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Abstract
Honey bees play a vital role in providing essential ecosystem services and contributing 
to global agriculture. However, the potential effect of climate change on honey bee 
distribution is still not well understood. This study aims to identify the most influential 
bioclimatic and environmental variables, assess their impact on honey bee distribu-
tion, and predict future distribution. An ensemble modelling approach using the bio-
mod2 package in R was employed to develop three models: a climate-only model, an 
environment-only model, and a combined climate and environment model. By utilising 
bioclimatic data (radiation of the wettest and driest quarters and temperature season-
ality) from 1990 to 2009, combined with observed honey bee presence and pseudo 
absence data, this model predicted suitable locations for honey bee apiaries for two 
future time spans: 2020–2039 and 2060–2079. The climate-only model exhibited a 
true skill statistic (TSS) value of 0.85, underscoring the pivotal role of radiation and 
temperature seasonality in shaping honey bee distribution. The environment-only 
model, incorporating proximity to floral resources, foliage projective cover, and el-
evation, demonstrated strong predictive performance, with a TSS of 0.88, emphasis-
ing the significance of environmental variables in determining habitat suitability for 
honey bees. The combined model had a higher TSS of 0.96, indicating that the combi-
nation of climate and environmental variables enhances the model's performance. By 
the 2020–2039 period, approximately 88% of highly suitable habitats for honey bees 
are projected to transition from their current state to become moderate (14.84%) to 
marginally suitable (13.46%) areas. Predictions for the 2060–2079 period reveal a 
concerning trend: 100% of highly suitable land transitions into moderately (0.54%), 
marginally (17.56%), or not suitable areas (81.9%) for honey bees. These results em-
phasise the critical need for targeted conservation efforts and the implementation of 
policies aimed at safeguarding honey bees and the vital apiary industry.
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1  |  INTRODUC TION

Climate is a major factor that governs the spatial and temporal 
distribution of a species (Adhikari et al., 2023; Araújo et al., 2005; 
Pant et al., 2021). Climate change is referred to as a systematic and 
gradual change in average weather conditions (Weber, 2010) and 
these changes have serious implications on the distribution, physi-
ology, and proliferation of a wide range of species including pollina-
tors (Vercelli et al., 2021). The various elements of climate change, 
encompassing different aspects of temperature, rainfall, extreme 
events, carbon dioxide concentration, and ocean dynamics, are 
expected to impact biodiversity across all levels, ranging from in-
dividual organisms to entire biomes (Bellard et al., 2012; Parmesan 
et al., 2011). At the fundamental tier of biodiversity, climate change 
has the capacity to reduce the genetic diversity of populations 
through directional selection and swift migration. This, in turn, has 
the potential to influence the functioning and resilience of eco-
systems (Botkin et al., 2007). Furthermore, the diverse impacts on 
populations are expected to alter the interconnected relationships 
within communities (Gilman et al., 2010; Walther, 2010). Essentially, 
the reaction of certain species to climate change may result in an 
indirect influence on species that rely on them. An examination of 
9650 interspecific systems, encompassing pollinators and parasites, 
indicated that approximately 6300 species could face extinction as 
a consequence of the disappearance of their associated species (Koh 
et al., 2004). Thus, in order to survive under changing climatic con-
ditions, any species has to either cope, adopt in situ, or shift from 
the current geographical locations (Maggini et al., 2011). This em-
phasises the importance of predicting the future distribution of a 
species under changing climate since such predictions can inform 
scientists and decision makers about future risks. In turn, this would 
enable the development of risk mitigation strategies to reduce the 
impact of climate change on biodiversity.

The pollinator species that is widely used globally to enhance 
agricultural production is the European honey bee or the western 
honey bee (Apis mellifera) (Hung et al., 2018; Potts et al., 2010), here-
after referred to as the honey bee. The honey bee is ranked number 
one as the most frequent pollinator for crops worldwide and floral 
species in natural habitats (Hung et al., 2018). The threat imposed 
by climate change on honey bees is multi-faceted, with significant 
influences on diseases, parasites, predators, parasitoids, viruses, 
pesticide use (Cornelissen et al., 2019; Le Conte & Navajas, 2008; 
Varikou et al., 2020; Vercelli et al., 2021; Zawislak et al., 2019), and 
most importantly, the plants on which honey bees forage (Goulson 
et  al.,  2015). These issues have a huge impact on the behaviour, 
physiology and distribution of honey bees (Goulson et al., 2015). The 
future changes in honey bees with respect to the population and 

geographic distribution can have impact on ecology, and agriculture. 
Shifts in the distribution of honey bees with changing climate imply 
the importance of understanding the future distribution patterns for 
conservation purposes, preserving the ecosystem dynamics and re-
lated social systems (Bonebrake et al., 2018; Pecl et al., 2017).

The distribution of bees is hugely impacted by climate and en-
vironmental factors (Le Conte & Navajas, 2008). Specifically, their 
geographical presence is linked to the abundance of flowering 
plants, given that honey bees forage on nectar and pollen as their 
primary sources of food (Tennakoon et al., 2023). Honey bee forag-
ing is significantly influenced by climatic factors, including rainfall, 
low temperatures, and high winds (Rowland et  al., 2021). Climate 
conditions, encompassing temperature and precipitation patterns, 
further determine the availability of floral resources, ultimately af-
fecting the foraging success of honey bees (Anderson et al., 2012; 
Dorji et al., 2020). Moreover, climatic conditions play a pivotal role 
in shaping the prevalence and propagation of diseases and para-
sites affecting honey bees (Giliba et al., 2020; Rowland et al., 2021; 
Switanek et al., 2017). Extreme temperatures have the potential to 
disrupt their foraging and flight capabilities (Clarke & Robert, 2018). 
While only a limited number of studies have attempted to model the 
distribution of the European honey bee (Otto et al., 2016), numer-
ous investigations into land suitability assessment for honey bees 
have revealed that a diverse array of factors, primarily encompass-
ing the availability of pollen and nectar sources, plays a pivotal role 
in identifying the optimal habitat locations for honey bees (Gallant 
et al., 2014; Smart et al., 2016).

