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Abstract This paper describes a new numerical procedure, based on point colloca-

tion, integrated multiquadric functions and Cartesian grids, for the discretisation of

the stream-function formulation for flows of a Newtonian fluid in multiply-connected

domains. Three particular issues, namely (i) the derivation of the stream-function

values on separate boundaries, (ii) the implementation of cross derivatives in irreg-

ular regions, and (iii) the treatment of double boundary conditions, are studied in

the context of Cartesian grids and approximants based on integrated multiquadric

functions in one dimension. Several test problems, i.e. steady flows between a

rotating circular cylinder and a fixed square cylinder and also between eccentric

cylinders maintained at different temperatures, are investigated. Results obtained

are compared well with numerical data available in the literature.

Keywords: Stream-function formulation; multiply-connected domain; integrated ra-

dial basis function network; Cartesian grid

1 Introduction

The motion of a Newtonian fluid is governed by the Navier-Stokes equations which

can be written in terms of different dependent variables, including the velocity -

pressure formulation, the stream-function - vorticity formulation and the stream-

function formulation. The velocity - pressure formulation is able to work for two-

and three-dimension flows in a similar manner. One main concern is that there are

no explicit transport equation and boundary conditions for the pressure variable.

The resultant algebraic system could be solved iteratively where the pressure value

is corrected using the continuity equation. For two-dimensional (2D) problems, by

introducing the stream-function variable, one can eliminate the pressure and reduce

the number of unknowns, i.e. from three (the velocity - pressure formulation) to
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two (stream-function and vorticity) and only one (stream-function). However, the

last two formulations have some drawbacks. Special attention should be given to

the handling of the vorticity boundary condition for the stream-function - vorticity

formulation and the double boundary conditions as well as high-order derivatives

including the cross ones for the stream-function formulation. Furthermore, the pres-

sure field needs be computed after solving the governing equations, which is generally

regarded as a complicated process. In the case of multiply-connected domains, an

added difficulty is that the stream-function variable generally has different values,

which are unknown, on separate boundaries. It is noted that advantages of the

stream-function - vorticity formulation presented above are restricted to 2D prob-

lems.

The governing differential equations can be transformed into sets of algebraic equa-

tions by means of discretisation. To support the approximations, the problem do-

main needs be represented by a set of finite elements, a Cartesian grid or a collec-

tion of discrete points. For problems with complicated geometries such as flows in

multiply-connected domains, it has been recognised that the task of dividing the spa-

tial domain into a number of finite elements can be the most time-consuming part of

the solution process. Generating a Cartesian grid or a set of discrete points is clearly

much more economical. Over the last twenty years, radial-basis-function networks

(RBFNs) have been developed to solve different types of differential problems en-

countered in applied mathematics, science and engineering (e.g. [1,2,3,4,5,6,7,8,9]).

These approximators can work well with gridded and scattered points. As shown in

[10, 11, 12], there is the relation between the RBF collocation method and the finite

difference method (FDM). For 1D approximations, the standard RBF interpolant

converges to the Lagrange interpolating polynomial as the RBF width goes to in-

finity, which means that all classical FD formulas can be recovered by the limiting

RBF interpolant. In the case of two and higher dimensions, the situation is not
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clear due to the fact that multivariate polynomial interpolations are not well-posed.

In [4,5,6,7,8], the RBF approximations are constructed using integration (integrated

RBFNs (IRBFNs)) rather than the usual differentiation. This approach has the abil-

ity to overcome the problem of reduced convergence rates caused by differentiation

and to provide effective ways to implement derivative boundary values. IRBFNs

have been developed for the simulation of flows in simply-connected domains gov-

erned by the stream-function formulation and the stream-function - vorticity formu-

lation (e.g. [6]) as well as natural convection in regions between concentric cylinders

governed by the stream-function - vorticity formulation (symmetrical flows) (e.g.

[4]).

This study is concerned with the simulation of unsymmetrical flows of a Newto-

nian fluid in multiply-connected domains using the stream-function formulation,

Cartesian grids and 1D-IRBFNs. Unlike the symmetrical case, the stream-function

variable has different values on separate boundaries. These values can be found

using the single-value condition for the pressure, whose implementations are known

to be difficult (e.g. [13]). Further difficulties include the implementation of cross

derivatives in regions bounded by irregular surfaces as the boundary points do not

generally coincide with the grid nodes. New treatments for these difficulties and

their 1D-IRBF-based implementations are the focal point of this study.

