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Piezoresistive effect in p-type 
3C-SiC at high temperatures 
characterized using Joule heating
Hoang-Phuong Phan1, Toan Dinh1, Takahiro Kozeki2, Afzaal Qamar1, Takahiro Namazu2, 
Sima Dimitrijev1, Nam-Trung Nguyen1 & Dzung Viet Dao1,3

Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications 
in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent 
corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive 
effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ 
measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses 
a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. 
The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive 
and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 
573 K. The increase in gauge factor based on the combination of these phenomena could enhance the 
sensitivity of SiC based MEMS mechanical sensors.

Sensors based on MEMS technologies, which can withstand harsh environments, have been extensively devel-
oped and investigated recently1,2. The use of these transducers could not only improve the efficiency of systems 
but also predict possible failures due to hostile conditions3. For instance, in pipeline systems, gas flow sensors, 
strain sensors, and pressure sensors are required to measure the pressure level, monitor pipeline cracks, as well 
as detect gas leakage4. Additionally, in industries involving fuel combustion such as aerospace and automotive 
systems, temperature and pressure sensors are vital devices in the feedback control to enhance the performance 
of engines5,6. Among various technologies utilized in mechanical sensors, the piezoresistive effect has several 
advantages, such as device miniaturization, low power consumption, and simple read out circuits7–11. The pie-
zoresistance of silicon (Si) has been deployed in a large number of applications, including inertia12, pressure13, 
tactile14, and chemical/bio sensors15,16 owing to its large gauge factor, worldwide availability and mature fabrica-
tion technologies. However, Si is not a suitable material used in harsh environments because of its relatively low 
energy gap of 1.12 eV and its plastic deformation at high temperature17.

Recent studies have paid a great attention to silicon carbide (SiC), a wide energy gap material, which possesses 
several superior physical properties over Si for applications under hostile conditions18–22. The piezoresistive effect 
of SiC has been investigated to replace Si based counterparts for high temperature applications1,23–32. However, 
one of the main obstacles for SiC material is its high cost compared to Si1,25,26. Researchers have aimed at growing 
SiC on large scale Si substrates to reduce the cost of SiC wafers as well as to ease the SiC MEMS devices fabrica-
tion processes. Among 200 poly types of crystalline SiC, 3C-SiC (or cubic SiC) is the only poly type that can be 
grown on a Si substrate33. The size of single crystalline 3C-SiC grown on Si substrates has been reported to be 
up to 150 mm34,35. In addition, the piezoresistance of p-type 3C-SiC grown on large scale Si wafers with a diam-
eter of 150 mm has been reported recently, showing a gauge factor of approximately 30, which is promising for 
mechanical sensors36,37. However, to date, the piezoresistive effect of p-type 3C-SiC at high temperatures has not 
been reported. One of the main reasons that makes the characterization of the electrical properties of 3C-SiC at 
high temperature challenging, is the large current leakage between the SiC and Si junction at temperature above 
150 °C38,39.

This paper aims to characterize the piezoresistive effect of highly doped p-type 3C-SiC at high temperatures 
utilizing a new measurement method in which 3C-SiC piezoresistors are heated using the Joule heating effect. 
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We also report on the combination of the piezoresistive and themoresistive effects in 3C-SiC at high temperatures 
(hereinafter the combination phenomenon). A mathematical model was also proposed to extract the true gauge 
factor of p-type 3C-SiC from the combination of these two effects. The measurement technique proposed in this 
study can also be used to characterize the piezoresistive effect in other semiconductors at high temperatures, and 
to tune their gauge factor based on the combination phenomenon.

Results and Discussion
Principle of the in situ measurement method.  Figure 1(a) shows the fabricated SiC resistors on a Si 
strip. A SiC bridge with Al electrodes deposited and patterned on its top surface was released from the Si sub-
strate, while its two ends were fixed to the substrate by non-released pads with a surface area of 100 μm  ×​  300 μm. 
A SiC resistor with a dimension of 08 μm ×​ 12 μm ×​ 300 nm is located at the center of the released bridge.

The linear current-voltage curve of the resistor indicates that a good Ohmic contact was formed between Al 
and SiC, Fig. 1(b). The current leak through the SiC/Si heterojunction was found to be negligible at room temper-
ature. The fabricated sample was then heated using a hot plate up to 200 °C. The experimental data showed that, at 
temperature above 100 °C the leakage current becomes significant, reaching above 10% of the current of the SiC 
resistor. As a consequence, the Si substrate may contribute to the measurement of the piezoresistive effect in SiC 
at high temperature if the whole SiC/Si strip is heated. To avoid the influence of the Si layer on the measurement 
of the piezoresistive effect in SiC at high temperature, there is a need to lower the temperature of the Si when heat-
ing the SiC piezoresistors. We propose the following technique to characterize the piezoresistance of the p-type 
3C-SiC at elevated temperatures.