Species distribution modelling (SDM), also known as ecologi-
cal niche modelling or habitat suitability modelling, is gaining more 
popularity over the other tools of analysis available for ecologists 
to predict the distribution of species (Tikhonov et  al., 2020). The 
aim of SDM is to provide an insight on the spatio-temporal assem-
bly of a species and the anticipated future distribution against the 
climatic and environmental changes (Guisan & Rahbek, 2011). Most 
importantly, SDM can be used not only for natural ecosystems 
but also for human managed ecosystems (Woodin et  al.,  2013). 
Throughout history, people have consistently observed associa-
tions between species distribution and the physical environment 
(Elith & Leathwick, 2009). Although early scientific writings leaned 
heavily on qualitative descriptions (Grinnell,  1904), contemporary 
approaches extensively employ numerical models to depict patterns 
and make predictions. SDMs encompass the compilation of data 
on species occurrences, correlating these occurrences with envi-
ronmental factors, and producing maps that forecast species dis-
tributions in the past, present, or future (Pecchi et al., 2019). Most 
importantly, SDM can be used not only for natural ecosystems but 
also for human managed ecosystems (Woodin et al., 2013).

T A X O N O M Y  C L A S S I F I C A T I O N
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Honey bees are the most commonly used species in the bee-
keeping industry in Australia, making an annual contribution of $14.2 
billion to the economy (Agrifutures Australia,  2022). This study 
models the distribution of honey bees based on bioclimatic and en-
vironmental variables and predicts their future distribution for two 
different time spans in the future (i.e. 2020–2039 and 2060–2079) 
within the context of Australia. More specifically, the objectives of 
this study are the following: (1) to identify the bioclimatic and envi-
ronmental predictor variables that contribute the most to the distri-
bution of honey bees, and to quantify their relative impact on honey 
bee distribution; (2) to assess the predictive performance of an en-
semble approach in modelling the distribution of honey bees using 
bioclimatic and environmental variables, and (3) to investigate the 
potential impact of climate change on honey bee distribution under 
2020–2039 (referred to as 2030) and 2060–2079 (referred to as 
2070) climate conditions. This study introduces several innovations: 
(1) it is the first to use an ensemble approach for assessing the dis-
tribution of Apis mellifera in relation to bioclimatic and environmen-
tal variables; (2) it employs a relatively high-resolution climate data 
(250 m); and (3) it evaluates the distribution of Apis mellifera under 
changing climate conditions, considering two future time spans.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

As the study area, a sub-section of Southern Queensland, 
Australia that covers an extent of 37,650 km2 encompassing the 
four Local Government Areas of Toowoomba, Southern Downs, 
Goondiwindi, and Western Downs (Figure  1) was selected. The 
Queensland agricultural sector contributes over $10 billion an-
nually to the national economy (Business Queensland, 2022) and 
accounts for 9.7% of the country's total honey production, pro-
ducing approximately 37,000 tonnes per annum (Department of 
Agriculture Fisheries and Forestry, 2023). Most importantly, the 
study area was chosen to include approximately 35% of the total 
managed apiary sites in Queensland's primary honey-producing 
region (Queensland Spatial Catalogue, 2021), while also captur-
ing variations in climate, topography, land cover, and land use 
(Queensland Spatial Catalogue, 2014).

This area exhibits significant climate variations, ranging from 
warm temperate conditions in Toowoomba and Southern Downs 
to hot arid conditions in Goondiwindi and Western Downs. For 

F I G U R E  1 Elevation map and the apiary site locations in the study area.
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example, in Stanthorpe, Southern Downs, the mean minimum tem-
perature during winter is 1.1°C while the mean maximum tempera-
ture in summer can reach 27.4°C. The mean annual rainfall in the 
same area is 764.2 mm. In contrast, Miles, Western Downs experi-
ences a minimum temperature of 3.6°C during winter, with a mean 
maximum temperature of 33.3°C in summer. The mean annual 
rainfall in Miles is 643.4 mm (Australian Bureau of Statistics, 2022). 
Topographical features, such as slope, aspect, and elevation, also ex-
hibit significant differences among various localities. For instance, 
the elevation is higher in Southern Downs and the Toowoomba re-
gion ranging from 690 to 1200 m above mean sea level, while most 
parts of the Western Downs and Goondiwindi are situated in com-
paratively lower elevated areas encompassing 200–300 m above 
mean sea level. The land use map in the study area primarily con-
sists of regional ecosystems (basically composed of remnant and 
non-remnant forests), rangelands and agriculture, collectively cov-
ering 98% of the total extent with roughly equal percentages. The 

secondary level classification system of the land use map reveals a 
diverse array of land use categories, spanning residential, agricul-
tural, mining areas, and nature conservations.

2.2  |  Overview of the research methods

The overview of the research methods used in this study is shown 
in Figure  2. The modelling procedure of this study follows the 
ODMAP (overview, data, model, assessment and prediction) proto-
col introduced by Zurell et al. (2020). Honey bee occurrence data, 
along with the most influential bioclimatic and environmental vari-
ables, were utilised to develop three distinct models, a climate-only 
model, an environment-only model and a combined climate and en-
vironment model. The climate model, utilising data spanning from 
1990 to 2009, was projected for the time intervals of 2020–2039 
and 2060–2079.

F I G U R E  2 Overview of the research methods.

Honey bee presence data 
n = 1,598

Spatial Thinning
(SpThin package in R4.2.2)

Bioclimatic 
variables

n = 35

Environmental
variables

n = 8

Spatial Autocorrelation
(USDM package in R4.2.2)

Bioclimatic variables
n = 3

Environmental variables
n = 3

Ensemble Modelling
using biomod2

Climate-
only model

Environment-
only model

Combined
climate and
environment

model

2000, 2030, and 2070

n = 1,595
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2.3  |  Honey bee presence data

This study aimed to utilise two disparate categories of presence 
data, including managed apiary site locations and records of obser-
vations derived from different sources such as the Atlas of Living 
Australia (ALA) and the Global Biodiversity Information Facility 
(GBIF). The apiary site locations on public lands were retrieved from 
the Queensland Spatial catalogue, and the database contains 1592 
records. Occurrence data from 1990 to the present year were ob-
tained using ALA and GBIF. The study period was selected to en-
compass the available climate data from 1990 onwards. Only human 
and machine observations were included, excluding preserved spec-
imens or museum records, as these do not accurately represent the 
true geographic distribution of a species (Araujo & Guisan, 2006). 
GBIF did not have any presence or absence records of Apis mellifera 
for the study area during the specified time, while ALA had only six 
records of occurrences. Thus, the bulk of the presence data was ac-
quired from the Queensland Spatial Catalogue.