An outline of the paper is as follows. The stream-function formulation and 1D-

IRBFNs are briefly reviewed in Section 2 and Section 3, respectively. The proposed

procedure is described in Section 4 and then numerically verified through the simu-

lation of steady flows between a rotating circular cylinder and a fixed square cylinder

and also between eccentric cylinders maintained at different temperatures in Section

5. Section 6 concludes the paper.
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2 Governing equations

Consider the stream-function formulation. The non-dimensional basic equations

for natural convection under the Boussinesq approximation in the Cartesian x − y

coordinate system can be written as (e.g. [14])

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)

=

√
Pr

Ra

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
− ∂T

∂x
, (1)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (2)

where ψ is the stream function, T the temperature, t the time, u and v the velocity

components, and Pr and Ra the Prandtl and Rayleigh numbers defined as Pr = ν/α

and Ra = βg∆TL3/αν, respectively, in which ν is the kinematic viscosity, α the

thermal diffusivity, β the thermal expansion coefficient and g the gravity. In this

dimensionless scheme, L, ∆T (temperature difference), U =
√
gLβ∆T and (L/U),

are taken as scale factors for length, temperature, velocity and time, respectively. It

is noted that the velocity scale is chosen here in a way in which the buoyancy and

inertial forces are balanced (e.g. [14]).

For iso-thermal flows, the non-dimensional basic equations reduce to

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
=

1

Re

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
, (3)

where Re is the Reynolds number defined as Re = UL/ν.

5



The velocity components are defined in terms of the stream function as

u =
∂ψ

∂y
, (4)

v = −∂ψ
∂x

. (5)

The given velocity boundary conditions for u and v can be transformed into two

boundary conditions on the stream function and its normal derivative

ψ = γ, (6)

∂ψ

∂n
= ξ, (7)

where n is the direction normal to the boundary, and γ and ξ prescribed functions.

For the case of fixed concentric cylinders, non-slip boundary conditions usually lead

to γ = 0 and ξ = 0 at walls. For the case of rotating cylinders and eccentric

cylinders, because of the existence of a global circulation flow, the stream-function

values on the inner and outer cylinder walls cannot be the same.

3 Brief review of 1D-integrated RBFNs

In contrast to the traditional/direct/differential approach, where a function f is ap-

proximated by an RBFN, followed by successive differentiations to obtain approxi-

mate expressions for its derivatives, the indirect/integral approach uses integration

to construct the RBF approximations (e.g. [7,8]). A highest-order derivative of f

under consideration, e.g. dpf(x)/dxp, is decomposed into RBFs, and lower-order

6



derivatives and the function itself are then obtained through integration

dpf(x)

dxp
=

m∑

i=1

wigi(x) =
m∑

i=1

wiI
(p)
i (x), (8)

dp−1f(x)

dxp−1
=

m∑

i=1

wiI
(p−1)
i (x) + c1, (9)

dp−2f(x)

dxp−2
=

m∑

i=1

wiI
(p−2)
i (x) + c1x+ c2, (10)

· · · · · · · · · · · · · · ·

df(x)

dx
=

m∑

i=1

wiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · · + cp−2x+ cp−1, (11)

f(x) =
m∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · · + cp−1x+ cp, (12)

where {gi(x)}mi=1 ≡
{
I

(p)
i (x)

}m

i=1
is the set of RBFs, m the number of RBFs,

(c1, c2, · · · , cp) the constants of integration and I
(p−1)
i (x) =

∫
I

(p)
i (x)dx, I

(p−2)
i (x) =

∫
I

(p−1)
i (x)dx, · · · , I(0)

i (x) =
∫
I

(1)
i (x)dx. Numerical results (e.g. [7]) have shown

that the integral approach significantly improves the quality of the approximation

of derivative functions over conventional differential approaches. The IRBF-based

approximation scheme is said to be of pth-order, denoted by IRBFN-p, if the pth-

order derivative is taken as the staring point.

The present technique implements the multiquadric (MQ) function whose form is

gi(x) =
√

(x− ci)2 + a2
i , (13)

where ci and ai are, respectively, the centre and the width of the ith MQ basis

function.
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4 Proposed numerical procedure

Calculations for unsymmetrical flows in multiply-connected domains are carried out

on Cartesian grids. Grid nodes inside the domain of interest are taken to be interior

nodes. Boundary points are generated by the intersection of the grid lines and

boundaries. Boundary nodes are thus comprised of two sets of points. The first set

is generated by the x−grid lines; the other by the y−grid lines.

1D-IRBFNs of orders 4 and 2 are employed on the grid lines to represent the stream-

function and temperature variables, respectively. The governing differential equa-

tions, which involve high-order and cross derivatives, are discretised by means of

point collocation. Emphasis is placed on the following issues: (i) the implementation

of cross derivatives in irregular regions, (ii) the derivation of the stream-function val-

ues on separate boundaries, and (iii) the treatment of double boundary conditions.

Formulas are derived in terms of Cartesian coordinates and they are implemented

with 1D-IRBFNs.

It is noted that conventional RBF methods are global and lead to full matrices.

Unlike conventional methods, at a grid node, the proposed method only uses RBF

centres on the two associated grid lines rather than the whole set of RBF centres to

construct the approximations at that point. The present method thus possesses some

local approximation properties. In comparison with conventional RBF methods,

relatively-large numbers of nodes can be employed here. However, the resultant

system matrix is still not as sparse as those produced by finite-difference methods.

