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Abstract

In 2013, the startling discovery of a pair of rings around the Centaur 10199
Chariklo opened up a new subfield of astronomy - the study of ringed small
bodies. Since that discovery, a ring has been discovered around the dwarf planet
136108 Haumea, and a re-examination of star occultation data for the Centaur
2060 Chiron showed it could have a ring structure of its own.

The reason why the discovery of rings around Chariklo or Chiron is rather
shocking is because Centaurs frequently suffer close encounters with the giant
planets in the Centaur region, and these close encounters can not only fatally
destroy any rings around a Centaur but can also destroy the small body itself.

In this research, we determine the likelihood that any rings around Chariklo
or Chiron could have formed before the body entered the Centaur region and
survived up to the present day by avoiding ring-destroying close encounters with
the giant planets. And in accordance with that, develop and then improve a
scale to measure the severity of a close encounter between a ringed small body
and a planet.

We determine the severity of a close encounter by finding the minimum dis-
tance obtained between the small body and the planet during the encounter,
dmin, and comparing it to the critical distances of the Roche limit, tidal dis-
ruption distance, the Hill radius and “ring limit”. The values of these critical
distances comprise our close encounter severity scale.

The ring limit is defined as the close encounter distance between a planet and
a ringed small body in a hyperbolic or parabolic orbit about the planet for which
the effect on the ring is just noticeable in the three-body planar problem. The
effect is considered just noticeable if the close encounter changes the orbital
eccentricity of the orbit of any ring particle by 0.01. In the first version of
our scale, the ring limit is set equal to a constant value of 10 tidal disruption
distances for each planet, and the effect of the velocity at infinity, v∞, of the
orbit of the small body about the planet is ignored.

The method of backwards numerical integration of clones is used to deter-
mine the time intervals from now backwards in time within which Chariklo
and Chiron have been injected into the Centaur region. The results show that
Chariklo likely entered the Centaur region during the last 20 Myr and Chiron
within the last 8.5 Myr from somewhere in the Trans-Neptunian region. We
record dmin for all close encounters between each clone and each giant planet
during these time intervals and use the severity scale to determine the like-
lihood that the close encounters could have destroyed any rings around each
body during its time interval.

From this, it is seen that ring-destroying close encounters are so extremely
rare that it is statistically likely that each body’s rings could have originated
outside the Centaur region assuming that the effects of viscous dispersion are
negated by other stabilizing factors such as shepherd satellites and self-gravitating
rings.

Furthermore, the results demonstrate that both Chariklo and Chiron have
chaotic orbits but Chariklo’s orbit exhibits a degree of stable chaos that Chiron’s

ii



does not. Their half-lifes are 3 Myr and 0.7 Myr respectively.
The accuracy of our close encounter severity scale is improved by finding

the ring limits for simulated close encounters between hypothetical one-ringed
small bodies and planets in the 3-body planar problem. The effects of planet
mass, small body mass, v∞, and ring orbital radius are fully accounted for.

When velocity effects are taken into account, we discover that the ring limit
forms a curve in dmin − v∞ space, the ring limit has a lower bound of approxi-
mately 1.8 tidal disruption distances regardless of the small body mass or ring
orbital radius, and that the ring limit equals this lower bound for parabolic
orbits only.

Our data is then used to find an analytical solution for a ring limit upper
bound curve for Chariklo-planet encounters. We present three different methods
for using this curve. To test our results, The ring limits found from all three
methods are compared to 27 previously published dmin values for Chariklo-
planet encounters in the seven-body non-planar problem.

Only one dmin value is found to be greater than the ring limit and that all
ring limits are within 4.4 tidal disruption distances for each planet. We conclude
that these values are more accurate than the crude value of 10 tidal disruption
distances used in the first version of our close encounter severity scale.

Future work is discussed and may include simulations of Chariklo, Chiron
or Haumea in which the ring particles and possibly satellites are included.

This work is partitioned as follows: Chapter One introduces the topic and
states the research questions; Chapters Two, Three and Four are the three
papers either published or submitted for publication; and Chapter Five sum-
marizes the overall conclusions.
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1 Introduction

From antiquity, human beings have been looking upward at the heavens. The
first humans saw the Sun and the Moon - two great lights - and stars that
formed shapes in the sky. Every day and night these heavenly objects were
seen to constantly move across the sky in an east to west motion relative to the
horizon.

As this motion occurred, most stars maintained their position relative to
other stars, but some stars were seen to wander – alternating between eastward
and westward motion relative to other stars. These wanderers were not stars at
all but planets.

But stars and planets were not the only objects our ancient ancestors ob-
served. Occasionally these ancient people noticed strange fuzzy objects which
appeared in the sky in places where no object had been seen before. They no-
ticed that these surprise guests had tails and were larger than any star. Over
time, these objects would fade from view. These were the first human sightings
of comets – one type of small body in the Solar system.

In a sense, the science of small bodies of the Solar system began with the very
first comet sighting. It would be millennia, however, before the exact nature
of comets would be understood, and along the way other types of small bodies
would be found.

1.1 A Brief Review of Cosmological Models

Humans had been observing the heavens for centuries before any attempt was
made at explaining the motions observed. For example, we know that ancient
Babylonians observed planets because of records found on clay tablets. As far as
we know, the Babylonians had no model in which the planets orbited a central
body.

A cosmological model explains heavenly motions and accurately predict fu-
ture events. For example, a model could be used to predict the locations of
planets on future dates. If the model is good then the planets will appear at
the predicted locations on the future dates. If a model is bad then it can either
be refined or discarded.

1.1.1 The Geocentric Model

It was the ancient Greeks who first tried to explain the motions they were seeing
in the heavens. From the Greeks point of view, everything seemed to revolve
around the Earth. Having no computers nor space probes nor even knowledge of
gravity we can hardly blame the Greeks for inventing the erroneous geocentric
or Earth-centered model.

In this model, Earth was the center of all revolution. To an ancient Greek,
orbits did not exist as we know them today. Instead the Sun, Moon, planets
and stars were attached to invisible crystalline spheres called deferents which
constantly spun around the Earth. But this model proved to be too simplistic
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and was unable to explain why planets changed their angular speed in the sky
and occasionally drifted westward relative to the stars in loops and zig zags
before resuming their more usual eastward motion.

Over the centuries different incarnations of the geocentric model were for-
mulated in an attempt to align all heavenly motion with the model. In an
attempt to explain why planets seemed to speed up and slow down in their mo-
tion against the stars, Earth was moved off-center of the invisible spheres which
contained planets. This centered the motion on a point rather than on Earth,
and the changing distance between Earth and the planet explained the change
in speed. When the planet was closer to Earth it appeared to move faster in
the sky and when farther away appeared to move more slowly. Though if you
stood at the center of the planet’s invisible sphere it would seem to maintain the
same speed. Having Earth off-center was known as an eccentric. The stars had
their own sphere centered on Earth since their motion relative to the horizon
was uniform.

Greeks even devised a method to explain retrograde motion of planets while
still maintaining spheres spinning in the same direction. They did this by placing
the planet on a smaller spinning sphere the center of which was fixed to the rim
of a constantly spinning much larger sphere. The larger sphere was called the
deferent and the smaller sphere the epicycle.

The most successful geocentric model devised was the Ptolemaic model. In
this model, the epicycles of Mercury and Venus were fixed to an Earth-Sun line,
and the radii of the epicycles of the other planets were forced to remain parallel
to it. The center of the motion was a point exactly off-center opposite of Earth
and was called the equant.

1.1.2 The Copernican Model

The Ptolemaic model reigned as the accepted model of the universe until the
16th century when Polish astronomer Nicolaus Copernicus revived a little known
ancient Greek model known as the heliocentric model. At that time, the he-
liocentric model was contrary to the teachings of the Church. Believing that
Earth orbited the Sun could result in your imprisonment, torture, or even death.
No wonder that Copernicus’ model was only published just before his death in
1543.

In this model, Earth is replaced as the center of revolution with the Sun.
Planets still resided on invisible spheres and still had epicycles though they were
smaller than in the Ptolemaic model. Heavenly motions were still explained but
in a different way.

The stars did not move at all but resided on a motionless invisible sphere
of their own at a distance from the Sun beyond any planet. No forces were
involved, and orbits as we know them today still did not exist. Copernicus was
also able to determine the relative distance of each planet to the Sun compared
to Earth’s distance. Today we would refer to the Earth-Sun distance as an
astronomical unit or au. The model is known today as the Copernican model.
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1.1.3 The Keplerian Model

Through painstaking analysis of planetary positional data taken by Tycho Brahe,
Johannes Kepler determined that the orbits of planets were not circles but were
in fact ellipses. With the introduction of ellipses, epicycles were no longer nec-
essary. Kepler’s model was also heliocentric as the Copernican model had been,
but Kepler abandoned the long-held notion that planets resided on invisible
spheres. Instead he introduced for the first time in a cosmological model the
idea that a force from the Sun was responsible for holding planets in their orbits.
He believed this force was magnetic in nature.

Kepler’s model could predict planetary positions as much as ten times better
than the Ptolemaic model making it the best model up to that time. The
properties of planetary orbits in Kepler’s model are summarized in what today
are called Kepler’s three laws of motion released in 1609, 1609 and 1618.

1.1.4 Kepler’s First Law

Kepler’s first law states that the orbit of each planet is an ellipse with the Sun at
one focus. Nothing is at the other focus (Bate et al., 1971; Zeilik, 2002; Bennett
et al., 2016; Fraknoi et al., 2016).

An ellipse is the set of points in a plane such that the sum of the distances
from each point to two fixed points is a constant. Each fixed point is called a
focus. The major axis is a line which runs through both foci and connects the
sides of the ellipse. The semi-major axis, a, is half the major axis.

The amount by which an ellipse differs from a circle is called the eccentricity,
e, of the ellipse. A circle is a special case of an ellipse for which both foci are
located at the same point. A circle has an eccentricity of zero. Given c is the
distance from either focus to the geometrical center of the ellipse, the eccentricity
is given by:

e =
c

a
(1.1)

0 ≤ e < 1 for any ellipse.

1.1.5 Kepler’s Second Law

Kepler’s second law states that a line drawn from a planet to the Sun sweeps
out equal areas in equal times.

A consequence of this law is that a planet varies its angular speed as it orbits
the Sun. A planet moves faster nearer the Sun and slower farther away from the
Sun. Thus, at its point farthest from the Sun the planet is moving its slowest
and at its point closest to the Sun the planet is moving its fastest. Only in a
circular orbit will a planet maintain the same angular speed at all times (Bate
et al., 1971; Zeilik, 2002; Bennett et al., 2016; Fraknoi et al., 2016).
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Table 1.1: The modern semi-major axes of the orbits of the eight planets taken
from NASA’s Horizon ephemeris for January 1, 2000. Also shown are the orbital
periods calculated using Kepler’s 3rd Law and the observed values. Differences
between these two are explained by rounding errors.

Planet amodern (au) Pcalculated (years) Pobserved (years)
Mercury 0.387098 0.240842 0.240851
Venus 0.723327 0.61518 0.615204
Earth 1.000372 1.000558 1.000597
Mars 1.523678 1.880788 1.880864

Jupiter 5.205109 11.875303 11.870117
Saturn 9.581452 29.65835 29.655306
Uranus 19.229945 84.327082 84.328634

Neptune 30.096971 165.114107 165.08904

1.1.6 Kepler’s Third Law

Kepler’s third law states that the square of the orbital period of the orbit of a
planet, P , is directly proportional to the cube of the orbit’s semi-major axis.
The orbital period is the time it takes a planet to orbit the Sun one time (Bate
et al., 1971; Zeilik, 2002; Bennett et al., 2016; Fraknoi et al., 2016). This law
can be stated as

P 2 = ka3 (1.2)

Law 3 shows that the larger a planet’s semi-major axis the longer it takes
to orbit the Sun and the slower its average orbital speed. If P is in years
and a is in astronomical units then k = 1 for all planets orbiting the Sun.
Table 1.1 shows the modern semi-major axes of the orbits of the eight planets.
Also shown are the orbital periods calculated using Kepler’s 3rd Law and the
observed values. The modern semi-major axes were taken from NASA’s Horizon
ephemeris service for Jan. 1, 20001.

1.1.7 The Universality of Kepler’s Laws

Though Kepler originally developed his laws for planets orbiting the Sun, today
we know that his laws can be applied to any elliptical orbit in the two-body prob-
lem for which the orbiting body has negligible mass compared to the primary
body. Examples include moons orbiting planets, artificial satellites orbiting a
planet, and small bodies orbiting the Sun (Bennett et al., 2016).

1http://ssd.jpl.nasa.gov/horizons.cgi?s body=1#top (accessed December 31, 2015)
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1.1.8 Newton’s Universal Law of Gravitation

A better understanding of the physics behind Kepler’s laws arrived with the
publication of Isaac Newton’s Principia. In this work, Newton explains three
laws of motion and a Universal Law of Gravitation. Today these four laws are
part of what is known as Newtonian Mechanics.

In his book, Newton explains his Universal Law of Gravitation using these
words: Every point mass in the universe attracts every other point mass in the
universe with a force directly proportional to the product of the masses and
inversely proportional to the square of the distance between the masses. This
can be expressed as:

F = Gc
m1m2

r2
(1.3)

(Zeilik, 2002; Bennett et al., 2016; Fraknoi et al., 2016) where F is the magnitude
of the force on each of the two masses, Gc is the gravitational constant of the

universe which is 6.673×10−11 Nm2

kg2
in SI units, m1 and m2 are the point masses,

and r is the distance between the two point masses.
The Universal Law obeys Newton’s third Law so that each mass feels the

same force due to the other but in the opposite direction.
Newton’s Universal Law can be used to find the constant k in equation 1.2.

Consider the special case of a small body of mass m orbiting the much more
massive Sun of mass MSun in a circular orbit of radius r.

In this case the centripetal force is supplied entirely by the gravitational
force between the two masses. This equality is written as

m
v2

r
= Gc

mMsun

r2
(1.4)

Since the speed is constant, the velocity vector, v = 2πr
P . This can be combined

with Equation (1.4) to yield:

P 2 =
4π2

Gc

(
m+MSun

)r3 (1.5)

For elliptical orbits the result is the same with r replaced with a.

1.1.9 Tidal Forces

A tidal force is the difference in gravitational force of one body on another
across the body in question. The evaluation of a tidal force vector, ~Ftf , at a
point on a body equals the subtraction of two vectors: the gravitational force
experienced by a point mass at the point in question, ~F , and the gravitational
force experienced by a point mass at the center of mass of the object, ~Fcm. This
is shown by

Ftf = ~F − ~Fcm (1.6)
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As one example of a tidal force calculation, consider a point mass m at radial
distance r from the center of mass of the small body located at a point on a
line between the center of mass of the small body and that of a planet of mass
Mp. Assume the small body is not rotating and has no tensile strength. If the
distance between the two centers of mass is d then Equation (1.6) is written as

Ftf = Gc
mpm(
d− r

)2 −Gc
mpm

d2
= Gcmpm

[
1(

d− r
)2 −

1

d2

]
(1.7)

The Maclaurin expansion of 1(
d−r

)2 is ≈ 1
d2 + 2r

d3 . Substituting this into

equation (1.7) yields an approximate form for the tidal force

Ftf ≈ Gcmpm

[
1

d2
+

2r

d3
− 1

d2

]
=

2Gcmpmr

d3
(1.8)

The tidal force of a planet on a small body can be strong enough to rip the
small body apart. This was the fate of comet Shoemaker-Levy 9 in 1994 as it
approached Jupiter and was torn into 21 separate pieces which then collided
with the planet (e.g. Harris et al., 1994; Gough, 1994; Loders & Fegley, 1998;
Jessup et al., 2000).

The distance between a small body held together by its own gravity and a
planet within which the small body can be torn apart by tidal forces is called
the Roche Limit. For simplicity, consider the case where the small body is a
sphere; and the rotation of the small body and tidal force of the small body on
the planet are negligible. When the small body is at the Roche limit distance
from the planet (d = Rroche), the gravitational force of the small body on a
point mass on the small body’s surface just equals the tidal force due to the
planet on this point mass. Using equation (1.8) to approximate the tidal force,
this condition can be expressed as

2Gcmpmr

R3
roche

=
Gcmsm

r2
(1.9)

Solving for Rroche yields the Roche Limit equation

Rroche = r

(
2mp

ms

) 1
3

(1.10)

Equation (1.10) can be rewritten using the densities of the small body and
planet ρs and ρp respectively. Assuming spherical bodies, the result is

Rroche = Rpl

(
2ρp
ρs

) 1
3

(1.11)
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where Rpl is the physical radius of the planet. For the special case ρs = ρp the
Roche limit is about 1.26Rpl. If the deformation of the small body is taken into
account then the result for a tidally locked liquid small body orbiting the planet
is (Murray & Dermott, 1999)

Rroche = 2.44Rpl

(
ρp
ρs

) 1
3

(1.12)

1.2 The N-Body Problem

1.2.1 Overview of the N-Body Problem

The N-Body problem is the study of the dynamics of N interacting point masses.
Only the 2-Body problem can be solved analytically for the general case (Murray
& Dermott, 1999; Gurfil et al., 2016). The solution to the general case of the 3-
Body and larger N-Body problems can only be approximated numerically using
computer algorithms. The set of point masses under study is called a system.

The state of the nth point mass, ψn, can be defined as the set of components
of its position, ~rn, velocity, ~vn, and acceleration, ~acn, vectors and a value for
time, t. The combined states of all point masses which make up the system
define the state of the system, Ψ.

ψn =

[
~rnx, ~rny, ~rnz, ~vnx, ~vny, ~vnz,~acnx,~acny,~acnz, t

]
(1.13)

Ψ =

[[
~r1x, ~r1y, ~r1z, ~v1x, ~v1y, ~v1z,~ac1x,~ac1y,~ac1z, t

]
, ... (1.14)[

~rNx, ~rNy, ~rNz, ~vNx, ~vNy, ~vNz,~acNx,~acNy,~acNz, t

]]

1.2.2 The Solar System N-body Problem

The dynamical behavior of the Solar system or part of the Solar system over
some period of time can be approximated by considering only the gravitational
forces among the members of the system. In this approximation, the effects of
relativity and non-gravitational forces are ignored.

To find the net force acting on a single point mass at any moment in time,
the net force acting on that mass due to the gravitational forces from all the
other point masses must be calculated using

~Fi =

N−1∑
j=1

~Fij (1.15)

where i 6= j. ~Fi is the net force acting on the ith mass, and ~Fij is the gravita-

tional force vector on mi due to mj . The magnitude of each ~Fij is found from

7



equation (1.3). Once ~Fi is known, the acceleration of the ith mass can be found
using Newton’s 2nd Law.

As a specific example, consider a system containing only two point masses
mi and mj with position vectors ~ri and ~rj respectively. The displacement vector
from mi to mj is ~rij = ~rj − ~ri.

Newton’s Universal Law can be rewritten in vector form to yield ~Fij . To do
this, the concept of the unit vector can be employed. A unit vector of ~rij has a
magnitude of 1 and points in the same direction as ~rij . A unit vector of ~rij is
defined as

~rij
rij

=
~rj − ~ri
rij

(1.16)

multiplying the right side of equation (1.3) by this unit vector yields the vector
form of Newton’s Universal Law of Gravitation

~Fij = Gc
mimj

r3ij

(
~rj − ~ri

)
(1.17)

where ~Fij points from mi towards mj . The acceleration vector of the ith mass
due to the jth mass, ~acij , is found by solving Newton’s 2nd Law for acceleration
and applying it to the case of a force from Newton’s Universal Law. The result
is

~acij =
~Fij
mi

= Gc
mj

r3ij

(
~rj − ~ri

)
(1.18)

with the direction of ~acij being the same as that of ~Fij .
The total acceleration vector of the ith mass, aci, can be found by adding

all the ~acij vectors.

~aci =

N−1∑
j=1

~acij (1.19)

with i 6= j.
The N-body problem can be simplified by placing certain restrictions on the

movements and masses of the interacting point masses. For example, the orbits
of all but one of the point masses may be restricted to be circles (the circular
restricted problem) or a point mass may be taken to be so massive that its
motion is negligible. Some members of the system may even have their masses
set to zero. These are typically known as massless test particles.

1.2.3 The 2-Body Problem in the Solar System

In the 2-Body problem in the Solar system the mass of the Sun, MSun, can be
assumed to be so large compared to the masses of other Solar system bodies
that its motion is negligible. In the 2-Body problem, the equation of motion for
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Figure 1.1: The conic sections formed by the intersection between a plane and
the surface of a cone .

a body of mass m orbiting the Sun with position vector ~r from the location of
the Sun is found by:

~ac =
d2~r

dt2
= Gc

MSun

r3
~r (1.20)

The solution of this equation is actually a set of curves known as conic sections.
These curves are known as: ellipse (including a circle), parabola and hyperbola.
The conic sections are formed by the intersection between a plane and the
surface of a cone.

If the plane is parallel to the base of the cone (has a slope of zero) then the
intersection forms a circle. If the slope of the plane is between the slope of the
cone and zero an ellipse is formed. If the slope of the plane matches the slope
of the cone then the intersection forms a parabola. If the slope of the plane
is greater than the slope of the cone then the intersection forms a hyperbola.
Figure 1.1 shows how each curve is formed (Bate et al., 1971; Murray & Dermott,
1999; Gurfil et al., 2016).

The general solution for all the conic sections is

r =
p

1 + ecos(θ − θo)
(1.21)

where p is called the semi-latus rectum and e the eccentricity. θo is some ref-
erence angle formed by the intersection of the major axis and a reference line
drawn from the Sun to some point on the curve. The angle θt = θ−θo is formed
by the intersection of r with the major axis. Table 1.2 shows the form of p and
the restrictions on e for each conic section.

In the case of an elliptical orbit the angle θt is known as the true anomaly.
Figure 1.2 shows an example of the angles θ and θo for an elliptical orbit using
an arbitrary reference line.

Though knowing θt does allow the position of the orbiting body to be de-
termined, θt varies non-linearly in time. Another approach is to use a quantity
which does vary linearly in time and relate that to the position of the body.
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Table 1.2: The different conic sections with forms for p and restrictions on e for
each curve. dmin is the distance of closest approach between the orbiting body
and the Sun. A circle is just an ellipse with e = 0.

Conic Section p e

Ellipse a(1− e2) 0 ≤ e < 1
Parabola 2dmin e = 1

Hyperbola a(1− e2) e > 1

This quantity is known as the Mean anomaly, M . It is directly proportional to
the time since perihelion passage, ∆t, and a constant of motion called the mean
motion nM defined as

nM =
2π

P
(1.22)

nM is the constant angular speed the orbiting body would have if the orbit was
a circle. M is related to nM and the time since perihelion passage by

M = nM∆t (1.23)

If the orbit is a circle then M is simply the true anomaly. However, for elliptical
orbits, M has no simple geometrical definition but can be related to another
angle known as the eccentric anomaly, E. The eccentric anomaly is defined
using an elliptical orbit circumscribed in a circle of radius a.

An example is shown in Figure 1.2. The eccentric anomaly is formed by
the intersection of the major axis and a radial line of the circumscribing circle
which passes through a point on the circumscribing circle which has the same
horizontal (x) coordinate and same sign as the vertical (y) coordinate as that
of the position vector of the orbiting mass.

The eccentric anomaly is related to the mean anomaly via Kepler’s equation

E = M + esinE (1.24)

(Murray & Dermott, 1999; Gurfil et al., 2016)
The orbit of a body in an elliptical orbit about the Sun is completely defined

using six quantities known as the osculating orbital parameters which are derived
from the 3D position and velocity components of the body in orbit. These are:

• a = the semi-major axis

• e = the eccentricity

• i = the inclination, the angle between the plane of the orbit and some
reference plane (often the plane of Earth’s orbit about the Sun called the
ecliptic plane). Values of i lie in the range 0◦ ≤ i ≤ 180◦. If i > 90◦ the
orbit is said to be retrograde.
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Figure 1.2: An elliptical orbit of a body orbiting the Sun. θo is some reference
angle formed by the intersection between a reference line drawn from the Sun
to some point on the ellipse and the major axis. The angle θ is formed by the
intersection between the position vector, r, of the body and the reference line.
In the case of an ellipse the angle θt = θ − θo is known as the true anomaly.
Shown in green is a circumscribing circle of radius equal to the semi-major axis
of the ellipse, a. The eccentric anomaly, E, for the orbiting body is formed by
the intersection between a line drawn from the center of the ellipse to the Sun
and a line drawn from the center of the ellipse to a point on the circumscribing
circle which has the same horizontal coordinate as the orbiting body. This angle
will vary in time as the body orbits the Sun.
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• Ω = the longitude of ascending node, an angle in a reference plane mea-
sured between some reference line passing through the Sun and a line from
the Sun to the point of ascending node, a point where the orbit intersects
the reference plane and the body is moving above the reference plane.

• ω = the argument of perihelion, an angle in the plane of the ellipse between
a line drawn from the point of perihelion to the Sun and a line drawn from
the Sun to the point of ascending node

• M = the Mean anomaly

Often, the argument of perihelion is replaced by another quantity called the
longitude of perihelion, ω, which is the sum of the longitude of ascending node
and the argument of perihelion.

ω = Ω + ω (1.25)

(Bate et al., 1971; Murray & Dermott, 1999; Gurfil et al., 2016). The eccentric
or true anomaly could also be used in place of M . Figure 1.3 shows the longitude
of ascending node and the argument of perihelion for the case of a hypothetical
planet orbiting the Sun2. One other quantity of elliptical motion about the
Sun is the mean longitude, λ, defined as the sum of the Mean Anomaly and
longitude of perihelion

λ = M + ω (1.26)

(Murray & Dermott, 1999; Gurfil et al., 2016). The energy of an elliptical orbit
for a body of mass m orbiting the Sun is given by

Eellip =
−Gc
2a

(
m+MSun

)
(1.27)

(Wie, 1998; Murray & Dermott, 1999).

1.2.4 The Circular Restricted 3-Body Problem

In the circular restricted 3-body problem, the 3-body problem is simplified by
forcing two of the bodies m1 and m2 to orbit their common center of mass in
circular orbits (Marquis, 1799; Poincaré, 1902). The motion of the third body
is not restricted. Its mass is considered negligible and so does not affect the
orbits of the other two masses.

Consider the case where m1 and m2 are a planet and the Sun. In this case
the Sun’s motion can be ignored. Though the motion of the 3rd body cannot
be solved analytically, there are constants of motion.

It is convenient to study the motion of the third body of mass m in the
rotating frame of the orbiting planet. In this frame the planet is taken to be at

2https://en.wikipedia.org/wiki/Orbital elements (accessed February 10, 2018)
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Figure 1.3: The orbit of a planet around the Sun is shown. The gray region is
a reference plane. The planet intersects the plane while moving above it at the
point of ascending node. The longitude of ascending node, Ω is in the reference
plane and is relative to some reference direction. The argument of perihelion,
ω, is in the plane of the orbit.

rest while the 3rd body moves due to the gravitational forces of the planet and
the Sun; Coriolis force, and Centrifugal force.

The Coriolis force is a deflecting force perpendicular to the velocity of the
3rd body in the rotating frame. It is given by

FCor = −2m~nM × ~vrot (1.28)

Here, the vector ~nM is the angular velocity vector of the planet in its orbit about
the Sun which is perpendicular to the planet’s orbital plane. Its magnitude is
equal to the mean motion. ~vrot is the velocity of the 3rd body in the rotating
frame of the planet. The centrifugal force is a force directed radially outward
from the center of the planet’s orbit. It is given by

Fcent = mn2Mr (1.29)

Given a 2D rectangular coordinate system, the following quantity is constant

CJ = n2Mr
2 +Gc

(
m1

r1
+
m2

r2

)
− v2rot (1.30)

and is known as the Jacobi constant. The units are chosen so that the distance
between the Sun and planet is a constant 1 and Gc(m1 + m2) = 1. vrot is the
velocity of the third body in the rotating frame, and r is the magnitude of the
position vector of the 3rd body.

The Jacobi constant can be rewritten in terms of osculating orbital quanti-
ties. Assuming the orbital eccentricity of the planet is zero, in this form it is
called the Tisserand Relation and is given by
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Tp =
ap
a

+ 2cos(i− ip)

√√√√ a

ap

(
1− e2

)
(1.31)

Here, i and e are the inclination and eccentricity of the small body’s elliptical
orbit respectively, ap is the semi-major axis of the planet’s elliptical orbit, and
ip the inclination of the planet’s elliptical orbit (e.g. Levison, 1996; Murray &
Dermott, 1999; Bailey & Malhotra, 2009).