The spatial resolution of the environment and climate raster lay-
ers used in this study was 250 m × 250 m. Occurrence of multiple 
presence data within this resolution (within a cell) can lead to spatial 
sampling bias (Aiello-Lammens et  al.,  2015), spatial autocorrelation 
(Pant et al., 2021) and overestimated measures of prediction accuracy 
(Veloz, 2009). Therefore, the SpThin package in R 4.2.2 was utilised 
to perform spatial thinning of the presence records (Aiello-Lammens 
et al., 2015), with a specified buffer of 250 m as the minimum allowed 
distance between two occurrences. The implementation of this buf-
fer ensured a more transparent and controlled approach, resulting in a 
total of 1595 records after removing only three from the initial dataset. 
This can be attributed to the fact that the managed apiary site loca-
tions, which serve as the primary occurrence data in this study, are 
established while maintaining a reasonable distance between two sites 
in accordance with government regulations (Biosecurity Act, 2014).

2.4  |  Bioclimatic and environmental variables

For this study, initially, eight environmental variables that impact 
honey bees and the apiary industry were selected based on the ex-
isting literature. These variables included regional ecosystems/flora 
criterion (Sarı et al., 2020), foliage projective cover (FPC), land use 
(Otto et  al.,  2016), land cover (Clermont et  al.,  2015), topographi-
cal features (slope, aspect, elevation), and distance to water bod-
ies (Zoccali et  al.,  2017). A more comprehensive explanation of 
the biological relevance of these criteria to beekeepers' decision-
making have been provided in the study by Tennakoon et al. (2023). 
Bioclimatic variables derived from temperature and rainfall values 
are often used in SDM, representing annual trends, seasonality, and 
extremes in these climate factors. Thirty-five bioclimatic variables 
covering the time periods 1990–2009, 2020–2039, and 2060–2079 
at a finer scale (250 m × 250 m) were sourced from the New South 
Wales (NSW) and Australian Capital Territory (ACT) Regional 
Climate Modelling (NARCliM) database (Hutchinson & Xu, 2015).

All the variables selected for modelling were tested for multicol-
linearity using the USDM (Uncertainty Analysis for Species Distribution 
Models) package (Imdadullah et al., 2016) on the R platform. Two indi-
cators, namely the correlation coefficient and variance inflation fac-
tor (VIF), were employed as measures of multicollinearity. Principal 
component analysis is a powerful tool used to overcome the problem 
of multicollinearity (Lafi & Kaneene, 1992; Sulaiman et al., 2021). Yet, 
in this study, in line with the objectives of identifying the most con-
tributing variables and quantification, principal component analysis 
was opted for correlation coefficient and VIF. Multicollinearity can in-
crease uncertainty in model parameters and decrease the predictive 
performance of the model (De Marco & Nóbrega,  2018). Variables 
with a correlation coefficient greater than 0.8 and a VIF higher than 
5 were excluded from further analysis, following previous studies on 
SDM (Diao & Wang, 2014; Fois, Bacchetta, et al., 2018; Fois, Cuena-
Lombraña, et  al.,  2018). All eight environmental variables were re-
tained, while only four bioclimatic variables (i.e., Bio4, Bio15, Bio24, 
Bio25) remained after conducting multicollinearity testing. During 
the model formation process, the number of predictor variables was 
reduced (Breiner et  al.,  2015) by iteratively removing the least con-
tributing variables to mitigate overfitting (Zeng et al., 2016). This was 
achieved through scrutinisation of the variable importance scores to 
identify those with minimal impact, and they were designated for re-
moval. The selection of variables for exclusion was guided by their indi-
vidual contributions to the overall accuracy of the model. The variables 
used for the final model formation, along with their sources, are listed 
in Table 1, whilst Figures 3–6 visualise these variables. ArcMap 10.8.2 
was used to create raster layers with a cell size of 250 m × 250 m and 
the WGS84 projection.

2.5  |  Species distribution modelling: ensemble 
approach using biomod2

Biomod2 (Thuiller et al., 2016) is extensively used across different 
locations around the world in distribution modelling of a wide range 
of taxa mostly using presence only data and environment and climate 
factors (Hallgren et al., 2019). Biomod2 permits running 10 different 
modelling algorithms (Appendix  S2), model calibration, evaluation, 
building ensembles, ensemble forecasting and visualisation of data 
and results (Thuiller et al., 2016).

2.5.1  |  Appendix S2: An overview of the different 
modelling algorithms available in biomod2

Even though, some algorithms such as rectilinear envelope and 
distance-based envelope can handle presence-only data, most of 
the modelling algorithms utilise both presence and absence data. 
Moreover, it is proven that the presence–absence models perform 
better than presence-only models (Elith et al., 2006). However, col-
lecting absence data, particularly for mobile species, and ensuring its 
accuracy when compared with presence data, can be a challenging 
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task (MacKenzie & Royle,  2005). Researchers rely on pseudo ab-
sence or background data to enhance the predictive performance 
of the model. For this study, 5000 pseudo-absence points were 
generated using biomod2 in R 4.2.2, taking into consideration the 
varying number of pseudo-absence points required for each al-
gorithm (Barbet-Massin et  al.,  2012). The decision to use 5000 
pseudo-absence points reflects the intention to establish a robust 
and well-balanced dataset for training the SDM model. Equal weight 
was assigned to the presence and absence points, and the process of 
generating pseudo-absences was repeated three times to alleviate 
random bias. A training dataset was used to estimate the predictive 
power of the model, ensuring that the training data are not spatially 
autocorrelated with test data (Allouche et al., 2006). In cases where 
independent data is unavailable for training the models, the origi-
nal dataset is divided into two parts: training data and testing data. 
The honey bee presence and pseudo-absence data were divided into 
training (80%) and testing (20%) sets, following the approach recom-
mended by previous studies (Chapman et al., 2019; Hopkins, 2009; 
Laman et al., 2018; Senay & Worner, 2019; Waldock et al., 2022). In 

