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Abstract: The prediction of sea level rise is extremely important for improved future climate change
mitigation and adaptation strategies. This study uses a hybrid convolutional neural Network (CNN)
and a bidirectional long short-term (BiLSTM) model with successive variational mode decomposition
(SVMD) to predict the absolute sea level for two study sites in Australia (Port Kembla and Milner
Bay). More importantly, the sea level measurements using a tide gauge were corrected using Global
Navigation Satellite System (GNSS) measurements of the vertical land movement (VLM). The SVMD-
CNN-BiLSTM model was benchmarked by a multi-layer perceptron (MLP), support vector regression
(SVR) and gradient boosting (GB). The SVMD-CNN-BiLSTM model outperformed all the comparative
models with high correlation values of more than 0.95 for Port Kembla and Milner Bay. Similarly, the
SVMD-CNN-BiLSTM model achieved the highest values for the Willmott index, the Nash–Sutcliffe
index and the Legates and McCabe index for both study sites. The projected linear trend showed
the expected annual mean sea rise for 2030. Using the current trend, Port Kembla was projected to
have an MSL value of 1.03 m with a rate rise of approx. 4.5 mm/year. The rate of the MSL for Milner
Bay was comparatively lower with a value of approx. 2.75 mm/year and an expected MSL value of
1.27 m for the year 2030.

Keywords: mean sea level (MSL); Global Navigation Satellite System (GNSS); vertical land movement
(VLM); convolutional neural network (CNN); bidirectional long short-term memory (BiLSTM); signal
decomposition by successive variational mode decomposition (SVMD)

1. Introduction

The anticipated rise in sea level caused by climate change has many potential conse-
quences, including flooding, shoreline retreat, ecosystem imbalance and the invasion of
salt water into freshwater systems. This endangers 60% of the world’s population that lives
in coastal areas [1]. The situation is particularly acute for communities on small islands
which may become uninhabitable [2,3]. These impacts motivate using long-term sea level
rise modeling as a tool to understand the trends and accurately predict sea level rise in the
future. However, the accuracy and reliability of these predictions should consider certain
important aspects, such as the absolute sea level rise, which accounts for land subsidence.
In this paper, we model the vertical land motion (VLM) [4]-corrected absolute sea level
at two separate geographical locations in Australia using a novel deep learning artificial
intelligence model based on successive variational mode decomposition (SVMD) [5], a
convolutional neural network (CNN) [6] and bidirectional long short-term memory (BiL-
STM) [7]. The VLM consideration is extremely important because the position of the sea
floor changes over time, and therefore the measured sea level should be corrected for this
variability for accurate estimation [4]. The VLM has many root causes, including tides, plate
tectonic movements, earthquakes, glacial activity and human actions. While the typical
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values are significantly less than 10 mm year−1, they can be as large as 100 mm year−1 in
some extreme cases [8]. Given that the order of magnitude of typical VLM values is the
same as the changes to the mean sea level, these values cannot be ignored and sea level
measurements must be corrected.

LSTM models are well known to be reliable for modeling time series data such as
the mean sea level. They are a type of recurrent neural network (RNN) in that they use
feedback connections. However, unlike plain RNNs, they do not suffer from vanishing
gradients during training, which affects the convergence of the model fit [9]. LSTM models
are generally considered to be superior to traditional approaches, such as autoregressive
integrated moving average (ARIMA) models [10] and bidirectional LSTM models (i.e., a
BiLSTM), in which training data is fed in both directions through the model [11]. Previous
research studies into sea level modeling have used different techniques. For example, in [12],
the authors employed a simple linear regression with independent variables, including
wind speed and pressure, to predict sea level rise. The model, while coarse, was able to
explain 74% of the total observed subtidal frequency sea level in Atlantic City, New Jersey.
The study in [13] compared chaos theory and ARIMA models for daily, weekly, 10-day and
monthly sea levels at the Cocos Islands from 1992 to 2001 and found that the chaos theory
models were slightly superior. Other studies have also used various AI models, such as
artificial neural networks (ANNs), to model sea level. A study modeling the surface water
levels in the Caspian Sea identified a similar accuracy between an ARIMA model and a
basic 3-layer ANN model (comprising input, hidden and output layers) [14]. The study
in [15] compared ARIMA, support vector regression (SVR) and LSTM models for sea levels,
with the LSTM model exhibiting a significantly higher accuracy. Various other studies
used different types of ANNs and deep learning to model sea level. However, no other
study considered the VLM correction for absolute sea level, the SVMD data decomposition
or a hybrid model. Hence, this study presents a new deep learning hybrid CNN-BiLSM
model to predict the absolute sea level after GNSS-VLM for Australian sites with a data
decomposition of the wave signals.