As shown in Fig. 2, initially a high electrical power was supplied to the released SiC resistor to increase its 
temperature using the Joule heating effect. Because the Al/SiC bridge was released, the thermal conductivity 
through the substrate was significantly reduced. Therefore, the temperature of the Si layer remained relatively 
low, preventing a large leakage current occurring at high temperatures. Once the temperature of the SiC resistors 
reached the steady state, an external mechanical strain was then applied. Because the SiC was heated by applying 
an electrical power, the change in its resistance due to the piezoresistance will in turn change the applied power, 
and consequently change the resistance of SiC due to the thermoresistive effect. Thus, both the piezoresistive and 
thermoresistive effects will contribute to the modification in the electrical conductance of SiC under stress. From 
the change in SiC resistance due to this combined effect, the gauge factor of p-type 3C-SiC at high temperatures 
can be obtained. The following sections present: (i) the bending method used to characterize the piezoresistive 
effect; (ii) the thermoresistive effect used to monitor the temperature of the heated SiC resistor; (iii) the Joule 

Figure 1.  (a) SEM images of SiC resistors released from the Si substrate using a MEMS photolithography 
process; (b) The IV curve of a SiC resistor measured at low applied voltage to avoid the effect of Joule heating; 
(c) Measurement of the current leakage through the SiC/Si junction when the SiC/Si strip was uniformly heated 
at high temperatures up to 200 °C.
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heating effect for locally increasing the temperature of SiC; and (iv) separation of the piezoresistive effect from 
the combination phenomenon.

The piezoresistive effect of 3C-SiC at room temperature.  The piezoresistive effect of the released 
3C-SiC was initially investigated at room temperature. The strain was induced into the SiC frame by employ-
ing the bending beam method. One end of the Si beam was fixed using a metal clamp, while the free end was 
deflected. The strain applied to the top surface of Si layer is:

ε = Fl Ewt6 / (1)2

where F is the applied force; and E, l, w and t are the Young’s modulus, length, width, and thickness the Si canti-
lever, respectively. Since the released SiC bridges were fixed to the Si substrate at their two ends, we expected that 
the strain would be induced into the SiC resistors following the bending of the Si cantilever40,41. Finite element 
analysis (FEA) was then carried out using COMSOL Multiphysics™​, Fig. 3(a). The simulation results indicated 
that the strain induced into SiC resistors was almost the same as that of the Si substrate with a difference of below 
5%. Therefore, the strain applied to the fabricated SiC resistor can be approximated using equation (1).

The resistance change of SiC resistors under mechanical strain was monitored using a resistance-meter 
(Agilent Multimeter™​). At a small applying current of 500 nA from the multimeter, the Joule heating effect in 
3C-SiC resistor is considered to be negligible. Under mechanical strains varying from 00 to 350 ppm, the relative 
resistance change (Δ​R/R) of the p-type 3C-SiC shows a linear relationship with the applied strain, Fig. 3(b). 
Consequently, the gauge factor of p-type 3C-SiC was calculated to be 28 at room temperature (25 °C), using the 
equation: GF =​ (Δ​R/R)/ε.

The gauge factor of p-type 3C-SiC has a positive value and is at least 15 times larger than that of metals. The 
piezoresistive effect in p-type 3C-SiC can be qualitatively explained due to the redistribution of holes in the top 
valance bands. Under a mechanical strain, these bands (e.g. light holes and heavy holes) will split and warp, 

Figure 2.  The proposed in situ measurement. (a) A high electrical power was supplied to locally raise 
the temperature of a released SiC resistor; (b) Mechanical strain was induced into the SiC resistor, while its 
resistance change was also measured.

Figure 3.  (a) Simulation result of the strain applied to the SiC resistor when bending the Si cantilever (inset: 
a comparison between the strain induced into the SiC resistor (dart line) and that of the top surface of the Si 
substrate (solid line)); (b) The relationship between the relative resistance change of the p-type 3C-SiC resistor 
and the applied strain at room temperature. The applied current of the multimeter was set at 500 nA, at which 
the Joule heating effect is considered to be negligible.
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causing holes to move from higher energy to lower energy levels. The re-population of holes will lead to the 
change of their effective mass and thus their mobility, resulting in a change in SiC resistance (or conductance).