The present technique needs be combined with domain decompositions for handling

large-scale engineering problems.
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4.1 Boundary values for stream function

Since there is no flow in the direction normal to a solid boundary, the stream function

is constant at a wall. The stream-function variable has different values on different

walls. The value of ψ on the outer wall is simply set to zero, while the values of ψ

on inner walls are considered as unknowns. Consider an inner wall. The associated

unknown there cannot be determined from the governing equation; an independent

equation/integral condition is needed. To find the value of ψ on the wall, Lewis [15]

suggested using the condition that the pressure is a single-valued function (there

is only one value of pressure at a point). This condition can be mathematically

described as

∮

Γ

∂p

∂s
ds =

∮

Γ

∇p · d~s = 0, (14)

where p is the pressure, s the arc length, ds the length of an infinitesimal part of the

boundary Γ. It should be pointed out that Γ can be any closed path. In the present

work, the inner cylinder boundary is taken to be Γ . The pressure gradient ∇p can

be obtained from the momentum equations. The reader is referred to, for example,

([15, 16, 17]) for further details. In the Cartesian coordinate system, Equation (14)

becomes ∮
∂p

∂x
dx+

∮
∂p

∂y
dy = 0. (15)

From the primitive variable formulation, we have

∂p

∂x
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
−

(
u
∂u

∂x
+ v

∂u

∂y

)
, (16)

∂p

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
−

(
u
∂v

∂x
+ v

∂v

∂y

)
. (17)
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Substituting (16) and (17) into (15) and then making use of (4) and (5) lead to

∮
∂3ψ

∂2x∂y
dx+

∮
∂3ψ

∂3y
dx−Re

∮
∂ψ

∂y

∂2ψ

∂x∂y
dx+Re

∮
∂ψ

∂x

∂2ψ

∂y2
dx−

∮
∂3ψ

∂3x
dy −

∮
∂3ψ

∂2y∂x
dy +Re

∮
∂ψ

∂y

∂2ψ

∂x2
dy −Re

∮
∂ψ

∂x

∂2ψ

∂y∂x
dy = 0. (18)

In the case of a fixed cylinder, the convection term vanishes on its wall. Equation

(18) thus reduces to

∮
∂3ψ

∂2x∂y
dx+

∮
∂3ψ

∂3y
dx−

∮
∂3ψ

∂3x
dy −

∮
∂3ψ

∂2y∂x
dy = 0. (19)

By expressing integrals in (18)/(19) in terms of the values of ψ at the interior points,

the resultant equation can be used as an extra equation to determine the value of

ψ on the wall.

4.2 Cross derivatives

In the present formulations, the governing equations and the single-valued pressure

condition involve cross derivatives, namely ∂4ψ/∂2x∂2y, ∂3ψ/∂2x∂y, and ∂3ψ/∂x∂y2.

As mentioned earlier, the IRBF approximations are constructed on the grid lines.

It is necessary to transform the computation of these mixed derivatives to that of

pure derivatives. This can be achieved through the following relations

∂4ψ

∂2x∂2y
=

1

2

[
∂2

∂x2

(
∂2ψ

∂y2

)
+

∂2

∂y2

(
∂2ψ

∂x2

)]
, (20)

∂3ψ

∂2x∂y
=

∂2

∂x2

(
∂ψ

∂y

)
, (21)

∂3ψ

∂x∂y2
=

∂2

∂y2

(
∂ψ

∂x

)
. (22)

10



In (20)-(22), there are two terms, namely ∂2 (∂2ψ/∂y2) /∂x2 and ∂2 (∂ψ/∂y) /∂x2,

to be evaluated on the x−grid lines and two terms, namely ∂2 (∂2ψ/∂x2) /∂y2 and

∂2 (∂ψ/∂x) /∂y2, to be evaluated on the y−grid lines.

Consider an x−grid line. To carry out the approximation of ∂2 (∂2ψ/∂y2) /∂x2 and

∂2 (∂ψ/∂y) /∂x2, the values of ∂2ψ/∂y2 and ∂ψ/∂y at the interior and boundary

nodes on the x−grid line are assumed to be given (i.e. they are known values or

can be expressed in terms of the nodal values of ψ). For nodal interior points,

these values can be obtained straightforwardly by using the approximations on the

vertical grid lines. For the boundary points, the value of ∂ψ/∂y is known as it can

be easily computed from the given boundary conditions ψ and ∂ψ/∂n, while one

does not generally know the value of ∂2ψ/∂y2. For the latter, there are two possible

cases. If the boundary point is also a grid node, the computation of ∂2ψ/∂y2 is

similar to that of an interior point. If the boundary point is not a grid node,

special treatment is required. A new formula for computing ∂2ψ/∂y2 is derived

as follows. Along a curved boundary (Figure 1), the values of ∂ψ/∂x and ∂ψ/∂y

can be easily obtained from the prescribed boundary values for ψ and ∂ψ/∂n. By

introducing an interpolating scheme (e.g. 1D-IRBFNs) on the boundary, one is

able to get derivatives of ∂ψ/∂x and ∂ψ/∂y along the boundary such as ∂2ψ/∂x∂s

and ∂2ψ/∂y∂s in which s is the arc-length of the curved boundary. A tangential

derivative of a generic function f at a boundary point, xb, can be computed by

∂f

∂s
=
∂f

∂x
tx +

∂f

∂y
ty, (23)

where tx = ∂x/∂s and ty = ∂y/∂s are the two x and y components of the unit vector

tangent to the curve.
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Replacing f with ∂ψ(xb)/∂x, we have

∂2ψ(xb)

∂x∂s
=
∂2ψ(xb)

∂x2
tx +

∂2ψ(xb)

∂x∂y
ty, (24)

or

∂2ψ(xb)

∂x∂y
=

1

ty

(
∂2ψ(xb)

∂x∂s
− ∂2ψ(xb)

∂x2
tx

)
, (25)

where the value of ∂2ψ(xb)/∂x∂s is known.