2. Materials and Methods
2.1. Study Area and Dataset

Two study sites situated in Australia were selected for this study. The two sites were
located on different sides of Australia and provided a good comparison for absolute sea
level rise. Table 1 and Figure 1 describe the location and geographical details. The datasets
were extracted from the Australian Meteorological website (Australian Baseline Sea Level
Monitoring Project (bom.gov.au) accessed on 15 May 2022).

Table 1. The geographical details of the study site locations in Australia.

State Tide Gauge
Location

Geographical
Location

New South Wales Port Kembla 34◦28′48.27′′S and
150◦54′1.78′′E

Northern Territory Milner Bay 13◦51′20.88′′S and
136◦24′52.56′′E

2.2. Data Preprocessing

The datasets were corrected for missing values, which were indicated with ‘−9999’.
This was processed in Python using the dataframe.interpolate function. The Australian
Meteorological website (Australian Baseline Sea Level Monitoring Project (bom.gov.au)
accessed on 15 May 2022) maintains high quality data and the relative proportion of missing
or bad values in each file is small. After the correction of the missing values, the dataset
was checked for stationarity. This is an important step in time series data analysis [16].
The following result showed the analysis of stationarity for the Milner Bay dataset using

bom.gov.au
bom.gov.au
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the augmented Dickey–Fuller (ADF) test [17,18]. The test statistic should be less than the
critical values at 1%, 5% and 10% for the null hypothesis to be rejected. Based on the
test statistic, a conclusion was made that the dataset was stationary. Table 2 shows that
the test statistic was less than the critical values for the stationarity test. The dataset was
then subjected to autocorrelation and partial autocorrelation analyses to determine the
correlation lags, as shown in Figure 2. All the input parameters were checked for correlation
with the mean sea level and computed as a matrix, as given in Figure 3. The dataset was
normalized using Equation (1) and then denormalized using Equation (2) after modeling.

xn =
xraw − xmin

xmax − xmin
(1)

xraw = xn(xmax − xmin) + xmin (2)
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Figure 1. The map of Australia showing the locations of the two study sites. The red rectangle shows
the two study sites.

Table 2. The augmented Dickey–Fuller (ADF) test results for Milner Bay.

Test Statistic −4.020307

p-value 0.001308

Lags Used 13

Number of Observations Used 306

Critical Value (1%) −3.451902

Critical Value (5%) −2.871032

Critical Value (10%) −2.571827
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Figure 2. The ACF and PCF for Milner Bay. The blue line shows the boundary of lag significance and
red dots show the Partial Autocorrelation lags.
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Figure 3. The correlation matrix for the Port Kembla mean sea level with each input feature (SL—Sea
Level). The darker green shades show a high correlation and the orange to red shades show a weaker
correlation among the sea level parameters.

2.3. GNSS-VLM Correction of Port Kembla and Milner Bay

The Global Positioning System (GPS) is part of the Global Navigation Satellite System
(GNSS) which allows for accurate measurements of the Earth’s surface [19]. It is used to
locate the position of a receiver using a constellation of numerous artificial satellites [20,21].
This study uses the GNSS-VLM dataset in [22] derived from continuously operating GPS
stations operated by the Nevada Geodetic Laboratory. Table 3 shows the information for
Port Kembla and Milner Bay.
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Table 3. The GNSS-VLM details for Port Kembla and Milner Bay.