The Tisserand parameter can be used to indicate the severity of potential
encounters between the planet and the small body. If TP > 3, then the orbits
are non-crossing. In this case, the small body is wholly interior to, or exterior
to, the planet’s orbit. If TP <∼ 2.8, then the encounter velocity is high enough
that the close encounter won’t eject the small body from the Solar system in
one encounter; but if TP is in the range ∼ 2.8 < TP <∼ 3.0 then the encounter
velocity is slow enough so that the small body could be ejected from the Solar
system in a single pass. (Levison & Duncan, 1997; Horner et al., 2003).

In the rotating frame there exists five points in the plane of the planet’s
orbit at which the 3rd body would feel no forces if vrot = 0 (or in other words
the body would be motionless in the rotating frame of the planet). These points
are known as the Lagrangian Equilibrium Points and are shown in Figure 1.4
3. Three of the points lie on a line which passes through the Sun and planet.
These are the collinear Lagrangian points and are called L1, L2 and L3. L1 lies
in between the planet and the Sun. L2 lies outside the orbit of the planet and
L3 lies on the opposite side of the Sun as the planet.

The other two are called triangular Lagrangian Equilibrium points and lie
at points on the planet’s orbit at 60◦ ahead and 60◦ behind the orbiting planet.
The leading point is called L4, and the trailing point L5 (Murray & Dermott,
1999; Gurfil et al., 2016). A body of negligible mass at any Lagrange point with
vrot = 0 will have the same mean motion, nM , as the planet.

The distance between the planet and L2 approximately defines the radius
of a sphere centered on the planet within which the planet’s gravity dominates
over the Sun’s. This sphere is known as the Hill Sphere (Murray & Dermott,
1999; Gurfil et al., 2016). All known satellites of the planets orbit within their
planet’s respective Hill Sphere. An equation for the radius of the Hill Sphere
(or the Hill Radius), RH , can be derived using the first condition of equilibrium
on an object of mass m at L2 motionless in the rotating frame of the planet.

Let the radius of the planet’s orbit be rp, and the mass of the planet Mp.
Since the planet moves in a circular orbit in the lab frame, the centripetal force
is supplied by the force of gravity from the Sun. This can be expressed as:

mpv
2
p

rp
= Gc

mpMSun

r2p
(1.32)

where vp is the magnitude of the velocity of the planet. Canceling Mp yields

3https://en.wikipedia.org/wiki/Lagrangian point (accessed February 8, 2018)
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v2p
rp

= Gc
MSun

r2p
(1.33)

For a circular orbit, vp is constant and is given by vp = nMrp. Substituting in
for vp yields

n2Mr
2
p

rp
= Gc

MSun

r2p
(1.34)

Which can be solved for the squared mean motion. The result is

n2M = Gc
MSun

r3p
(1.35)

Let ~FSun be the force of gravity of the Sun on the mass m, ~Fp the force of

gravity of the planet on the mass m and ~Fcent the centrifugal force on the mass
m in the rotating frame of the planet. The equation for the first condition of
equilibrium for the mass m is then written as

~Fcent + ~FSun + ~Fp = 0 (1.36)

mn2M

(
rp +RH

)
−Gc

mMSun(
rp +RH

)2 −Gc
mmp

R2
H

= 0 (1.37)

Solving for RH yields

RH = rp

(
Mp

3MSun

) 1
3

(1.38)

(Hill, 1878). For elliptical orbits with low eccentricity, rp is approximately the
semi-major axis of the planet’s orbit, ap. Replacing rp with ap yields

RH = ap

(
Mp

3MSun

) 1
3

(1.39)

Analogously, the Hill Sphere around a small body of mass ms relative to
a planet of mass Mp can be found. This form of the Hill Radius equation is
applicable to satellites of planets and small bodies orbiting the Sun having close
encounters with planets. The result is

RH = rs

(
ms

3mp

) 1
3

(1.40)

where rs is the radius of the circular orbit of the small body about the planet.
Equation (1.40) can be used to find the distance, Rtd, between a small body
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Figure 1.4: The five Lagrange points for a planet in orbit about the Sun in a
circular orbit. The Hill sphere around the planet is shown and has a radius RH .
Zero-velocity curves are also shown.

and a planet at which the orbit of a satellite of negligible mass about ms can
be broken apart by tidal forces. Let the orbit of a satellite of negligible mass
about ms be a circle of radius, r. In this case, when the distance between the
planet and ms equals Rtd, the orbit of the satellite lies just on the rim of the
Hill Sphere of ms relative to the planet. This condition can be expressed as

RH = r = Rtd

(
ms

3mp

) 1
3

(1.41)

This equation can then be solved for Rtd to yield:

Rtd = r

(
3mp

ms

) 1
3

(1.42)

Rtd is known as the tidal disruption distance (Philpott et al., 2010).

1.3 Resonances

In a general sense, two orbits are in resonance with each other when certain
orbital parameters exist in or nearly in a ratio of two small integers (or are
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commensurate with each other). However, this simplistic definition does not
define what is meant by “nearly in”. A more exact definition is that two orbits
in the Solar system are in resonance when at least one angle equal to some
linear sum of the mean longitudes of the two bodies, the longitudes of ascending
node and longitudes of perihelion, librates in time. Such angles are known as
resonance angles. In this section, whenever it is stated that two orbits or two
bodies are in resonance with each other when certain orbital parameters are
commensurate, it will be understood that the requirement of the more exact
definition is also met.

Resonances exist throughout the Solar system and are responsible for various
phenomena such as the transport of meteoritic material to Earth (Wisdom,
1982); capture of small bodies during planetary migration (Gomes et al., 2005);
and the creation of gaps in the main asteroid belt and Saturn’s rings (e.g. Murray
& Dermott, 1999; French et al., 2016).

They are very important in the study of both the short and long term dy-
namical behavior of small bodies. Resonances can stabilize or destabilize small
body orbits and affect their dynamical lifetimes.

1.3.1 Mean Motion Resonances

In the 3-body problem (Sun, planet, small body), the orbital parameters of the
small body vary over time due to the gravitational perturbations of the planet.
If the orbital periods of the planet and small body are commensurate then this is
a special condition known as a mean motion resonance (e.g. Murray & Dermott,
1999; Roig et al., 2002; Guzzo, 2006; Ryden , 2016) or MMR.

When this occurs, the conjunctions of the bodies regularly occur at the same
positions in their orbits. This leads to regular gravitational tugs on the small
body at the same location in its orbit. The situation is similar to a swinging
pendulum that is pushed every at every other amplitude.

Mean motion resonances can also occur between planets. For example, the
planet Neptune has an orbital period of 164.8 years, and the planet Uranus has
an orbital period of 84.0 years. Taking the ratio of these two periods yields

164.8

84.0
≈ 2

1
(1.43)

So Neptune is said to be nearly in a 2 to 1 mean motion resonance with
Uranus. Similarly, Uranus and Saturn are nearly in a three to one resonance
and Saturn and Jupiter are nearly in a five to two resonance. For this work,
mean motion resonances that lie outside a planet’s semi-major axis will be listed
with the smaller integer first and called exterior mean motion resonances. Mean
motion resonances (or MMR) that lie inside a planet’s semi-major axis will be
listed with the larger integer first and called interior mean motion resonances.
For example, the 1 to 2 mean motion resonance of Neptune lies outside Nep-
tune’s orbit, but its 2 to 1 MMR lies within its orbit.

Given integers j1 and j2, the notation j2 : j1 can be used to describe interior
MMR when j2 > j1 and exterior MMR when j2 < j1. The special case of
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j2 = j1 will be discussed later. Using this notation, 2:1 represents an interior
MMR and 1:2 represents an exterior MMR. For a given MMR of a planet, the
strength of the resonance is related to the order of the resonance, qq, given by
qq = |j2− j1| (e.g. Gallardo, 2006). Resonances are generally referred to as first
order, second order and so on. Generally speaking, given all other factors being
equal, a lower order resonance is stronger than a higher order resonance. For
example, a 3 to 2 resonance would be a first order resonance since 3 – 2 = 1.

The location of mean motion resonances can be found using Newton’s form
of Kepler’s 3rd Law. Given a planet of mass Mp and a small body of negligible
mass m orbiting the Sun with orbital periods P1 and P2 and semi-major axes
ap and aMMR respectively. If the two bodies are in a mean motion resonance
with each other then the integer ratio of the orbital periods can be expressed as

P1

P2
=
j1
j2

(1.44)

In the realm where MSun �Mp, using Newton’s form of Kepler’s third law this
becomes

P 2 =
4π2

GcMSun
a3 (1.45)

squaring the integer ratio in equation (1.44) and setting that equal to the ratio
of the square orbital periods expressed using equation (1.45) yields(

j1
j2

)2

=
4π2

GcMSun

GcMSun

4π2

a3p
a3MMR

(1.46)

(
j1
j2

)2

=
a3p

a3MMR

(1.47)

which can be solved for aMMR. The result is

aMMR = ap

(
j2
j1

)(2/3)

(1.48)

While in the mean motion resonance, the osculating orbital elements of the
small body’s orbit tend to oscillate quasi-periodically in time. As an example,
Moons & Morbidelli (1995) found that the semi-major axis, eccentricity and
inclination of the orbits of small bodies in the 4:1, 3:1, 5:2, and 7:3 interior
MMRs of Jupiter often oscillated quasi-periodically with periods on time scales
of 103 years.

The vector ~rij is a displacement vector between the small body and Jupiter.
The perturbing force of gravity of Jupiter on the small body is related to rij
via an inverse square law shown in equation (1.17). This displacement vector
varies in time as both the planet and small body orbit the Sun. Thus, the
force perturbing the orbit of the small body and the acceleration caused by the
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perturbation, acij , also vary in time. The same argument can be made for any
other planet in resonance with the small body.

acij can be expressed as an infinite sum of cosines of resonance angles. This
infinite sum is known as the disturbing function, and each term in the infinite
sum describes a particular subresonance (Murray & Dermott, 1999; Ellis &
Murray, 2000; Laskar & Boué, 2010). Each term in the disturbing function has
the general form:

acij ∼ ej5ej6p cos(j1λ+ j2λp + j3Ω− j4Ωp + j5ω + j6ωp) (1.49)

where j3, j4, j5 and j6 are integers; λ is the mean longitude of the small body;
λp is the mean longitude of the planet; Ω is the longitude of ascending node of
the small body; Ωp is the longitude of ascending node of the planet; ω is the
longitude of perihelion of the small body; and ωp is the longitude of perihelion
of the planet.

When the inclination and eccentricity of the small body are much larger
than that of the planet, terms involving Ωp and ωp can be ignored.

Futhermore, when the planet and small body exist in a particular subreso-
nance, j2 : j1, the term in the infinite sum for that subresonance time averages
to a non-zero number. Other non-resonant terms time average to zero making
acij dependent mostly on the dominant resonant term.

Two particular subresonances are of interest. These are:

acij ∼ cos(j2λp − j1λ− qqω) (1.50)

and

acij ∼ cos(j2λp − j1λ− qqΩ) (1.51)

(e.g. Roig et al., 2002; Masaki et al., 2003; Bailey & Malhotra, 2009; Tiscareno
& Malhotra, 2009). A resonance angle associated with a subresonance will be
denoted as φ. When φ oscillates in time (or librates) it means that the longitude
(or angle) of the qth conjunction between the small body and the planet changes
very slowly or librates about a constant value. This angle librating in time then
is the definitive sign that the small body is in a mean motion resonance with
the planet (Malhotra, 1994).

While the small body is in a mean motion resonance with a planet, if conjunc-
tions occur when the orbits are closest together, then close encounters between
the planet and small body are possible and these tend to destabilize the orbit of
the small body (Holman & Wisdom, 1993; Duncan et al., 1995). If a small body
in the resonance is not planet-crossing, then another effect which can happen
is that the eccentricity of the small body’s orbit can be pumped up until it
becomes planet crossing (Wisdom, 1982).

Contrarily, if conjunctions occur when the orbits are farthest apart it can
prevent close encounters which results in more stable orbits for small bodies in
the resonance (Malhotra, 1994). Such is the case for a group of small bodies
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known as Plutinos which are in a 2:3 resonance with Neptune (Jewitt & Luu,
1996).

Small bodies may also become temporarily stuck in a resonance, leave it and
then return. This is an effect known as resonance sticking (Lykawka & Mukai,
2007; Bailey & Malhotra, 2009).

If φ does not librate but instead circulates then it time averages to zero and
is not a dominant term in the disturbing function. This means that the small
body is not in the j2 : j1 resonance with the planet (e.g. Murray & Dermott,
1999; Roig et al., 2002; Smirnov & Shevchenko, 2013).

1.3.2 Secular Resonances

Other types of resonances besides mean motion resonances also exist. When the
precession rates of two orbits are commensurate, the two orbits are in a state of
secular resonance with each other. These commensurate precession rates may
be between the precession rates of two longitudes of perihelion, two longitudes
of ascending node and other pairs of orbital precession rates.

Secular resonances also perturb the orbits of small bodies but on longer time
scales than those of MMR (Froeschle & Morbidelli, 1994; Moons & Morbidelli,
1995; Murray & Dermott, 1999). Some of the notable frequencies of orbital
precession associated with the Jovian planets are
g5 = frequency of precession of the longitude of perihelion of Jupiter
g6 = frequency of precession of the longitude of perihelion of Saturn
g7 = frequency of precession of the longitude of perihelion of Uranus
g8 = frequency of precession of the longitude of perihelion of Neptune
s5 = frequency of precession of the longitude of ascending node of Jupiter
s6 = frequency of precession of the longitude of ascending node of Saturn
s7 = frequency of precession of the longitude of ascending node of Uranus
s8 = frequency of precession of the longitude of ascending node of Neptune

Values of these are shown in Table 1.3. These are known as the eigenfre-
quencies of the Solar system for the Jovian planets. The terrestrial planets have
similarly defined eigenfrequencies (g1 to g4 and s1 to s4). If the precession rate
of the longitude of perihelion of the orbit of a body is at or near g5, g6, g7 or
g8, then the body is said to be in the ν5, ν6, ν7 or ν8 resonance respectively. If
the precession rate of the longitude of ascending node of the orbit of a body is
at or near s5, s6, s7 or s8, then the body is said to be in the ν15, ν16, ν17 or ν18
resonance respectively (Williams, 1969; Froeschle & Scholl, 1989).

A special case of a secular resonance occurs when the precession rate of the
argument of perihelion of the small body is zero (ω̇ ≈ 0). This resonance is
known as a Kozai-Lidov resonance (Kozai, 1962; Sie et al., 2015; Shevchenko,
2017). In this type of resonance, the component of angular momentum of a small
body parallel to the angular momentum of the perturbing body is conserved.
This quantity, known as the Kozai integral can be expressed as:

IK = cosi
√

1− e2 (1.52)

where i and e are the inclination and eccentricity of the small body orbit.
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Table 1.3: Eigenfrequencies of the Jovian planets. Values are taken from Murray
& Dermott (1999)

Name Value (arcsec/yr) Period (years)

g5
4.29591

′′

year 3.0× 105

g6
27.77406

′′

year 4.7× 104

g7
2.71931

′′

year 4.8× 105

g8
0.63332

′′

year 2.0× 106

s5
−25.73355′′

year 5.0× 104

s6
−25.73355′′

year 5.0× 104

s7
−2.90266′′

year 4.5× 105

s8
−0.67752′′

year 1.9× 106

As a consequence of this, any increase in e must be accompanied by a de-
crease in i and vice versa. These coupled oscillations between e and i are the
hallmark of the Kozai resonance.

1.3.3 Resonances and Chaos

Resonances do not exist at only one point in phase space but instead take up a
volume in six-dimensional space. This allows for the possibility of overlapping
resonances. The orbits of small bodies in the vicinity of overlapping resonances
can become highly chaotic.

Chaos is the study of extreme sensitivity to initial conditions (Gleik, 1987).
This means that because of chaos, tiny differences in the initial conditions be-
tween two different systems can result in very different final states over time.

For example, consider two massless test particles orbiting the Sun in orbits
which differ only infinitesimally as shown in Figure 1.5. Test particles are placed
into both orbits in positions which differ only minutely in phase space. In
diagram B the same two test particles are shown at a later time. The states of
the two test particles have diverged.

Thus, there is potentially an initial difference between each position and
velocity vector component between the two for a total of up to six component
differences (3 position and 3 velocity). These are: ∆x0 = x20 − x10, ∆y0 =
y20 − y10, ... ∆vzo = v2z0 − v1z0.

If the orbits are chaotic, then these infinitesimal differences will grow expo-
nentially in time. Thus, for any particular vector component initial difference,
∆x0, the difference ∆x at a time t can be written in the form

∆x = ∆x0e
γt
exp (1.53)

Of the six orbital component differences one of them will grow faster than the
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A

B

Figure 1.5: In diagram A two orbits with the same eccentricity are shown which
differ in semi-major axis by an infinitesimally small amount. Test particles are
placed into both orbits in positions which differ only minutely in phase space. In
diagram B the same two test particles are shown at a later time. The distance
between the two particles in phase space has greatly increased showing that an
initially small difference has resulted in a large change.
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others and thus have largest exponent, γmax, of the six. This exponent is known
as the Lyapunov Characteristic exponent or Maximum Lyapunov Exponent and
is given by

γmax = lim
t→∞

1

t

∫ t

0

∆̇x(t
′
)

∆x(t′)
dt

′
(1.54)

The associated Lyapunov time, tlyp, is the time it takes the associated com-
ponent difference to grow by a factor of eexp and is given by

tlyp =
1

γmax
(1.55)

The value of tlyp is dependent on the integration time (Whipple, 1995). Orbits
with shorter Lyapunov times are considered more chaotic than those with longer
Lyapunov times. Thus, tlyp can be used to measure the chaoticity of an orbit.

Another quantity used to measure chaos related to the Lyapunov Charac-
teristic exponent is the MEGNO (Mean Exponential Growth of Nearby Orbits)
parameter, Y . The time averaged MEGNO parameter, 〈Y 〉, is a dimensionless
quantity directly proportional to the Lyapunov Characteristic exponent and
time, t, via

〈Y 〉 = t
γmax

2
(1.56)

(Cincotta & Simó, 2000; Goździewski et al., 2001; Cincotta et al., 2003; Giordano
& Cincotta, 2004; Hinse et al., 2010). In the limit t → ∞ the value of 〈Y 〉
asymptotically approaches 2.0 for quasi-periodic orbits and rapidly diverges far
from 2.0 for chaotic orbits. The MEGNO parameter can be calculated by solving
the following integral

Y =
2

t

∫ t

0

∆̇x(t
′
)

∆x(t′)
t
′
dt

′
(1.57)

The time averaged MEGNO parameter is given by

〈Y 〉 =
1

t

∫ t

0

Y (t
′
)dt

′
(1.58)

MEGNO has been used to study various objects including galaxies (Cincotta &
Simó, 2000; Cincotta et al., 2003), irregular Jovian moons (Hinse et al., 2010)
and exoplanets (Goździewski et al., 2001).

1.4 Numerical Integrators

A numerical integrator is an algorithm designed to advance a system of N
interacting bodies from an initial state, Ψ0, to a final state, Ψf . The final state
may be after or before the time of the initial state.

Generally the integration from the initial to the final state does not occur
in one step but instead proceeds through a series of intermediate steps. That
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is, the integrator advances the initial state to some intermediate state, Ψ1, and
then integrates that state to another intermediate state, Ψ2 and so on until the
integration ends and the final state has been reached. The process of moving
from one state to the next is known as integration.

How integration is done varies with the integrator.

1.4.1 Euler’s Method

Euler’s Method of integration uses a constant time step, ∆t, to advance from
Ψn−1 to Ψn. For one body this can be written as

~r1n = ~r1(n−1) + ~v1(n−1)∆t (1.59)

~v1n = ~v1(n−1) +

(
~ac

)
1(n−1)

∆t (1.60)

The time for the Ψn state is found from

tn = tn−1 + ∆t (1.61)

The acceleration vectors for the state Ψn are found from Equation 1.19.
Errors occur in ~r1n, ~v1n and ~ac1n with each integration due to the time

interval ∆t being non-zero and to the precision of the computer being used. A
smaller time step reduces error but requires more time to perform the task. The
experimenter must select a time interval, ∆t, that is small enough to achieve a
desired accuracy and large enough to complete the task within an allotted time.

1.4.2 Other Integrators

Other more efficient integrators reduce the error using more efficient code rather
than a smaller time interval. Integrators may also make use of a variable time
step to improve accuracy. For example, when a small body has a close encounter
with a planet it may cause a large acceleration which greatly increases the error
when integrating. But an integrator with a variable time step shrinks the size
of the time step when close encounters occur and then enlarges it again after
the encounter. The result is reduced error with only a minimal increase in task
time.

Other integrators include the Mercury (Chambers, 1999) collection of inte-
grators, Bulirsh-Stöer (Hairer et al., 1993), SWIFT (Levison & Duncan, 1994),
and the REBOUND N-body simulation package which is a suite of integrators
including Wisdom-Holman Fast (Rein & Tamayo, 2015), and IAS15 (Rein &
Spiegel, 2015). For any integrator, the acceleration of each body for any state
of the system can be found from Equation 1.19.
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1.4.3 The Bulirsh-Stöer Method

This method improves on the Euler method by partitioning the time step ∆t
into n steps of size h. The first step in advancing from Ψ0 to Ψ1 is the Euler
method. For the position this can be written as

~r11 = ~r10 + v10∆t (1.62)

But then state Ψ2 is found by advancing from Ψ0 to Ψ2 using a time step of 2h
and vectors ~ac and ~v from Ψ1. For the position this can be written as

~r12 = ~r10 + v11

(
2∆t

)
(1.63)

Similarly, intermediate values ~r13, ~r14 ... ~r1n are found. The final result is
found by averaging two different estimates for ~r1n: one found by advancing from
~r1(n−2) to ~r1(n) using a stepsize of 2h and the other found by advancing from
~r1(n−1) to ~r1n using a stepsize of h.

~r1(t0 + ∆t) =
1

2

[
~r1n + ~r1(n−1) + hv1n

]
(1.64)

The method is analogous for velocity.

1.4.4 The Hybrid Integrator of Mercury

Mercury is a suite of five integrators one of which is the Hybrid integrator.
The Hybrid integrator makes use of two integrators - a symplectic integrator
and a Bulirsh-Stöer integrator. The symplectic integrator uses a constant time
step and attempts to maintain a constant energy of the system. It does this by
analytically solving the equations of motion which are nearly identical to the
ones being considered. This works well if distances between bodies are large,
but breaks down for close encounters. In that case, the Bulirsh-Stöer integrator
takes over which is slower but much more deft at handling close encounters.

The symplectic integrator works by separating the Hamiltonian into at least
two parts H = H0 + H1 + .... For example, consider the case where you have
the Sun, of mass m� and a set of N gravitationally interacting bodies which
includes planets and small bodies. If a mixture of heliocentric coordinates, r�,
and barycentric velocities is used, then the Hamiltonian separates into three
parts with the third part containing the kinetic energy of the bodies. This is
written as:

H0 =

N∑
i=1

(
p2i

2mi
− Gcm�mi

ri�

)
(1.65)

H1 = −Gc
N∑
i=1

N∑
j=i+1

mimj

rij
(1.66)
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H2 =
1

2m�

(
N∑
i=1

pi

)2

(1.67)

where p is momentum, r is position and m is mass. Here, H0 is just the Hamil-
tonian for a Keplerian orbit and is solvable analytically. H1 is the gravitational
potential energy between each pair of bodies. Each part can be integrated inde-
pendently from the others. The error which occurs after each time step varies
with ε∆tn+1 where n is the integrator order, and ε is largest value in the set
{H1

H0
, H2

H0
, ...}.

The symplectic integrator works well when distances between bodies are
large as ε is small in that case. However, when a small body has a close encounter
with a planet, the distance between the small body and the planet becomes small
which causes H1 to be large. This causes ε to be large resulting in large errors.

Shortening the time step during close encounters is a potential solution to
this problem. However, when this is done, energy is no longer constant. Another
attempt to solve the problem of close encounters is to simply add H1 onto H0

for the duration of the close encounter. But this leads to the same error.
The Hybrid integrator solves this problem by rewriting H0 and H1 in terms

of a changeover function, K, which is used to determine under what conditions
the Bulirsh-Stöer integrator should be used. The reformulated H0 and H1 are:

H0 =

N∑
i=1

(
p2i

2mi
− Gcm�mi

ri�

)
−Gc

N∑
i=1

N∑
j=i+1

mimj

rij

[
1−K(rij)

]
(1.68)

H1 = −Gc
N∑
i=1

N∑
j=i+1

mimj

rij
K(rij) (1.69)

K is chosen so that K→ 0 during a close encounter, and K→ 1 otherwise.
If K= 1 the second term in H0 vanishes, and H0 is just the Hamiltonian for
Keplerian orbit. By a process of trial and error by Chambers (1999), K was
found to be related to a quantity y defined by:

y =

(
rij − 0.1rcrit

0.9rcrit

)
(1.70)

The critical distance, rcrit, is found from the larger of these two: 3 Hill radii and
0.5∆tvmax where vmax is the largest likely orbital velocity of any single body.
Figure 1.6 shows K as a function of

rij
rcrit

. The relationship between K and y is:

1.4.5 The IAS15 Integrator

The IAS15 (Implicit integrator with Adaptive time Stepping, 15th order) is one
integrator in the REBOUND simulation package. It is capable of handling both
conservative and non-conservative forces as well as velocity dependent forces.
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0 for y < 0

K =

{
y2

2y2−2y+1 for 0 < y < 1

1 for y > 1

Figure 1.6: The changeover function, K, used to determine when the Bulirsh-
Stöer integrator should take over during a close encounter. This changeover
occurs when the ratio of the distance between two bodies, rij , to some critical
distance, rcrit, approaches zero. Image taken from Chambers (1999).

Though not a symplectic integrator, it still attempts to preserve the system’s
energy by using a large order to keep the errors in energy of a system below
machine precision.

The result is that the conservation properties of IAS15 are as good or better
than a symplectic integrator. An integrator is optimized if its error in energy

displays a random walk in time

(
∼ t 1

2 or ∼ t 3
2 where t is time

)
. This is known

as Brouwer’s law and the IAS15 integrator obeys it.
The algorithm attempts to numerically solve the equation

ẍ = f(ẋ, x, t) (1.71)

To do this, the function f(ẋ, x, t) is approximated using a 7th order polynomial

ẍ(t) ≈ ẍ0 + a0t+ a1t
2 + ...+ a6t

7 (1.72)

This is then rewritten using h = t
dt , and bk = akdt

k+1 to achieve
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ẍ(t) ≈ ẍ0 + b0h+ b1h
2 + ...+ b6h

7 (1.73)

For the very first iteration, a constant acceleration is assumed which gives
predictions of the position and velocity at the end of the iteration. The forces
are then used to find the position and velocity and the differences between the
predicted and calculated bk are recorded. The iteration continues until the error
is below machine precision.

For the next iteration, the errors found in bk from the previous iteration
can be used to make an even better prediction of the position and velocity at
the end of that iteration. If the error does not converge to machine precision
after 12 iterations then the time step is considered to be too large, and the time
step can then be adapted. The result is an integrator which keeps energy errors
below machine precision for at least one billion orbits using only 100 time steps
per orbit.

1.4.6 Application of Numerical Integrators

Integrators such as the ones discussed here can be applied to a wide
variety of dynamical problems from galactic collisions to dust parti-
cles.

One subfield in which numerical integrators are useful which is
also the subfield of interest in this work is the area of dynamics of
small bodies of the Solar system. Objects in a simulation representing
small bodies are often referred to as test particles.

A problem which often arises in this area is the study of the dy-
namical history or future of a known small body. In this case, the
orbital parameters of the body may be known but will always contain
uncertainties.

If only a single test particle is integrated then the experimenter can
never be sure that the results are accurate due to the uncertainty in
the initial conditions. This problem can be combatted by integrating
a very large number of massless test particles initially with orbital
parameters spread throughout the uncertainties in the known orbital
parameters of the body. In this case, the test particles are known as
clones of the actual body.

Though massless, the perturbing effects of the gravity of more
massive bodies on their orbits can still be studied as the perturbing
acceleration depends only on the mass of the perturber, and the lack
of mass prevents the test particles from interfering with each other.

Care must be taken when applying this method. With each time
step, more error in introduced in the position and velocity of each test
particle. This is especially true if test particles have close encounters
with massive objects such as planets.

The experimenter must be careful not to draw definitive conclu-
sions from the behavior of just one test particle and not link that
behavior to that test particle’s initial conditions.
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Instead, the behavior of one test particle should be taken only as
one possible behavior that the actual object could display. A statis-
tical analysis of all the test particles can be made to determine likely
behaviors or fates of the actual body. These statistics are improved
as the number of clones is increased.