The thermoresistive effect of 3C-SiC.  Next, we characterized the thermoresistive effect of 3C-SiC to 
monitor the temperature of the 3C-SiC elements under Joule heating. The released SiC resistors were detached 
from the Si substrate using the Focused Ion Beam (FIB)42, as illustrated in Fig. 4 inset. Firstly, a probe was attached 
to the SiC bridge. Next, two ends of the released SiC resistors were diced using FIB to disconnect them from the Si 
substrate. Subsequently, the SiC resistors were transferred onto a glass substrate with aluminum contacts already 
deposited on it. Finally, tungsten was deposited onto the transferred SiC resistors to enhance the electrical con-
tact (ESI). Because FIB was used to cut the SiC bridge on the Al area, ion bombardment was expected to have no 
significant impact on the SiC resistor. This assumption was confirmed as the resistance of the SiC elements before 
and after the FIB process showed no difference.

The thermoresistive effect was then investigated by increasing the temperature of the transferred SiC elements 
using a high temperature oven. It can be seen from Fig. 4 that when raising the temperature from 300 K to 600 K, 
the resistance of the p-type 3C-SiC decreased by approximately 50%, indicating the negative temperature coeffi-
cient of resistance (TCR) in p-type 3C-SiC. This decrease in SiC resistance is due to the thermally activated carrier 
concentration43. From the relationship between the change of SiC resistance and its temperature, the temperature 
of the SiC element under the Joule heating effect can be estimated.

Joule heating in released SiC structures.  The Joule heating effect was then employed to locally raise the 
temperatures of the SiC resistors. The physical model of the Joule heating effect in our released SiC resistor is 
established based on the model of suspended beam heaters, which have been extensively investigated in gas sen-
sors44,45. Accordingly, the heating power supplied to SiC resistor is Psup =​ V ×​I, where V is the voltage drop across 
the SiC resistor and I is the applied current. The heat losses in the SiC bridges are caused by thermal conduction 
through the released beam to the anchor parts, thermal convection through the surrounding air, and thermal 
radiation. The heat loss through thermal conduction of the beam can be estimated as44: Pcd ∝​ AcrkcdΔ​T where Acr 
is the cross sectional area of the SiC bridges; kcd is the heat conductivity of SiC; and Δ​T is the temperature differ-
ence between the bridge center and beam anchor, respectively. The heat loss through thermal convection to the 
surrounding air can be approximated as44: Pcv ∝​ AsfkcvΔ​T, where Asf is the surface area of the SiC bridges, and kcv 
is the heat transfer coefficient. Additionally, the heat loss due to thermal radiation is46: λ∝ −∞P A T T( )rad sf

4
0
4 , 

where λ is the Stefan–Boltzmann constant, while T∞ and T0 are the temperature of the SiC bridge and the sur-
rounding air, respectively. At the steady state, the Joule heating effect reaches equilibrium, following the rule that 
the supplied power is balanced by the heat loss: Psup =​ V∞ ×​ I∞ =​ Pcd +​Pcv +​ Prad. Here, the subscript ∞​ indicates 
the steady state.

From the above mentioned theoretical analysis, we simulated the Joule heating effect using COMSOL 
Multiphysics™​. The temperature of the surrounding air was set to be 25 °C, while the silicon substrate was con-
sidered as the heat sink. The simulation results show that when the released SiC bridge is heated by the Joule 
heating effect, high temperatures mainly distributed at the center part of Al/SiC bridge and temperature gradually 
decreases from the center part to the anchor part. The temperature at the vicinity of the SiC/Si junction remains 
below 50 °C even when the temperature of the SiC resistor reaches above 300 °C, Fig. 5(a).

We conducted the Joule heating effect experiment on the released SiC resistors employing two different 
modes: constant current and constant voltage. Both modes showed the same result that, when the heating power 
was increased, the resistance of SiC decreased. Figure 5(b) presents the experimental results of the relationship 
between the supplied power and the SiC resistance at the steady state. The decrease in the resistance of SiC with 
increasing heating power obeys the thermoresistive effect presented in the previous section where increasing 
the temperature of the SiC element could increase its carrier concentration, thus enhance its electrical conduct-
ance. Additionally, by correlating the results in Figs 5(b) and 4, it is possible to develop the relationship between 
the temperature of the SiC resistor when a certain power is applied, as shown in Fig. 5(c). We also measured 
the leakage current through the SiC/Si junction when a large power was applied, showing that the leakage cur-
rent was negligible in comparison to the current flowing through the SiC resistor (ESI). This is due to the fact 

Figure 4.  The thermoresistive effect in p-type 3C-SiC transferred on glass substrate. 
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that temperature rises locally at the SiC resistor while the temperature at the SiC/Si junction remains relatively 
low. This result is also in solid agreement with the simulation result. Due to the low heat loss caused by ther-
mal conductance of the thin bridge, high temperatures mainly concentrated at the SiC resistor. Additionally, the 
temperature decreased significantly along the released bridge towards the fixed electrode pads. Therefore, the 
Joule heating effect can elevate the temperature of the SiC resistors and prevent the current leaking through the 
substrate. This result allowed us to characterize the piezoresistive effect in 3C-SiC on Si substrate in situ, which is 
presented as follows.