Longitude Latitude
Imaged
Vertical Rate
(mm/year)

Imaged
Aleatory
Uncertainty

Spatial
Structure
Function (SSF)

Nearest Neighbor
Spatial Variability
(mm/year)

Non-Seasonal
Temporal Variability
(mm/year)

Tide Gauge: Port Kembla

136.416 −13.860 0.195 0.367 0.558 1.145 1.775

Tide Gauge: Milner Bay

150.912 −34.474 −1.220 0.426 0.930 0.721 1.506

2.4. Signal Decomposition by Successive Variational Mode Decomposition (SVMD)

SVMD is an efficient signal decomposition technique which extracts underlying modes
of the input signal into its intrinsic mode functions (IMFs) [23]. It has a lower computational
complexity compared to VMD and is less sensitive to the initial values of the central
frequencies of the modes [5]. These modes are orthogonal and are separated by the
respective bands. The highest frequency is removed from the original signal iteratively
until the residual is left as a monotonic function [24]. The process of signal decomposition is
very important in data modeling as it helps to extract important features and improves the
training model efficiency [25]. The Hs wave signal for both study sites were fed through the
SVMD algorithm. The algorithm parameters of the compactness mode, step of dual ascend,
tolerance of convergence, stopping criteria and sampling frequency were determined
through trial runs before extracting the decomposed intrinsic modes. Figure 4 shows the
Milner Bay signal decomposed into its IMFs using the SVMD technique for this study.
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2.5. Data Partition

Data partitioning is an essential step in data modeling that ensures the optimum data
for each sample in training, validation and testing [26]. Table 4 shows the 60% training,
20% validation and 20% testing dataset breakdown used in this study.

Table 4. The data partition for the period 1995–2021 into training, validation and testing.

Partition Training Validation Testing

Oceanic Dataset January
1995–December 2010

January
2011–December 2011

January
2012–August 2021
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2.6. Objective Model and Modeling Process

The objective model selected for this study was the hybrid deep learning model
CNN-BiLSTM. The CNN-BiLSTM model can utilize the benefits of the CNN algorithm
and two layers of the LSTM model to process the data inputs effectively for data training
and forecasting. A CNN is a deep learning convolutional neural network consisting of
multiple layers of artificial neurons [27]. This study used a one-dimensional convolutional
layer which added a filter to the model architecture for convolution. This process of one-
dimensional convolution helped to extract valuable information from the data inputs. The
next stage of data processing was then conducted using the BiLSTM layers. The BiLSTM
layers were widely used in time series analysis due to their ability to expand according to
the sequence of time [28]. The BiLSTM platform in the study consisted of two LSTM layers
(a forward and a reverse LSTM layer). Each BiLSTM layer had two LSTM networks, which
processed the input dataset. A LSTM model is a network designed to overcome gradient
explosion and gradient disappearance in a RNN [28,29]. The hybrid CNN-BiLSTM model
had the additional capability of utilizing the CNN feature extraction superior ability and
the BiLSTM architecture, which further processed these using the forward and backward
neural layers. This approach of using the hybrid deep learning model performed better
than the standalone models in multiple past studies [30–32].

Table 5 shows the model parameters, which were obtained using Grid-Search opti-
mization for optimum results. Figure 5 illustrates the data analysis in Python and how the
layers were arranged within the hybrid deep learning model architecture. Figure 6 shows
the overall modeling process.

Table 5. The CNN-BiLSTM model parameters.

Optimizer Activation
Function Loss Function Weight

Regularization Dropout

Adam Rectified Linear Unit
(ReLU)

Mean Square
Error L1 = 0, L2 = 0.01 0.1
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2.7. Benchmark Models
2.7.1. Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a supervised learning algorithm that learns on a
nonlinear function by utilizing backpropagation [33]. It usually conists of at least three
layers of nodes, i.e., an input layer, a hidden layer and an output layer. Apart from the
input layer, each node consists of a nonlinear activation function. The data transfer is only
conducted in a forward direction [34].

2.7.2. Gradient Boosting

Gradient boosting (GB) utilizes a set of weak learners that perform slightly better
than random guessing to develop a single strong learner [35,36]. The regularization of the
hyperparameters helps to control the additive process of gradient boosting. Shrinking is
applied to reduce each gradient descent step to naturally achieve regularization [37].