Similarly, taking f as ∂ψ(xb)/∂y results in

∂2ψ(xb)

∂x∂y
=

1

tx

(
∂2ψ(xb)

∂y∂s
− ∂2ψ(xb)

∂y2
ty

)
. (26)

From (25) and (26), one can derive the relation between ∂2ψ/∂x2 and ∂2ψ/∂y2 at a

boundary point

1

ty

(
∂2ψ(xb)

∂x∂s
− ∂2ψ(xb)

∂x2
tx

)
=

1

tx

(
∂2ψ(xb)

∂y∂s
− ∂2ψ(xb)

∂y2
ty

)
. (27)

Expression (27) can be rearranged as

∂2ψ(xb)

∂y2
=

(
tx
ty

)2
∂2ψ(xb)

∂x2
+ qy, (28)

where qy is a known value defined by

qy = −tx
t2y

∂2ψ(xb)

∂x∂s
+

1

ty

∂2ψ(xb)

∂y∂s
. (29)

Formula (28) facilitates the computation of the value of ∂2ψ/∂y2 at a boundary

point xb using the approximations on the x−grid line.

Consider an y−grid line. In the same manner, the value of ∂2ψ/∂x2 at a boundary
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point yb can be computed by

∂2ψ(yb)

∂x2
=

(
ty
tx

)2
∂2ψ(yb)

∂y2
+ qx, (30)

where qx is a known value defined by

qx = − ty
t2x

∂2ψ(yb)

∂y∂s
+

1

tx

∂2ψ(yb)

∂x∂s
. (31)

It can be seen that, given a Cartesian grid, expressions (28) and (30) allow the

approximations of mixed derivatives in regions bounded by irregular surfaces to be

expressed in terms of the nodal values of ψ and the boundary conditions.

4.3 1D-IRBF expressions

1D-IRBF expressions on the x− and y−grid lines have similar forms. In the follow-

ing, the process of deriving 1D-IRBF expressions for the stream-function variable

and its derivatives on the x−grid lines is presented in detail.

4.3.1 Pure derivatives

Along an x−grid line (Figure 2), the set of RBF centres consists of the interior points

{xi}qi=1 and the two boundary points {xbi}2
i=1. The stream-function variable is ap-

proximated using 1D-IRBFN-4s. At a boundary point xb, there are double boundary

conditions, ψ(xb) and ∂ψ(xb)/∂x. Unlike conventional differentiated RBFNs, there

are four integration constants in the 1D-IRBFN formulation. These extra coeffi-

cients allows for the addition of some extra equations to the process of conversion of

the coefficient space into the physical space. The extra equations are utilised here
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to implement derivative boundary values




ψ̂

ψ̂b

∂̂ψb

∂x




= Ĉ ŵ, (32)

where

ψ̂ = (ψ(x1), ψ(x2), · · · , ψ(xq))
T ,

ψ̂b = (ψ(xb1), ψ(xb2))
T ,

∂̂ψb
∂x

=

(
∂ψ(xb1)

∂x
,
∂ψ(xb2)

∂x

)T

,

Ĉ =




I
(0)
1 (x1) · · · I

(0)
m (x1) x3

1/6 x2
1/2 x1 1

I
(0)
1 (x2) · · · I

(0)
m (x2) x3

2/6 x2
2/2 x2 1

...
. . .

...
...

...
...

...

I
(0)
1 (xq) · · · I

(0)
m (xq) x3

q/6 x2
q/2 xq 1

I
(0)
1 (xb1) · · · I

(0)
m (xb1) x3

b1/6 x2
b1/2 xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) x3

b2/6 x2
b2/2 xb2 1

I
(1)
1 (xb1) · · · I

(1)
m (xb1) x2

b1/2 xb1 1 0

I
(1)
1 (xb2) · · · I

(1)
m (xb2) x2

b2/2 xb2 1 0




,

ŵ = (w1, w2, · · · , wm, c1, c2, c3, c4)T ,

and m = q + 2. The values of the lth-order derivative (l = {1, 2, 3, 4}) of ψ at the

interior points on the grid line are evaluated as

∂̂lψ

∂xl
= Î(l)

[4] Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (33)
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where

Î(4)
[4] =




I
(4)
1 (x1) · · · I

(4)
m (x1) 0 0 0 0

I
(4)
1 (x2) · · · I

(4)
m (x2) 0 0 0 0

...
. . .