addition to the method of random splitting of data, stratified sam-
pling (Marchetto et al., 2023), K-fold cross-validation, leave-one-out 
cross-validation, temporal split, and spatial split have been employed 
in SDM research. The modelling process consists of a total of 90 
model runs, which includes 10 modelling algorithms, three pseudo 
absence generation runs, and three evaluation runs. Using the en-
semble modelling option available in biomod2, an ensemble species 
distribution model was constructed by applying multiple algorithms 
above a selected threshold.

2.6  |  Model evaluation

Model evaluation in biomod2 consists of an assessment of the 
explanatory power using a standard approach associated with 
each algorithm and evaluating the predictive power of the model 
using AUC i.e., area under the relative operating characteristic 
curve (ROC) (Hanley & McNeil,  1982), Cohen's Kappa (Monserud 
& Leemans,  1992) and the true skills statistics (TSS) (Allouche 

TA B L E  1 Bioclimatic and environmental variables finally utilised for the ensemble modelling.

Predictor variable Rationale Source

Bioclimatic variables

Bio4 (Temperature 
seasonality)

Temperature has a huge impact on honey bee mortality (Switanek et al., 2017), 
activity (Abou-Shaara et al., 2017; Huang & Robinson, 1995), and 
reproduction (Rangel & Fisher, 2019)

New South Wales (NSW) and 
Australian Capital Territory 
(ACT) Regional Climate 
Modelling (NARCliM) 
(Hutchinson & Xu, 2015)

Bio24 (Radiation of wettest 
quarter) (Wm-2)

Bio25 (Radiation of driest 
quarter) (Wm-2)

Having a significant amount of solar radiation is particularly desirable during 
winter because the rate at which bees leave the hive (bee egress rate) is 
influenced by temperature and radiation. Previous studies have observed 
a reduced bee egress rate when exposed to low temperatures and limited 
solar radiation (Clarke & Robert, 2018). Solar radiation is also associated 
with defensive behaviour of honey bees (Southwick & Moritz, 1987)

Environmental variables

Regional ecosystems (Floral 
resources)

Honey bees gather nectar and pollen from various flowering species, 
which are crucial for their survival and honey production. Hence, honey 
bees are present in areas where they have access to floral resources. 
Furthermore, when choosing a location for an apiary, it is essential to 
consider the availability of food sources (nectar/pollen) for honey bees. 
The Queensland regional ecosystems database contains information about 
vegetation communities in a specific bioregion. Regional ecosystems refer 
to vegetation communities in a bioregion that consistently correspond to 
specific combinations of geology, landform, and soil (Sattler & Williams, 
1999). This database, therefore, serves as an excellent resource to identify 
the floral species suitable for honey bees in a particular ecosystem. The 
same methodology used to rate regional ecosystems by Tennakoon 
et al. (2023) was used in the present study

Regional Ecosystems Maps 
– Queensland Spatial 
Catalogue: Queensland 
Government (https://​qldsp​
atial.​infor​mation.​qld.​gov.​au)

Foliage projective cover 
(FPC)

FPC refers to the proportion of the ground surface taken up by the vertical 
projection of foliage (Queensland Spatial Catalogue, 2014). Foliage is an 
important factor related with honey bee foraging being an indicator of 
food sources available for honey bees and the incoming solar radiation 
(Specht, 1981; Steven et al., 1986)

Queensland Spatial Catalogue: 
Queensland Government 
(https://​qldsp​atial.​infor​
mation.​qld.​gov.​au)

Elevation Elevation is closely correlated with floral resources and climatic factors that 
affect honey bees

GEODATA 9 Second Digital 
Elevation Model (DEM-9S) 
Version 3 from Geoscience 
Australia (https://​ecat.​ga.​gov.​
au) (Hutchinson et al., 2008)
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F I G U R E  3 Bioclimatic and 
environmental variables (a) Temperature 
seasonality maps of 1990–2009, 2020–
2039 and 2060–2079; (b) Radiation of 
wettest quarter (Bio24) maps of 1990–
2009, 2020–2039 and 2060–2079; (c) 
Radiation of driest quarter (Bio25) maps of 
1990–2009, 2020–2039 and 2060–2079; 
(d) Environmental variables (Distance to 
regional ecosystems (floral resources), 
FPC and elevation).
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8 of 19  |     TENNAKOON et al.

F I G U R E  4 (a) TSS scores of individual algorithms and the ensemble model (climate-only); (b) TSS scores of individual algorithms and the 
ensemble model (environment-only); (c) TSS scores of individual algorithms and the ensemble model (combined).
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    |  9 of 19TENNAKOON et al.

et  al.,  2006). AUC considers two aspects: sensitivity, which is the 
proportion of presences correctly predicted as presence, and speci-
ficity, which is the proportion of absences correctly predicted as ab-
sences. AUC can range from 0 to 1, with a practical range of 0.5–1. 
A value of 0.5 indicates a random model, while a value of 1 indicates 

a perfect model (Hallgren et al., 2019). Several studies on SDM have 
applied AUC as it eliminates the perceived subjectivity linked to 
threshold selection in the process. Yet the literature has strongly 
criticised AUC as a misleading measure of the performance of predic-
tive distribution models (Jiménez-Valverde, 2012; Lobo et al., 2008, 

F I G U R E  5 Response curves of bioclimatic variables in the climate-only model.

F I G U R E  6 Response curves of environmental variables in the environment-only model.

 20457758, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11300 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [29/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 19  |     TENNAKOON et al.