2.7.3. Support Vector Regression

Rooted in the Vapnik-Chervonenkis (VC) theory, support vector regression (SVR) is
characterized by the use of kernels, a sparse solution, a control of margin and support
vectors [38]. It is a supervised learning approach where the dataset is trained using a
symmetrical loss function, which equally penalizes high and low misestimates.
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2.8. Performance Evaluation Metrics

Eight evaluation metrics were used for this study for the model performance com-
parison. Every metric shown below (Equations (3)–(9)) added an important aspect of
performance evaluation and justified the accuracy of the model performance in sea level
prediction for the study sites.

1. Correlation Coefficient (r)

r =

 ∑n
i=1(DOi −MDO)(DSi −MDS)√

∑n
i=1(DOi −MDO)2 ∑n

i=1(DSi −MDS)2

2

(3)

2. Willmott’s Index of Agreement (d)

d = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi −MDO|+|DOi −MDS|)2

]
(4)

3. Nash–Sutcliffe Coefficient (NS)

NS = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(DOi −MDO)2

]
,−∞ ≤ NS ≤ 1 (5)

4. Legates and McCabe Index (LM)

LM = 1−
[

∑n
i=1|(DSi − DOi)|

∑n
i=1|DOi −MDS|

]
, 0 ≤ L ≤ 1 (6)

5. Root Mean Square Error (RMSE)

RMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2 (7)

6. Mean Absolute Error (MAE)

MAE =
1
n ∑n

i=1|(DSi − DOi)| (8)

7. Relative Root Mean Square Error (RRMSE)

RRMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2

1
n ∑n

i=1 DOi
× 100 (9)

8. Mean Absolute Percentage Error (MAPE)

MAPE =
1
N

(
∑i=1

N

∣∣∣∣ (DSi − DOi)

DOi

∣∣∣∣)× 100 (10)

where DSi is the simulated data and DOi is the observed data.

3. Results and Discussion

The prediction results from the testing phase were compared with the observational
dataset by computing the performance and error metrics. Tables 6–9 show the performance
metrics for the objective model (SVMD-CNN-BiLSTM) and the three benchmark models
(SVMD-MLP, SVMD-SVR, SBMD-GB).
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Table 6. Model performance metrics for Port Kembla.

Model Correlation
Coefficient (r)

Willmott’s
Index of

Agreement (d)

Nash–Sutcliffe
Coefficient (NS)

Legates and
McCabe Index (L)

SVMD-MLP 0.9084 0.8296 0.5377 0.2999
SVMD-SVR 0.9238 0.7682 0.4543 0.2760
SVMD-GB 0.9421 0.8729 0.6409 0.3654

SVMD-CNN-
BiLSTM 0.9524 0.9457 0.8790 0.6581

Table 7. Model error metrics for Port Kembla.

Model RMSE MAE RRMSE MAPE

SVMD-MLP 0.0392 0.0329 4.0971 3.3719
SVMD-SVR 0.0426 0.0341 4.4513 3.4571
SVMD-GB 0.0345 0.0299 3.6111 3.0948

SVMD-CNN-BiLSTM 0.0200 0.0161 2.0957 1.6740

Table 8. Model performance metrics for Milner Bay.

Model Correlation
Coefficient (r)

Willmott’s
Index of

Agreement (d)

Nash–Sutcliffe
Coefficient (NS)

Legates and
McCabe Index (L)

SVMD-MLP 0.9487 0.9270 0.8746 0.6727
SVMD-SVR 0.9401 0.9201 0.8685 0.6858
SVMD-GB 0.9584 0.9543 0.9099 0.7209

SVMD-CNN-
BiLSTM 0.9736 0.9717 0.9439 0.7781

Table 9. Model error metrics for Milner Bay.