...
...

...
...

...

I
(4)
1 (xq) · · · I

(4)
m (xq) 0 0 0 0



,

Î(3)
[4] =




I
(3)
1 (x1) · · · I

(3)
m (x1) 1 0 0 0

I
(3)
1 (x2) · · · I

(3)
m (x2) 1 0 0 0

...
. . .

...
...

...
...

...

I
(3)
1 (xq) · · · I

(3)
m (xq) 1 0 0 0



,

Î(2)
[4] =




I
(2)
1 (x1) · · · I

(2)
m (x1) x1 1 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) x2 1 0 0

...
. . .

...
...

...
...

...

I
(2)
1 (xq) · · · I

(2)
m (xq) xq 1 0 0



,

and

Î(1)
[4] =




I
(1)
1 (x1) · · · I

(1)
m (x1) x2

1/2 x1 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) x2

2/2 x2 1 0

...
. . .

...
...

...
...

...

I
(1)
1 (xq) · · · I

(1)
m (xq) x2

q/2 xq 1 0



.

Expressions (33) can be rewritten in compact form

∂̂lψ

∂xl
= D̂lxψ̂ + k̂lx, (34)

where D̂lx are the differentiation matrices in the physical space, and k̂lx the vectors

whose components are functions of boundary conditions. It is noted that, for the

grid lines which cross over the inner cylinder, only the values of ψ on the outer

cylinder are given.
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Similarly, 1D-IRBFN expressions for pure derivatives on the y−grid lines take the

following forms

∂̂lψ

∂yl
= D̂lyψ̂ + k̂ly, (35)

where l = {1, 2, 3, 4}.

4.3.2 Mixed derivatives

On an x−grid line, it can be seen from (20)-(22) that relevant mixed derivative to

be evaluated here are ∂2 (∂ψ/∂y) /∂x2 and ∂2 (∂2ψ/∂y2) /∂x2. Approximate expres-

sions for ∂ψ/∂y and ∂2ψ/∂y2 can be obtained at the interior points using (35) with

l = {1, 2}. At the boundary points, the values of ∂ψ/∂y are given, while the values

of ∂2ψ/∂y2 can be computed using (28) in which ∂2ψ/∂x2 is evaluated using the

nodal values of ψ on the x−grid line

∂2ψ(xb)

∂x2
=

[
I

(2)
1 (xb) · · · I(2)

m (xb) xb 1 0 0

]
Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (36)

where xb is a boundary point and ψ̂, ∂̂ψb/∂x, ŵ and Ĉ are defined as before.

Let g represent ∂2ψ/∂y2 and ∂ψ/∂y. The remaining task is to form an 1D-IRBF

expression for ∂2g/∂x2. This process is similar to that for the stream function which

is described in Section 4.3.1, except that there are no extra equations representing

derivative boundary values in (32).
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4.3.3 Single-valued pressure equation

As shown in (18)/(19), this pressure condition involves pure and mixed derivatives

on the wall.

Using 1D-IRBFN expressions which are derived above, one can express derivatives

in (18)/(19) in terms of the nodal values of ψ. For example, the integrand of the

third term in (19) can be written as

∂3ψ(xb)

∂x3
=

[
I

(3)
1 (xb) · · · I(3)

m (xb) 1 0 0 0

]
Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (37)

where xb is the boundary point on the inner wall and ψ̂, ∂̂ψb/∂x, ŵ and Ĉ are defined

as before. The vector ψ̂b in (37) contains the value of the stream function on the

inner cylinder, i.e. ψ(xb), that is an unknown to be found.

All associated integrals in (18)/(19) are then evaluated using the Gauss quadrature

scheme.

The pressure condition leads to a relation where the value of ψ on the inner wall is

expressed as a linear combination of the values of ψ at the interior points.

4.4 Solution Procedure

The algebraic equation set resulting from the discretisation of the stream-function

formulation is nonlinear because of the presence of the convective terms. There are

two approaches widely used to handle this nonlinearity. In the first approach, all time

derivative terms are dropped out and nonlinear solvers such as Newton iterations

17



can be applied. In the second approach, the solution is obtained by means of time

marching. Each approach has some advantages over the other for certain problems.

In this study, fluid flow problems are considered and the second approach is applied.

1. Guess initial values of T, ψ and their spatial derivatives at time t = 0.

2. Discretise the governing equations in time using a first-order accurate finite-

difference scheme, where the diffusive and convective terms are treated implic-

itly and explicitly, respectively.

3. Discretise the governing equations in space using 1D-IRBF schemes,

Solve the energy equation (2) for T , and

Solve the momentum equation (1) for ψ.

The two equations are solved separately in order to keep matrix sizes to a

minimum.

4. Check to see whether the solution has reached a steady state

CM =

√
∑nip

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2

√
∑nip

i=1

(
ψ

(k)
i

)2
< ǫ, (38)

where k is the time level and ǫ is the prescribed tolerance.

5. If it is not satisfied, advance time step and repeat from step 2. Otherwise,

stop the computation and output the results.