Combination of the piezo- and thermo-resistive effects in locally heated 3C-SiC.  Once the tem-
perature of the SiC resistors had reached the steady state (T∞) in the Joule heating experiment, the bending 
method was employed to investigate the piezoresistance in SiC at high temperatures.

Experimental results showed that, at a low applied power (below 6 μW) where the Joule heating effect was 
insignificant, the relative resistance changes of SiC resistor under strain in both constant current and constant 
voltage modes were almost the same. The gauge factor of p-type 3C-SiC was calculated to be approximately 28, 
which is the same as the result measured using the multimeter. However, under a high applied heating power (e.g. 
above 340 μW), the relative resistance changes of SiC resistor under constant applied current and constant applied 
voltage have different values. Figure 6 shows that under the same mechanical load and heating power, the change 

Figure 5.  (a) Simulation of the Joule heating effect on released SiC resistor using Comsol Multiphysics; (b) The 
relationship between the resistance of p-type 3C-SiC resistor and the heating power at the steady state, using 
the current mode and voltage mode. The decrease in SiC resistance at high applied power indicates that the 
Joule heating effect has significantly raised the temperature of SiC resistance; (c) Temperature at SiC resistor 
calibrated from Fig. 4. The non-linearity between the applied power and temperature is considered due to 
thermal radiation in nano structures at high temperatures46.

Figure 6.  Characterization of the piezoresistive effect at high temperature using the Joule heating effect. 
The relative resistance change at (a) small applied power (b) high applied power. The red line shows the output 
of the constant current mode, while the blue line illustrates the output of the constant voltage mode.



www.nature.com/scientificreports/

6Scientific Reports | 6:28499 | DOI: 10.1038/srep28499

of SiC resistance in constant voltage mode is larger than that of the constant current mode. At an applied power 
of 340 μW which corresponds to a temperature of approximately 573 K, the gauge factor at constant voltage mode 
was calculated to be GFV =​ 32.5, while at constant current mode this value was calculated to be GFI =​ 20.5. This 
phenomenon was considered to be due to the combination of piezoresistance and thermoresistance in the heated 
SiC element under strain, as illustrated in Fig. 7(a).

The combination phenomenon can be qualitatively explained as follows. Initially, under the Joule heating 
effect which raises the temperature of the SiC element (T), the resistance of SiC decreases to R0 at steady state due 
to the thermoresistance. Next, when temperature is maintained at the steady state (T), applying the tensile strain 
will cause the resistance to increase to R* due to the piezoresistance. Furthermore, this increase in the resistance 
will change the heating power supplied to the SiC element. In the case of the constant current mode, the heating 
power will increase as resistance increases (PI =​ RI2), while for constant voltage mode, the heating power will 
decrease (PV =​ V2/R), Fig. 7(a). The change of heating power in turn results in a change of resistance of the SiC 
piezoresistors following the thermoresistive effect. Consequently, at the steady state, the resistance of SiC under 
constant current mode will decrease from R* to R1, while the resistance under constant voltage mode will increase 
from R* to R2 due to the negative temperature coefficient of resistance as shown in Fig. 6(b).

Based on the combination phenomenon and the observed gauge factor at constant current and constant volt-
age modes, we propose a method to extract the piezoresistive effect from the influence of the thermoresistive 
effect at high temperature. It can be assumed from the diagram in Fig. 7 that when a mechanical strain is applied, 
if the power could be maintained constantly at P* =​ P0, the temperature of SiC would be then kept constantly, and 
the resistance of SiC would also maintain its value of R* at the steady state. Therefore, the true gauge factor of the 
piezoresistive effect at temperature T, should be within the gauge factors of GFI and GFV since the combination 
of thermoresistance and piezoresistance will enhance the gauge factor of SiC at the constant voltage mode; con-
versely the combination phenomenon reduces the gauge factor at the constant current mode.