In the next section, different types of small bodies in the Solar
system will be discussed.

1.5 Small Bodies of the Solar System

Small bodies also known as minor planets, exist throughout the Solar system
orbiting the Sun from inside Earth’s orbit to outside the orbit of Neptune and
everywhere in between.

Populations and subpopulations of small bodies are classified based on such
properties as their physical or orbital characteristics. The study of small bodies
is important for multiple reasons which include to determine the threat small
bodies pose to Earth4 (Hahn & Bailey, 1990; Napier et al., 2015), to indicate
the existence of unseen planets (Brown, 2017; Batygin & Morbidelli, 2017) and
to give clues about the formation of the Solar system and origin of water on
Earth5 (Horner & Jones, 2010; Altwegg et al., 2015).

1.5.1 Asteroids

Asteroids are objects that are mainly composed of rocky and metallic material
that are generally accepted to be debris left over from the formation of the
Solar system. The exact composition varies with the asteroid, but in addition
to rocky material, asteroids may contain metals and volatiles including organic
material (Burbine, 2017).

Most asteroids orbit the Sun between the orbits of Mars and Jupiter. These
asteroids with semi-major axes between 2 au and 4.28 au are known as Main-
Belt Asteroids or MBAs, and the region in which they orbit is called the Main
Asteroid Belt. The Asteroids in this belt never accreted into a planet because
of perturbations from Jupiter (Petit et al., 2001).

Over 500,000 objects are listed in the Minor Planet Center database as
existing in this region6. Daniel Kirkwood discovered regions in the main asteroid
belt where there are relatively lower populations of asteroids compared to nearby
orbits and that these gaps were related to mean motion orbital resonances with
Jupiter (Kirkwood, 1867). These regions are now known as Kirkwood gaps
(Ryden , 2016). Figure 1.7 shows a histogram of small bodies in the inner Solar
system. The gaps in the Main Asteroid Belt at the location of mean motion
resonances can clearly be seen.

4https://www.nasa.gov/mission pages/asteroids/overview/index.html (accessed Dec. 28,
2017)

5https://www.mps.mpg.de/planetary-science/small-bodies-comets-research (accessed Dec.
28, 2017)

6https://www.minorplanetcenter.net/iau/MPCORB.html (accessed Sep. 24, 2017)
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Table 1.4: The current number of Trojans by planet according to the Minor
Planet Center.

Planet Number of Trojans

Earth 1
Mars 9

Jupiter 6701
Uranus 1

Neptune 17

Other dynamical classes of asteroids exist. Asteroids which have the same
(or nearly the same) semi-major axis as a planet are known as Trojan Asteroids.
Another way to state this is that Trojan Asteroids are in a 1:1 mean motion
orbital resonance with a planet. Trojan Asteroids have been discovered for
Jupiter, Uranus, Neptune, Mars, Earth and Venus (Marzari & Scholl, 2002;
Scholl et al., 2005; Connors et al., 2011; Lykawka et al., 2011; Aron, 2013; de la
Fuente Marcos & de la Fuente Marcos, 2014).

While Jupiter boasts a Trojan population which exceeds 6,000, by contrast,
no Saturn Trojans have been discovered. This is likely because the Trojan
regions of Jupiter are dynamically stable on Gyr timescales while those of Saturn
are mostly not except for a few small niches. Saturn may once have had a large
Trojan population, but even if it did, today this population would have been
greatly depleted due to the overlap of the Trojan region with the Saturn-Jupiter
2:5 mean motion resonance and secular resonances (Marzari & Scholl, 2000;
Marzari, et al., 2002; Nesvorný & Dones, 2002).

Nevertheless, the instability of the Trojan region does not exclude the possi-
bility that Saturn has captured Centaurs into temporary Trojan orbits (Horner
& Wyn Evans, 2006), and future surveys such as the LSST may indeed discover
such objects. Jupiter has by far the largest number of discovered Trojans. The
number of Trojans for each planet can be found at the Minor Planet Center7.
The current numbers of Trojans by planet are shown in Table 1.4. It is be-
lieved that as the planets migrated, they captured objects into their Trojan
regions. This explains the high inclinations of the orbits of Trojans of Jupiter
and Neptune (Gomes et al., 2005).

Some asteroids come dangerously near to or even cross Earth’s orbit. These
asteroids are known as Near Earth Objects or NEOs. The term Near Earth
Asteroids or NEAs is also used. There are three main subtypes of NEAs: Amor,
Apollo, and Aten which are defined using their semi-major axes and perihelion
distances, q, as follows:

• Amors - have semi-major axes greater than 1 au and 1.017 au < q < 1.3 au

• Apollos - have semi-major axes greater than 1 au and q < 1.017 au which
places them in Earth-crossing orbits with semi-major axes beyond Earth’s

7https://www.minorplanetcenter.net/iau/lists/Trojans.html (accessed Dec. 10, 2017).
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Table 1.5: The number of NEAs listed by subtype according to the Minor Planet
Center.

Type of Asteroid Number

Aten 1285
Apollo 8582
Amor 7393

Figure 1.7: A histogram of small bodies in the inner Solar system. The large
concentration of asteroids is the Main Asteroid Belt. Also shown are the loca-
tions of a few of Jupiter’s interior mean motion resonances. Note the dearth of
asteroids at these locations.

• Atens - have semi-major axes less than 1 au

(Norton & Chitwood, 2008). The Apollos are Earth-crossing but the Amors are
not. Atens which are not Earth crossing are referred to as Atiras8.

As of this writing the Minor Planet Center classifies over 17,000 objects
as NEAs9. The breakdown by subtype is shown in Table 1.5. These types of
asteroids may exist in part due to perturbations from giant planets which are
known to perturb the orbits of asteroids into planet-crossing orbits. Specifically
the ν6 secular resonance of Saturn and the 3:1 MMR of Jupiter are believed to
be responsible for the transport of asteroid fragments to Earth-crossing orbits
(e.g. Wisdom, 1982, 1983; Froeschle & Scholl, 1986).

8https://cneos.jpl.nasa.gov/about/neo groups.html (accessed January 1, 2018)
9https://www.minorplanetcenter.net/iau/lists/MPLists.html (accessed Dec. 10, 2017).
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1.5.2 Comets

Comets are bodies of ice and rock that orbit the Sun in much more eccentric
orbits than those of the planets. What differentiates comets from asteroids is
their large amount of ice. In general, at large heliocentric distances, comets exist
as single nuclei of ice and rock orbiting the Sun (Levison & Duncan, 1997). But
at closer distances ices begin to sublimate causing the comet to have its own
atmosphere. This atmosphere appears as a fuzzy ball around the comet nucleus
and is called the coma (Bennett et al., 2016; Fraknoi et al., 2016). In certain
cases, activity is also driven by mechanisms unrelated to heliocentric distance
(Jewitt, 2009).

As the comet continues to draw closer to the Sun, two tails develop - the
ion tail and the dust tail (Zeilik, 2002; Fraknoi et al., 2016). Each tail has
a general direction of away from the Sun. The tails develop by two different
mechanisms. The dust tail develops due to radiation pressure from the Sun. As
particles sublimate and leave the nucleus, radiation pressure pushes the particles
outward as they continue to orbit the Sun. The result is a curl-shaped tail.

The ion tail develops due to fast moving charged particles from the Sun
whose magnetic field rips particles right off the nucleus, trapping them and
carrying them along. With each passage around the Sun, a comet loses some
of its own mass which is shed in the form of particles which spread throughout
the comet’s orbit over time (Festou et al., 2004).

Traditionally, comets have been categorized as either short period or long
period. Long-period comets revolve around the Sun with orbital periods greater
than 200 years, and short-period comets revolve around the Sun with orbital
periods less than 200 years (Levison, 1996).

1.5.3 Comet Origins

It is generally accepted that originally many (but not all!) of the icy bodies
known as comets originated from somewhere beyond Neptune in orbits which
did not bring them into the inner Solar system.

Today this region beyond Neptune has several major subpopulations in
which these bodies could have originally abided including the Edgeworth-Kuiper
Belt (Levison & Duncan, 1997), the Scattered Disk (Volk & Malhotra, 2008),
or in the Oort cloud (Emel’yanenko et al., 2005).

The Edgeworth-Kuiper Belt is a region between the semi-major axis of Nep-
tune’s orbit and 48 au (the location of the 1:2 MMR of Neptune). Small bodies
in orbits with semi-major axes in this region are called Kuiper Belt Objects (or
KBOs) (Lykawka & Mukai, 2007). A medium-sized Kuiper Belt Object is on
the order of 102 km in diameter, and the largest are on the order of 103 km in
diameter (Murray-Clay & Schlichting, 2011).

The Scattered Disk is a region between the Edgeworth-Kuiper Belt and 1000
au (Tiscareno & Malhotra, 2003; Lykawka & Mukai, 2007). Small bodies in
orbits with semi-major axes in this region are known as Scattered Disk Objects
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or SDOs. At this time, the Minor Planet Center recognizes over 540 SDOs10.
The Oort Cloud is a cloud of comets surrounding the Sun (Oort, 1950).

Objects in this cloud are known as Oort Cloud Objects or OCOs. The exact
boundaries of the Oort cloud remain uncertain, but the outer boundary is be-
lieved to extend out to at least 20,000 au (Hills, 1981) and may extend out to
200,000 au (Duncan et al., 1987; Dones et al., 2015). Long-period comets are
believed to have originated in the Oort cloud (e.g. Oort, 1950; Fouchard et al.,
2014).

OCOs, KBOs, SDOs and other small bodies in orbits which have semi-major
axes beyond the orbit of Neptune are classified as Trans-Neptunian Objects (or
TNOs) by the Minor Planet Center of which 1900 are known11. So it can be
said that some comets originally would have been classified as TNOs.

However, over time, the orbits of these bodies were perturbed by gravita-
tional perturbations from planets (Duncan et al., 1988; Levison & Duncan, 1997;
Volk & Malhotra, 2008), a passing star (Oort, 1950; Hills, 1981) and galactic
tides (Heisler & Tremaine, 1986; Duncan et al., 1987). These perturbations
caused the orbits to evolve into those which could enter the inner Solar system.

Thus, the specific classification of any small Solar system body such as a
comet may be ephemeral as small bodies may transition back and forth between
different classes of objects during their lifetime (Tiscareno & Malhotra, 2003;
Horner et al., 2004).

1.5.4 Comet Taxonomy

The very basic taxonomical scheme which classified comets as short-period or
long-period was based on the longest time over which calculated orbital parame-
ters for comets were considered reliable which then was about 200 years. Today,
this scheme has become obsolete (Levison, 1996). Comet taxonomy is fluid, and
more than one taxonomical scheme has been proposed.

The taxonomical scheme of Levison (1996) separates comets into two broad
categories based on the value of their Tisserand parameter with Jupiter, TJ :
Nearly Isotropic Comets have TJ < 2 and Ecliptic Comets have TJ > 2.

Ecliptic Comets are further subclassified as Jupiter-Family, Chiron-type or
Encke-type. Jupiter-Family comets have 2 < TJ < 3 (e.g. Levison et al., 2006).
Encke-type comets have TJ > 3 with semi-major axes less than that of Jupiter’s
and Chiron type comets have TJ > 3 with semi-major axes greater than that of
Jupiter’s.

Nearly Isotropic Comets are split into two classes: New and Returning.
Comets with a > 10, 000 au are classified as New and comets with a < 10, 000 au
au are classified as Returning. Returning comets are further split in two classes
of their own: those with a < 40 au are termed Halley-type and those with
a > 40 au are termed External (Levison, 1996). The entire scheme is shown in
Figure 1.8.

10https://www.minorplanetcenter.net/iau/lists/t centaurs.html (accessed Dec. 10, 2017)
11https://minorplanetcenter.net/iau/lists/t tnos.html (accessed Dec. 10, 2017).
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Figure 1.8: The comet taxonomical scheme of Levison (1996). TJ is the Tis-
serand parameter with respect to Jupiter and aJ is the semi-major axis of
Jupiter. (Image created by author but based on an image in Levison (1996))
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The taxonomical classification scheme of Horner et al. (2003) (henceforth
known as the HEBA scheme) places each comet, Centaur and TNO into one of
two broad classes: comets and comet-like bodies.

Comet-like bodies are placed into a major class based on the planet con-
trolling the dynamics of the body at perihelion and aphelion using up to two
letters and then are placed into a subclass using a Roman numeral based on the
Tisserand parameter, Tp, of the planet controlling the dynamics of the small
body at perihelion.

The first letter of the major class is the starting letter of the planet control-
ling the dynamics of the body at perihelion, and the second that of the planet
controlling the body at aphelion or if no planet controls at aphelion the letters
E, T or EK are used depending on values of q and Q. For example, if Saturn
controls the dynamics of the body at perihelion and Neptune at aphelion then
the body is said to be in the SN class.

If the body is controlled by the same planet at both perihelion and aphelion
then only the one letter of the controlling planet is used. Table 1.6 shows the
letters used in the HEBA classes and the ranges over which each planet controls
the dynamics of a small body at perihelion and aphelion based on Horner et al.
(2003).

If there is no controlling planet at aphelion then if the perihelion lies in the
range 4 au < q < 33.5 au, and the aphelion lies in the range 33.5 au < Q < 60
au then the letter E is used for Edgeworth-Kuiper belt for the second letter of
the major class. If the perihelion lies in the range 4 au < q < 33.5 au, and
the aphelion lies in the range Q > 60 au then the letter T is used for Trans-
Edgeworth-Kuiper Belt for the second letter of the major class.

There are two special cases where no planet controls at perihelion or aphe-
lion. Objects with q > 33.5 au and Q > 60 au are said to be in the T class, and
objects with q > 33.5 au and Q < 60 au are said to be in the EK class.

Table 1.6: The letters used in the HEBA classes and the ranges over which each
planet controls the dynamics of a small body at perihelion and aphelion based
on Horner et al. (2003). The first four letters shown are for the giant planets
and may be used as the first or second letter of the major class. The E class
may be used as the second letter of the major class only. Classes EK and T are
special cases where no planet controls at perihelion or aphelion.

Letters Perihelion (au) Aphelion (au)

J 4 - 6.6 4 - 6.6
S 6.6 - 12 6.6 - 12
U 12 - 22.5 12 - 22.5
N 22.5 - 33.5 22.5 - 33.5
E 4 < q < 33.5 Q < 60

EK q > 33.5 Q < 60
T q > 33.5 Q > 60

The four subclasses are given in Table 1.7 and are labeled I, II, III and IV based
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on the value of Tp.

Table 1.7: The HEBA subclasses based on the Tisserand parameter of the planet
controlling the dynamics of the small body at perihelion. Based on Horner et
al. (2003).

Subclass Tisserand Parameter

I Tp ≤ 2
II 2 < Tp < 2.5
III 2.5 < Tp < 2.8
IV Tp > 2.8

For example, using Table 1.7, if Saturn controlled the dynamics of a small
body at perihelion, Uranus controlled them at aphelion, and the Tisserand pa-
rameter with respect to Saturn was 2.6 then the object would be classified as
SUIII. As another example, if Saturn controlled the dynamics at perihelion,
Q = 35 au and Tp = 2.85 then the object would be classified as SEIV.

Four comet classes cover all bodies that have perihelia q ≤ 4 au and are
defined in Table 1.8. The four comet classes in the HEBA taxonomical scheme
are E = Encke-type comet, SP = short-period comet, I = intermediate-period
comet and L = long-period comet.

Table 1.8: The four comet classes in the HEBA taxonomy. E = Encke-type
comet, SP = short-period comet, I = intermediate-period comet and L = long-
period comet. Based on Horner et al. (2003).

Class Perihelion (au) Aphelion (au)

E q ≤ 4 Q ≤ 4
SP q ≤ 4 4 < Q ≤ 35
I q ≤ 4 35 < Q ≤ 1000
L q ≤ 4 Q > 1000

1.5.5 Centaurs

In 1977, a small body was discovered orbiting the Sun between Saturn and
Uranus (Kowal et al., 1979). It was named 2060 Chiron. Today we know that
Chiron’s orbit has a semi-major axis of about 13.65 au and that Chiron itself
has a radius of at least 71 km (Groussin et al., 2004).

Its discovery was surprising because at that time no objects of this size were
known to have orbits like this between giant planets. Chiron’s discovery was
followed in 1992 by the discovery of 5145 Pholus orbiting between Uranus and
Neptune.

As time went on, more of these curious objects were found - 7066 Nessus in
1993, 8405 Asbolus in 1995 and 10199 Chariklo in 1997. It was soon realized
that these bodies represented a new class of objects which orbit the Sun between
Jupiter and Neptune. Today, we refer to such objects as Centaurs.
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The Minor Planet Center defines a Centaur as a small body which has a semi-
major axis between the orbits of Jupiter and Neptune and a perihelion distance
greater than the semi-major axis of Jupiter12. Other definitions include

• comets with TJ > 3 and semi-major axes greater than that of Jupiter’s
(Levison, 1996; Duncan et al., 2004)

• small bodies with 5 au < q < 28 au and a < 1, 000 au (Emel’yanenko et
al., 2013).

This work adopts the definition of Centaur used by the Minor Planet Center.
Applying this definition to a database of small bodies obtained from the Minor
Planet Center shows that the number of objects classified as Centaurs stands at
223 13, however, the actual population is believed to be much higher. Horner et
al. (2004) estimate the real population of Centaurs with diameters larger than
1 km to be 44,300. Figure 1.9 shows the currently known Centaurs according
to the Minor Planet Center in the HEBA scheme.

It is believed that Centaurs are a relatively short-lived transitional class
of objects between KBOs and Jupiter-Family comets (Tiscareno & Malhotra,
2003). Small objects survive in the Centaur region on average for 10 Myr
(Levison & Duncan, 1994; Tiscareno & Malhotra, 2003; Dones et al., 1996;
Horner et al., 2004).

Since the Solar system is about 4.6 billion years old, the Centaurs we see
today must have originated in another part of the Solar system. Thus, for their
population to be maintained, they must have a replenishing source. Numerical
studies show that the orbits of KBOs and SDOs can be perturbed by Neptune in
such a way that their perihelia decrease until the objects transition into Centaurs
(Duncan et al., 1988; Levison & Duncan, 1997; Volk & Malhotra, 2008).

SDOs in particular are a likely source of Centaurs (Di Sisto & Brunini, 2007).
Other source populations include the Oort Cloud (Emel’yanenko et al., 2005;
Brasser et al., 2012; de la Fuente Marcos & de la Fuente Marcos, 2014; Fouchard
et al., 2014), Trojan populations of Jupiter (Horner et al., 2004), and Trojan
populations of Neptune (Horner & Lykawka, 2010).

The lifetimes of Centaurs are punctuated by close encounters with the giant
planets. These close encounters along with other orbital perturbations cause the
osculating orbital parameters to change over time. Thus, the orbits of Centaurs
are in a constant state of flux. The dynamical evolution of the orbits of Cen-
taurs are complex, and the entire Centaur region is highly chaotic. Sometimes
Centaurs can maintain a near constant perihelion while their semi-major axes
and eccentricities change (Horner et al., 2003).

Numerical studies show that Centaurs exist in one of two dynamical classes
(Tiscareno & Malhotra, 2003; Bailey & Malhotra, 2009). One type consists of
those Centaurs whose proper semi-major axis changes in time according to a
power law. These are referred to as random-walk Centaurs. The other type con-
sists of Centaurs which abruptly jump between mean motion orbital resonances

12http://www.minorplanetcenter.net/iau/lists/Unusual.html (accessed Dec. 10, 2017).
13https://www.minorplanetcenter.net/iau/lists/t centaurs.html (accessed Dec. 10, 2017).
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Figure 1.9: The currently known Centaurs in the HEBA scheme using a − e
data taken from the Minor Planet Center. Curves which extend from the lower
left to the upper right are contours of constant perihelion. Curves which extend
from the upper left to the lower right are contours of constant aphelion. The
letters J, S, U and N stand for Jupiter, Saturn, Uranus and Neptune. T stands
for Trans-Edgeworth-Kuiper Belt. E and EK stand for Edgeworth-Kuiper Belt.
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of the four Jovian planets. Resonance sticking dominates the dynamics of these
Centaurs throughout their lifetimes. These are called resonance hopping Cen-
taurs. Numerical studies show that on average, resonance hopping Centaurs
have longer dynamical lifetimes than random-walk Centaurs. Random-walk
Centaurs are more likely to evolve into Jupiter-Family comets than resonance
hopping Centaurs (Di Sisto & Brunini, 2007; Bailey & Malhotra, 2009).

Orbital perturbations can cause Centaurs to jump back and forth between
different small body populations. Centaurs can transition into Jupiter-Family
comets (Levison, 1996; Horner et al., 2004), then back into Centaurs, then
back into Jupiter-Family comets again multiple times. Centaurs can collide
with the Sun or a planet, be ejected from the Solar system entirely or even
evolve into NEOs (Horner et al., 2004). The latter is of particular concern
given that Centaurs are made mostly of volatile material and can be much
larger than comet nuclei. If one of the larger Centaurs were to make it to the
inner Solar system it would spread dangerously large amounts of debris capable
of bombarding Earth and blocking sunlight (Hahn & Bailey, 1990; Napier et
al., 2015). As a comparison, comet C/1995 O1, Hale-Bopp, one of the largest
comets known, has a nucleus with a diameter of at most 35 km (Weaver &
Lamy, 1997), but the largest Centaur known, Chariklo, has a diameter of about
250 km (Araujo et al., 2016).

1.6 The Effects of Planets on Small Bodies

In a general sense, planets perturb the orbits of small bodies. But more specif-
ically planets produce three major effects on small body orbits. These effects
are known as sculpting, shepherding and clustering.

Sculpting creates orbital gaps in groups of small body populations. The gaps
can be seen as ranges in semi-major axis in which there are relatively few bodies
compared to nearby orbits.

The cause of sculpting is a planet or planet(s) in mean motion resonances
with the small body population. Examples of sculpting by planets include the
Kirkwood gaps in the main asteroid belt (e.g. Kirkwood, 1867; Wisdom, 1983;
Moons et al., 1998; Roig et al., 2002), gaps in the Kuiper Belt (Levison &
Duncan, 1993) and possibly in the TNO region (Batygin & Morbidelli, 2017).

Sculpting can also be applied to satellites in mean motion resonances with
ring particles about a planet. For example, the satellite Mimas of Saturn is in a
2:1 mean motion resonance with ring particles in the Huygens Gap at the inner
edge of the Cassini division (French et al., 2016). And Saturn’s moon Pan is in
a 1:1 mean motion resonance with ring particles in the Encke gap (Spahn et al.,
1993).

Sculpting has even been used to detect unseen exoplanets in protoplanetary
discs by searching for gaps in the disc (Jang-Condell, 2017).

Shepherding constrains a group of small bodies to orbits with semi-major
axes within a certain relatively narrow range and is the opposite of sculpting.
One example is the Hilda asteroids in a 3:2 MMR with Jupiter (e.g. Schubart,
2007). The bodies are grouped around 3.97 au from the Sun as shown in Fig-
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ure 1.7. Shepherding is also applied to satellites confining ring particles to a
narrow semi-axis range. For example, Saturn’s satellites Prometheus and Pan-
dora shepherd particles in Saturn’s F ring (Murray & Dermott, 1999; French et
al., 2003).

Clustering is a grouping of the longitude of the ascending nodes and argu-
ments of perihelion of small body orbits. Clustering has been used to infer the
existence of the proposed Planet Nine (Batygin & Morbidelli, 2017).

1.7 Ringed Small Bodies

The field of ringed small bodies was born in 2013 by the serendipitous discovery
of two narrow rings around the Centaur Chariklo which orbits between Saturn
and Uranus (Braga-Ribas et al., 2014). Since then, rings have been detected
around the TNO Haumea (Ortiz et al., 2017), and may exist around the Centaur
Chiron (Ortiz et al., 2015). The existence of these ringed small bodies naturally
raises several questions such as how did the rings form? Are ringed small bodies
commonplace? And what is the longevity of such rings?

Explanations for the origin of rings around small bodies include an impactor
(Melita et al., 2017), a collision between an orbiting satellite and another body
(Melita et al., 2017), the tidal disruption of an orbiting satellite (El Moutamid
et al., 2014), ejected debris from cometary activity (Pan & Wu, 2016) and the
tidal disruption of the small body due to a close encounter between the small
body and a giant planet (Hyodo et al., 2016).

The question of longevity becomes especially poignant in the Centaur region
where close encounters between Centaurs and giant planets are common (Horner
et al., 2004) and are quite capable of severely damaging or destroying such rings.

But even if rings could survive a close encounter with a giant planet, vis-
cous forces should widen such rings on time scales such as hundreds of years
(Michikoshi & Kokubo, 2017) or 100,000 years (Pan & Wu, 2016) which is far
shorter than the typical ∼10 Myr lifetime of a Centaur (Tiscareno & Malhotra,
2003). However, the lifetime of rings could be extended by orders of magnitude
due to stabilizing shepherd satellites (El Moutamid et al., 2014; Ortiz et al.,
2015) or self-gravitating rings (Rimlinger et al., 2017).

If the body is active, then it could act as a replenishing source for rings thus
also extending their lifetime. This idea is reasonable especially given the fact
that some satellites of giant planets are known to be sources for ring material
(e.g. Burns et al., 1999; Hedman et al., 2007). More evidence that rings can sur-
vive in the Centaur region comes from Araujo et al. (2016) who found that close
encounters between Chariklo and a giant planet capable of severely damaging
or destroying the rings are very rare.

This introduces the possibility that rings around Centaurs could pre-date
their entrance into the Centaur region. This idea is bolstered by the discovery
of a ring around the dwarf planet Haumea which lies in the Trans-Neptunian
region (Ortiz et al., 2017). It is beneficial to study each of these three bodies
and their rings in more detail.
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1.7.1 Ring Detection

The rings of Saturn have been known since 1610 and can be seen from Earth in
even small telescopes. However, rings around other bodies in our Solar system
are too faint and/or too close to the body to be seen directly from Earth-based
telescopes. These rings must be detected using a method which does not involve
direct observation.

One method is to monitor the light intensity from a star as a body occults
it. Then, as the rings around the body pass in front of the star, the rings block
some of the star light causing a dip in the light curve.

Given the circular or elliptical shape of rings, any particular ring may cause
up to two dips in the light curve. One dip occurs when the ring passes in front
of the star, ahead of the small body. The second dip occurs after the small body
has occulted the star when the part of the ring trailing behind the small body
blocks some of the starlight. Viewing an occultation like this from different
locations on Earth allows the shape of the small body to be inferred and the
pole orientation to be estimated.

This technique was used to discover the rings of Uranus (Planetary Labora-
tory et al., 1978), the rings of Chariklo (Braga-Ribas et al., 2014) and possible
rings around Chiron (Elliot, 1995; Bus, 1996; Ortiz et al., 2015). Figure 1.10
shows the light curve during the occultation of a star by Chariklo. The large
dip in the center is caused by Chariklo itself. The other smaller dips are caused
by rings.

Figure 1.10: The light curve during the occultation of a star by Chariklo. The
large dip in the center is caused by Chariklo itself. The other smaller dips are
caused by rings. Taken from Braga-Ribas et al. (2014).

Valuable information can be gained by analysing light curves like the one
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shown in Figure 1.10, but other factors must be considered before pertinent
information can be gained. If the relative speed of the body is known, it can be
used in conjunction with the time interval for a dip to determine a ring width.

A range of possible ring orbital radii can also be found. To do this, star
occultation data can be analysed to determine the locations in the sky relative to
the body at which the dips occurred. It is beneficial if the occultation is viewed
from multiple locations as this can provide multiple data points. Simplifying
assumptions can be made such as assuming the rings are circular and lie in the
equatorial plane of the body.

Figure 1.11 shows the locations about Chiron in the sky at which dips in
the light curve occurred during an occultation of a star. These locations can
be fitted to a set of possible elliptical shapes. Assuming a circular shape of
the rings, the elliptical shape is an illusion caused by projection. The elliptical
shapes can be used to determine a range of possible ring orbital radii.

Figure 1.11: The locations about Chiron in the sky at which dips in the light
curve occurred during an occultation of a star. The top two data points were
found using the Faulkes telescope on Mount Haleakala. The two bottom points
were found using the IRTF 3 m telescope at Mauna Kea. Image taken from
(Ortiz et al., 2015).

Another important factor to consider when using this technique is the angle

42



at which the rings are being viewed. The aspect angle is defined as the angle
between the rotation axis of the body and the line of sight direction of the
observer. If the aspect angle is known or even if just its range is known, then
this can be used to find possible coordinates of the poles of the body.