2010). The Kappa statistic evaluates the degree to which models 
predict occurrence at a level that exceeds what would be expected 
by chance (Monserud & Leemans,  1992). The Kappa statistic can 
have values ranging from −1 to +1. Values of 0 or below indicate ran-
dom performance, while a value of +1 indicates perfect agreement 
(Allouche et al., 2006). The TSS considers both omission (proportion 
of presences identified as absences) and commission errors (propor-
tion of absences identified as presences), and has a range of −1 to +1, 
where a value of +1 indicates perfect agreement, and values of zero 
or less indicate performance no better than random. Unlike Kappa, 
TSS is not influenced by prevalence. Additionally, TSS is unaffected 
by the size of the validation set, and two methods with equal perfor-
mance will have equal TSS scores (Allouche et al., 2006).

2.7  |  Model development

In this study, three models namely the climate-only model, the 
environment-only model, and the combined climate (1990–2009) 
and environment model were developed. The climate-only model 
was developed using the three most influential bioclimatic variables 
for honey bees, namely Bio4 (temperature seasonality), Bio24 (radia-
tion of the wettest quarter), and Bio25 (radiation of the driest quar-
ter). Only individual models with a TSS greater than 0.7 were utilised 
for ensemble model building. The three environmental variables 
with the highest contribution to the model, i.e., proximity to regional 
ecosystems (floral resources), foliage projective cover, and elevation 
were used in building the environment-only model. Unlike the TSS 
values of individual algorithms pertaining to the climate-only model, 
the TSS values of algorithms in environment-only model were less 
than 0.7. Thus, a cut-off TSS of 0.6 was selected when building the 
ensemble environment-only model. The combined climate and envi-
ronment model was developed by incorporating the environmental 
and bioclimatic variables from both environment-only and climate-
only models. These variables included foliage projective cover, prox-
imity to regional ecosystems, elevation, Bio4, Bio24, and Bio25.

2.8  |  Generation of suitability maps for current and 
projected climate change

Suitability maps were generated using biomod2 for each sce-
nario under consideration, namely: climate-only (1990–2009), 
environment-only, and the combined climate and environment 
model. Using ensemble forecasting, suitability maps for the two 
future scenarios, i.e., 2020–2039 and 2060–2079 were generated. 
Each output map was divided into four suitability classes, based on 
the criterion namely: highly suitable (with a probability of occurrence 
exceeding 75%), moderately suitable (with a probability of occur-
rence ranging from 50% to 75%), marginally suitable (with a prob-
ability of occurrence between 25% and 50%), and not suitable (with 
a probability of occurrence less than 25%). For this manual method 
of reclassification, the reclassify tool in ArcMap 10.8.2 was utilised.

3  |  RESULTS

3.1  |  Model performance

3.1.1  |  Climate-only model

Among the algorithms used in ensemble modelling, random forest 
(RF) had the highest average TSS value of 0.77, followed by classifi-
cation tree analysis (CTA) with a value of 0.72, while surface range 
envelope (SRE) had the lowest TSS of 0.27. Algorithms such as artifi-
cial neural networks (ANN), generalised additive model (GAM), gen-
eralised boosting method (GBM), generalised linear model (GLM), 
multivariate adaptive regression spines (MARS), and MAXENT also 
had average TSS values less than 0.7 (Figure 4). Consequently, these 
algorithms were excluded from ensemble modelling. Radiation vari-
ables including Bio24 and Bio25, had the highest contribution to the 
model, each accounting for 35.57% and 37.73% respectively. Bio4 
or the temperature seasonality contributed to the model by 26.70%. 
According to the response curve pertaining to probability of honey 
bee occurrences and radiation in the wettest quarter, the optimum 
radiation for honey bees is 25 Wm−2. Based on the response curve 
for radiation in the driest quarter, honey bee occurrences display a 
fluctuating pattern as the radiation increases, with sudden increases 
and declines but an overall increasing trend. However, the opti-
mum radiation value for honey bees in the driest quarter or winter 
is observed as 16 Wm−2. It is apparent that honey bee occurrences 
are limited when the temperature seasonality or Bio4 ranges be-
tween 1.6 and 1.7. Otherwise, the pattern remains relatively stable 
(Figure 5). The ensemble climate-only model exhibited strong pre-
dictive performance, achieving a TSS of 0.85, an AUC of 0.98, and 
a Kappa value of 0.72. The same bioclimatic variables were used 
to project the model's predictions into the 2020–2039 (2030) and 
2060–2079 (2070) periods.

3.1.2  |  Environment-only model

GBM had the highest average TSS value of 0.63, while RF and ANN 
also performed comparatively well in modelling honey bee presence 
data against environmental variables, achieving an average TSS of 
0.62. MARS demonstrated good performance as well, with a TSS of 
0.61, slightly lower than that of GBM, RF, and ANN. On the other 
hand, MAXENT had a TSS of 0.6. SRE, similar to the climate-only 
model, demonstrated the least predictive performance, achieving 
a TSS of 0.31 (Figure  4). FPC made the most significant contribu-
tion to the model, accounting for 57.36% of the total. Following was 
the distance to regional ecosystem or floral resources, which con-
tributed 34.10%. The elevation had the least impact on the model, 
contributing only 8.54% to the model. According to the response 
curve for regional ecosystems, honey bee occurrences are optimised 
near the regional ecosystems with floral resources for honey bees. 
There was a sharp decline as the distance from regional ecosystems 
increases. The probability of honey bee occurrences increases with 
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    |  11 of 19TENNAKOON et al.

FPC and reaches its peak when FPC is 0.3. Beyond this point, the 
curve remains stable. Elevation displays a rather constant pattern 
but with a spike between 375 and 425 m (Figure 6). The ensemble 
environmental-only model showed strong predictive performance 
similar to the climate-only model, with a TSS of 0.88, an AUC of 0.98, 
and a Kappa value of 0.75.