5 Numerical results

The present method is verified through the simulation of steady iso-thermal flows be-

tween a rotating circular cylinder and a fixed square cylinder, and steady buoyancy-
18



driven flows in eccentric annuli with a wide range of the eccentricity. The computed

solution at the lower and nearest value of Re/Ra is taken to be the initial solution.

Internal grid points that fall very close–within a distance of h/8–to the boundary

are removed.

It is well known that RBF-based schemes suffer from the so-called uncertainty or

trade-off principle. As the value of the RBF-width/shape-parameter increases, the

approximation error reduces while the condition number of the system matrix grows.

Unfortunately, there is still a lack of theory to determine the optimal value for the

RBF width. The RBF width is usually chosen by trial and error or some other

ad-hoc means. In this study, the grid size h is taken to be the MQ-RBF width.

For conventional FDMs and pseudo-spectral techniques, coordinate transformations

are required to convert non-rectangular domains into rectangular ones [16,18]. The

relationships between the physical and computational coordinates are given by a set

of algebraic equations or a set of partial differential equations (PDEs), depending

on the level of complexity of the geometry. Such transformation processes are, in

general, complicated. The proposed technique can work with irregular domains in a

direct manner, i.e. without the need for using coordinate transformations. However,

the proposed technique is restricted to structured uniform or non-uniform Cartesian

grids.

5.1 Example 1: Steady flow between a rotating circular

cylinder and a fixed square cylinder

This test problem is employed for the investigation of accuracy of the proposed

technique in computing the value of the stream function on the inner cylinder. The

flow geometry and discretisation are shown in Figure 3. The inner cylinder rotates

19



at a unit angular velocity. The stream function on the outer wall is set to zero.

Formula (18) is utilised to determine the value of the stream function on the inner

wall, denoted by ψw. This flow is governed by (3) and subject to the boundary

conditions

ψ =
∂ψ

∂x
=
∂ψ

∂y
= 0,

on the outer cylinder and

ψ = ψw,
∂ψ

∂x
= −x, ∂ψ

∂y
= −y,

on the inner cylinder. The flow is simulated with R = 0.25 and L = {0.55, 1.0}

using a uniform grid of 52 × 52. Different values of the Reynolds number, namely

1, 100, 500, 700 and 1000, are considered. Results concerning ψw obtained by the

proposed technique and the finite-difference technique [15] are presented in Table 1,

showing a satisfactory agreement. Plots for the velocity and vorticity fields for the

case of L = 1 and R = 0.5 at Re = {1, 700} are given in Figure 4.

5.2 Example 2: Natural convection in an eccentric annulus

between two circular cylinders

Natural convection is governed by the coupling of the momentum equation (velocity

field) (1) and energy equation (temperature field) (2). Solutions to natural con-

vection in concentric and eccentric annuli between two circular cylinders have been

reported using various discretisation techniques such as finite-difference methods

(FDMs) (e.g. [19,20]), finite-element methods (FEMs) (e.g. [21,22]), finite-volume

methods (FVMs) (e.g. [23,24]), boundary-element methods (BEMs) (e.g. [25,26])

and spectral methods (e.g. [16,17,27,28]).
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Consider buoyancy-driven flows of a Newtonian fluid between two cylinders whose

centres are separated by a distance ε (Figure 5). As shown in Figure 5, the flow

geometry is defined by the following geometrical parameters: the eccentricity ε,

angular position ϕ, the diameter of the outer cylinder Do and the diameter of the

inner cylinder Di. In the present work, the numerical results are reported with

Pr = 0.71 and Do/Di = 2.6. A typical discretisation is shown on Figure 6a, where

no coordinate transformations are employed.

The inner and outer cylinders are heated (T = 1) and cooled (T = 0), respectively.

The stream-function value at the outer cylinder is set to zero. The stream-function

value at the inner cylinder is a part of the solution and can be determined by the

single-valued pressure condition (19). The normal derivatives of the stream function

are set to zero at both walls.

One typical quantity associated with this type of flow is the average equivalent

conductivity denoted by k̄eq. This quantity is defined as (e.g. [20])

k̄eq =
− ln(Do/Di)

2π

∮
∂T

∂n
ds (39)

The present method is first tested with the case of symmetrical flows. For such flows,

one is able to know the exact solution of ψ at the inner wall (ψw = 0), which can be

used to test numerical solvers. We employ three uniform grids of 41 × 41, 51 × 51

and 61 × 61 to represent the flow field. Results obtained show that the value of

ψw is less than 10−6. For concentric cylinders, results concerning k̄eq by the present

technique together with those by FDMs [20] and DQMs [16] for Ra = 7 × 104 are

presented in Table 2. The present solutions converge well and are in close agreement

with the other solutions. It can be seen that the IRBF results are more agreeable

to the DQ ones than the FD results. For eccentric cylinders (i.e. the centres of

inner and outer cylinders lie on the vertical symmetrical axis), Table 3 compares
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the maximum value of ψ for Ra = 104 between the proposed method and the DQM

[16]. Good agreement is achieved.