1.7.2 Chariklo

Chariklo is a Centaur orbiting between Saturn and Uranus with a semi-major
axis of 15.8 au, an eccentricity of 0.172 and an inclination of 23.4◦. Various
values for the mean radius of Chariklo have been reported and range from 119
km (Fornasier et al., 2014) to 137 km (Altenhoff et al., 2001).

Chariklo is thought to have a non-spherical shape with an major to minor
ellipsoid axis ratio of 1.1 (Fornasier et al., 2014). Its surface is believed to be
composed of mostly refractory material and water ice (Groussin et al., 2004).

Chariklo’s density is poorly known. Braga-Ribas et al. (2014) suggest a bulk
density of 1 g/cm3. Using this density and reported size range, this puts the
mass of Chariklo somewhere in the range 1018 kg - 1019 kg assuming a spherical
shape.

The ring structure of Chariklo consists of two separate rings. An inner ring
of radius 391 km and width 7 km and an outer ring of radius 405 km and width
3 km. The rings are believed to be composed of mostly silicates with water ice,
tholins and amorphous carbon (Duffard et al., 2002). At this time Chariklo is
not believed to be active and no activity has been detected since its discovery.
However, it is not known if Chariklo has been active in the past and thus acted
as a replenishing source for its rings. A much more detailed description of
Chariklo and its rings will be given in Chapter 2.

1.7.3 Chiron

Chiron’s physical properties have been difficult to ascertain due to interference
from circum-nuclear material, Chiron’s non-spherical shape and cometary ac-
tivity. Nevertheless, a concerted effort has been taken to obtain properties such
as size, shape, and density (Fornasier et al., 2013; Ortiz et al., 2015). Proposed
radii for Chiron range from 71 km to 186 km (Sykes & Walker, 1991; Groussin
et al., 2004; Ortiz et al., 2015).

Chiron’s bulk density cannot be established due to the large uncertainty in
its size. A density range of 500 kgm−3 - 1,000 kgm−3 has been proposed for
Chiron (Meech et al., 1997). Assuming a spherical body, this places the mass
of Chiron somewhere on the order of 1017 kg - 1019 kg.

Chiron is believed to be porous and comprised of a mixture of dust and ices
such as CN, CO, CO2, and water ice (Stern, 1989; Luu & Jewitt, 1990; Meech
& Belton, 1990; Bus et al., 1991; Prialnik et al., 1995; Womack & Stern, 1995;
Capria et al., 2000).

Since its discovery, observers have reported sporadic outbursts or changes
in brightness of Chiron perhaps related to cometary activity (Bus et al., 1988;
Hartmann et al., 1988, 1990; Luu, 1993; Lazzaro et al., 1996, 1997; Bus et al.,
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2001; Silva & Cellone, 2001; Duffard et al., 2002). In addition to sporadic
changes in brightness, Chiron also displays periodic activity, reaching a peak
about every decade. This may or may not be real (Luu & Jewitt, 1990; Luu,
1993; Lazzaro et al., 1996) but is unrelated to the rotation of Chiron, which has
a period of only 5.92 hours (Bus et al., 1989).

This activity prompted an organised global program of observations to follow
Chiron through its perihelion passage in the mid-1990s (Stern, 1995) and led to
Chiron becoming the first object designated as both an asteroidal and cometary
body (2060 Chiron) and 95P/Chiron14.

Cometary activity is driven by the sublimation of volatiles. Within ∼2.5 au
from the Sun, water sublimation typically dominates (Duncan et al., 1988; Quinn
et al., 1990; Levison & Duncan, 1997; Meech & Svoren, 2004; Emel’yanenko
et al., 2013). At greater heliocentric distances however, the temperature is
too low for water to sublimate and so other volatile species drive the activity.
Heliocentric distance is typically a strong driver of cometary activity for bodies
on highly eccentric orbits as the body reaches maximum activity at perihelion
and minimum activity at aphelion.

However, for cometary bodies in orbits of lower eccentricity, heliocentric
distance does not drive the activity. For example, objects like 95/P Chiron
and comet 29P/Schwassman-Wachmann 1 display sporadic outbursts of activity
which occur well beyond perihelion and seemingly have nothing to do with
heliocentric distance (Hartmann et al., 1988; Lazzaro et al., 1997; Duffard et
al., 2002). Since Chiron has displayed activity at heliocentric distances where
water ice cannot sublimate (Stern, 1989; Meech & Belton, 1990; Hartmann et
al., 1990; Luu & Jewitt, 1990; Meech et al., 1997), other volatile sublimation
must be responsible. One likely source of this activity is the outgassing of highly
volatile ices such as CN, CO or CO2 which escape due to thermal sublimation or
the transformation of amorphous water ice to its crystalline form (Stern, 1989;
Meech & Belton, 1990; Prialnik et al., 1995; Lazzaro et al., 1997; Capria et al.,
2000).

After the discovery of rings around Chariklo, a reanalysis of star occultation
data showed that the circum-nuclear material around Chiron could be inter-
preted as rings with a mean radius of 324 ± 10 km (Ortiz et al., 2015). A much
more detailed description of Chiron and its rings will be given in Chapter 3.

1.7.4 Haumea

Haumea is a dwarf planet and is the most massive of the ringed small bodies
having a mass of 4.006× 1021 kg which is three orders of magnitude larger than
the mass of Chiron or Chariklo. Its mass is better constrained due to Haumea’s
two moons named Hi’iaka and Namaka15. Its surface is believed to be comprised
of water ice with a dark spot (Lacerda et al., 2008; Thirouin et al., 2016) and
no atmosphere (Ortiz et al., 2017).

14http://www.minorplanetcenter.net/iau/lists/PeriodicCodes.html (accessed 23 Dec. 2016)
15https://planetarynames.wr.usgs.gov/Page/Planets#DwarfPlanets
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The shape of Haumea is far from spherical, having a shape based on three
axes known as a triaxial ellipsoid. The size of Haumea has been based on thermal
models. One result for the length of its three axes is 2, 000× 1, 500× 1, 000 km
(Rabinowitz et al., 2006). Ortiz et al. (2017) report that Haumea’s major and
minor axes have lengths of 1,704 ± 4 km and 1,138 ± 26 km respectively.

This shape is due to its very fast rotational period of 3.9 hours (Rabinowitz
et al., 2006; Lacerda et al., 2008). Haumea’s density is in dispute. Rabinowitz
et al. (2006); Lellouch et al. (2010); Lockwood et al. (2014) and Thirouin et
al. (2016) report a density of at least 2.5 g/cm3 which is larger than a typical
density of a TNO (Thirouin et al., 2016), though other TNOs such as 2002
GH32 and 2003 UZ413 have similar high densities (Perna et al., 2009; Thirouin
et al., 2016). By contrast Ortiz et al. (2017) report an upper limit on Haumea’s
density of 1.885 g/cm3 which if correct agrees more with other typical TNO
densities.

The ring is believed to orbit in the equatorial plane of Haumea and exhibit
3:1 spin-orbit coupling with Haumea’s rotation (Ortiz et al., 2017). The ring
may be the result of a collision as Haumea is a member of the only known TNO
collisional family though this is far from certain. Besides Haumea and its two
moons, the family has ten other members (Rabinowitz et al., 2006; Thirouin
et al., 2016). Tables showing the orbital and physical properties of Chariklo,
Chiron and Haumea will be shown in Chapter Four.

1.8 Research Questions

In this thesis, three broad questions are addressed.

1.8.1 What is the likelihood that the rings of Chariklo could have
formed before Chariklo entered the Centaur region?

This is addressed in Chapter 2. Nearly 36,000 Chariklo clones are integrated
backwards in time for one Gyr under the influence of the Sun and the four
giant planets. The close encounter distance for every close encounter between a
clone and a giant planet is recorded. A scale to measure the severity of a close
encounter based on close encounter distance is developed. Overall statistics of
the close encounters, by planet, region and severity are taken. MEGNO and
lifetime maps of a region of a − e space containing the orbit of Chariklo are
made.

1.8.2 What is the likelihood that any rings of Chiron could have
formed before Chiron entered the Centaur region?

This is addressed in Chapter 3. The technique is very similar to that used
for Chariklo. Nearly 36,000 clones of Chiron are integrated backwards in time
for 100 Myr under the influence of the Sun and the four giant planets. The
close encounter distance for every close encounter between a clone and a giant
planet is recorded. The same scale used for Chariklo clones to measure the
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severity of a close encounter is used for Chiron clones. Overall statistics of the
close encounters, by planet and severity are taken. Statistics on the dynamical
classes of a sample of clones are taken. MEGNO and lifetime maps of a region
of a− e space containing the orbit of Chiron are made.

1.8.3 How does the ring limit depend on the variables associated
with a close encounter between a ringed small body and a
planet?

This is addressed in Chapter 4. We use the criterion of Araujo et al. (2016)
that the effect of a close encounter on a ring of a small body is just “noticeable”
if the change in eccentricity of the orbit of any ring particle is 0.01. We define
the ring limit as the distance of closest approach of a close encounter between
a planet and a small ringed body in a parabolic or hyperbolic orbit about the
planet in the planar, 3-body problem.

Close encounters between each giant planet and hypothetical one-ringed
small bodies in parabolic or hyperbolic orbits about the planet are simulated us-
ing numerical integration, and the ring limit found for each trial. Ring particles
are simulated using massless test particles initially in circular orbits which lie
in the same plane as the orbit of the small body about the planet. For Jupiter,
the ring limit is found for a range of small body masses, velocities at infinity of
the small body and ring orbital radii.

For the other three giant planets, the ring limit is found for a Pluto-like body
with a ring orbital radius of 50,000 km over a range of velocities at infinity. The
large orbital radius was chosen so that a ring limit upper bound could be found
which would cover a large range of possible orbital radii for ringed small bodies
yet to be discovered.
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2 The Dynamical History of Chariklo and its
Rings

The field of ringed small bodies is only about four years old and is slowly grow-
ing. Since the discovery of rings around the Centaur Chariklo in 2013, rings
have been found around the Trans-Neptunian Object (or TNO) Haumea and
are suspected around the Centaur Chiron.

A natural question to ask based on these discoveries is what is the origin of
these rings? At this time the origin of rings around small bodies is unknown.
Also unknown is if all rings were created by the same mechanism or by different
mechanisms. Theories of ring formation include cometary activity, collision with
another body, collision between two satellites, tidal disruption of a satellite and
tidal disruption of the body itself during a close encounter within the Roche
limit of a planet.

The rings around Chariklo are the surprising given that its orbit exists in a
region of the Solar system in which frequent close encounters with giant planets
occur on time scales of thousands or even hundreds of years.

The severity of these encounters has consequences for ring origin theories. If
close encounters within the tidal disruption distance are very common then this
would support the idea that the rings originated in the Centaur region as any
ring originating in the TNO region would likely have been destroyed by close
encounters.

If close encounters within the Roche limit are found to be common then this
would introduce the possibility that the rings could have been created in the
Centaur region by tidal forces pulling particles off the small body which could
then gather into rings.

On the other hand, if ring destroying close encounters are very rare, then
this would introduce the possibility that the rings could have originated outside
the Centaur region.

Because it was evident that past close encounters can have a strong impact
on ring origin theories, it was natural to study these encounters in more detail in
an attempt to measure their severity and frequency. But in order to accomplish
this, a close encounter severity scale needed to be developed.

We noted the different factors that would affect the severity of close encoun-
ters such as the velocity at infinity, v∞, of the small body, ring orbital radius,
small body mass, planet mass, ring inclination and minimum separation dis-
tance dmin. We decided to ignore velocity effects and gauged the severity by
comparing dmin to the critical distances of the Hill radius, tidal disruption dis-
tance, Roche Limit and “ring limit”. The ring limit, R, was a curve in dmin−v∞
which separated noticeable encounters from non-noticeable encounters. That is,
if dmin < R then the encounter was noticeable and non-noticeable otherwise.

An encounter was considered just noticeable if given initially circular rings,
the change in orbital eccentricity of any ring particle was 0.01. We accounted
for the effect of ring inclination by defining the ring limit in the planar problem.
Inclined rings are harder to perturb than rings in the plane of the small body’s
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orbit because eccentricity is altered only by planar perturbing forces. Perturbing
forces normal to the orbital plane perturb the orbital inclination but not the
eccentricity (Murray & Dermott, 1999). As such, defining the ring limit in this
way ensured that ring inclination would not cause noticeable encounters to occur
at distances beyond the ring limit.

We approximated R by setting it equal to 10 tidal disruption distances for
each planet. This approximation partially accounted for the effects of small
body mass, planet mass and ring orbital radius.

The severity scale was created and consisted of five different rankings for
the severity of an encounter. In order of decreasing severity, encounters were
classified as extreme, severe, moderate, low or very low. For example, if dmin
was greater than the tidal disruption distance but less than the ring limit then
this encounter was ranked as moderate. In this scale, close encounters of very
low severity occurred outside the Hill radius.

The following work made use of our scale and the technique of numerical
integration of clones of Chariklo backwards in time to determine the likelihood
that ring destroying close encounters between Chariklo and any of the four giant
planets have occurred in the past as well as the stability of Chariklo’s present
orbit, the chaoticity of the orbit, the region from which Chariklo originated and
the time frame within which Chariklo entered the Centaur region. Each close
encounter between a clone and a giant planet was recorded, and its severity
determined using our scale.

The stability and chaoticity of Chariklo’s current orbit were investigated by
finding its dynamical lifetime and MEGNO parameter respectively. The half-life
against leaving the Centaur region moving backwards in time was also found
and used as a stability indicator.

The integrations were carried out, and the results analysed. Chariklo likely
entered the Centaur region sometime during the last 20 Myr from somewhere
in the Trans-Neptunian region. Close encounters within the tidal disruption
distance or Roche limit were found to be extremely rare.

We concluded that it was statistically likely that Chariklo’s rings could have
originated in the Trans-Neptunian region assuming that the effects of viscous
dispersion were negated by other stabilizing factors such as shepherd satellites.
This also indicated that ring creation due to the tidal disruption of Chariklo
during a close encounter was unlikely.

Chariklo’s orbit was found to be highly chaotic but exhibited a degree of
stable chaos. Its half-life against leaving the Centaur region moving backwards
in time was found to be 3 Myr.

This work was published in the Astronomical Journal in 2017 with the title
“The Dynamical History of Chariklo and its Rings” (Wood, J., Horner, J., Hinse,
T. C., & Marsden, S. C. 2017, AJ, 153, 245). This published paper follows.
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Abstract

Chariklo is the only small solar system body confirmed to have rings. Given the instability of its orbit, the presence
of rings is surprising, and their origin remains poorly understood. In this work, we study the dynamical history of
the Chariklo system by integrating almost 36,000 Chariklo clones backward in time for 1 Gyr under the influence
of the Sun and the four giant planets. By recording all close encounters between the clones and planets, we
investigate the likelihood that Chariklo’s rings could have survived since its capture to the Centaur population. Our
results reveal that Chariklo’s orbit occupies a region of stable chaos, resulting in its orbit being marginally more
stable than those of the other Centaurs. Despite this, we find that it was most likely captured to the Centaur
population within the last 20Myr, and that its orbital evolution has been continually punctuated by regular close
encounters with the giant planets. The great majority (>99%) of those encounters within 1 Hill radius of the planet
have only a small effect on the rings. We conclude that close encounters with giant planets have not had a
significant effect on the ring structure. Encounters within the Roche limit of the giant planets are rare, making ring
creation through tidal disruption unlikely.

Key words: minor planets, asteroids: individual (10199 Chariklo) –
planets and satellites: dynamical evolution and stability – planets and satellites: rings

1. Introduction

The Centaurs are a dynamically unstable population of small
bodies in the outer solar system. The first Centaur to be
discovered, Chiron, was discovered in 1977. After the
discovery, astronomers searched through archival images,
revealing the presence of Chiron on old photographic plates,
which allowed the object’s orbit to be precisely determined. It
was soon realized that Chiron followed an unusual path around
the Sun, spending the vast majority of its time between the
orbits of Saturn and Uranus (Kowal et al. 1979). In the decades
since Chiron’s discovery, many other Centaurs have been
found, all following unstable orbits in the outer solar system.
Though the definition of Centaur varies within the astronomical
community, we will use the definition adopted by the Minor
Planet Center that Centaurs move on orbits with semimajor
axes between those of Jupiter and Neptune, and have perihelia
beyond Jupiter’s orbit6 (e.g., Sheppard et al. 2000; Jewitt
2009). They exhibit extreme dynamical instability (e.g., Horner
et al. 2004a; Bailey & Malhotra 2009), being scattered
chaotically as a result of regular close encounters with the
giant planets.

As a result of their extreme dynamical instability, the
observed Centaurs cannot simply be the last remaining
members of a once larger, primordial population. Instead, they
must be continually replenished. Over the years, a number of
other solar system small body populations have been suggested
as potential sources for the Centaurs, including captured Oort
Cloud comets (e.g., Emel’yanenko et al. 2005; Brasser
et al. 2012; Fouchard et al. 2014), the Jovian Trojans (e.g.,
Horner & Evans 2006; Horner et al. 2012b), and the Neptune

Trojans (Horner & Lykawka 2010a, 2010b; Horner
et al. 2012a).
The primary source population, however, seems likely to be

the trans-Neptunian objects—principally the Scattered Disk
(e.g., Di Sisto & Brunini 2007; Volk & Malhotra 2008), with a
small contribution from the classical Edgeworth–Kuiper Belt
(e.g., Levison & Duncan 1997). In turn, the Centaurs are
thought to be the primary parent population for the short-period
comets—with up to a third of Centaurs likely to be captured to
that population at some point during their chaotic evolution
(e.g., Horner et al. 2004a).
The largest known Centaur is Chariklo, with an estimated

diameter of approximately 250 km (Fornasier et al. 2014). It
moves on a moderately eccentric orbit between the orbits of
Saturn and Uranus, with a semimajor axis of 15.8 au. Early
dynamical studies showed that Chariklo moves on a relatively
stable orbit for a Centaur, with an estimated dynamical half-life
of 10.3Myr (Horner et al. 2004a).
In 2013, observations of a chance stellar occultation by

Chariklo revealed the unexpected presence of two narrow rings
with radii 391 and 405km, respectively—making it the only
small body in the solar system confirmed to possess rings
(Braga-Ribas et al. 2014).
The discovery of Chariklo’s rings was a great surprise and

has prompted significant discussion on their nature and origin,
while also opening up the possibility that other small bodies
such as Chiron could also possess rings (e.g., Ortiz et al. 2015;
Pan & Wu 2016).
A variety of mechanisms have been proposed to explain the

rings, including leftover debris from a collision with another
small body, debris from the tidal disruption of another small
body (El Moutamid et al. 2014), partial tidal disruption of
Chariklo itself (Hyodo et al. 2016), and dust particles sent into
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© 2017. The American Astronomical Society. All rights reserved.

6 http://www.minorplanetcenter.net/iau/lists/Unusual.html (accessed 2016
January 15).
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orbit due to an outflow of CO and/or N2 from Chariklo as a
result of cometary activity (Pan & Wu 2016).

El Moutamid et al. (2014) suggest the possibility that
shepherd satellites could exist around Chariklo, making the
rings more stable. Such satellites are known to sculpt the rings
of the giant planets—with several examples found in the
Saturnian system alone (e.g., Colwell et al. 2009).

While such shepherding satellites have not yet been found in
orbit around Chariklo, their presence would potentially ensure
the long-term survival of the ring system.

The presence of rings around Chariklo is perhaps particularly
surprising when one considers that the orbits of Centaurs are
highly chaotic, as a result of the gravitational influence of the giant
planets (Tiscareno & Malhotra 2003; Bailey & Malhotra 2009).
On average, a Centaur remains just 10Myr in the Centaur region
(Levison & Duncan 1994; Dones et al. 1996; Tiscareno &
Malhotra 2003; Horner et al. 2004a), which is far less than the age
of the solar system (4.6 Gyr).

During their lifetime, Centaurs cross the orbits of the giant
planets and most likely experience multiple close encounters
within 1 Hill radius of those planets during their stay in the
Centaur region (Tiscareno & Malhotra 2003; Bailey &
Malhotra 2009; Araujo et al. 2016). This opens up the
possibility that Chariklo has had a close encounter with a
giant planet at some time in its past, which was so close that the
rings as they exist today would not have survived.

The goal of this work is to determine the dynamical history
of Chariklo and its rings, and to examine the chaoticity and
lifetimes of Chariklo-like orbits in semimajor axis-eccentricity
space. In Section 2, we present the known properties of
Chariklo based on earlier observational work and introduce
criteria that we will apply to measure the severity of a close
encounter. In Section 3 we describe our methodology, before
presenting our results in Section 4 and summarizing our
conclusions in Section 5.

2. Chariklo Properties and Theory

Chariklo was discovered in 1997 by the Spacewatch
program,7 moving on an orbit that lies between those of
Saturn and Uranus, within 0.09 au of the location of the 4:3
mean motion resonance with Uranus. Its physical properties
and those of its rings are presented in Table 1. Orbital elements
of Chariklo are shown in Table 2.

Since its discovery, a number of groups have carried out
observations of Chariklo at a variety of wavelengths, with the
goal of disentangling its surface composition. Despite the work
that has been carried out, there remains significant disagree-
ment on the Centaur’s surface composition. Groussin et al.
(2004) report that the reflectance spectrum of Chariklo is
consistent with a surface composed of 80% refractory material
and 20% water ice.

Guilbert et al. (2009) reported water ice in the combined
spectrum of Chariklo+rings, and Duffard et al. (2014) showed
that the water ice feature comes only from the rings, and not
from Chariklo. The rings are believed to be composed of water
ice, silicates, tholins, and some amorphous carbon (Duffard
et al. 2014).

To date, no cometary activity has been detected for Chariklo,
despite it passing through perihelion in the last decade.
However, this does not rule out the possibility that it may

have displayed cometary activity in the past (Guilbert
et al. 2009).
Backwards integrations show that Chariklo has a backward

half-life of 9.38Myr, some 1.6Myr longer than the next largest
Centaur Chiron (Horner et al. 2004b).

2.1. The Stability of Rings through Close Encounters:
The “Ring Limit” Criterion

The severity of a close encounter between a small body
(such as Chariklo) and one of the giant planets has been shown
to depend on the closest approach distance of the encounter,
and the velocity of the small body at infinity (Araujo
et al. 2008; Hyodo et al. 2016). In order to determine the
dynamical history of Chariklo and its rings, we neglect velocity
effects following Araujo et al. (2016) and compare the
minimum close encounter distance between Chariklo and a

Table 1
Properties of Chariklo and Its Rings

Property Value Uncertainty

Radius (km) 137 (1) 10
151 (2) 15
118 (3) 6
124 (4) 9
125 (5)
119 (6) 5

Albedo 0.045 (7) 0.01
Composition 60% amorphous carbon

30% silicates
10% organics (8)
3% water ice (9)

Inner ring width (km) 7 (4)
Inner ring radius (km) 391 (4)
Outer ring width (km) 3 (4)
Outer ring radius (km) 405 (4)

Ring composition 20% water ice
40%–70% silicates
10%–30% tholins
Small quantities of amorphous car-
bon (8)

References.(1) Altenhoff et al. (2001), (2) Jewitt & Kalas (1998), (3) Groussin
et al. (2004), (4) Braga-Ribas et al. (2014), (5) El Moutamid et al. (2014), (6)
Fornasier et al. (2014), (7) Campins & Fernández (2000), (8) Duffard et al.
(2014), (9) Brown & Koresko (1998).

Table 2
Orbital Elements of Chariklo Taken from the Asteroids Dynamic WWWa site
for Epoch MJD 2,457,600.0 Based on an Observational arc of 9684.35 days

Element Value±Uncertainty (1-sigma)

Eccentricity 0.172265±1.8036e–06
Semimajor axis 15.77739±3.75e–05 au
Inclination 23.408508±9.5473e–06 deg
Longitude of ascending node 300.38512±2.9189e–05 deg
Longitude of perihelion 241.9872±0.00014188 deg
Mean anomaly 65.9988±0.00029106 deg

Note.
a http://hamilton.dm.unipi.it/astdys/ (accessed 2015 December 31).

7 http://spacewatch.lpl.arizona.edu/discovery.html (accessed 2016 October 29).
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planet to three different critical distances within the Hill sphere
of the planet. The first of these is the distance between Chariklo
and a planet at which tidal forces can disrupt a Chariklo-ring
particle binary pair instantaneously. This tidal disruption
distance, Rtd, for a binary consisting of a massless, outermost
ring particle in a circular orbit and Chariklo is given by
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where Mp is the mass of the planet, mch is the mass of Chariklo,
and r is the orbital radius of a ring particle (Agnor &
Hamilton 2006; Philpott et al. 2010). When Chariklo is just
within the tidal disruption distance to a planet, an outermost
ring particle is just outside Chariklo’s Hill sphere. According to
Araujo et al. (2016) the minimum distance obtained between
Chariklo and a planet during a close encounter must be R10 td
in order for the encounter to have a significant effect on the
rings. We will refer to this distance as the “ring limit,” R. They
considered the effect “noticeable” if the maximum change in
eccentricity of any orbiting ring particle was at least 0.01.

But there is one more critical distance to consider. At an
even closer distance to a planet is the Roche limit—the distance
within which a small body like Chariklo can be torn apart by
tidal forces. For a small, spherical satellite of a planet, the
equation for the Roche limit is (Murray & Dermott 1999)
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where Rch is the physical radius of Chariklo.
Since closer approaches have a larger effect than more

distant ones, the minimum distance, dmin, obtained between
Chariklo and a planet during a close encounter can be used to
assess severity.

We now present in Table 3 a severity scale based on dmin

relative to the distances R R R, ,H td, and Rroche.

3. Method

3.1. Chariklo

In order to determine whether Chariklo has experienced
sufficiently close encounters with the giant planets to disrupt its
rings during its life, we need to be able to determine its
historical dynamical evolution.

To do this, we follow the same methodology as that used in
previous studies of dynamically unstable objects (e.g., Horner

et al. 2004a; Horner & Lykawka 2010a; Kiss et al. 2013; Pál
et al. 2015) and follow the evolution of a suite of clones of
Chariklo backward in time for a period of 1 Gyr. By following
the evolution of a large population of Chariklo clones, we can
obtain a statistical overview of the object’s potential past
history.
As in those earlier works, we created a grid of test particles,

centered on the best-fit solution taken from Table 2, by
incrementing the semimajor axis, a, eccentricity, e, and
inclination, i, of the test particles in even steps through the
full 3s uncertainty ranges in those elements. We held the
three rotational orbital elements, argument of perihelion,
longitude of ascending node, and mean anomaly constant
across our population of clones.
Thirty-three massless test particles per orbital parameter

were created for parameters a e, , and i to yield a total of
33 35,9373 = test particles. Test particles were evenly spaced
across the full uncertainty range of the orbital parameter.
The initial orbital elements of the four giant planets were

found using the NASA JPL HORIZON ephemeris8 for epoch
2000 January 1 at UT 00:00. Inclinations and longitudes for
both Chariklo and the planets were relative to the ecliptic plane.
The planets were then integrated (within the heliocentric

frame) to the epoch MJD 2,457,600.0—the epoch of the
Chariklo clones using the Hybrid integrator within the
MERCURY N-body dynamics package (Chambers 1999). Test
particles and planets were then integrated backward in time for
1 Gyr in the 6-body problem (the Sun, four giant planets, and
the test particle), subject only to the gravitational forces of the
Sun and giant planets. This integration time is 100 times longer
than the typical lifetime of a Centaur (∼10Myr). Therefore the
conclusions presented in this study are limited to within this
time span.
For the symplectic integration, we chose a time step of 40

days (Horner et al. 2004a, 2004b) corresponding to approxi-
mately 1% of the orbital period of Jupiter, the innermost planet
at the start of our integrations, ensuring an accurate orbit
calculation for the giant planets and the particle during non-
close-encounter epochs (e.g., Tiscareno & Malhotra 2003).
We set the accuracy tolerance parameter for the switch-over

integration algorithm to be 10−12. This ensured an accurate
integration of the test particle during epochs of high
eccentricity excursions as a result of close encounters. A close
encounter was said to have occurred when the distance between
a test particle and a planet was �3 Hill radii. The time of every
close encounter between a test particle and any planet was
recorded, along with the instantaneous planet and test particle
a–e–i elements and the minimum separation obtained between
the test particle and planet, dmin.
Test particles were removed from the simulation by colliding

with a planet, upon reaching a barycentric distance of 1000 au,
achieving e 1 or by approaching within 0.005 au of the Sun.
Removal times were recorded.
Moving backward in time, the number of test particles in the

Centaur region was assumed to decrease exponentially over
some time interval according to the standard radioactive decay
equation (Horner et al. 2004b):

N N e . 3o
t= l- ( )

Table 3
A Scale Ranking the Close Encounter Severity between a Ringed Small Body
and a Planet Based on the Minimum Distance Obtained between the Small

Body and the Planet, dmin, during the Close Encounter, RH, 10 Rtd

Minimum Distance Range Severity

d RHmin  Very Low
R d R10 Htd min < Low

R d R10td min td < Moderate
R d Rroche min td < Severe
d Rmin roche< Extreme

Note. Rtd and Rroche are the Hill radius of the planet, R=10 × tidal disruption
distance, tidal disruption distance, and Roche limit, respectively (see text for
details).