3.1.3  |  Combined climate and environment model

Just like in the climate-only model, in the combined model, RF was 
the best-performing algorithm with an average TSS score of 0.76. 
CTA and GBM also had average TSS values of 0.72 and 0.71, respec-
tively. Comparable to the other two models, SRE displayed the low-
est TSS of 0.38 (Figure 4). A TSS threshold of above 0.7 was chosen 
to construct the combined model. The greatest contribution to the 
model came from Bio24 (radiation in wettest quarter), accounting 
for 27.74%, followed by distance to regional ecosystems (floral re-
sources) and foliage projective cover (FPC) with approximately equal 
percentages of 21.25 and 21.63 correspondingly. The contribution 
of Bio25 (radiation in driest quarter) accounted for 18.36%. On the 
other hand, Bio4 (temperature seasonality) and elevation, which 
were the least influential variables in the model, had values of 5.44% 
and 5.58%, respectively. As per the combined model, the predictor 
variables behave similarly to the individual models. The combined 
climate and environment model demonstrated strong predictive per-
formance, with a high TSS score of 0.96, a near-perfect ROC score 
of 0.99, and a Kappa value of 0.92. Therefore, it is evident that the 
prediction of honey bee occurrences can be enhanced by using both 
environmental and climate variables together in the same model as 
the predictor variables.

3.2  |  Land suitability for honey bees

Based on the climate-only model, the area classified as highly suit-
able experiences a drastic decline of approximately 88% from the in-
itial period of 2000 to the projected period of 2030 (Table 2). These 
areas were relegated into the moderately suitable and marginally 

suitable categories. Furthermore, this highly suitable area is com-
pletely lost from 2030 to 2070. Conversely, the moderately suitable 
area demonstrates an increase of 58% from 2000 to 2030 but ex-
periences a significant loss of 96% from 2030 to 2070, suggesting 
a potential future loss of areas with high and moderate suitability. 
The area classified as marginally suitable has more than doubled 
between 2030 and 2070. However, there is a decrease in the area 
classified as not suitable from 2000 to 2030 by 9%, followed by an 
increase of 15% from 2030 to 2070. It is worth noting that the not 
suitable area is significantly large when compared to other suitability 
categories.

In the context of the environment-only model, the highly and 
moderately suitable area, which accounts for 24% of the total ex-
tent, surpasses the same area pertaining to any other climate sce-
nario or the combined model in size. The climate-only model for 
2030 indicates a significantly lower value of only 15% for the highly 
and moderately suitable area, making it the second-largest value. 
On the other hand, the marginally and not suitable area resulted 
by environment-only model is comparatively smaller, representing 
76% of the total extent. In comparison, this value increases to ap-
proximately 85% for the 2000 and 2030 climate scenarios as well as 
the combined model, with a remarkably high value of 99% projected 
for 2070. This indicates that the study area offers more favourable 
environmental conditions for honey bees compared to suitability 
based on climatic factors alone. When compared with the combined 
climate and environment model, the highly and moderately suit-
able areas are larger in the environment-only model, while they are 
smaller in the climate-only model (Figures 7 and 8).

The number of honey bee occurrences was recorded for each 
suitability class using the sample tool in ArcMap. The results show 
that the highest number of honey bee locations, accounting for ap-
proximately 72%, was found in the highly suitable class of the cur-
rent climate-only model (2000). However, this number experiences 
a significant decline over the timeline from 2000 to 2070, indicat-
ing a complete loss of highly suitable areas by 2070. In contrast 
to the area distribution within each suitability class between the 
environment-only and combined models, the number of occurrences 
in the highly suitable area is higher in the combined model compared 
to the environment-only model. Only eight honey bee occurrences 

TA B L E  2 Suitable area (km2) for honey bees based on climate-only (2000, 2030, 2070), environment-only, and combined environment 
and climate model.

Classification

Climate-only

Environment-only
Combined (environment 
and climate)1990–2009 (2000) 2020–2039 (2030) 2060–2079 (2070)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Area 
(km2) Percent (%)

Highly suitable 1832 4.86 227 0.6 0 0 3748 9.96 2056 5.47

Moderately suitable 3546 9.42 5588 14.84 207 0.54 5159 13.72 3476 9.24

Marginally suitable 2936 7.80 5068 13.46 6611 17.56 4486 11.93 2980 7.92

Not suitable 29,336 77.92 26,767 71.10 30,832 81.90 24,220 64.39 29,101 77.37

Total 37,650 100 37,650 100 37,650 100 37,613 100 37,613 100
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12 of 19  |     TENNAKOON et al.

F I G U R E  7 Suitability maps for honey bees: Climate-only scenario in 1990–2009, 2020–2039 and 2060–2079.

F I G U R E  8 Suitability maps for honey bee habitat: environment-only and combined (Climate and Environment) scenarios.
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    |  13 of 19TENNAKOON et al.

were found in the not suitable area under the climate-only scenario. 
However, this number increases by approximately 89% in 2070, in-
dicating a significant loss of highly and moderately suitable areas for 
honey bees in terms of climate (Table 3).

4  |  DISCUSSION

4.1  |  Predictive performance of the models and 
contribution of predictor variables

The TSS, AUC, and KAPPA values of the climate-only ensem-
ble model were 0.85, 0.98, and 0.72, respectively, indicating that 
the model was robust with strong predictive power. A TSS value 
greater than 0.8 and AUC value higher than 0.9 indicate an excellent 
model (Hosmer & Lemeshow, 2000; Lin & Chiu,  2018; Pittman & 
Brown, 2011), while a Kappa value of 0.61 to 0.8 exhibits substantial 
performance (Landis & Koch, 1977; Viera & Garrett, 2005), which 
is the case in the current scenario. Anyway, TSS is argued to be a 
more reliable measure in assessing the predictive performance of 
species distribution models. This is because TSS possesses all the 
advantages of Kappa while not being affected by the prevalence of 
a species, unlike Kappa (Allouche et al., 2006). Among the 10 model-
ling algorithms utilised, RF had the highest TSS value, which agrees 
with the outcome of previous studies where an ensemble approach 
is employed to model species distribution (Marmion, Parviainen, 
et al., 2009; Williams et al., 2009). SRE was excluded from further 
analysis due to its poor performance in predicting the honey bee 
distribution which was indicated by a TSS value of 0.27. SRE is not 
commonly used in recent literature due its lower performance when 
compared with other modelling algorithms used in SDM (Pecchi 
et  al.,  2019). CTA which was included in ensemble model of the 
current study due to a TSS value greater than 0.7, is gaining more 
popularity in SDM and is argued to provide a favourable trade-off, 
offering comparable accuracy to GLM or GAM (Thuiller et al., 2003).