For the case of unsymmetrical flows, the value of ψ at the inner wall has non-

zero value that varies with the location of the inner cylinder. Different amounts

of eccentricity (ε), namely {0.25, 0.5, 0.75, 0.95}, and angular direction ϕ, namely

{−900,−450, 00, 450, 900}, are employed. In Table 4, the values of ψ at the inner walls

are presented and agree satisfactorily with those conducted by the DQM [16] and

the domain free discretisation method (DFD) [17]. Figure 7 shows the streamlines

and isotherms of the flow at Ra = 104 using a grid of 61× 61, where different values

of eccentricity and angular directions are employed. Each plot contains 21 contour

lines whose levels vary linearly from the minimum to maximum values. All plots

look reasonable when compared with those of the DQM [16].

5.3 Example 3: Natural convection in an eccentric annulus

between a square outer and a circular inner cylinder

In this example, natural convection between a heated inner circular cylinder and a

cooled square enclosure (Figure 8) is considered. An aspect ratio of L/2R = 0.26 (L:

the side length of the outer square and R: the radius of the inner circle), Pr = 0.71

and Ra = 3 × 105 are used.

The problem domain is simply replaced with a Cartesian grid (Figure 6b), where no

coordinate transformations are employed.

Similar to Example 2, the eccentricity values used are ε = {0.25, 0.5, 0.75, 0.95} and

the angular positions are ϕ = {−900,−450, 00, 450, 900}. The value of ψ along the

inner is considered as an unknown and the values of ψ along the outer boundaries
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can be taken to be zero. Calculations are conducted on a uniform Cartesian grid of

62 × 62. In Table 5, the maximum values of the stream function are presented and

compared very well with those conducted by Ding [29].

For special cases of eccentric square-circular annuli, where the centre of the inner

cylinder lies on the vertical symmetrical axis of an outer cylinder, the values of

ψmax are given in Table 6. It can be seen that the present results are in very good

agreement with those of Ding [29].

Following the work of Moukalled and Acharya [18], the local heat transfer coefficient

is defined as

θ = −k∂T
∂n

, (40)

where k is the thermal conductivity. The average Nusselt number (the ratio of the

temperature gradient at the wall to a reference temperature gradient) is computed

by

Nu =
θ

k
, (41)

where θ = −
∮

∂T
∂n
ds. Since the computational domain in [18] is taken as one-half

of the physical domain, the values of Nu in the present work (Table 7) are divided

by 2 for comparison purposes. The present results agree well with those in [18] and

[29].

Figures 9 displays streamline and isotherm fields with different positions of the inner

cylinder for Ra = 3 × 105. The qualitative behaviours of these fields and those in

[29] are similar. In Figure 10, the effects of time step on the convergence of the

proposed technique are investigated for the case of Ra = 1 × 105 using a grid of

53 × 53. It can be seen that the present technique can work with a wide range of

the value of time step. As expected, the convergence is faster but less stable when

the length of time step increases. In relation to CPU times, the present technique
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consumes 0.013715 (s) per iteration for a grid of 33 × 33, 0.0599 for 49 × 49 and

0.0807 for 53 × 53 (Intel Core 2 6300-1.86 Ghz).

For all values of the Reynolds/Rayleigh number employed in these examples, it is

observed that the solution evolves in a stable manner with relatively-large time

steps. As a result, the use of special treatments for the convection term such as the

upwind scheme is not necessary here.

6 Concluding Remarks

In this article, flows in multiply-connected domains are studied using the stream-

function formulation, one-dimensional integrated RBF approximations and Carte-

sian grids. Formulas for handling mixed derivatives in irregular regions and bound-

ary conditions for the stream-function variable are derived under the Cartesian

framework, and they are implemented effectively with 1D-IRBFNs. Attractive fea-

tures of the proposed technique include (i) simple preprocessing and (ii) the ability

to retain the PDEs in their Cartesian forms, and thus to work in a similar fashion

for different shapes of annuli. Various solutions are reported to demonstrate the

capabilities of the proposed technique.
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Re 1 100 500 1000
L 0.55

ψw
Present method 0.0581 0.0582 0.0586 0.0596

FDM [15] 0.0625 0.0626 0.0621 0.0600
L 1

ψw
Present method 0.4622 0.4617 0.4500 0.4264

FDM [15] 0.4656 0.4577 0.4465 0.4375

Table 1: Example 1 (rotating cylinder): Comparison of the stream-function values
at the inner cylinder, ψw, for Re from 1 to 1000 between the present technique (grid
of 52 × 52) and finite difference technique.