8 http://ssd.jpl.nasa.gov/horizons.cgi?s_body=1#top (accessed 2015
December 31).
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Here, No is the initial number of test particles, N is the
number of test particles remaining in the Centaur region at a
time t, and λ is the decay constant. The decay constant can be

found from the slope of the best-fit line of a graph of ln N

No
( )

versus time. Then the half-life, τ, is given by

ln 0.5
. 4t

l
=

- ( ) ( )

The data for the number of test particles remaining in the
Centaur region at a time t were fit to Equation (3) to obtain the
decay constant. Then Equation (4) was used to find the
half-life.

The half-life gives a best first estimate to Chariklo’s age as a
Centaur—with 50% of the clones of Chariklo being ejected
within that time period. We also used the half-life in
Equation (3) to determine the time at which 99% of all
Chariklo-like objects would have left the Centaur region.

3.2. The Severity of Close Encounters
and the Mass of Chariklo

In order to gain an understanding of whether Chariklo’s
rings existed prior to its capture to the Centaur region, or are a
more recent addition, we can investigate the times at which test
particles had encounters with the planets that were sufficiently
close to disrupt the rings.

If the great majority of clones were to experience even a few
severe or greater disruptive encounters or a large number of
low to moderate encounters, this would suggest that Chariklo’s
rings most likely formed in the relatively recent past.

On the other hand, if relatively few clones have encounters
deep enough to disturb the rings, then it is clearly feasible that
the rings could be primordial (and, equally, such infrequent
close encounters might in turn suggest that any origin for the
rings involving the tidal disruption of Chariklo or an ancient
satellite seems unlikely).

We therefore examined the depths and timings of the close
encounters between test particles and planets, and ranked the
severity of each encounter using the scale in Table 3.

As Table 3 along with Equations (1) and (2) show, the
severity of a close encounter depends in part on Chariklo’s
mass. This mass was estimated using the average density of
Chariklo from Braga-Ribas et al. (2014) of 1000 kg m−3 and
the radius value of 125km from El Moutamid et al. (2014). A
mass of 8.18 1018´ kg was obtained. This calculation
assumed that the shape of Chariklo was a perfect sphere, as
it is nearly spherical with the major to minor axis ratio of 1.1
(Fornasier et al. 2014).

3.3. MEGNO and Lifetime Maps

In addition to our N-body integrations of Chariklo’s orbital
evolution, a complementary suite of calculations was per-
formed to examine the wider dynamical context of Chariklo’s
orbit.

Since sampling very large regions of phase space is
impractical with full-scale N-body integrations, we instead
generated a MEGNO (mean exponential growth factor of
nearby orbits; Cincotta et al. 2003) map for the region of
phase space bound by 14 au�a�19au and e 0.8 for
Chariklo-like orbits. These are orbits that initially have the
same orbital parameters as Chariklo, except for semimajor axis
and eccentricity.

The resolution of the map was 1024×800 pixels. The map
was constructed by integrating one test particle per pixel or
30,000 test particles total using the Gragg–Bulirsh–Stoer
(Hairer et al. 1993) method.
The initial values of a and e for each test particle were

determined by each location of a pixel on the map. The
integration algorithm makes use of a variable step-size
determined by a relative and absolute tolerance parameter,
which were both set to be close to the machine precision. The
total integration time for each particle in the a–e grid
was 1Myr.
MEGNO maps show the chaoticity of a region of a–e space

by calculating a parameter Yá ñ that is proportional to the
Lyapunov characteristic exponent at each point. The reader is
referred to Cincotta & Simó (2000), Goździewski et al. (2001),
Cincotta et al. (2003), Giordano & Cincotta (2004), and Hinse
et al. (2010) for more details on MEGNO maps. For an
explanation of Lyapunov characteristic exponents, the reader is
referred to Whipple (1995).

Yá ñ will asymptotically converge toward 2.0 for quasi-
periodic orbits and diverge from 2.0 for chaotic orbits as the
system is allowed to evolve in time.
For this work, quasi-periodic orbits were color coded blue

and highly chaotic orbits were coded yellow. Test particles
were removed by following the same criteria as for the long-
term integration described earlier in this work. In addition, we
terminated a given integration when Y 12á ñ > , which indicates
a strong degree of chaos.
When a test particle was removed, the time of removal and

the Yá ñ value were recorded. If a test particle survived the entire
simulation, then its removal time was recorded as 1Myr. A
lifetime map was then generated in conjunction with the
MEGNO map covering the same a–e grid space. In the lifetime
map, shortest removal times were color-coded black and the
longest with yellow.

4. Results

4.1. The Dynamical History of Chariklo

More than 70 million close encounters within 3 Hill radii
were recorded, with roughly 7.1 million of these being at
distances less than 1 Hill radius. The close encounters were
analyzed using eight different subsets of the entire encounter
data set. Five of those subsets examined close encounters,
while the clone in question was a member of one of the solar
system’s various small body populations (detailed later), with
the other three described as follows:

1. The set of first close encounters—a first close encounter
is the earliest time chronologically at which a close
encounter occurred. Each test particle had one and only
one of these.

2. The set of close encounters at any time at which the test
particle was classified as a Centaur. Each test particle had
more than one of these.

3. The set of earliest close encounters chronologically (not
necessarily a first close encounter) at which each test
particle was classified as a Centaur. Each test particle had
one and only one of these.

The subsets of close encounters based on the membership of
the clone in a small body population when the close encounter
occurred are described as follows:

4
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1. Inner SS—a aJ .
2. Comet—a aJ> and q aJ< .
3. Centaur—a a aJ N< < and q aJ> .
4. TNO—a aN .
5. Ejection—the test particle was being ejected from the

solar system at the time of the close encounter.

Here, a is the semimajor axis of the test particle at the time of
the close encounter, aJ is the semimajor axis of Jupiter, aN is
the semimajor axis of Neptune, and q is the perihelion distance
of the test particle.

The percentage of close encounters that occurred when the
test particle was in each of the five population subsets is shown
in Table 4. The Centaur and TNO subsets dominate with 53%
and 31% of the close encounters, respectively. This implies but
does not prove that Chariklo entered the Centaur region from
beyond Neptune.

To determine the dynamical history of Chariklo and if
Chariklo did enter the Centaur region from beyond Neptune,
three of the subsets were investigated.

First, analysis of the Centaur subset showed that the average
time between consecutive close encounters within 3 Hill radii
of a planet in the Centaur region was 8 kyr. Therefore, on Myr
timescales, the earliest time chronologically of a close
encounter of a test particle while classified as a Centaur was
taken to be the approximate time of insertion of the test particle
into the Centaur region.

The set of earliest close encounters chronologically in which
each test particle was classified as a Centaur was used to
determine the number of test particles in the Centaur region as
function of time. These data were analyzed by fitting them to
Equation (3), with time measured from the start date backward
in time.

Figure 1 shows the decay of the number of test particles in
the Centaur region moving backward in time. Note the reverse
“s” shape of the graph. It took ∼1.0 Myr for the swarm of
clones to disperse enough so that the decay could start to be
exponential.

The exponential decay lasted from around 1.0 to 14.1 Myr
ago. The best-fit line over the interval is shown as the straight
line. The linear regression coefficient of the line was −0.998,
which shows a strong anti-correlation.

Between 14.1 and 25Myr ago, the decay proceeded more
slowly and no longer strongly correlated to the best-fit line.
This occurred because by that time many remaining test
particles had evolved onto more stable orbits, which in turn
took longer to decay.

From the slope of the best-fit line of −0.2346 Myr−1 and
Equation (4), the half-life with respect to removal from the
Centaur region was calculated to be ∼3Myr. Since we expect
half-lives with respect to removal from the Centaur region to be

less than half-lives with respect to removal from the solar
system, this value is in broad agreement with the work of
Horner et al. (2004b), who found a backward integrated half-
life of Chariklo with respect to removal from the solar system
of 9.78Myr.
Using the 3Myr value for the half-life in Equation (3)

suggests that there is a 99% probability that Chariklo was
injected into the Centaur region at some time within the last
20Myr.
Finally, once a likely time frame for injection into the

Centaur region was established, the set of first close encounters
was studied to determine from what region of the solar system
Chariklo entered the Centaur region. Figure 2 shows a
histogram of the number of first close encounters over the last
100Myr.
Table 5 shows statistics on the first close encounters by

region of the solar system. From the table it seems most likely
that Chariklo entered the Centaur region from an orbit outside
that of Neptune, perhaps from the Edgeworth–Kuiper Belt

Table 4
The Percentage of Close Encounters as a Function of Membership of the
Different Small Body Populations Chariklo’s Clones Occupied through the

Course of the Integrations

Region Percent

Inner SS 7
Comet 9
Centaur 53
TNO 31
Ejection 0.4

Figure 1. The decay of test particles from the Centaur region moving backward
in time. The decay is exponential from 1.0 to 14.1 Myr ago. The straight line is
the line of best fit over this time interval. It has a slope of −0.2346 Myr−1 and
linear regression coefficient of −0.998. The slope was used to find the half-life
of ∼3 Myr. At a time of 14.1 Myr ago, only 5.57% of the test particles were in
the Centaur region. Note the backward “s” shape. The bin size is 1 kyr.

Figure 2. A histogram of the number of first close encounters over the last
100 Myr. The bin size is 2.5 Myr.
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(Horner et al. 2004b) or Scattered Disk (Duncan et al. 2004; Di
Sisto & Brunini 2007). Two factors point to this conclusion:

1. The small percentage (2%) of the subset of first close
encounters which were also members of the inner solar
system subset makes it statistically unlikely that Chariklo
was captured directly to the inner solar system from
elsewhere (such as a long-period comet orbit, or the main
asteroid belt) and then migrated outward to the Centaur
population.

2. The much larger percentage (63%) and earliest chron-
ological mean time of the subset of first close encounters
that were also members of the TNO subset makes it
statistically likely that Chariklo was a TNO before
becoming a Centaur.

These dynamical results potentially complement the
observed physical properties of Chariklo, which also suggest
both an origin beyond the orbit of Neptune, and that the object
has not spent a protracted period in the inner solar system.

First, the presence of volatiles on Chariklo’s surface suggests
that it has not spent lengthy periods interior to the solar
system’s ice-line, where most sublimation of volatile material
occurs (Whipple & Sekanina 1979; Di Sisto et al. 2009; Brown
et al. 2011).

Indeed, Levison & Duncan (1997) suggest that just 25 kyr in
the inner solar system is enough to entirely devolatilize comets.
However, it should be noted that Chariklo is significantly larger
than the nuclei of short-period comets (Weissman &
Lowry 2008)—and so could have potentially contained far
more volatile material, and would therefore been able to
survive a longer period of devolatilization. Still, the presence of
volatiles does suggest an origin beyond the ice-line—and most
likely beyond the orbit of Neptune.

Nevertheless, though the percentages of close encounters
occurring in the inner solar system and Comet subsets are
relatively small, they are not negligible.

This allows for the possibility that Chariklo could have been
active for brief periods in its past, and its rings replenished by
cometary activity. The only caveat is that Chariklo would have
needed to migrate outward from such an orbit before its
volatiles were extinguished. However, such inward and
outward migrations are dynamically feasible (Horner et al.
2004a).

It should also be noted that for Chariklo to exhibit comet-like
activity, it would not be necessary for the orbit to be in the
inner solar system, as Centaurs beyond Jupiter are known to be
active (Jewitt 2009).

To determine which planet dominated the close encounters
in each population, the close encounters of each of the five
population subsets were subdivided by planet. The results are
shown in Table 6.

Uranus dominated the number of close encounters of the
Centaur subset followed by Saturn, Neptune, and Jupiter. In the
TNO subset, Neptune dominated, followed by Uranus, Saturn,
and Jupiter. Thus, statistically, Neptune is most likely
responsible for perturbing Chariklo into the Centaur region
over time.
Jupiter dominated the number of close encounters of the

other three subsets—Inner SS, Comet, and Ejection.

4.2. The Dynamical History of the Rings of Chariklo

The values of all ring limits, tidal disruption distances, and
Roche limits are shown by planet in Table 7.
Jupiter had the largest value of R at 0.02400 au and Uranus

the smallest at 0.008584 au. All values of R were well within 1
Hill radius of each planet by an order of magnitude or larger.
Thus to have a close encounter of at least moderate severity,

it must be far closer than the size of the planet in question’s Hill
sphere—sufficiently close, in fact, that it would be placed
within the domain of the regular satellites of that planet.
For example, to have a moderate close encounter with

Jupiter, Chariklo would have to approach the giant planet at a
distance similar to the orbital radius of Themisto, or roughly a
factor of four times more distant from the planet than Callisto.
In other words, disruptive encounters require very close

encounters, and hence might be expected to be relatively
infrequent.
This hypothesis is well supported by our data, as can be seen

in Tables 8 and 9. Every single clone of Chariklo experienced
multiple close encounters; however, the great majority of these

Table 5
Statistics on the Set of First Close Encounters by

Small Body Population of the Solar System

Subset Percent Mean Time Ago (Myr)

Inner SS 2 15.7
Comet 21 12.1
Centaur 6 15.5
TNO 63 32.6
Ejection 8 31

Table 6
The Number of Close Encounters within 1 Hill Radius

by Planet and Population

Population J S U N

Inner SS 492255 1531 0 0
Comet 452415 139289 11879 6652
Centaur 56142 991571 2033886 717860
TNO 9026 224005 475861 1465906
Ejection 18687 9671 479 571

Note.Most close encounters occurred between the Centaur population and
Uranus.

Table 7
The Hill Radii, Ring Limits, Tidal Disruption Distances, and
Roche Limits for Each Giant Planet (See Text for Details)

Planet RH (au) R (au) Rtd (au) Rroche (au)

J 0.3387 0.02400 0.002400 7.408×10−4

S 0.4128 0.01606 0.001606 4.956×10−4

U 0.4473 0.008584 0.0008584 2.649×10−4

N 0.7704 0.009069 0.0009069 2.799×10−4

Table 8
The Number and Percent of Close Encounters by Severity That Occurred

within 1 Hill Radius of Any Planet

Severity Number Percent

Low 7084469 100.0
Moderate 21953 0.0
Severe 1025 0.0
Extreme 239 0.0
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approaches were relatively distant. Over 99% of all close
encounters were outside the ring limit R R10 td= for the planet
in question. Therefore we conclude that planetary close
encounters have not played a major role in the disruption of
rings.

Just 35% of the clones experienced at least one encounter
within 10Rtd. Thus more than half of the clones never
experienced even at least a moderate close encounter.

Furthermore, since only 0.0034% of the close encounters
were extreme, it is unlikely (but still possible) that the rings
were created by gaseous outflow during a close encounter
(Hyodo et al. 2016), because this would require Chariklo to be
closer to the planet than its Roche limit.

This theory of ring formation may be further put in doubt if
the purported rings around Chiron (Ortiz et al. 2015) and the
Saturnian satellites Rhea and Iapetus (Sicardy et al. 2016) are
confirmed, because it would suggest that rings around small
bodies are more common and are not formed by a very rare
extreme close encounter.

It should be noted that no age of the rings of Chariklo can be
stated with absolute certainty, since the total effects of gaseous
outflow, shepherd satellites (if any), ring replenishment, and
non-gravitational forces are unknown.

4.3. MEGNO and Lifetime Maps

The lifetime map in Figure 3 shows that the longest lifetimes
for Chariklo-like orbits in the a–e region bound by
14au�a�19au and e0 0.8  lie mostly in the
rectangle bound by 14au�a�17.4au and e0 0.26 < .

The effect of eccentricity on the lifetime can clearly be seen.
In the range e0.26 0.55  , virtually no lifetimes of 1 Myr
can be seen for any value of a. Orbits with e 0.55> ~ have
noticeably shorter lifetimes for nearly all a values, to as low as
0.01Myr. We attribute this drop in lifetime to the crossing of
Saturn’s orbit.

The MEGNO map in Figure 3 shows that the entire region is
dominated by highly chaotic orbits ( Y 5á ñ ).

Unlike lifetime, chaoticity does not display a clear relation-
ship with eccentricity for constant a. Instead, relatively small
islands of low chaoticity (quasi-periodic orbits) can be seen
scattered about the region. The extent of their sizes might well
depend on the initial phase angle of Chariklo. It is noteworthy
that these islands lie in the same rectangle that contains nearly
all of the most long-lived orbits seen in the lifetime map.

The orbits with relatively longer lifetimes and lower chaos
are said to display stable chaos, and Figure 3 shows that
Chariklo has one of these orbits.

5. Conclusions

The dynamical history of Chariklo and its rings was
determined using the technique of numerical integration of
massless clones backward in time for 1 Gyr, and by recording
close encounters between test particles and giant planets.
We find that Chariklo most likely originated in an orbit

beyond Neptune and was likely captured into the Centaur
population via perturbations from Neptune sometime within the
last 20Myr. The backward half-life with respect to removal of
clones from the Centaur region is ∼3Myr, which is in good
agreement with previous work on the backward half-life of
Chariklo with respect to removal from the solar system.
Our results show that a small fraction of the clones of

Chariklo spent some time significantly closer to the Sun than its
current orbit. This suggests that it is possible but unlikely that
Chariklo has undergone periods of cometary activity in its past
—a result that mirrors the findings of Horner et al. (2004a) that
Centaurs can experience multiple periods of cometary behavior
throughout their lifetimes.
The critical distances of the Hill radius, tidal disruption

distance, “ring limit” (defined as ten times the tidal disruption
distance), and Roche limit were used to create a severity scale
for close encounters based solely on the minimum distance

Table 9
Severity of Close Encounters by Planet That Occurred

within 1 Hill Radius of Any Planet

Severity J S U N

Low 1012998 1360893 2520339 2190239
Moderate 14685 4884 1675 709
Severe 707 219 71 28
Extreme 135 71 20 13

Note.99%, of close encounters were of low severity. Only 0.0034% of close
encounters were of extreme severity.

Figure 3. The lifetime map (top panel) and the MEGNO map (bottom panel) of
Cariklo-like orbits. Chariklo is located at a 15.8 au= and e=0.172, and is
marked by the star. For the top panel, the longest lifetimes are shown in yellow
and the shortest are shown in black, while for the bottom panel, highly chaotic
orbits are shown in yellow and the least chaotic are shown in blue.
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obtained between the test particle and planet during the
encounter.

More than 99% of all close encounters over the course of our
simulations were sufficiently distant so that no impact on the
structure of Chariklo’s rings would be expected. Indeed, just
35% of all clones experience an encounter within ring limit
with one of the giant planets. In other words, 65% of clones
never experience a sufficiently close encounter to significantly
disrupt the ring system in a single pass. We conclude that
planetary encounters have likely not played a major role in
influencing the structure of the rings.

Close encounters in which the test particle crossed the Roche
limit were extremely rare—making up just 0.0034% of the total
sample of encounters observed. As result, we consider that it is
highly unlikely that Chariklo’s rings were created as a result of
tidal disruption during such an encounter.

There is only a small chance that the rings have been
replenished due to cometary activity in the inner solar system.

The lifetime of Chariklo-like orbits (orbits with different a
and e) are found to be dependent on the eccentricity of the
orbit, with a general trend that orbits with higher eccentricities
have shorter lifetimes. The crossing of Saturn’s orbit plays a
strong role in reducing the lifetime of an orbit.

Nearly all Chariklo-like orbits in the region bounded by
14au�a�19au and e0 0.8  are strongly chaotic, with
only relatively small islands in a–e space, which are less chaotic.
Chariklo’s orbit (a 15.8 au= , e=0.172) displays stable chaos
by having a very chaotic orbit in a region with a relatively longer
lifetime compared with nearby Chariklo-like orbits.

Chariklo needs to be studied further to determine definitively
if it shows evidence of past cometary activity. If it is ever
proven that Chariklo was once active, it would support the idea
presented here that in the past Chariklo could have had an orbit
closer to the Sun where its rings could have been replenished.

We wish to thank the referee for their feedback, which helped
improve the flow and clarity of our work. This research has made
use of NASA’s Astrophysics Data System, NASA’s JPL
Horizons’ database, and the Asteroids Dynamic Site. T.C.H.
acknowledges support from KASI grant #2015-1-850-04 and
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using the KASI/POLARIS and Armagh/ICHEC computing
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3 The Dynamical History of 2060 Chiron and
its Proposed Ring System

Chiron holds the distinction of being the first Centaur ever discovered. As time
went on, it was found that Chiron was just one member of a class of objects
orbiting between Jupiter and Neptune which today are known collectively as
the Centaurs.

Though no other Centaurs besides Chariklo are known to have rings, the
Centaur Chiron is the strongest candidate for the next ring-bearing Centaur as
circum-nuclear material has been detected around it (Elliot, 1995; Bus, 1996).

Originally this material was interpreted as jets or jet-like structures, how-
ever, in light of the discovery of the rings around Chariklo, a reanalysis of star
occultation data has given rise to the idea that the material could be interpreted
as a ring structure (Ortiz et al., 2015).

That reanalysis suggests that, if the material is a ring, then its radius has
the same order of magnitude as the rings of Chariklo ∼ 102 km. If Chiron
does indeed have rings, then this suggests the possibility that rings around
small bodies might not be so rare. At this time it is not known how rare or
commonplace rings around small bodies are.

Chiron is believed to have a less stable orbit than Chariklo (Horner et al.,
2004). Though both objects orbit between Saturn and Uranus, only Chiron
crosses the orbit of Saturn.

As with Chariklo, the severity and frequency of past close encounters of
Chiron with each of the giant planets determines the likelihood that Chiron’s
rings could have formed outside the Centaur region.

As we did for Chariklo, we decided to investigate the close encounters of Ch-
iron using the technique of numerical integration of clones backwards in time.
The stability and chaoticity of Chiron’s current orbit were investigated by find-
ing its dynamical lifetime and MEGNO parameter respectively.

Each close encounter between a clone and a giant planet was recorded, and
its severity determined using our scale. We found the half-life against backwards
removal from the Centaur region by marking the time of the last close encounter
of each clone in the Centaur region and fitting the number of remaining clones
as a function of time to the radioactive decay equation. This half-life was then
used as a stability indicator.

By analysing the severity and frequency of the close encounters, the pos-
sibility that Chiron’s supposed ring could predate Chiron’s entrance into the
Centaur region was found. By marking the region of the Solar system which
each clone entered moving backwards in time, we determined the likely region
from which Chiron originated.

In addition, the likely dynamical class of Chiron was also determined by
analysing the behavior of the semi-major axis in time for a sample of clones. The
dynamical class of a Centaur can either be random-walk or resonance hopping.
The dynamical class has ramifications for dynamical lifetime and sink population
for the Centaur. Resonance-hopping Centaurs tend to have longer lifetimes than
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random-walk Centaurs and are less likely to evolve into Jupiter-Family comets.
The integrations were carried out, and the results analysed. Chiron likely

entered the Centaur region within the last 8.5 Myr from somewhere in the Trans-
Neptunian region. Close encounters capable of destroying or severely damaging
the rings were found to be so extremely rare that it is statistically likely that
the rings of Chiron could have originated in the Trans-Neptunian region if the
effects of viscous dispersion were negated by other stabilizing factors such as
shepherd satellites.

The rings of Chiron were probably not created by the tidal disruption of
Chiron itself due to the extreme rarity of close encounters within the Roche
Limit. Chiron’s half-life against leaving the Centaur region moving backwards
in time was found to be 0.7 Myr, and the dynamical behavior of a sample of
clones shows that Chiron is more likely a random walk Centaur than a resonance-
hopping Centaur.

This work was published in the Astronomical Journal in 2018 with the title
“The Dynamical History of 2060 Chiron and its Proposed Ring System” (Wood,
J., Horner, J., Hinse, T. C., & Marsden, S. C. 2018, AJ, 155, 2 ). This published
paper follows.
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Abstract

The surprising discovery of a ring system around the Centaur 10199 Chariklo in 2013 led to a reanalysis of archival
stellar occultation data for the Centaur 2060 Chiron by Ortiz et al. One possible interpretation of that data is that
a system of rings exists around Chiron. In this work, we study the dynamical history of the proposed Chiron ring
system by integrating nearly 36,000 clones of the Centaur backward in time for 100Myr under the influence of the
Sun and the four giant planets. The severity of all close encounters between the clones and planets while the clones
are in the Centaur region is recorded, along with the mean time between close encounters. We find that severe and
extreme close encounters are very rare, making it possible that the Chiron ring system has remained intact since its
injection into the Centaur region, which we find likely occurred within the past 8.5 Myr. Our simulations yield a
backward dynamical half-life for Chiron of 0.7 Myr. The dynamical classes of a sample of clones are found. It is
found that, on average, the Centaur lifetimes of resonance hopping clones are twice those of random-walk clones
because of resonance sticking in mean motion resonances. In addition, we present MEGNO and chaotic lifetime
maps of the region bound by 13 au a 14  au and e 0.5 . We confirm that the current mean orbital parameters
of Chiron are located in a highly chaotic region of a−e phase space.

Key words: minor planets, asteroids: individual (2060 Chiron) – planets and satellites: dynamical evolution and
stability – planets and satellites: rings

1. Introduction

The study of small bodies of the solar system was changed
forever in 1977, with the discovery of a large icy object moving
on an orbit between those of Saturn and Uranus (Kowal
et al. 1979). That object was subsequently named Chiron. It
was soon realised that its orbit was dynamically unstable, with
a mean half-life of 0.2Myr, which is far shorter than the age of
the solar system (e.g., Oikawa & Everhart 1979; Hahn &
Bailey 1990). For more than a decade, 2060 Chiron was an
oddity—but following the discovery of 5145 Pholus in 1992, a
growing population of such objects in the outer solar system
has been discovered—a population now known as the
Centaurs.

Over the years, a number of different schemes have been
proposed to define Centaurs (e.g., Horner et al. 2003; Elliot
et al. 2005; Chiang et al. 2007; Gladman et al. 2008). Across all
these schemes, it can be generally said that Centaurs have
orbits between the giant planets Jupiter and Neptune. For this
work, we follow the definition used by the Minor Planet
Center, which considers objects to be Centaurs if they move on
orbits with perihelia beyond the orbit of Jupiter and with
semimajor axes within the orbit of Neptune.5 Those objects in
this region that are trapped in 1:1 resonance with one of the
giant planets (the Trojans) are excluded from the list, and are
not considered to be Centaurs. Using this definition, more than
220 objects can presently be classified as Centaurs.6

The Centaurs move on highly chaotic orbits that are
frequently perturbed by the gravitational influence of the four

giant planets. The strongest perturbations typically occur as a
result of close approaches between the Centaurs and those
planets (e.g., Marsden 1962; Horner et al. 2004b). The
instability of the Centaur region is exemplified by the fact that
Centaurs have dynamical lifetimes and half-lives much less
than the age of the solar system, with values typically

100 Myr (Dones et al. 1996; Levison & Duncan 1997;
Tiscareno & Malhotra 2003; Horner et al. 2004a; Di Sisto &
Brunini 2007; Bailey & Malhotra 2009; Pál et al. 2015).
It is therefore clear that these objects are ephemeral in nature,

and that their ranks must be replenished over time from other
sources. Proposed source populations for the Centaurs include
the Oort Cloud (Emel’yanenko et al. 2005; Brasser et al. 2012;
de la Fuente Marcos & de la Fuente Marcos 2014; Fouchard
et al. 2014), the Jupiter Trojans (Horner et al. 2004a; Horner &
Wyn Evans 2006; Horner et al. 2012b), the Neptune Trojans
(Horner & Lykawka 2010; Lykawka & Horner 2010; Horner
et al. 2012a), the Scattered Disk (Di Sisto & Brunini 2007;
Volk & Malhotra 2008), and other populations in the
Edgeworth-Kuiper Belt (Levison & Duncan 1997; Volk &
Malhotra 2008). Of these many source regions, it is thought
that the majority of Centaurs originate within the Scattered
Disk (Di Sisto & Brunini 2007; Volk & Malhotra 2008).
After these small bodies escape from one of the more stable

source populations into the Centaur region, they will typically
spend on the order of ∼106 years as a Centaur before diffusing
out of that region (Tiscareno & Malhotra 2003). The final fates
of Centaurs are varied—some will collide with the Sun or one
of the planets, or will be torn apart by tidal forces during a
planetary close encounter, while others will be thrown onto
orbits beyond Neptune or will be ejected from the solar
system entirely (Noll 1994; Horner et al. 2004a; Volk &
Malhotra 2008; Wood et al. 2016).
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5 http://www.minorplanetcenter.net/iau/lists/Unusual.html (accessed 2016
December 17).
6 http://www.minorplanetcenter.net/iau/lists/t_centaurs.html (accessed
2017 October 8).
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During the course of their evolution, studies have shown that
at least one-third of the Centaurs will evolve onto cometary
orbits with perihelia in the inner solar system (Horner et al.
2004b; Jewitt 2004; Bailey & Malhotra 2009). As such,
the Centaurs are generally regarded as the principal parent
population for the short period comets (Tiscareno &
Malhotra 2003; Groussin et al. 2004; Horner et al. 2004a;
Volk & Malhotra 2008; Bailey & Malhotra 2009; Jewitt 2009;
Kovalenko et al. 2011).