Model RMSE MAE RRMSE MAPE

SVMD-MLP 0.0760 0.0602 6.2579 5.0577
SVMD-SVR 0.0778 0.0578 6.4084 4.7697
SVMD-GB 0.0644 0.0513 5.3038 4.1757

SVMD-CNN-BiLSTM 0.0508 0.0408 4.1839 3.4031

This study developed a hybrid SVMD-CNN-BiLSTM deep learning model for VLM-
corrected mean sea level prediction. Other well-known AI models were also used for the
prediction of the VLM-corrected sea level. Hence, to analyze and compare the efficiency of
these models, all the model results were used to calculate the performance and error metrics
to evaluate the prediction ability. Figures 7 and 8 illustrate scatterplots which display the
strength of the association between the observed and predicted values. Figures 9 and 10
show the time series comparison for the model prediction with the observed values for
both study sites. The SVMD-CNN-BiLSTM model showed a strong association and the
best results for both study sites.
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each model.

Figures 11 and 12 show the model performance of the two study sites based on the
computation of the correlation coefficient, Willmott’s index, the Nash–Sutcliffe coefficient
and the Legates and McCabe index. The correlation coefficient was an important statistical
measure and showed the degree of association between the observed and predicted VLM-
corrected mean sea level [39]. Willmott’s index of agreement was a measure of the variability
between the observed and predicted data and is commonly used in climate modeling [40].
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Nash–Sutcliffe index is mostly used in water quality models and provided a goodness
of fit for the evaluated models [41]. The Legates and McCabe index is a variant of the
Nash–Sutcliffe index and is considered a more refined index of the model performance,
which compared the agreement between the observed and predicted data [42]. All the
models showed a high correlation with values of greater than 0.9 for both study sites. The
SVMD-CNN-BiLSTM model attained the highest value at both study sites with values of
0.9524 and 0.9736 for Port Kembla and Milner Bay, respectively. Similarly, the SVMD-CNN-
BiLSTM model achieved the highest values for Willmott’s index (0.9457), the Nash–Sutcliffe
index (0.8790) and the Legates and McCabe index (0.6581) for Port Kembla. Milner Bay
also showed superior results for the SVMD-CNN-BiLSTM model with Willmott’s Index
(0.9717), the Nash–Sutcliffe index (0.9439) and the Legates and McCabe index (0.7781).
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The computation of more than one error metric for evaluation was as important as
the performance metrics to ensure a comprehensive evaluation [43]. The error results also
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supported the superior performance of the objective model with lower values of the RMSE
(0.02), MABE (0.016), RRMSE (2.096) and MAPE (1.6740) for Port Kembla and the RMSE
(0.051), MABE (0.041), RRMSE (4.184) and MAPE (3.403) for Milner Bay. Figures 13 and 14
show the graphic comparison of these results.
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Figures 15 and 16 provide the VLM-corrected mean sea level trend analysis for Port
Kembla and Milner Bay. The GNSS-VLM correction was made for the MSL annual values
for the trend analysis using three period moving averages and the SVMD-CNN-BiLSTM
model tracking. The projected linear trend showed the expected rise for 2030. The annual
mean MSL was closely tracked by the developed objective model, which confirmed its high
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accuracy and its ability to predict the MSL values. Using the current trend, Port Kembla
would have a MSL value of 1.03 m with a rate rise of about 4.5 mm/year, which was
slightly lower than the values of 6.5 mm/year in [44]. This was due to the consideration of
land subsidence and future projected values based on past trends. The rate of the MSL for
Milner Bay was comparatively lower, with a value of about 2.75 mm/year and an expected
MSL value of 1.27 m for the year 2030.
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4. Conclusions

In this study, we developed a hybrid SVMD-CNN-BiLSTM deep learning model for
VLM-corrected mean sea level prediction at two sites in Australia, namely Port Kembla
and Milner Bay. This model outperformed the three other benchmark models (SVMD-MLP,
SVMD-SVR and SBMD-GB) in terms of their metrics, such as the correlation coefficient,
Willmott’s index, the Nash–Sutcliffe coefficient and the Legates and McCabe index, thus
supporting its superior performance. The study also confirmed the importance of using a
data decomposition method to extract important features from wave signals. The prediction
of the absolute mean sea level accurately assists with careful planning and decision making
for the future. The study successfully provided an insight into the trend by allowing for
the linear projection of the sea level rise. Using the current trend, Port Kembla will have an
MSL rise of approx. 4.5 mm/year and 1.27 m for Milner Bay will reach a 1.27 m rise by the
year 2030. This study can be extended to other areas for accurate predictions of the MSL.
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