inves-
tigating	potential	adaptation	strategies	for	honey	bee	management	
in	the	face	of	climate	change	is	crucial.	Such	strategies	may	include	
exploration	of	supplementary	food	sources	for	honey	bees,	selec-
tive	breeding,	innovative	hive	management	techniques,	and	land-
scape	planning	to	enhance	honey	bee	resilience	and	minimise	the	
negative	impacts	of	changing	climatic	conditions.	Additionally,	en-
gaging	stakeholders,	 including	beekeepers,	farmers,	and	relevant	
government	authorities,	in	addressing	the	challenges	posed	by	cli-
mate	change	on	honey	bee	distribution	is	essential.	Evaluating	the	
effectiveness	 of	 current	 policies	 and	 offering	 recommendations	
for	promoting	sustainable	honey	bee	management	and	conserva-
tion	efforts	are	key	avenues	for	further	exploration.	These	poten-
tial	extensions	would	provide	valuable	 insights	 into	 the	complex	

interactions	 among	 climate	 change,	 environmental	 factors,	 and	
honey	bee	distribution.	They	would	enhance	our	comprehensive	
understanding	 of	 land	 suitability	 for	 honey	 bees	 and	 contribute	
to	 the	 development	 of	 targeted	 conservation	 and	 management	
strategies.
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