Indeed, several Centaurs (including Chiron) have been
observed exhibiting cometary activity (e.g., Jewitt 2009; Shi
& Ma 2015; Wierzchos et al. 2017). Given the extreme
dynamical instability exhibited by the Centaurs, coupled with
the frequent close encounters they experience with the giant
planets, the discovery in 2013 of a system of rings orbiting the
Centaur 10199 Chariklo came as a huge surprise (Braga-Ribas
et al. 2014). Those rings, revealed by unexpected dimmings of
a star occulted by Chariklo prior to and immediately after the
occultation event, are narrow and dense, and lie at radii of
∼391 and ∼405 km.

It is still unknown whether the rings formed recently, or pre-
date Chariklo’s injection into the Centaur region, though rings
have also recently been discovered around the dwarf planet
Haumea (Ortiz et al. 2017), which orbits beyond Neptune. This
suggests that rings around small bodies could form in the
Trans-Neptunian region.

Furthermore, a recent dynamical study has shown that such
rings could readily survive with Chariklo through its entire
evolution in the Centaur region, since sufficiently close
encounters to disrupt the rings are rare (Wood et al. 2017).

The chance discovery of Chariklo’s ring system prompted a
reanalysis of stellar occultation data obtained for 2060 Chiron
in 1993, 1994, and 2011 by Ortiz et al. (2015). The original
analysis of that occultation data found dips in the light curve
that, it was thought, corresponded to regions outside the
nucleus, which were then interpreted as comet-like dust jets
(Elliot et al. 1995; Bus et al. 1996) or symmetrical jet-like
features (Ruprecht et al. 2015). The recent reanalysis of this
data suggests that it might also be interpreted as evidence for a
ring system similar to that of Chariklo, with a mean radius of
324±10 km (Ortiz et al. 2015).

The origin of this proposed ring structure could be the result
of a tidal disruption of Chiron due to a close encounter with a
planet (Hyodo et al. 2016), a collision between Chiron and
another body (Melita et al. 2017), a collision between an
orbiting satellite and another body (Melita et al. 2017), the tidal
disruption of an orbiting satellite (El Moutamid et al. 2014), or
debris ejected from Chiron itself due to cometary activity (Pan
& Wu 2016).

Over time, rings can widen due to viscous spreading
(Michikoshi & Kokubo 2017). This process can occur on
timescales as short as hundreds of years. However, the extent of
the rings can be constrained, keeping them far more narrow, if
shepherd satellites are present (French et al. 2003; Jacobson &
French 2004; El Moutamid et al. 2014; Michikoshi &
Kokubo 2017). At the present time no shepherd satellites are
known to exist orbiting any Centaur, and hence their possible
dynamical role will not be considered in this study.

Given the extreme dynamical instability exhibited by
Chiron, it is interesting to consider whether its ring system
could survive through the entirety of its life as a Centaur. If
deep close encounters with the giant planets are sufficiently

frequent, then it might be possible to place a constraint on the
age of any rings around Chiron on the basis of its past
dynamical history.
As a result, in this work, we follow Wood et al. (2017), and

examine the dynamical history of Chiron and its proposed ring
system. In doing so, we explore the likelihood that its rings
could be “primordial” (i.e., could date back to before the object
was captured as a Centaur) barring ring dispersal by viscous
spreading. Our results also allow us to explore the likely source
population of Chiron, and to confirm its status as one of the
most dynamically unstable Centaurs.
In Section 2, we present the physical and orbital properties of

2060 Chiron. In Section 3, we discuss the means by which we
can measure the severity of close encounters between ringed
small bodies and planets, and in Section 4, we discuss the two
dynamical classes that have been proposed for the Centaurs.
We present our methodology in Section 5, and then present and
discuss the results of our numerical integrations of Chiron in
Section 6. Finally, in Section 7, we present our conclusions and
discuss possible directions for future work.

2. The Properties of 2060 Chiron

2.1. Orbital Properties

After Chiron was discovered, pre-discovery images dating
back as early as the late 19th century allowed its orbit to be well
constrained (Liller et al. 1977; Kowal et al. 1979). It was soon
found that the orbit of Chiron was unlike the orbit of any known
small body at the time. Its aphelion lay between Saturn and
Uranus, while its perihelion lay just interior to Saturn’s orbit.
Since its discovery, more observations of Chiron have allowed

its orbit to be even further refined. The current best-fit orbital
properties of Chiron are shown in Table 1 and were taken from
the Asteroids Dynamic site (Knezevic & Milani 2012).
Using the semimajor axis, a, and eccentricity, e, from

Table 1, the perihelion and aphelion distances are found to be
8.4 au and 18.86 au, respectively. The semimajor axis is about
0.01 au away from the interior 5:3 mean motion resonance of
Uranus located at about 13.66 au. The eccentricity of Chiron’s
orbit lies in the middle of the eccentricity range for the orbits of
the known Centaurs, 0.01–0.73,7 and is high enough to cause
Chiron to cross the orbits of both Saturn and Uranus. These

Table 1
The Orbital Elements of Chiron for Epoch 2457600.5 JD

Property Value Units

a 13.639500±(1.48×10−6) au
e 0.38272700±(9.62×10−8) L
i 6.947000±(6.67×10−6) deg
Ω 209.21600±(6.05×10−5) deg
ω 339.53700±(6.19×10−5) deg
M 145.97800±(2.97×10−5) deg

Note. Based on an observational arc length of 44,305.9 days taken from the
asteroids dynamic site (accessed 2015 December 31). Here, a is the semimajor
axis, e is the eccentricity, and i is the inclination of the orbit. Ω, ω, and M are
the longitude of ascending node, argument of perihelion, and mean anomaly,
respectively. Each uncertainty is the standard deviation around the best-fit
solution.

7 http://www.minorplanetcenter.net/iau/lists/Centaurs.html (accessed 2017
August 9).
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giant-planet perturbations and close approaches have a
significant effect on the dynamical evolution of Chiron’s orbit
(Oikawa & Everhart 1979; Scholl 1979; Kovalenko
et al. 2002), which is reflected in the relatively short dynamical
lifetime of ∼1Myr (Hahn & Bailey 1990; Horner et al. 2004a).

Furthermore, the half-life of its orbit is 1.03 Myr in the
forward direction and 1.07Myr in the backward direction
(Horner et al. 2004a). Both times are much less than the age of
the solar system.

The instability of Chiron’s current orbit makes it highly
unlikely that its orbit is primordial. Instead, the general
consensus is that Chiron follows a chaotic orbit and originated
in the Kuiper Belt (Oikawa & Everhart 1979; Hahn &
Bailey 1990; Lazzaro et al. 1996; Silva & Cellone 2001;
Duffard et al. 2002; Kovalenko et al. 2002).

Using the taxonomy of Horner et al. (2003), Chiron is
classified as an object in the SUIV class. This means that its
dynamics are controlled by Saturn at perihelion and by Uranus
at aphelion. The subscript IV means that the Tisserand
parameter with respect to Saturn is >2.8 (Horner et al.
2003). The Tisserand parameter, Tp, is a quantity calculated
from the orbital parameters of a small body and those of a
planet it could encounter. It is defined by

T
a
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i i

a

a
e2 cos 1 1p

p
p

p

2= + - -( ) ( ) ( )

(e.g., Murray & Dermott 1999). Here, ap is the semimajor axis
of a planetary orbit, i is the inclination of the small body orbit,
and ip is the inclination of the planetary orbit.

To first order, the Tisserand parameter of an orbit with
respect to a given planet is expected to be conserved through an
encounter with that planet, with the precise value giving an
indication of the maximum strength of encounters that are
possible with that planet.

Broadly, if T 3p > , then particularly close encounters are not
possible between the two objects, while for T2.8 3p  ,
extremely close encounters can occur that might lead to the
object being ejected from the solar system in a single pass
(Horner et al. 2003).

2.2. Density, Size, and Mass

Unlike the relatively high precision with which the orbital
parameters of Chiron are known, the physical properties remain
much more poorly constrained. The diameter of Chiron has had
to be estimated based on an assumed albedo. Though a strong
effort to determine the size of Chiron has been made over the
past 2 decades, efforts have been hampered by the interference
from possible material located outside the nucleus, cometary
activity, and Chiron’s elongated shape (Fornasier et al. 2013;
Ortiz et al. 2015).

Radius measurements ranging from 71 km (Groussin
et al. 2004) to a constraint of <186 km (Sykes & Walker 1991)
have been reported. Ortiz et al. (2015) report an overall average
effective spherical radius of 90 km, which we adopt for
this work.

Because of the large uncertainty in the size and mass of
Chiron, Chiron’s overall density is also poorly known. Meech
et al. (1997), in their study of a coma around Chiron, report a
bulk density in the range 500–1000 kg m−3. Using a spherical
radius of 90 km, this corresponds to a mass range of
1.53 1018´ kg –3.05 1018´ kg.

3. Measuring the Severity of Close Encounters with Planets

Currently it is unknown what role, if any, the sporadic
activity of Chiron played in the formation of any ring structure
around the body. Rings could have formed either before or after
Chiron entered the Centaur region. But given that Chiron
presently lies in a chaotic and unstable orbit prone to planetary
close encounters, it is of interest to determine the likelihood
that such encounters could severely damage or destroy any
orbiting ring structure.
To accomplish this, a method to gauge the severity of such

an encounter is needed. Primarily, the severity of a close
encounter between a ringed small body and a planet is
determined by the minimum approach distance between the
small body and planet, dmin.
If the small body is in a parabolic or hyperbolic orbit relative

to the planet (it has not been captured as a satellite), then the
velocity at infinity of the small body relative to the planet also
plays a role in determining the encounter severity, albeit to a
lesser extent than the depth of the encounter.
Wood et al. (2017) ignored velocity effects and developed a

severity scale based on dmin relative to the Hill radius, RH; tidal
disruption distance, Rtd; the ring limit, R R10 td= ; and the
Roche limit, Rroche. This scale is shown in Table 2.
The Hill radius defines a sphere of influence centered on a

secondary body of mass ms in an orbit with orbital radius Rradial

around a primary body of mass Mp in the planar problem. The
Hill radius is approximately given by

R R
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(e.g., Murray & Dermott 1999). For non-circular orbits, Rradial

is approximated using the semimajor axis of the orbit. Loosely
defined, the Hill radius is the distance around a secondary body
(relative to a primary body) within which satellites can orbit
without their orbits being completely disrupted by tidal forces
due to the primary body. In the case where the secondary body
is a planet and the primary body the Sun, it is found that all
known planetary satellites follow this rule, being contained
well within the Hill spheres of their host planets. For other
objects moving in the system, the Hill radius of a planet can be
used to indicate the region of space around its orbit, into which
other objects move at their peril.
Typically encounters at a distance greater than ∼3 Hill radii

will have only a limited effect on the long-term stability of an
object, while orbits that approach within this distance are

Table 2
A Scale Ranking the Severity of a Close Encounter between a Ringed Small
Body and a Planet Based on the Minimum Distance Obtained between the

Small Body and the Planet, dmin, during the Close Encounter

dmin Range Severity

d Rmin H Very low
R d Rmin H < Low
R d Rtd min < Moderate
R d Rroche min td < Severe
d Rmin roche< Extreme

Note. R R R R, 10 ,H td td= , and Rroche are the Hill radius of the planet with
respect to the Sun, ring limit, tidal disruption distance, and roche limit,
respectively.
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typically dynamically unstable, unless close approaches are
prevented by mutual mean motion resonances between
the objects concerned (e.g., Williams & Benson 1971;
Malhotra 1995; Horner et al. 2011; Robertson et al. 2012;
Wittenmyer et al. 2012).

The ring limit is a relatively new critical distance introduced
by Araujo et al. (2016) and used by Wood et al. (2017) to
examine the stability of Chariklo’s ring system against close
encounters. It is loosely defined as lying at 10 tidal disruption
distances from a given planet, and represents an upper limit
on the minimum approach distance for close encounters for
which the effect on a ring of a minor body is just noticeable
(meaning the maximum change in orbital eccentricity of the
orbit of any ring particle=0.01). Here we apply the ring limit
to study the influence of close encounters between Chiron and
the giant planets.

Given a typical solar system small body, the tidal
disruption distance, Rtd, lies well within the Hill radius for
a given planet. When the separation between a small body
and a planet is closer than Rtd, a secondary body-satellite
binary pair of total mass m ms sat+ and semimajor axis aB can
be permanently disrupted by tidal forces in one pass. It
should be noted in passing that as defined in this manner, the
ring limit and tidal disruption distances have no meaning for
close encounters between planets and small bodies with no
rings or satellites.

Rtd can be approximated as the secondary-primary body
separation at which a satellite orbiting the secondary body
would lie at the outer edge of the secondary body’s Hill sphere.
Rradial in Equation (2) is then by definition Rtd, and RH is
approximated by aB. Solving for Rtd yields

R a
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(e.g., Philpott et al. 2010). Closer still to the primary body, the
Roche limit is the distance from the primary within which a
secondary body held together only by gravity would be torn
apart by tidal forces. For a rigid secondary body, the equation
for the Roche limit with respect to a primary body is
approximately

R R2.44 4p
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(Roche 1849; Murray & Dermott 1999). Here, Rp is the
physical radius of the primary body, pr is the density of the
primary body, and sr is the density of the secondary body.

Now that a severity scale for close encounters has been
established, it can be used to study simulated close encounters
between ringed Centaurs and the giant planets.

4. The Two Dynamical Classes of Centaurs

Throughout its lifetime as a Centaur, the frequency and
severity of close encounters between Chiron and the giant
planets will affect the stability of any ring structure around
Chiron. The frequency of close encounters can be affected by a
Centaur’s so-called dynamical class.

Previously it was shown that small bodies including
Centaurs can be classified based on their perihelion,
aphelion, and Tisserand parameter (as detailed in Horner
et al. 2003).

However, as Bailey & Malhotra (2009) showed, Centaurs
may also be classified into one of two classes based on their
long-term dynamical behavior. The first type consists of those
Centaurs that randomly wander from orbit to orbit. The
semimajor axes of these Centaurs’ orbits increase and decrease
in time with no particular pattern. These Centaurs are known as
random-walk Centaurs.
Centaurs of the other type spend most of their time

temporarily trapped in mean motion resonances of the giant
planets and typically jump from one resonance to the other. A
small body is in a mean motion orbital resonance with a planet
if the ratio of the orbital period of the planet to the orbital
period of the small body equals a ratio of two small integers
(Murray & Dermott 1999).
Becoming temporarily trapped in a resonance is a behavior

known as resonance sticking (Lykawka & Mukai 2007).
While trapped in a resonance, the semimajor axes of these
Centaurs’ orbits oscillate about a constant value which
corresponds to the resonance location. These Centaurs are
known as resonance hopping Centaurs. Since it is possible
that resonance sticking can protect small bodies from
close encounters with planets (Malhotra 1995), the dynami-
cal class of a Centaur can have consequences for any ring
structure around it.
The two types can also be more rigorously defined

mathematically. As the semimajor axes of random-walk
Centaurs wander aimlessly and those of resonance hopping
Centaurs remain more constant, we would expect that on
average the standard deviation of semimajor axis values of
random-walk Centaurs would increase in time more predictably
than those of resonance hopping Centaurs.
Mean standard deviation, then, can be used as a tool to

distinguish between the two dynamical types. Random-walk
Centaurs are those Centaurs whose mean square standard
deviation of semimajor axis, 2sá ñ, varies as a power law in
time. It is said that these Centaurs display generalized
diffusion. This can be expressed mathematically as

Dt . 5H2 2sá ñ = ( )
Here, t is time, D is the generalized diffusion coefficient, and

H is the Hurst exponent with H0 1< < . Random-walk
Centaurs can then be generally defined as those Centaurs for
which the semimajor axis behavior is well described by
generalized diffusion. Conversely, it then goes that the
behavior of the semimajor axis of resonance hopping Centaurs
is not well described by generalized diffusion.
Centaurs of both types may also display both random

walking and resonance sticking during their lifetime. To
determine if a Centaur is in fact trapped in a particular mean
motion resonance, care must be taken.
Resonances do not exist at a single point but have widths in

phase space. For example, for any particular resonance, a
Centaur can be trapped in the resonance over a range of
semimajor axis values.
To positively determine if a small body is trapped in a

resonance, two behaviors must be displayed. First, the
semimajor axis of the small body orbit must oscillate about
the resonance location, and second, the primary resonance
angle must librate in time (Smirnov & Shevchenko 2013).
The primary resonance angle is defined by p q pl l- -

p q w-( ) ¯ , where p and q are integers, pl is the mean longitude
of the planet’s orbit, λ is the mean longitude of the small
body’s orbit, and w̄ is the longitude of perihelion of the small
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body’s orbit (Murray & Dermott 1999; Roig et al. 2002; Bailey
& Malhotra 2009; Smirnov & Shevchenko 2013).

This angle is related to the perturbation of the orbit of a small
body around a central body (like the Sun) by a third body (like
a planet) in the planar 3-body problem. The reader is referred to
Murray & Dermott (1999) for details.

5. Method

To study the dynamical history of Chiron and its ring
system, a suite of numerical integrations were performed using
the n-body dynamics package MERCURY (Chambers 1999).

A total of 35,937 massless clones of Chiron were integrated
backward in time for 100Myr in the six-body problem (Sun,
four giant planets, and clone). The integration time is justified,
as it is at least 100 times longer than the approximate half-life
of Chiron (Hahn & Bailey 1990; Horner et al. 2004a).

The orbital elements of the individual clones were chosen
from a range of three standard deviations below to three
standard deviations above the accepted value of each orbital
parameter of Chiron for epoch 2457600.0 JD taken from the
Asteroid Dynamic Site (Knezevic & Milani 2012).

To create our cloud of clones for Chiron, we varied each of
the orbital elements as follows. First, we sampled the 3s
uncertainty range in semimajor axis, a. We tested 11 unique
values of the semimajor axis, ranging from a 3s- to a 3s+ ,
in even steps. At each of these unique semimajor axes, we
tested 11 orbital eccentricities, which were again evenly
distributed across the 3s uncertainty in that variable. At
each of these a e121 - pairs, we tested 11 unique inclinations
also evenly spaced in the range 3s . This gave a grand total of
1331 potential a e i- - combinations for Chiron. At each of
these values, we tested 27 unique combinations of Ω, ω, and M,
creating a 3×3×3 grid in these three elements. The three
values chosen for each of these three variables were the best-fit
solution, and the two values separated by 3s from that value. In
total, this gave us a sample of 35,937 unique orbital solutions
for Chiron.

The time step was chosen to be 40 days, which is
approximately one-hundredth of an orbital period of Jupiter
—the innermost planet included in this study. Similar time
steps have been used before in integrations of both Centaurs
and Main Belt asteroids (Tsiganis et al. 2000; Tiscareno &
Malhotra 2003).

Clones were removed from the simulation upon colliding
with a planet, colliding with the Sun, achieving an orbital
eccentricity 1 , or reaching a barycentric distance >1000 au.

The masses and initial orbital elements of the four giant
planets were found using the NASA JPL HORIZON
ephemeris8 for epoch 2451544.5 JD. Inclinations and long-
itudes for both Chiron and the planets were relative to the
ecliptic plane.

In order to set their starting orbital parameters for the
simulation, the planets were integrated (within the heliocentric
frame) to the epoch 2457600.0 JD—the epoch of the Chiron
clones using the Hybrid integrator within the MERCURY
n-body dynamics package (Chambers 1999). The accuracy
parameter was set to 1.d-12, and the hybrid handover radius
was set to 3 Hill radii.

Statistics on the close encounters were then taken by small
body population of the solar system membership of the clone at
the time of the encounter and by encounter severity. The
different small body populations of the solar system used are
defined in Table 3.
Physical properties of the planets were taken from NASA.9

The mass of the Sun was also taken from NASA.10 For Chiron
we selected a bulk density of 1000 kg m−3, which along with
our selected radius of 90 km yielded a mass of 3.05 1018´ kg.
This mass was used in Equation (3) to determine the tidal
disruption distance between Chiron and each planet. The
density was used in Equation (4) to determine the Roche Limit
between Chiron and each planet.

5.1. Determining the Half-life and Origin of Chiron

To determine the likely origin of Chiron, the chronologically
earliest close encounter with a giant planet was analyzed for
each clone, and the small body population of which the clone
was a member at the time of the close encounter was found
using the orbital parameters of the clone’s orbit at the time of
the encounter.
This then allowed the fraction of injection events from the

various small body populations shown in Table 3 to be
determined. (In other words, it allowed us to determine the
likely source population of Chiron.)
Note that Trojans could overlap with the Centaur small body

population the way we have defined it. However, in order to
have a close encounter, a small body must have already exited
the Trojan region.
Furthermore, though the Jupiter and Neptune Trojans are

possible feeder populations to the Centaurs (e.g., Horner &
Wyn Evans 2006; Horner & Lykawka 2010), our study is
unable to yield any information on the likelihood of either of
these being the source of Chiron. Therefore Trojans were
omitted as separate populations in Table 3.
To determine the half-life of Chiron against removal from

the simulation moving backward in time, the number of clones
remaining at a time t was recorded as a function of time
throughout the entire integration. Given No as the initial
number of clones at a time t=0, the half-life can be
determined by fitting the data to the standard radioactive decay

Table 3
Some Different Small Body Populations of the Solar System

Name Definition

Inner SS a aJ
SP Comet a aJ> and q aJ<
Centaur a a aJ N< < and q aJ>
TNO a aN
Ejection e 1

Note. Here, a is the semimajor axis of the clone during the close encounter.
The semimajor axis and other orbital values of the clone’s orbit just before the
close encounter were not recorded. aJ and aN are the semimajor axis of Jupiter
and Neptune, respectively; and q is the perihelion distance of the clone. Inner
SS means inner solar system, SP comet means short period comet, TNO means
trans-Neptunian object, and ejection means the clone was being ejected from
the solar system at the time of the encounter.

8 https://ssd.jpl.nasa.gov/horizons.cgi?s_body=1#top (accessed 2015
December 31).

9 https://ssd.jpl.nasa.gov/?planet_phys_par (accessed 2017 June 16).
10 https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html (accessed
2017 June 17).

5

The Astronomical Journal, 155:2 (13pp), 2018 January Wood et al.



equation,

N N e , 6o
t0.693

= t
- ( )

where τ is the half-life. The time interval over which the decay
of clones was exponential was obtained by the fit of the data to
Equation (6). Then the fit was used to calculate the half-life.

Once the half-life was determined, it was used in
Equation (6) to determine the time at which 99.99% of clones
would be removed from the simulation assuming a constant
half-life. This time was then set as the upper limit on the time at
which Chiron entered the Centaur region.

5.2. Finding the Dynamical Class

A separate set of integrations was made using the IAS15
integrator in the REBOUND n-body simulation package (Rein &
Liu 2012; Rein & Spiegel 2015) using the orbital values from a
set of 1246 Chiron clones from the previous integrations.

Three different samples of clones of ∼400 clones each were
used—the first sample was taken from the first 1000 clones, the
second from the middle 1000 clones, and the third from the last
1000 clones in the entire data set. The middle sample included
the currently accepted orbital values of Chiron.

It was not necessary to find the dynamical class of every
clone, since the objective of these integrations is to compare
and contrast the two dynamical classes and to explore specific
examples of the behavior of clones in each class. Just a
sampling of clones is sufficient for these purposes.

The output time was set to 300 years, and the time step was
set to 0.1 year. In these integrations, clones were removed from
the simulation upon colliding with the Sun, colliding with a
planet, achieving an eccentricity 1 , or leaving the Centaur
region. Any clone that did not remain in the Centaur region for
at least 100,000 years was not used. The dynamical class of
each remaining clone was found using the method of Bailey &
Malhotra (2009):

1. Determine the time at which the clone was injected into
the Centaur region, TCentaur. Determine the number of
data points in the time interval [0, TCentaur].

2. Create a logarithmic interval of data points using [log
(10), log(Data Points)].

3. Divide the interval into 16 equal logarithmic increments.
Call the length of one of these increments js.

4. Create a window length of 10 data points in units of time.
Set this equal to the smallest window length.

5. Create each zth additional window length in units of data
points, w z datapts( ) , by converting a logarithmic window
into a window of data points using w z datapts =( )
10 1z j1 s ++ ( ) where z 1 .

6. Convert each window length from units of data points
into units of time using w z w ztime datapts= ´( ) ( ) (output
time). The interval each window covers is closed on one
end and open on the other. For example, the first window
time interval would be [0, w z time( ) ].

7. Discard any window lengths more than 25% of the
data set.

8. Using the smallest window length, partition the time
interval [0, TCentaur] into equal windows of time and allow
each window to overlap adjacent windows by half a
window length.

9. Within each window, determine the standard deviation, σ,
of the semimajor axis, a.

10. Calculate the mean standard deviation, s̄, over all
windows.

11. Repeat the process for all the window lengths.
12. Perform a linear regression on log(s̄) versus

log(w z time( ) ).
13. The slope obtained from this regression is an approx-

imation of the Hurst exponent.
14. A residual is the difference between an actual value and

its expected value from the best-fit line. In this case, a
residual of a particular value of log(s̄) is found by finding
the absolute value of the vertical distance from a value of
log(s̄) from the best-fit line. A Centaur is classified as
being resonance hopping if the maximum value of any
one residual is �0.08. Otherwise, the Centaur is classified
as random-walk. This method is based on the results of
Bailey & Malhotra (2009), and the reader is referred to
that work for more details.

Selected resonance hopping clones were studied in more
detail by examining intervals of time in which the semimajor
axis oscillated about a nearly constant value.
The semimajor axis values for these intervals of time were

then smoothed using the technique of Hinse et al. (2010) to
determine if the clone was trapped in a mean motion resonance
of a giant planet. The method is as follows:

1. Qualitatively inspect graphs of semimajor axis versus
time for resonance hopping Centaurs and identify
intervals of time, TresD , in which the semimajor axis
seems to oscillate about a nearly constant value.

2. Select one of these intervals of time for study. Create a set
of all semimajor axis data points during this time interval.

3. Initially, set the smoothed data set equal to the original
data set.

4. By inspection, decide on a time window in units of data
points. Set the window length to an odd number of data
points and call this wN.

5. Apply the window to the original data set at the first data
point.

6. Evaluate the mean value of the semimajor axis over all
data points within the window.

7. Set the value of the middle data point in this window (the
j w 1 0.5N- ´( ) data point) in the smoothed data set to this
mean value.

8. Slide the window ahead by one data point in the original
data set and set the value of the middle data point in this
window in the smoothed data set equal to the mean
semimajor axis over the entire window in the original
data set.

9. Continue this process until the window ends on the last
data point. If jlast is the last data point, then in the
smoothed data set the j j wlast 1 0.5N

- - ´( ) data point is set
to the mean value of the semimajor axis in the window in
the original data set. Any data points before the
j w 1 0.5N- ´( ) data point and after the j j wlast 1 0.5N

- - ´( ) data
point in the smoothed data set remain unchanged.

10. Try various window lengths until the smoothed data is as
close to a cosine or sine wave in time as can be obtained
by inspection.

11. Set the nominal location of the mean motion resonance
equal to the mean value of the semimajor axis over the
time interval TresD in the smoothed data set.
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12. Compare this location to known locations of mean
motion resonances of the giant planets for identification.
If the mean value is within 0.1 au of a resonance location,
then consider that resonance as a possible candidate.

13. Examine the primary resonance angle associated with
each candidate resonance for librating behavior over the
time interval. If the angle librates, then consider the clone
to be trapped in the resonance over the time of libration.