Grid keqo (outer cylinder) keqi (inner cylinder,)
41 × 41 3.465 3.254
51 × 51 3.241 3.187
61 × 61 3.167 3.174

FDM [20] 3.226 3.308
DQM [16] 3.179 3.187

Table 2: Example 2 (symmetric flow, circular-circular annulus): Convergence study
of the computed average equivalent conductivities with grid refinement for Ra =
7 × 104.
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ε 0.25 0.5 0.75 0.95
ϕ −900

ψmax
Present method 22.19 20.72 18.50 15.71

DQM [16] 22.16 20.62 18.32 15.50
ϕ 900

ψmax
Present method 11.26 9.64 8.25 7.28

DQM [16] 11.13 9.55 8.12 7.17

Table 3: Example 2 (symmetric flow, eccentric circular-circular annuli): Comparison
of the maximum stream-function values, ψmax, for two special cases ϕ = {−900, 900}
between the present technique and DQM technique.

ε 0.25 0.5 0.75 0.95
ϕ 450

ψw
Present method 0.52 1.25 1.01 0.01

DQM [16] 0.52 1.31 1.07 0.03
DFD [17] 0.54 1.29 1.09 0.03

ϕ 00

ψw
Present method 0.60 1.28 1.18 0.01

DQM [16] 0.72 1.15 1.30 0.06
DFD [17] 0.72 1.10 1.26 0.06

ϕ −450

ψw
Present method 0.48 0.80 1.05 0.6

DQM [16] 0.51 0.92 0.99 0.08
DFD [17] 0.51 0.77 0.77 0.04

Table 4: Example 2 (unsymmetrical flow, eccentric circular-circular annuli):
Comparison of the stream-function values at the inner cylinders, ψw, for ε =
{0.25, 0.5, 0.75, 0.95} and ϕ = {−450, 00, 450} between the present, DQM and DFD
techniques.
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ε 0.25 0.5 0.75 0.95
ϕ 450

ψmax
Present method 15.31 14.23 13.52 12.91

MQ-DQ [29] 15.32 14.35 13.61 12.98
ϕ 00

ψmax
Present method 17.00 16.99 16.87 17.18

MQ-DQ [29] 17.00 16.97 16.84
ϕ −450

ψmax
Present method 18.50 20.09 21.02 21.61

MQ-DQ [29] 18.50 20.03 21.01 21.68

Table 5: Example 3 (eccentric square-circular annuli): Comparison of the maximum
stream-function values, ψmax, for ε = {0.25, 0.5, 0.75, 0.95} and ϕ = {−450, 00, 450}
between the present technique and MQ-DQ technique.

ε 0.25 0.5 0.75 0.95
ϕ −900

ψmax
Present method 18.63 21.30 23.47 24.48

MQ-DQ [29] 18.64 21.29 23.52
ϕ 900

ψmax
Present method 12.37 11.36 10.10 9.289

MQ-DQ [29] 12.39 11.38 10.09

Table 6: Example 3 (eccentric square-circular annuli): Comparison of the maximum
stream-function values, ψmax, for special cases ϕ = {−900, 900} between the present
technique and MQ-DQ technique.
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Ra 104 5 × 104 105 5 × 105 106

Nuo
Present method 3.22 4.04 4.89 7.43 8.70

MQ-DQ [29] 3.24 4.86 8.90
FDM [18] 3.33 5.08 9.37

Nui
Present method 3.21 4.04 4.89 7.51 8.85

MQ-DQ [29] 3.24 4.86 8.90
FDM [18] 3.33 5.08 9.37

Table 7: Example 3 (square-circular annulus): Comparison of the average Nusselt
number on the outer and inner cylinders, Nuo and Nui, for Ra from 104 to 106

between the present technique (grid of 62 × 62) and some other techniques.
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Figure 1: A curved boundary.
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x1 x2 xq

xb1 xb2

Figure 2: Points on a grid line consist of interior points xi (◦) and boundary points
xbi (2).
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Figure 3: Example 1 (rotating cylinder): geometry and discretisation.
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Figure 4: Example 1 (rotating cylinder): Velocity field (left) and vorticity field
(right) for the flow at Re = 1 and Re = 700.
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Figure 5: Example 2 (eccentric circular-circular annulus): geometry.
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(a) (b)

Figure 6: Schematic spatial discretisations for annulus between two circular cylinders
(a) and annulus between inner circular and outer square cylinders (b).
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ε = 0.25, ϕ = 450

ε = 0.5, ϕ = 00

ε = 0.75, ϕ = −450

ε = 0.95, ϕ = −900

Figure 7: Example 2 (circular-circular annulus): Contour plots for the temperature
(left) and stream-function (right) fields with respect different values of eccentricity
ε and angular directions ϕ for the flow at Ra = 1 × 104. Each plot contains 21
contour lines whose levels vary linearly from the minimum to maximum values.
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Figure 8: Example 3 (eccentric square-circular domain): geometry.
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ε = 0.25, ϕ = −450

ε = 0.5, ϕ = 00

ε = 0.75, ϕ = 450

ε = 0.95, ϕ = 900

Figure 9: Example 3 (square-circular annulus): The temperature (left) and stream-
function (right) fields with respect different values of eccentricity ε and angular
direction ϕ for the flow at Ra = 3× 105. Each plot contains 21 contour lines whose
levels vary linearly from the minimum to maximum values.
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Figure 10: Example 3 (eccentric square-circular domain): the effects of time-step
length on the convergence.
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