On the other hand, the environment-only model, incorporating 
predictor variables, proximity to regional ecosystems, FPC, and ele-
vation, exhibited a high predictive performance with a TSS of 0.88, 
an AUC of 0.98, and a kappa value of 0.75. Unlike the ensemble 
model, the TSS values of individual algorithms in environment-only 
model were less than 0.7. Therefore, a threshold value of 0.6 was 

chosen, while for the other two models the threshold was set as 
0.7. If the presence data and the algorithms remain the same and 
only the predictor variables are different, the smaller TSS values in 
the environment-only model can be attributed to the lower effec-
tiveness of the environmental variables in explaining the underlying 
patterns and relationships within the data when compared to the 
climatic variables. This is further confirmed by the fact that, ac-
cording to the climate-only model, a higher number of honey bee 
occurrences align with the highly and moderately suitable classes 
when compared to the environment-only model. Nonetheless, the 
combined environment and climate model also displayed a robust 
predictive power with a TSS 0.96 of ROC 0.99 of and a Kappa value 
of 0.92. Thus, it is evident that combining climate and environmental 
predictor variables in a model enhances the predictive performance. 
Moreover, to enhance the predictive performance of the models 
while mitigating problems associated with SDM, such as overfitting, 
several precautions were taken. These included rarefying the pres-
ence data, selection of a minimum number of predictor variables, 
and performing cross-validation using 80% of the data for model 
calibration and 20% for validation (Pant et al., 2021).

According to the climate-only model, the most influential vari-
ables in the model were Bio24 and Bio25 which represent the 
radiation of wettest quarter and radiation of driest quarter, corre-
spondingly. Bio4 (temperature seasonality) also exhibits a significant 
influence on honey bee distribution. This is consistent with previ-
ous findings that solar radiation and temperature are the two most 
detrimental climatic factors that contribute to bee activity (Clarke 
& Robert, 2018). Moreover, it has been proven that bee abundance 
is highest in the areas with high solar insolation (Orr et al., 2021). 
Compared to the significance of the other two criteria, namely 
proximity to regional ecosystems and FPC, in constructing the 
environment-only model, the contribution of elevation is minimal 
(8.54%). Nonetheless, elevation remains a crucial factor determin-
ing honey bee activity and has been extensively utilised in litera-
ture concerning land suitability analysis for apiary sites (Fazel & 
Abdul, 2012; Maris et al., 2008; Sarı et al., 2020; Zoccali et al., 2017). 
Furthermore, it was evident that elevation holds greater importance 
when compared to other topographic factors such as slope and as-
pect. The outcome further confirms the fact that access to floral 
resources is a prime criterion to be considered when locating a com-
mercial apiary site (Tennakoon et al., 2023).

TA B L E  3 Number of honey bee occurrences by suitability class under each modelling scenario.

Classification

Climate-only

Environment-only
Combined (environment 
and climate)1990–2009 (2000) 2020–2039 (2030) 2060–2079 (2070)

Number Percent (%) Number Percent (%) Number Percent (%) Number Percent (%) Number Percent (%)

Highly suitable 1140 71.93 18 1.13 0 0 745 47.03 1054 66.54

Moderately suitable 395 24.92 547 4.51 1 0.001 618 39.02 413 26.07

Marginally suitable 42 2.65 206 13.00 173 10.92 170 10.73 79 4.99

Not suitable 8 0.5 814 51.36 1411 89.02 51 3.22 38 2.40

Total 1585 100 1585 100 1585 100 1584 100 1584 100
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4.2  |  Response of the spatial distribution of honey 
bees to climate change in Australia

By the 2020–2039 period, approximately 88% of highly suitable 
habitats for honey bees are projected to transition from their cur-
rent state to become moderate to marginally suitable areas. Due to 
climate change, this transformation is predicted to result in a com-
plete change of highly suitable habitats to different categories by the 
years 2060–2079. However, there was a contrasting trend observed 
in the moderately suitable area, which showed a notable increase 
of 58% from 1990–2009 to 2020–2039. This increase can be at-
tributed to favourable changes in climatic factors, such as a slight 
decline in temperature seasonality (Bio4) and an increase in radia-
tion during the wettest (Bio24) and driest quarters (Bio25). However, 
the projection from 2020–2039 to 2060–2079 revealed a significant 
decline in the moderately suitable area, primarily due to an increase 
in temperature seasonality and a drastic reduction in radiation dur-
ing the driest quarter. This indicates the potential challenges that lie 
ahead for honey bee habitats due to changing climate. Additionally, 
while there is a temporary decrease in the not suitable area by the 
2020–2039 period, it subsequently increases by 2060–2079, high-
lighting the persistence of adverse climatic conditions for honey 
bees. Among the three scenarios, the environment-only model ex-
hibited the largest extent of highly and moderately suitable areas for 
honey bees, accounting for 24% of the total extent. This emphasises 
that the environmental factors in the study area are more favour-
able for honey bees than the climatic factors. The combined climate 
and environment model revealed a decrease of approximately 9% in 
this value, highlighting the limitations imposed by climate factors on 
habitat suitability.

By 2020–2039, new moderately suitable areas have emerged in 
all four regions, while most of the highly suitable areas have transi-
tioned into moderately suitable or marginally suitable lands. During 
the period from 2030 to 2070, a discernible westward shift can be 
observed in the distribution of marginally suitable areas, whereas 
only scattered patches of moderately suitable areas are found in 
Toowoomba, Western Downs and Southern Downs. Over time, the 
regions of Goondiwindi that were once highly and moderately suit-
able are predicted to transition into areas classified as marginally and 
not suitable.