The locations of mean motion resonances of the giant
planets, ares, were found using

j

j
a a 7pres

1

2

2
3

=
⎛
⎝⎜

⎞
⎠⎟ ( )

(Murray & Dermott 1999). Here, ap is the semimajor axis of a
planet; and j1 and j2 are integers. In this work j1 and j2 were
limited to values between 1 and 20.

5.3. MEGNO and Lifetime Maps

The chaoticity and chaotic lifetime of Chiron’s orbital
evolution were studied by means of calculating global
MEGNO and lifetime maps over a given parameter region.
The MEGNO (Mean Exponential Growth of Nearby Orbits;
Cincotta & Simó 2000; Goździewski et al. 2001; Cincotta
et al. 2003; Giordano & Cincotta 2004; Hinse et al. 2010)
factor is a quantitative measure of the degree of chaos and has
found wide-spread applications within problems of dynamical
astronomy. The time averaged MEGNO parameter, Yá ñ, is
related to the maximum Lyapunov Characteristic Exponent, γ,
by

Y t
2

8
g

á ñ = ( )

as t  ¥. For more on Lyapunov characteristic exponents, we
direct the interested reader to Whipple (1995).

The detection of chaotic dynamics is always limited to the
integration time period. Quasi-periodic or regular motion could
in principle develop into chaotic motion over longer timescales.
The calculation of Yá ñ involves the numerical solution of the
associated variational equations of motion.

Following the definition of MEGNO, the quantity Yá ñ
asymptotically approaches 2.0 for t  ¥ if the orbit is quasi-
periodic. For chaotic orbits, Yá ñ rapidly diverges far from 2.0.
In practice, the limit t  ¥ is not feasible and Yá ñ is only
computed up to the integration time (eventually ended by some
termination criterion such as the event of an escape or
collision).

A MEGNO map is created using the technique of numerical
integration of a number of massless test particles starting on
initial orbits which cover a rectangular grid in a−e space,
with other orbital parameters held constant. In this work, the
Gragg–Bulirsh–Stöer (Hairer et al. 1993) method was used to
integrate 300,000 test particles for 1 Myr in the region of a−e
space bound by 13 au a 14 au  and e0 0.5  . The other
orbital parameters were set to those of Chiron.

The resolution of the map was 600×500 (a− e). One test
particle was integrated for each a−e pair, for a total of
300,000 a−e pairs.

The time step varied and was determined using a relative and
absolute tolerance parameter, both of which were set to be
close to the machine precision. A test particle was removed

from the simulation if it collided with a planet or the Sun, was
ejected from the solar system, or if Y 12á ñ > (indicating a
strong degree of chaos).
When a test particle was removed, the time of removal and

the Yá ñ value were recorded. If a test particle survived the entire
simulation, then its removal time was recorded as 1Myr. We
will call the removal time the “chaotic lifetime,” which is not
the same as dynamical lifetime. However, it can be said that the
dynamical lifetime is equal to or greater than the chaotic
lifetime.
A chaotic lifetime map was then generated in conjunction

with the MEGNO map by color-coding the lifetimes in the
same a−e grid used to create the MEGNO map. In the
lifetime map the shortest removal times were color-coded black
and the longest yellow. The resulting lifetime and MEGNO
maps can be seen in Figures 7 and 8, respectively.

6. Results

6.1. Half-life and Origin of Chiron

The percentage of first close encounters by clone small body
population membership is shown in Table 4. The TNO
population has the highest percentage of first close encounters,
making it the most likely source population of Chiron.
Thirty-four percent of clones were in a hyperbolic or

parabolic orbit during their first close encounter, which
indicates a potential origin within the Oort cloud. The Centaur
and Inner solar system populations combined contributed just
3% of the first close encounters.
The short period comet population claims 2% of first close

encounters. These three populations combined likely illustrate
potential final destinations for Chiron in the future, since
dynamical evolution that takes no account of the influence of
non-gravitational forces is entirely time-reversible.
Figure 1 shows the natural log of the fraction of remaining

clones versus time over the last 2.5 Myr. The decay is
exponential for the time interval [0.12Myr, 0.5 Myr]. By
1Myr ago, the decay curve departs markedly from this initial
exponential decay.
This is typical and results from clones that have evolved onto

more stable orbits. Because of this, these clones are no longer
sampling the original phase space at the start of the decay.
To maximize the fit, the half-life during the exponential

decay was determined on the interval [0.12Myr, 0.367 Myr]
and found to be about 0.7Myr. Other larger intervals were tried
and yielded the same result. This value is comparable to, but
slightly shorter than, the value of 1.07Myr reported by Horner
et al. (2004b) for this quantity.

Table 4
Percentage of First Close Encounters by Clone Small

Body Population Membership

Region % CE

Inner SS 1
SP Comet 2
Centaur 2
TNO 60
Ejection 34

Note. The TNO population has the highest percentage of first close encounters,
making it the most likely source population of Chiron.
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Our smaller value is not surprising because Horner et al.
(2004b) found their half-life using the longer time interval of
3 Myr, which included a longer tail over which the half-life was
markedly different from its initial value.

A total 786 clones, just 2% of the total population, survived
the entire integration time. Ninety-six percent of clones were
ejected from the solar system on hyperbolic or parabolic orbits,
which again points to an origin for Chiron beyond Neptune.
Approximately 1% hit Jupiter, and the remaining 1% hit the
Sun, Saturn, Uranus, or Neptune.

Using the best-fit line, we find that if the decay had remained
exponential, then 99.99% of the clones would have been gone
by 8.5 Myr ago. We use this time as the upper limit to the time
at which Chiron first entered the Centaur region.

6.2. Close Encounters

The total number of close encounters between Chiron clones
and the giant planets was 24,196,477. A total of 15,130,506 of
these occurred while clones were in the Centaur region.

During their time in the Centaur region, clones experienced a
close encounter on average every 5 kyr. Table 5 shows the
number of these close encounters by planet.

As expected, clones had the highest numbers of close
encounters with Saturn and Uranus, followed by Neptune and
then Jupiter.

Table 6 lists the percentage of close encounters which
occurred in the Centaur region by severity. It can be seen that
the lower the severity, the greater the number of close
encounters. There were only 48 severe and exactly zero
extreme close encounters. These results show that encounters
close enough to tidally disrupt Chiron or any ring system
around Chiron are extremely rare events.

Thus it is unlikely that any ring structure around Chiron was
created by tidal disruption due to a planetary close encounter,
and barring ring dispersal by viscous spreading, it is possible
that any ring structure around Chiron has survived its journey
through the Centaur region and is in fact primordial.

6.3. Dynamical Class of Chiron

The dynamical classes of 1246 clones were determined.
Table 7 shows the percentage of clones in each dynamical
class, and the mean Centaur lifetime of clones in each class.
Ninety-five percent of the sampled clones were classified as
random-walk Centaurs, with the remaining 5% being classified
as resonance hopping Centaurs.
The difference in mean Centaur lifetime between the two

classes is stark. The mean Centaur lifetime for the resonance
hopping clones was approximately twice as long as that of
random-walk clones.
We hypothesise that the large difference is caused by

resonance sticking in mean motion resonances of resonance
hopping clones having the effect of prolonging their dynamical
lifetimes. This is supported by the work of Bailey & Malhotra
(2009). The top of Figure 2 shows the behavior of the
semimajor axis of the orbit of one of the longest lived
resonance hopping clones. In the figure, the semimajor axis
spends about 5 Myr oscillating about the 2:3 mean motion
resonance of Saturn centered at 12.5 au. Notice the horizontal
band feature which covers this period of time. A shorter band
centered at 15.1 au is caused by the exterior 1:2 mean motion
resonance of Saturn.
Examination of other resonance hopping clones also showed

relatively long periods of time for which each clone was
trapped in one or more mean motion resonances. We conclude
that resonance sticking acts to significantly prolong the lives of
resonance hopping clones. Other notable resonances entered
into by clones include the exterior 3:4, 4:7, and 1:3 resonances
of Saturn; the Trojan or 1:1 resonance of Saturn; the interior 3:2

Figure 1. Natural log of the fraction of remaining clones versus time over the
last 2.5 Myr. The decay is exponential through the interval [0.12 Myr, 0.50
Myr]. The half-life during the interval [0.12 Myr, 0.367 Myr] was found to be
about 0.7 Myr. The solid line is the best-fit line for this interval and fits the data
with a linear regression coefficient of 0.9999. By 1 Myr ago, it can be seen that
the decay is no longer exponential.

Table 5
Close Encounters of Chiron Clones with Each Giant Planet while

Clones Were in the Centaur Region

Planet Number

Jupiter 553182
Saturn 6978716
Uranus 4567440
Neptune 3031168

Table 6
Percentage of Close Encounters of Chiron Clones with the Giant Planets by

Severity while Clones Were in the Centaur Region

Severity Percent

Very Low 89
Low 11
Moderate 0.03
Severe 0
Extreme 0

Table 7
Percentage of Clones and Mean Centaur Lifetime by Dynamical Class

Class Percent Avg. Centaur Life (Myr)

Resonance Hopping 5 1.1
Random-walk 95 0.52

Note. Random-walk dominates in quantity, but resonance hopping clones have
about twice the mean centaur lifetime as random-walk clones due to resonance
sticking.
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resonance of Uranus; and the interior 3:2 and 4:3 resonances of
Neptune.

The bottom diagram in Figure 2 shows the log–log plot used
to classify the clone. It can be seen that it only takes one data
point with a relatively large residual to cause a clone to be
classified as resonance hopping.

The top diagram in Figure 3 shows another example of a
resonance hopping clone. In contrast to the clone in Figure 2,
which spends most of its time in one resonance, this clone
spends most of its time hopping between mean motion
resonances of the giant planets. Two of these resonances were
positively identified as the 4:3 and 3:2 mean motion resonances
of Neptune by observing the libration of their primary
resonance angles.

The bottom diagram shows a close-up of the time spent in
the 4:3 mean motion resonance of Neptune before and after

data smoothing. The smoothed data set has a mean semimajor
axis value that is only 0.07 au away from the 4:3 mean motion
resonance of Neptune, located at 24.89 au.
Figure 4 shows the primary resonance angle associated with

the 4:3 mean motion resonance of Neptune for the clone in
Figure 3 over the same time interval. The angle is defined by
4 3Nl l w- - ¯ , where Nl is the mean longitude of Neptune. It
can be seen that this angle librates.
Figure 5 shows an example of a random-walk clone. This

clone does not spend the majority of its life trapped in mean
motion resonances, as can be seen by the lack of long
horizontal bands in the figure.
The mean Hurst exponent of the random-walk clones is

0.4664±0.0782, and that of the resonance hopping clones is
0.3572±0.1530. Here the error is given by the standard
deviation of the mean. It can be seen that Hurst exponents of
random-walk clones are more well defined than those of
resonance hopping clones, as the standard deviation of the
mean of the Hurst exponents of random-walk clones is about
half that of the resonance hopping clones.
Hurst exponents ranged from −0.1764 to 0.6416 for

resonance hopping clones and from 0.1446 to 0.7462 for
random-walk clones. The lowest regression coefficient for a
random-walk clone was 0.85, and resonance hopping clones
had regression coefficients ranging from −0.33 to 0.99.
Bailey & Malhotra (2009) reported that random-walk

Centaurs display Hurst exponents in the range 0.22–0.95. We
found that only five of our random-walk clones had Hurst
exponents outside this range—all of them 0.22< .
Qualitative inspection showed that four of these five could

be classified as resonance hopping Centaurs, as they spent the
majority of their lives in mean motion resonances. The fifth
clone displayed both random-walk and resonance hopping
behavior, but spent most of its time experiencing random-walk
evolution. The fit of that clone’s log–log plot had a regression
coefficient of only 0.85, which is more than three standard
deviations away from the mean value of 0.9947±0.0089 for
random-walk clones.
Furthermore, the outliers also had another thing in common:

of the total time spent in resonances, each spent the majority of
that time in only one strong resonance and did not jump into
any other strong resonances. An example of one of these five
outliers is shown in Figure 6.
This particular clone spends 66% of its life in the 2:3 mean

motion resonance of Saturn and never jumps to another strong
resonance. It was classified as a random-walk clone because its
residuals never exceeded 0.0601, but since it spent more time
in a resonance than random walking, one could argue that this
clone is resonance hopping even though our method classifies it
as random-walk. The linear regression coefficient of its log–log
plot was 0.88, and its Hurst exponent was 0.19.
We conclude that our results are in good agreement with

those of Bailey & Malhotra (2009), but that our technique
occasionally misclassifies a clone. A refinement of this
technique may be to consider the regression coefficients as
well as the residuals as part of the classification procedure.
For example, if the regression coefficient of a random-walk

clone falls below some critical value, then the clone should be
classified manually. That is, classify it using qualitative
inspection of the clone’s semimajor axis behavior over time.
The exact critical value to use will be left open for now.

Figure 2. Top—an example of a resonance hopping clone. Note the long
horizontal band feature. This clone spends about 5 Myr oscillating about the
2:3 mean motion resonance of Saturn located at 12.5 au. A shorter band
centered at 15.1 au is caused by the exterior 1:2 mean motion resonance of
Saturn. Bottom—the log–log plot used to identify the dynamical class of the
clone in the top diagram. Notice the one data point at a larger distance from the
trendline than the others. This is characteristic behavior for resonance hopping
Centaurs. The Hurst exponent for this clone was 0.193, and its linear regression
coefficient was 0.971. The maximum residual was 0.08.
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Another factor to consider is the distance of the Hurst
exponent from the mean. All five of the outlying random-walk
clones had Hurst exponents more than three standard deviations
away from the mean. A refinement of the technique may be to
manually classify any clones with outlying Hurst exponents. It
remains to be seen if all outliers spend most of their lives in just
one strong resonance or if this is just coincidental.

6.4. MEGNO and Lifetime Maps

Figure 7 shows the chaotic lifetimes of orbits in the region
bound by a13 au 14 au  and e0 0.5  . It can be seen
that most orbits with e 0.23 have lifetimes typically

0.01 Myr , which are noticeably shorter than the lifetimes of
orbits of much lower eccentricity.

Chiron, located at the point (13.64 au, 0.38) lies in this
region of relatively short lifetimes. Orbits with a 13 au= and

eccentricity of 0.23 just begin to cross the orbit of Saturn. All
orbits with eccentricities above about 0.28 are Saturn crossing.
This allows strong close encounters between objects on those
orbits and the giant planet to occur immediately, which
explains why most orbits with e 0.28 have lifetimes

0.01 Myr —the lowest in the map.
One exception to this is the bump-like feature centered at

13.4 au, with a width of about 0.2 au. Orbits within the bump
with eccentricities as high as 0.35 have lifetimes noticeably
greater than 0.01Myr.
For example, there are orbits in the bump with e 0.28 with

lifetimes of 0.1 Myr, which is an order of magnitude longer
than most other orbits in the map with e 0.28 . Also of note is
a cluster of orbits within the bump near e=0.1, for which
lifetimes can reach as high as 1Myr—the longest in the map.
We hypothesise that the bump feature is caused by resonance
sticking in the 3:5 mean motion resonance of Saturn located at
13.4 au.
Small objects that get stuck in this resonance could have

their chaotic lifetimes extended in the same way that the
Centaur lifetime was extended for a clone stuck in the 2:3 mean
motion resonance of Saturn, as seen in Figure 2. It should be
noted, however, that most orbits located at 13.4 au with
eccentricities below 0.06 have lifetimes noticeably shorter
than 1Myr.
This implies that small objects in this region of phase space

are either not being captured in the resonance or are staying in
the resonance for shorter times, which results in lower
lifetimes. This may be caused by the decreasing width of the
resonance for smaller eccentricities.
Such behavior of resonances has been seen before. For

example, Murray & Dermott (1999) observed the same
behavior for the 3:1 and 5:3 interior mean motion resonances
of Jupiter located in the main asteroid belt.
Another bump of longer lifetimes that reach as high as 1Myr

is found between 13.9 and 14 au with e 0.05 . The low
eccentricity of orbits in this bump help insulate them from
destabilizing close encounters with Saturn and Uranus. Though
their lifetimes of 1 Myr are relatively long compared to other
orbits in the figure, this is still much shorter than the age of the

Figure 3. Top—another example of a resonance hopping clone. This clone
spends most of its time trapped in various mean motion resonances of the giant
planets. Two resonances were positively identified as the 4:3 and 3:2 mean
motion resonances of Neptune. These are labeled in the figure. The Hurst
exponent was 0.534, the linear regression coefficient was 0.9937, and the
maximum residual was 0.08. Bottom—a close-up of the time spent in the 4:3
mean motion resonance of Neptune before and after data smoothing. The mean
value of the smoothed data set was 24.89 au, which is about 0.07 au away from
the 4:3 mean motion resonance of Neptune.

Figure 4. The primary resonance angle of the 4:3 mean motion resonance of
Neptune defined by 4 3Nl l w- - ¯ librates in time.
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solar system and so these orbits should be viewed as being only
relatively stable.

Figure 8 is the MEGNO map of the same region of phase
space. Almost the entire region, including the current orbit of
Chiron, is highly chaotic. Two features of relatively lower
chaos stand out: one island centered around 13.4 au with

e0.1 0.15  and a pair of islands between 13.9 and 14 au
with e 0.04< . Here the MEGNO parameter reaches as low as
2.5. Two tinier islands can be seen between 13.7 and 13.9 au.

By comparison of the two maps, it can be seen that these
islands are also embedded within regions of relatively long
lifetimes that can reach as high as 1Myr, making these islands
regions of lower chaos and longer lifetimes.

It can also be seen that the two bumps of relatively long
lifetimes found in the lifetime map also contain some orbits
with lifetimes of 1 Myr that are also highly chaotic. Orbits that
are chaotic but have a relatively long lifetime are said to display
stable chaos.

Chiron, however, cannot be shown to display stable chaos,
as it has a highly chaotic orbit and relatively short lifetime.

7. Conclusions

Using the technique of numerical integration of nearly
36,000 clones of the Centaur Chiron, we found the backward
half-life of Chiron’s orbit to be 0.7 Myr and showed that
Chiron likely entered the Centaur region from somewhere
beyond Neptune within the last 8.5 Myr.
Close encounters between Chiron and the giant planets

severe enough to tidally disrupt Chiron or any ring system in a
single pass were found to be extremely rare, and thus the origin
of any ring structure is unlikely the result of tidal disruption of
Chiron due to a planetary close encounter.
This led us to conclude that any supposed ring system

around Chiron could be primordial barring ring dispersal by
viscous spreading. Our results are similar to those of Wood
et al. (2017) and Araujo et al. (2016) for the ringed Centaur
Chariklo. In those studies, close encounters severe enough to
severely damage or destroy the ring structure around Chariklo
were also found to be very rare.
We also showed that the orbit of Chiron lies in a region of

phase space that is both unstable and highly chaotic, and that
the chaotic lifetime of Chiron is likely to be 0.01 Myr .
Resonance sticking was shown to have the ability to prolong
the Centaur lifetime of Chiron clones by up to two orders of
magnitude beyond its chaotic lifetime. Resonance sticking in
the 2:3 exterior mean motion resonance of Saturn was cited as a
strong example of this.
The dynamical classes of a sample of 1246 clones were

determined while these clones were in the Centaur region. It
was found that 95% of clones in the sample were categorized as
random-walk Centaurs, and the remaining 5% were categorized
as resonance hopping Centaurs. Because of resonance sticking,
the mean Centaur lifetime of resonance hopping clones was
about twice that of random-walk clones.
MEGNO and lifetime maps were made of the region in

phase space bound by a13au 14au  and e 0.5 , which
included the orbit of Chiron. It was found that nearly the entire
region is highly chaotic, with relatively small islands of lower
chaos. Other small islands of stable chaos (high chaos and
relatively long lifetime) were found.

Figure 5. Top—an example of a random-walk clone. Notice how the long
horizontal bands are absent. Bottom—the log–log plot used to identify the
dynamical class of the clone in the top diagram. Notice the good fit. The linear
regression coefficient was 0.9998, and the Hurst exponent for this clone was
0.4514. The maximum residual was 0.008.

Figure 6. Random-walk clone that spent most of its life in the 2:3 mean motion
resonance of Saturn located at 12.5 au. Though its residuals were 0.0601 , one
could argue that it is a resonance hopping clone.
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Most orbits with eccentricities 0.28 had the lowest chaotic
lifetimes in the map of 0.01 Myr due to the crossing of
Saturn’s orbit. However, some test particles in orbits with
e 0.28 and semimajor axes within about 0.1 au of the
exterior 3:5 mean motion resonance of Saturn located at
13.4 au were shown to have lifetimes up to 0.1Myr, even for
orbits with eccentricities up to about 0.35.

More research is needed to determine conclusively if
the structure around Chiron is a ring system. It is not known

if rings around small bodies are rare or commonplace. If
future discoveries reveal that ringed Centaurs are common, it
would suggest a common mechanism for the creation of the
rings.
If, on the other hand, ringed Centaurs are found to

be rare, then this would suggest a more serendipitous
origin for rings. The authors encourage more searches
for rings around other small bodies to help answer this
question.

Figure 7. Chaotic lifetime map in a−e space. Chaotic lifetime is the time to be removed from the simulation and not dynamical lifetime. However, the dynamical
lifetime is greater than or equal to the chaotic lifetime. Chiron is shown as the star at the point (13.64 au, 0.38). A feature that stands out is the bump centered at
13.4 au, which has a width of about 0.2 au and a height of about 0.35. We hypothesize that the cause of the bump is resonance sticking in the 3:5 mean motion
resonance of Saturn, which prolongs the lifetimes of test particles that get trapped in the resonance. A smaller bump can be seen between 13.9 and 14 au with
e 0.05 . There is also a tiny bump in lifetimes up to 1 Myr between 13.7 and 13.75 au.

Figure 8. MEGNO map in a−e space. Chiron is shown as the star at the point (13.64 au, 0.38). Nearly the entire region is highly chaotic. There are a few small
islands of orbits with relatively low chaos. One is centered near 13.4 au with e0.1 0.15  , where the MEGNO parameter can reach as low as 3.5. Two others can
be seen between 13.9 and 14 au, in which the MEGNO parameter reaches as low as 2.5. Two tinier islands can be seen between 13.7 and 13.9 au.
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4 Measuring the Severity of Close Encounters
Between Ringed Small Bodies and Planets

The greatest gravitational perturbations of rings about a small body occur dur-
ing close encounters between the ringed body and the giant planets. A study
of the close encounter history of a ringed small body can help determine the
likelihood that ring destroying close encounters have occurred. This in turn has
consequences for ring origin theories and ring longevity.

In the two previous chapters, our results of integrations of clones of Chariklo
and Chiron showed the likelihood that the rings around either body predated
that body’s entrance into the Centaur region. Numerical integrations of small
bodies without rings are useful for direct study of small body dynamics and
indirect study of the rings.

Integrations with rings around a large number of clones is too time pro-
hibitive. This is why we developed a close encounter severity scale based only
on the minimum separation distance obtained during the encounter. Using
this scale we were able to successfully examine close encounters between ringed
small bodies and giant planets without actually integrating the ring particles
themselves.

However, our scale is dependent upon the accuracy with which the critical
distances of the Hill radius, tidal disruption distance, Roche Limit and ring
limit are known. The first four of these are well known and have approximate
analytical solutions. The ring limit is a relatively new parameter which currently
has no simple analytical expression.

Our first version of a close encounter severity scale included a ring limit
set to a constant value of 10 tidal disruption distances. This value was based
on previous work by other researchers and was constant for each planet. This
was only a rough approximation as it ignored velocity effects and only partially
accounted for the effects of the planet mass, small body mass and ring orbital
radius.

In reality, the ring limit should a function of these quantities. Using numeri-
cal integration to simulate close encounters between giant planets and one-ringed
small bodies over a range of orbital radii and small body masses for each planet
would allow the functional dependence of the ring limit on these quantities to
be found.

In order to improve our scale, close encounters between ringed small bodies
and planets were simulated with the ring particles themselves included in the
integrations. This allowed the functional dependence of the ring limit on each
quantity to be found.

The integrations were carried out, and the results analysed. Using regression,
it was found that the ring limit increased with ring orbital radius and planet
mass as a power law (R ∼ rα and R ∼ Mγ

p ) and decreased with small body

mass as a power law (R ∼ mβ
s ). The exponents α, β and γ were themselves a

function of the velocity at infinity and other variables. No particular relationship
between the ring limit and velocity at infinity could be found. The ring limit
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was found to have a constant lower bound of approximately 1.8 tidal disruption
distances with a small dependence on the mass of the planet. This means that
all close encounters occurring within a distance of 1.8 tidal disruption distances
are noticeable.

The ring limit equaled this lower bound only when the small body was
in a parabolic orbit about the planet. Using this, an approximate analytical
solution of the ring limit for parabolic orbits was obtained. Analytical solutions
for hyperbolic orbits could only be found for specific cases.

The ring limit was found to form a curve in dmin − v∞ space. By extrapo-
lating our data, a ring limit upper bound curve was found for close encounters
between Chariklo and each planet.

We found that 26 out of 27 dmin values were within their respective ring
limit upperbound curve as expected. At this time, we cannot explain the one
discrepancy.

A paper entitled “Measuring the Severity of Close Encounters Between
Ringed Small Bodies and Planets” has been submitted for publication in the
Monthly Notices of the Royal Astronomical Society and is currently under re-
view. This paper follows.
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ABSTRACT

In our previous works, we studied close encounters of Chariklo and Chiron with
the giant planets using numerical integration. In those works, we recognized
the importance of establishing a criterion by which the effect of close encounters
between ringed small bodies and planets on the stability of the rings could be
measured. The severity of each encounter was found by comparing the minimum
separation distance of the encounter, dmin, to known critical distances.

Two of these distances are the tidal disruption distance, Rtd, and ring limit,
R, which separates noticeable encounters from non-noticeable encounters. In
previous work, R = 10Rtd. In this work, we seek to improve our expression for
R by fully accounting for the effects of the planet mass, as well as the velocity
at infinity, v∞, mass and ring orbital radius, r, associated with the small body.

To accomplish this, we use numerical integration to simulate close encounters
between each giant planet and hypothetical one-ringed bodies in the three-body
planar problem and find R for each encounter. Using regression, we find the
functional dependence of R on planet mass, small body mass, v∞, and r as well
as discover that R has a nearly constant lower bound of approximately 1.8Rtd.
We use these dependencies to extrapolate our R values to find a ring limit upper
bound curve in dmin−v∞ space for close encounters between Chariklo and each
giant planet.

We suggest three different methods for using this curve to find R and use all
three to compare our extrapolated results to previously published dmin values
associated with planet-Chariklo encounters in the seven-body non-planar prob-
lem. We find good agreement and that the new R values are more accurate
than before.

Keywords: planets and satellites: dynamical evolution and stability, planets and
satellites: rings
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1. INTRODUCTION

The Centaurs are a population of icy bodies moving

on dynamically unstable orbits in the outer Solar system
(e.g. Tiscareno & Malhotra 2003; Horner et al. 2004a,b;
Di Sisto & Brunini 2007; Bailey & Malhotra 2009). The
first Centaur discovered, 2060 Chiron, was found in 1977

(Kowai et al. 1979), and it was soon found to be unusual.
The second Centaur, 5145 Pholus, was found in 1992,
and many more soon followed.

The exact definition of a Centaur varies within the
research community. This work defines Centaurs as ob-
jects with semi-major axes between the orbits of Jupiter

and Neptune, and perihelia beyond Jupiter (e.g. Shep-
pard et al. 2000). Using this definition, more than 220
of these objects have been discovered1.

It is the general consensus that Centaurs were per-

turbed into their present orbits via gravitational inter-
actions with the giant planets. The original source of the
Centaurs is likely other more stable small body popu-

lations such as the Kuiper Belt objects (e.g. Levison &
Duncan 1997; Horner et al. 2004b), Scattered Disk Ob-
jects (e.g. Di Sisto & Brunini 2007; Volk, & Malhotra

2008) Oort Cloud objects (e.g. Emel’yanenko et al. 2005;
Brasser et al. 2012; Fouchard et al. 2014), Trojan aster-
oids of Jupiter (e.g. Horner & Evans 2006; Horner et
al. 2012b), and Trojan asteroids of Neptune (Horner &

Lykawka 2010a,b; Horner et al. 2012a).
On timescales comparable to the age of the Solar sys-

tem (4.6 Gyr), Centaurs are indeed an ephemeral class of

object with dynamical lifetimes on the order of 10 Myr
(Tiscareno & Malhotra 2003). Objects in the Centaur
population typically experience frequent close encoun-
ters with the four giant planets. These encounters can

drive rapid evolution of Centaur orbits on timescales
of just hundreds or thousands of years (Wood et al.
2017). This results in the orbits of Centaurs being chaot-

ically perturbed, redistributing the objects throughout
the Solar system, and in many cases, transferring them
to other Solar system small body populations, such as

the Jupiter family comets (e.g. Tiscareno & Malhotra
2003).