As shown in Fig. 5(b), the resistance change shows a non-linear relationship with the applied power varying 
from 6 to 340 μW. However, this relationship can be linearized within a smaller interval of powers by applying 
the Taylor series expansion to a monotonically decreasing function. As such, at each applied power in the Joule 
heating experiment, we measured the resistance change with the heating powers varying by ±​5%. The resistance 
change showed a good linear relationship with the power applied in this small range, with a linear regression of 
99%. Therefore, in the combination phenomenon, the heating power and resistance change can exhibit a linear 
relationship as the change of resistance at the steady state was relatively small (below 0.6%) resulting in a small 
change of heating power (below 0.6%), Fig. 7(b). A detailed explanation of the linear approximation of the rela-
tionship between the heating powers and resistances is presented in the ESI. Using this linear approximation, the 
following equation can be established:
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where P* is the heating power at the steady state before applying strain (P* =​ P0 =​ V2/R0 =​ I2R0 ); and PI and PV 
are the heating power at the steady state after applying strain under constant current mode, and constant voltage 
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Additionally, the power differences are:

Figure 7.  (a) The combination of thermoresistance and piezoresistance in the heated SiC resistors under strain; 
(b) The calculation method of the true gauge factor.
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Note that as the gauge factor is the ratio of the relative resistance change to the applied strain (GF =​ δR/ε), the 
true gauge factor of the piezoresistive effect can be calculated based on the obtained gauge factor at the constant 
current and voltage modes:
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The bending experiment was also performed at different applied powers varying from 6 μW to 340 μW, corre-
sponding to a temperature range of 298 K to 570 K, Fig. 5(c). Additionally, using equation (7), the gauge factors of 
p-type 3C-SiC at different temperatures were calculated and plotted in Fig. 8. Evidently, with temperature varying 
from 298 K to 573 K, the gauge factor of p-type 3C-SiC was relatively stable with a smaller deviation of below 
10%. This result is understandable due to the fact that the p-type 3C-SiC was relatively highly doped, making 
its piezoresistive effect more stable at high temperatures. The results also indicate that p-type 3C-SiC is a good 
candidate for applications operated at high temperatures where Si cannot be used. Additionally, the gauge factor 
of constant applied voltage mode was approximately 20% larger than that of the true gauge factor, indicating 
that by employing the piezoresistance and thermoresistance, it is possible to enhance the sensitivity of SiC based 
mechanical devices.

In conclusion, this work reports the piezoresistive effect in p-type 3C-SiC at high temperatures of up to 573 K, 
characterized using an in situ measurement method. With a gauge factor of above 25 at 573 K, as well as a small 
deviation compared to the gauge factor at room temperature, highly doped p-type 3C-SiC is a promising poly 
type for mechanical sensing applications used in harsh environments. We also report a physical phenomenon 
regarding the combination of the thermoresistive effect and the piezoresistive effect on a locally heated SiC ele-
ment under mechanical strain. A physical model was also proposed to analyze this phenomenon and a calculation 
method to obtain the gauge factor of 3C-SiC at high temperatures was also presented. These models and method 
can be utilized for in situ characterizing of the piezoresistive effect in other semiconductor materials grown on a 
conductive material, as well as in tuning the gauge factor of these materials.

Methods
Growth of p-type single crystalline 3C-SiC.  Cubic SiC films were grown on a 150 mm Si(100) wafer by 
using a hot-wall low pressure chemical vapor deposition (LPCVD) reactor at 1000 °C34,35. The alternating supply 
epitaxy approach was used to achieve single crystalline SiC film deposition with silane (SiH4) and propylene 
(C3H6) as precursors. Trimethylaluminum [(CH3)3Al, TMAl] was employed as p-type dopant to in situ dope the 
SiC wafer. The quality of the grown SiC on Si film is presented in the ESI.

Figure 8.  Calculated gauge factor of SiC at different heating temperatures. 
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Fabrication of the released SiC resistors.  After the SiC on Si wafers were grow, SiC resistors with dimen-
sions of approximately 12 μm ×​ 8 μm were patterned using a conventional MEMS photolithography process36. 
Silicon carbide on Si wafer was then diced into cantilevers with dimensions of 60 mm ×​ 7 mm for the bending 
experiment. Finally, SiC resistors and Aluminum electrodes (SiC bridges with dimensions of 200 μm ×​ 8 μm) 
were released from the Si substrate by under-etching the Si substrate using XeF2 gas. Additionally, all p-type 
3C-SiC resistors used in this study were aligned in longitudinal [110] direction in order to obtain a large gauge 
factor. A detailed description of the fabrication can be found in the Electronic Supplementary Information (ESI).
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