In the suitability map produced by ensemble modelling for the 
1990–2009 period, 97% of honey bee occurrence records were 
found within the highly suitable and moderately suitable areas. This 
high correspondence between the model predictions and actual oc-
currences further validates the accuracy of the model. However, a 
significant decline is observed in future projections, with the occur-
rence records dropping to zero by 2060–2079. Remarkably, by the 
same period, a substantial majority, comprising 89% of the current 
occurrences, will be classified as not suitable, indicating a concern-
ing shift in habitat suitability for honey bees. Regional ecosystems 
with floral species suitable for honey bees are mainly confined to 
the eastern and southern parts of the study area, encompassing 
areas such as Goondiwindi, Western Downs, and Southern Downs. 

With the changing climate, it is predicted that the habitat suitability 
for honey bees will shift towards the western parts, where there 
are fewer favourable regional ecosystems available. This implies the 
vulnerability of the apiary industry, particularly in the study area, 
which covers a significant portion of the honey-producing region in 
Queensland.

4.3  |  Limitations of the present study and 
recommendations

Species Distribution Modelling (SDM) can be applied on both natural 
and managed ecosystems. This study aimed to assess the impact of 
climate change on both managed and feral honey bee colonies, yet a 
limitation encountered was the insufficient availability of honey bee 
occurrence records that can be derived from reliable sources. The 
honey bee presence data mainly consists of managed apiary site lo-
cations. While these apiary sites are presumed to capture the natural 
landscape attributes suitable for honey bees, it will be interesting to 
model honey bee distribution using other “natural” locations for the 
presence data.

While the most common approach in SDM studies is the use of a 
single data split, it has the drawback of potentially introducing bias to 
parameter estimation (Araujo et al., 2005). To address this concern, 
various resampling methods can be employed, including random 
subsampling, K-fold cross-validation, Jackknife (leave-one-out), and 
bootstrapping (Hastie et al., 2009). It is also advisable to explore the 
utilisation of similarity metrics such as Jaccard and Sørensen indices, 
or F-measure indices (Leroy et  al.,  2018), as potential alternatives 
to address the limitations associated with AUC, TSS, and KAPPA in 
predictive distribution models.

Pesticides have a detrimental effect on honey bees, and their 
habitat suitability (Krupke et al., 2012; Tome et al., 2020; Williams 
et al., 2015; Zhu et al., 2014). In this study, the assessment of suit-
able locations did not consider the exposure to pesticides, which is 
recognised as a limitation. Therefore, it is recommended to incor-
porate pesticide exposure as a factor when determining suitable 
locations for honey bees. Furthermore, this study overlooks the 
aspect of habitat connectivity between suitable habitats for honey 
bees. It is suggested to include an analysis of the land use to assess 
the proximity and potential barriers among habitats. Integration of 
habitat connectivity measures into honey bee species distribution 
modelling, will provide insights into how the arrangement and ac-
cessibility of suitable habitats influence honey bee populations. This 
information will contribute to more accurate predictions of honey 
bee distribution and assist in identifying priority areas for conserva-
tion and management efforts. Furthermore, this study did not take 
into consideration the land use changes when predicting future hab-
itat suitability for honey bees. Therefore, it is worthwhile to com-
bine anticipated land use changes with the projected future maps 
to obtain more accurate results. It is also advisable to explore the 
utilisation of similarity metrics such as Jaccard and Sørensen indices, 
or F-measure indices (Leroy et  al.,  2018), as potential alternatives 
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to address the limitations associated with AUC, TSS, and KAPPA in 
predictive distribution models.

5  |  CONCLUSION

In this study, an ensemble modelling approach was employed for 
developing three models to examine the distribution of honey 
bees based on various predictor variables. These models in-
clude the climate-only model, the environment-only model, and 
the combined climate and environment model. The climate-only 
model utilised the most dominant climatic factors that impact 
honey bee suitability such as radiation in the wettest and driest 
quarters, as well as temperature seasonality. On the other hand, 
the environment-only model incorporated the environmental vari-
ables that primarily influence honey bee habitat suitability such as 
proximity to regional ecosystems, foliage projective cover, and el-
evation. To capture the collective influence of climate and environ-
mental factors, the combined model was developed by integrating 
the variables used in both the climate-only and environment-only 
models. Using the climate-only model, three suitability maps were 
projected for the time periods 1990–2009, 2020–2039, and 2060–
2079. All three models demonstrated strong predictive perfor-
mances with TSS values greater than 0.8. Under the 2020–2039 
scenario, it is projected that 88% of the highly suitable land will 
transition to moderately suitable (14.84%), marginally suitable 
(13.46%), and not suitable (71.10%) areas, leaving only a 0.6% of 
the land as highly suitable. By the period of 2060–2079, the highly 
suitable area will undergo a complete transformation, transitioning 
entirely into other classes: moderately suitable (0.54%), marginally 
suitable (17.56%), and unsuitable (81.9%). This predicted loss of 
suitable habitats, particularly in terms of climate suitability, high-
lights the vulnerability of honey bees for climate change. Thus, 
this decline is anticipated to have significant impacts on natural 
ecosystems and commercial apiary management, which is a crucial 
contributor to the national economy.

The results of this study reveal a significant decline in the 
suitable area for honey bees under changing climate conditions. 
Therefore, this study stresses the importance of mitigating the im-
pacts of climate change on honey bee habitats. Accordingly, inves-
tigating potential adaptation strategies for honey bee management 
in the face of climate change is crucial. Such strategies may include 
exploration of supplementary food sources for honey bees, selec-
tive breeding, innovative hive management techniques, and land-
scape planning to enhance honey bee resilience and minimise the 
negative impacts of changing climatic conditions. Additionally, en-
gaging stakeholders, including beekeepers, farmers, and relevant 
government authorities, in addressing the challenges posed by cli-
mate change on honey bee distribution is essential. Evaluating the 
effectiveness of current policies and offering recommendations 
for promoting sustainable honey bee management and conserva-
tion efforts are key avenues for further exploration. These poten-
tial extensions would provide valuable insights into the complex 

interactions among climate change, environmental factors, and 
honey bee distribution. They would enhance our comprehensive 
understanding of land suitability for honey bees and contribute 
to the development of targeted conservation and management 
strategies.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
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