Other fates of Centaurs include planetary collision,
collision with the Sun, injection into the Oort Cloud

or ejection from the Solar system. Centaurs may even
temporarily enter the Scattered Disk (e.g. Tiscareno &
Malhotra 2003; Horner et al. 2004a,b; Bailey & Malhotra

2009).

1 http://www.minorplanetcenter.net/iau/lists/Unusual.html
(accessed 15th January 2016)

Given the dynamically chaotic nature of the Centaur
region, it came as a complete surprise when two nar-
row rings were discovered around the largest Centaur

Chariklo by means of a stellar occultation event in 2013
(Braga-Ribas et al. 2014).

Analysis of occultation data concluded that the rings
have radii of 391 km and 405 km with widths of about 7

km and 3 km respectively (Braga-Ribas et al. 2014). It
has been suggested that rings may also exist or have ex-
isted around the Centaur Chiron (e.g. Ortiz et al. 2015;

Pan & Wu 2016); satellites of Saturn and Uranus; and
even the dwarf planet Pluto (Rawal & Nikouravan 2011;
Sicardy et al. 2016). Though none of these have been

confirmed, the Trans-Neptunian object Haumea is the
only small body besides Chariklo known to have rings
(Ortiz et al. 2017).

When considering the origin of the rings of the Cen-

taurs, and whether or not they truly predate the in-
jection of the objects to the Centaur population, it is
relevant to note that the rings of Haumea are particu-

larly interesting since Haumea is the largest object in the
trans-Neptunian region’s only known collisional family
(e.g. Brown et al. 2007; Lykawka et al. 2012) - in other

words, Haumea and its associated family are the debris
left behind from a collision that could readily have in-
jected material to orbits that would one day evolve to
enter the Centaur population.

Indeed, by integrating over 35,000 clones backwards
in time, Wood et al. (2017) and Wood et al. (2018) con-
firm that any rings around Chariklo or Chiron could pre-

date their entrance into the Centaur region. Once there,
given the frequency with which the Centaurs experience
close encounters with the giant planets, it is natural to
wonder what effect such encounters would have on the

rings around those objects.
This has been investigated for the case of Chariklo by

Araujo et al. (2016) in the seven-body (Sun, Chariklo,

four giant planets, ring particle) non-planar problem
who stated that the effect of a close encounter on a ring
was qualitatively “noticeable” if the maximum change in

eccentricity, ∆emax, of the orbit of any ring particle was
≥ 0.01. In that study, ring particles were initially ran-
domly distributed in the same circular orbit before the
encounter. After the encounter, the minimum approach

distance of the small body to the planet (the close en-
counter distance) and the largest change in eccentricity
of the orbit of a ring particle were recorded.

In this manner, they were able to investigate the like-
lihood that Chariklo’s rings could survive through the
duration of its life in the Centaur region. By study-

ing the evolution of rings around 729 clones of Chariklo,
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they found that, in the majority (93%) of cases, the rings
remained unperturbed throughout the object’s lifetime.

In general, the encounter severity is related to the min-
imum approach distance, dmin, between the ringed body
and the planet. In Wood et al. (2017), a severity scale
was introduced for close encounters between a ringed

small body and a planet by comparing dmin to the crit-
ical distances of the Roche limit, tidal disruption dis-
tance, Hill radius and a new quantity called the “ring

limit”. The ring limit was loosely defined as the upper
limit on the value of dmin for close encounters between
Chariklo and a giant planet which had a noticeable effect
on a ring. This ring limit was set to a crude constant

value of 10 tidal disruption distances which ignored ve-
locity effects.

In this work, we seek to refine the definition of the ring

limit and find analytical solutions for it for special cases
in the three-body planar problem (small body, planet,
ring particle). We use the technique of numerical inte-

gration to simulate close encounters between hypothet-
ical one-ringed bodies and each of the giant planets. In
this manner, we determine the ring limit for Centaurs
moving on hyperbolic and parabolic orbits around the

planet.
We study the ring limit as a function of small body

mass, planet mass, ring orbital radius and the velocity

at infinity of the Centaur’s orbit about the planet. We
then investigate whether our results can be applied to
close encounters between Chariklo and Jupiter in the

seven-body non-planar problem (Sun, four giant planets,
Chariklo, and ring particle).

This paper is partitioned as follows: in section 2 we
describe the properties of Chariklo, Chiron and Haumea

along with their rings; in section 3 present the theory of
close encounters; in section 4 describe our experimental
method; in section 5 present our results and summarise

our conclusions in section 6.

2. THE PROPERTIES OF CHARIKLO, CHIRON,
HAUMEA AND THEIR RINGS

Though Chiron was discovered over four decades ago,
Chariklo and Haumea were discovered much more re-
cently. The Spacewatch program discovered Chariklo

in 1997 (Scotti & Williams 1997) in an orbit between
Saturn and Uranus with a semi-major axis of 15.8 au.

Prior to the occultation event that led to the detection
of Chariklo’s rings, its size was poorly constrained, with

literature values ranging from 118 - 151 km. The occul-
tation observations (Braga-Ribas et al. 2014) suggested
that Chariklo is likely oblate with an equivalent radius

of 127 km - a value in strong agreement with the 124

Table 1. The orbital and physical properties of Chariklo.
The orbital data is based on an observational arc length of
10,540.2 days. The epoch is 58000.0 MJD. [1] = The AST-
DYS website (see footnote), [2] = (Sicardy et al. 2016), [3]
= (Jewitt & Kalas 1998) [4] = (Groussin et al. 2004).

Property Value Ref

a 15.8218 ± 0.0000 au [1]

e 0.172092 ± 0.000002 [1]

i 23.382 ± 0.000 deg [1]

Ω 300.416 ± 0.000 deg [1]

ω 242.896 ± 0.000 deg [1]

M 77.67 ± 0.00 deg [1]

Density 800 kgm−3 - 3,000 kgm−3 [2]

Mass 6 × 1018 kg - 3 × 1019 kg [2]

Radius 118 ± 6 km - 151 ± 15 km [3][4]

± 9 km value obtained by those authors on the basis of
thermal modeling.

Haumea was discovered in 2004 by Mike Brown and
his adaptive optics team2. In 2005, the same team dis-
covered two small moons orbiting Haumea3. The exis-

tence of the moons allowed the mass of Haumea to be
better constrained than those of Chariklo and Chiron.

The orbital and physical properties of Chariklo, Ch-
iron and Haumea are shown in Tables 1, 2 and 3 re-

spectively. Orbital values were taken from the ASTDYS
website456. a, e, i, Ω, ω, M are the semi-major axis, ec-
centricity, inclination, longitude of ascending node, ar-

gument of perihelion and mean anomaly respectively.
Where radius and density values are poorly known,

they are presented as suspected ranges with no uncer-
tainties. The mass range of Chiron was calculated using

the radius and density ranges assuming a spherical body.
In the case of Haumea, the mass was determined using
a model of Haumea with its two satellites.

The properties of the rings (or supposed rings) of
Chariklo, Chiron and Haumea are shown in Table 4.

3. THE THEORY OF CLOSE ENCOUNTERS

2 http://web.gps.caltech.edu/∼mbrown/planetlila/ortiz/
3 https://planetarynames.wr.usgs.gov/Page/Planets#DwarfPlanets
4 http://hamilton.dm.unipi.it/astdys/index.php?pc=1.1.0&n=Chariklo

(accessed 11 January, 2018)
5 http://hamilton.dm.unipi.it/astdys/index.php?pc=1.1.0&n=Chiron

(accessed 11 January, 2018)
6 http://hamilton.dm.unipi.it/astdys/index.php?pc=1.1.0&n=Haumea

(accessed 11 January, 2018)
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Table 2. The orbital and physical properties of Chiron.
Orbital data are based on an observational arc length of
44,773.2 days. The epoch is 58000.0 MJD. The mass range
was calculated using the density and radius ranges assuming
a spherical body. [1] = the ASTDYS website, [2] = (Meech
& Svoren 2004), [3] = (Groussin et al. 2004) [4] = (Sykes &
Walker 1991).

Property Value Ref

a 13.6482 ± 0.0000 [1]

e 0.382254 ± 0.000000 [1]

i 6.95 ± 0.00 deg [1]

Ω 209.201 ± 0.000 deg [1]

ω 339.677 ± 0.000 deg [1]

M 153.579 ± 0.000 deg [1]

Density 500 kgm−3 - 1,000 kgm−3 [2]

Mass 7.50 × 1017 kg - 2.70 × 1019 kg -

Radius 71 ± 5 km - 186 km [3][4]

Table 3. The orbital and physical properties of Haumea.
Orbital data are based on an observational arc length of
22,795 days. The epoch is 58000.0 MJD. [1] = the ASTDYS
website, [2] = (Lacerda & Jewitt 2007), [3] = (Ragozzine &
Brown 2009), [4] = (Rabinowitz et al. 2006).

Property Value Ref

a 43.3542 ± 0.0008 au [1]

e 0.189388 ± 0.000015 [1]

i 28.204 ± 0.000 deg [1]

Ω 121.971 ± 0.000 deg [1]

ω 238.869 ± 0.002 deg [1]

M 214.066 ± 0.003 deg [1]

Density 2,600 kgm−3 [2][4]

Mass 4.006 ± 0.040 × 1021 kg [3]

Radius 500 × 750 × 1,000 km [4]

3.1. DETERMINING THE VELOCITY AT

INFINITY OF THE ORBIT OF THE SMALL
BODY

Given the growing number of small Solar system bod-

ies being found to have rings, it is interesting to consider
the effect of close encounters between those objects and
the giant planets on their ring systems. How close must

an encounter be before the influence of the planet on a
ring is noticeable? One solution to this problem would
be to carry out exhaustive N-body dynamical studies for
every object found to have rings (such as those detailed

in Wood et al. (2017) and Wood et al. (2018)). How-

ever, should many such objects be discovered, such sim-
ulations would eventually prove prohibitive, given their
computationally intensive nature.

It is therefore important to examine whether it is
possible to develop a criterion by which the stability
(or otherwise) of small-body rings can be assessed, in

the context of the close encounters they will experience
throughout their lifetimes. Previously we built such a
criterion in Wood et al. (2017) which was based entirely

upon the idea that the severity of a given encounter is
determined by the strength of the tidal effects on the
small body’s ring system. Thus, the severity only de-
pended on dmin.

However, the severity also depends on the velocity at
infinity, v∞, of the small body relative to the planet. v∞
has little meaning for an elliptical orbit, however, in the

overwhelming majority of cases, a small body undergo-
ing a close encounter with a giant planet will follow a
parabolic or hyperbolic path with respect to that planet,
rather than being captured by it. For this reason, we

therefore consider just parabolic and hyperbolic orbits
in this work.

If the orbit of the small body relative to the planet

is parabolic or hyperbolic, then for a given planet and
small body mass in the planar problem, the orbit is de-
fined by v∞ and dmin.

Hyodo et al. (2016) show the derivation of v∞ for the
case in which the planet is restricted to a circular or-
bit about the Sun in this planar three-body problem.
The reader is referred to that work for details. Given a

small body and a planet both in orbit about the Sun and
having a close encounter, the resulting equations are:

v2∞ = v2r + (vω − vK)2 (1)

where vr and vω are the radial and azimuthal velocities
respectively of the small body at the orbital distance
of the planet from the Sun; and vK is the Keplerian

velocity of the planet in its orbit about the Sun. vr and
vω are given by:

vr = vK

√
2− ao

a
− a(1− e2)

ao
(2)

vω = vK

√
a(1− e2)

ao
(3)

where a is the semi-major axis of the orbit of the small

body, ao is the semi-major axis of the orbit of the planet,
and e is the eccentricity of the orbit of the small body
about the Sun.

3.1.1. THE PROPERTIES OF PARABOLIC AND
HYPERBOLIC ORBITS
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Table 4. The properties of the rings (or supposed rings) of Chariklo, Chiron and Haumea. [1] = (Braga-Ribas et al. 2014), [2]
= (Ortiz et al. 2015), [3] = (Ortiz et al. 2017).

Object Inner Ring (km) Outer Ring (km) Widths (km) Ref

Chariklo 390.6 ± 3.3 404.8 ± 3.3 7.17 ± 0.14; 3.4 +1.1 -1.4 [1]

Chiron 324 - 10 [2]

Haumea 2,287 - 70 [3]

The general formula for the trajectory of an object in

a hyperbolic or parabolic orbit is given by:

rradial =
h2

µ

1

1 + escos(θ − θo)
(4)

where rradial and θ − θo are the radial and angular po-
sitions of the small body, respectively, with the encoun-
tered planet located at one of the focii. θo is chosen

in such a manner that the minimum approach distance
occurs when θ − θo = 0.

Here, µ = G(Mp + ms), G is the gravitational con-
stant, Mp is the mass of the planet, ms is the mass of

the small body, h is the constant angular momentum per
unit mass of the small body (angular momentum/small
body mass) and es is the eccentricity of the orbit of the

small body about the planet (not to be confused with
e).

For a parabolic orbit, es = 1 and v∞ = 0. For a
given planet and small body mass, µ is constant, and a

parabolic orbit is completely defined if dmin is known.
Then h is given by:

h =
√

2µdmin (5)

The velocity of an object moving in a parabolic orbit as
a function of radial position is given by:

v =

√
2µ

rradial
(6)

For a hyperbolic orbit, es > 1 and v∞ > 0. For any
hyperbolic orbit the following relation applies:

dminv
2
∞ = µ(es − 1) (7)

Thus, if dmin and v∞ are known, then es can be found.
Then, substituting dmin in for rradial in equation 4
yields:

dmin =
h2

µ

1

1 + es
(8)

from which h can be found. For any given rradial, the
velocity can therefore be found from:

v =

√√√√µ

(
2

rradial
+
v2∞
µ

)
(9)

(Bate et al. 1971; Murray & Dermott 1999)

3.2. CRITICAL DISTANCES AND THE RING

LIMIT

We define the ring limit, R, as the value of the min-
imum approach distance for close encounters between

a planet and a ringed small body in a hyperbolic or
parabolic orbit about the planet in the three-body pla-
nar problem for which the effect on the ring is just no-

ticeable following the criterion of Araujo et al. (2016)
for a just noticeable encounter.

The ring limit then defines a boundary between a no-
ticeable and non-noticeable effect. This makes R dis-

tinct from the Hill radius, RH , tidal disruption distance,
Rtd, and Roche limit, Rroche, as each of these involves
a balance of forces.

For reason of comparison, it is beneficial to discuss
these critical distances in more detail. The Hill radius
of a less massive body with respect to a more massive
body can be defined as the distance from the less massive

body within which a satellite may orbit.
If the satellite orbit is within the Hill radius then the

less massive body-satellite binary cannot be disrupted

by tidal forces due to the more massive body. In the
case for which the more massive body is a planet and
the less massive body a small body of the Solar system,

the Hill radius of the small body with respect to the
planet is approximately given by:

RH ≈ Rradial
(
ms

3Mp

) 1
3

(10)

(e.g. Murray & Dermott 1999) where ms is the mass of
a small body, Mp the mass of the planet and Rradial the
radial distance between the small body and the planet.
Thus, during a close encounter between a ringed small

body and a planet, the distance of orbiting ring particles
from the small body must be less than that small body’s
Hill radius with respect to the planet in order for the ring

particles to remain in orbit. Analogously the satellite of
a planet must remain within the planet’s Hill radius with
respect to the Sun.

If a ringed small body is at a distance just within the

tidal disruption distance from a planet, tidal forces can
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disrupt a small body-ring particle binary pair instan-
taneously. The tidal disruption distance for a binary

consisting of a small body and a massless ring particle
in a circular orbit of radius r about the small body is
given by:

Rtd ≈ r
(

3Mp

ms

) 1
3

(11)

(Agnor & Hamilton 2006; Philpott et al. 2010). For
example, when Chariklo is just within the tidal disrup-
tion distance to a planet, a ring particle is just outside

Chariklo’s Hill radius with respect to the planet.
There is one more critical distance to consider. At an

even closer distance to a planet is the Roche limit - the

distance from a more massive body (the primary body)
within which a much less massive body (the secondary
body) held together only by gravity can be torn apart

by tidal forces. For a rigid secondary body, the equation
for the Roche limit with respect to a primary body is
approximately:

Rroche ≈ 1.44Rp

(
ρp
ρs

) 1
3

(12)

whereRp is the physical radius of the primary body, ρp
is the density of the primary body and ρs is the density
of the secondary body (e.g. Jeans 1928; Jeffreys 1947;
Murray & Dermott 1999).

To give the reader a feel for the relative scales of these
three parameters, we calculate the Hill radius of a planet
with respect to the Sun, tidal disruption distance, and
Roche limit using a Chariklo mass of 8×1018 kg and ring

orbital radius set to that of the outer ring of Chariklo
of 405 km for each of the four giant planets.

The Roche limits of Chariklo with respect to each gi-

ant planet were calculated for the case in which the den-
sity of Chariklo equals the density of the planet. Plan-
etary radii were obtained from NASA7. The masses of

the four giant planets were taken from the NASA JPL
HORIZON ephemeris8. The results are shown in Ta-
ble 5.

We now present in Table 6 our previously developed

severity scale for a close encounter between a ringed
small body and a planet based on the value of dmin
relative to the Hill radius of the planet with respect to

the Sun, ring limit, tidal disruption distance and Roche
limit.

7 http://solarsystem.nasa.gov/planets
8 http://ssd.jpl.nasa.gov/horizons.cgi?s body=1#top (accessed

31st December 2015) for epoch Jan 1, 2000, at 0:00 UT

Here, our aim is to define a more accurate/refined
ring-limit distance resulting in a more rigorous quan-

titative close-encounter severity scale in the planar 3-
body problem. In our previously published scale for the
seven-body problem, only a constant value of 10 tidal
disruption distances was used for the ring limit (Wood

et al. 2017).
Unlike the critical distances, no simple equation for R

is available. We expect that R should be a function of

planet mass, small body mass, relative small body ve-
locity at infinity, and ring orbital radius. This would be
a five dimensional problem. However, if any two of the

five quantities are held constant, the problem becomes
one in only 3 dimensions. One example of this would be
to hold the planet mass and small body mass constant
while varying the other variables.

We theorize that the mathematical form of an equa-
tion for R in this 3D problem can be written as a factor
f of the tidal disruption distance:

R = fRtd = fr

(
3Mp

ms

) 1
3

(13)

where f > 1. This is justified because the impact of an

encounter on the ring will become noticeable at a greater
distance than that at which the orbit of a ring particle
would be completely disrupted.

We expect f to be a function of the orbital radius,
velocity at infinity, mass of the small body and mass of
the planet. Thus, f = f(r, v∞,ms,Mp). f is dimension-
less but can be thought of as the value of the ring limit

expressed in units of tidal disruption distances.
For close encounters with any particular planet, Mp is

constant, and this problem can be simplified even fur-

ther by holding any two of the variables r, v∞, and ms

constant.
Given these variables, we can use numerical integra-

tions to quantify the value of f , and therefore work to-
wards a standard formulism for the ring limit.

4. NUMERICAL METHOD

As the three - or more - body problem cannot be
solved analytically, computers have been used to numer-
ically approximate such systems using integration. Over

the decades, computing power has continued to increase
allowing for more and more robust simulations in areas
such as Solar system dynamics, exoplanets, star clus-

ters and even galactic astronomy (Horner & Jones 2010;
Wang et al. 2015; Horner & Wittenmyer 2018; Benson
et al. 2016). In this work we make use a relatively new
integrator in an attempt to find specific analytical solu-

tions for the ring limit.
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Table 5. Approximate Roche limits, tidal disruption distances and Hill radii for Chariklo for the four giant planets using a
Chariklo mass of 8 × 1018 kg, density equal to the density of each planet and a ring orbital radius of 405 km. Hill radii were
calculated for each giant planet with respect to the Sun.

Planet Roche Limit (km) Tidal Disruption Distance (km) Hill Radius (km)

Jupiter 101,000 362,000 5.30 × 107

Saturn 84,000 242,000 6.52 × 107

Uranus 37,000 129,000 6.99 × 107

Neptune 35,000 137,000 1.16 × 108

Table 6. A scale ranking the close encounter severity be-
tween a ringed small body and a planet based on the min-
imum distance obtained between the small body and the
planet, dmin, during the close encounter taken from Wood
et al. (2017). RH , R,Rtd and Rroche are the Hill radius of the
planet with respect to the Sun, ring limit, tidal disruption
distance and Roche limit respectively. For that work, the
ring limit was set to a constant value of 10 tidal disruption
distances.

dmin Range Severity

dmin ≥ RH Very Low

R ≤ dmin < RH Low

Rtd ≤ dmin < R Moderate

Rroche ≤ dmin < Rtd Severe

dmin < Rroche Extreme

4.1. Initialising the Simulations

In order to explore the complicated five-parameter
problem in three dimensions, we used the technique of
numerical integration of the three-body planar problem
(small body, giant planet, ring particle) to simulate close

encounters between giant planets and small one-ringed
bodies in hyperbolic or parabolic orbits about a planet.

Before any integrations could be made, quantities such

as initial distance and time step needed to be deter-
mined. To accomplish this, dozens of pre-runs were
made in the three-body problem using the IAS15 in-
tegrator in the REBOUND N-body simulation package

(Rein & Liu 2012; Rein & Spiegel 2015).
Based on the results from these pre-runs it was decided

that an adaptable time step of 0.001 year would be used

which would automatically adjust itself during the event
of a close encounter.

Determining the initial distance of a small body from

a planet is tricky. If the initial distance chosen is too
close, then the close encounter is too brief to noticeably
alter the orbit of a ring particle when otherwise it would.
If the initial distance chosen is too large, then much

computation time is wasted as the small body makes it

way toward the planet.
After a significant amount of benchmarking, we chose

to begin our simulations with the ringed small body lo-

cated one Uranus Hill radius away from Jupiter, Saturn
and Uranus. For Neptune, the ringed small body began
the simulation at a distance of one Neptune Hill radius

from the giant planet. These initial conditions repre-
sented the optimal compromise between the length of
arc on a given encounter and the amount of computa-
tional time required for the simulations. It was decided

that a simulation would be terminated after the planet-
small body distance went beyond the initial distance
after the close encounter occurred.

Following Hyodo et al. (2016) the range 0 ≤ v∞ ≤ 9
km/s was chosen as the range for the velocity at infinity
for Centaurs in orbits with e ≤ 0.9 about the Sun as this
range overlapped the v∞ range for all four giant planets.

For the small body mass range, we wanted a range
that allowed the dependence of the ring limit on small
body mass to be fully explored and included masses

large enough to retain rings. It was decided that the
small body masses would range from just above the mass
of Chariklo to the mass of Pluto. The range chosen was

2×1020 kg ≤ ms ≤ 1.309×1022 kg (the mass of Pluto9)
which includes the mass of Haumea but not Chiron or
Chariklo. We consider this mass range to be in the realm
where Mp � ms as the planet masses are > 106 times

larger than any small body mass in the range.
It was not necessary to include the mass of Chariklo or

Chiron in this mass range since we could always be ex-

trapolate to find ring limit values for other masses. Fur-
thermore, a great many Centaurs likely remain undis-
covered (Horner et al. 2004b) and therefore their masses

are unknown.
When choosing a range for the ring orbital radii, we

wanted a range large enough so that the dependence of
the ring limit on r could be fully explored but small

9 http://solarsystem.nasa.gov/planets/pluto/facts (accessed 19
February 2017)
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enough so that the rings would lay well within the Hill
radius of the small body with respect to the Sun. We

also wanted the range to be much larger than currently
known orbital radii. The reasons for this were two fold.
First, we wanted to find an upper bound on the ring
limit for a given small body mass and v∞ to be used in

a severity scale. And second, we wanted the range to be
very large so that it would include orbital radii of any
undiscovered ringed Centaurs.

We calculated Hill radii with respect to the Sun for the
lower and upper bounds of our small body mass range
for orbits with semi-major axes at the bounds of the
Centaur region.

It was decided that a range of 25,000 km ≤ r ≤
100, 000 km would be used. For this range, the rings
would always be within 0.4 Hill radius of any mass and

would never drop below 0.001 Hill radius. As a compar-
ison, the outer ring of Chariklo is at 0.00156 Hill radius.

We decided that a total of 100 massless test particles

would be used to simulate the ring if r < 50, 000 km and
500 massless test particles would be used if 50, 000 km
≤ r ≤ 100, 000 km. It was decided that these numbers
of test particles worked best based on results from the

pre-runs.
For example, for r values in the range 50, 000 km
≤ r ≤ 100, 000 km it was found that changing the num-

ber of ring particles from 500 to 1,000 did not have a
significant effect on the values of the ring limits deter-
mined so using only 500 particles was good enough. In

each simulation, the ring particles were initially evenly
distributed throughout the same circular orbit about the
small body.

4.2. Determining the Ring Limit

To determine a ring limit value for any set of values
of ms, r, v∞ and the mass of the planet in question, a
close encounter between the small body and planet was

simulated starting with the previously described initial
conditions and an initial guess at the value of dmin. Af-
ter the simulation, ∆emax was then determined from the

simulation output.
If ∆emax = 0.01 then dmin is equal to the ring limit.

To numerically approximate this, a tolerance, ε, was

used such that if |∆emax − 0.01| < ε then the ring limit
was set equal to dmin and recorded in units of both kilo-
meters and tidal disruption distances.

If however |∆emax − 0.01| was not within this cer-

tain tolerance then the close encounter was run again
with dmin increased/decreased if ∆emax − 0.01 was
positive/negative. This process was continued until

|∆emax − 0.01| was within the certain tolerance.

The tolerances used were 1× 10−5 if Rtd > 1,000,000
km and 1 × 10−4 otherwise. The use of these different
tolerances made R accurate to within 1,000 km in each

case. For each value of r used for each small body mass,
46 measurements of R were made each using a different
value of velocity at infinity chosen from the range 0 km/s

≤ v∞ ≤ 9 km/s.

4.3. The Ring Limit in Three Dimensions

To determine an analytical solution for the ring limit,

we needed to discover the mathematical relationship be-
tween the ring limit and each of the four variables - small
body mass, planet mass, ring orbital radius and veloc-

ity at infinity. Our strategy was to hold two variables
constant, plot our data in three dimensional phase space
to create 3D structures and then use 2D slices of those
structures while holding a third quantity constant to de-

termine the mathematical relationship between the ring
limit and the fifth variable.

Two major sets of integrations were performed one

with the small body mass held constant and the other
with the ring orbital radius held constant. Then for each
major integration, the data was analyzed by holding the
planet mass constant. In this way, three-dimensional

structures were created from the data of each major in-
tegration.

4.3.1. The Ring Limit as a Function of Velocity at
Infinity, Ring Orbital Radius and Planet Mass

In the first set of major integrations, we held the mass
of the small body constant by setting it equal to the
mass of Pluto (we will henceforth refer to a small body
with the mass of Pluto as a Pluto-like body). Next,

the mass of the planet was held constant and then the
integrations were performed. This was done for each
giant planet, and the data from those integrations was

used to create four 3D structures in R − r − v∞ space.
Up to 20 values of r and 46 values of v∞ were chosen
from the previously described ranges. The number of
simulations totaled between 700 - 920 per planet.

In our initial simulations, we were unsure of how many
would be needed to obtain a clear result. After several
trials, it was realised that 700 simulations per scenario

was sufficient to give an accurate value, and all future
trials were run in this manner. The data from the extra
simulations carried out in our earliest work were kept,

which explains those cases where up to 920 simulations
were carried out.

4.3.2. The Ring Limit as a Function of Small Body Mass
and Velocity at Infinity
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Another major set of integrations was performed with
the ring orbital radius set to a constant value of 50,000

km and the mass of the planet set to the mass of Jupiter.
It was not necessary to extend these integrations to

every planet since planet mass was varied in the other
previously mentioned major set of integrations. Using

data from these integrations, a 3D structure in R−ms−
v∞ space was created.

4.4. The Ring Limit in Two Dimensions

The ring limit can be studied in two dimensions by us-
ing 2D slices of 3d structures while holding a third vari-

able constant everywhere in the slice. The ring limit’s
dependence on the planet mass was found by combining
all four 3D structures in R−r−v∞ space into one super-

structure. Then the intersection of 2D slices of constant
ring orbital radius and velocity at infinity allowed the
planet mass dependence to be determined.

2D slices of R− r− v∞ structures were made for each

planet using a constant value of v∞ and planet mass for
each slice. Within each slice, R varied only with r. Then
for each slice, a regression was done on R and r values

to determine the best-fitting curve. This was done for
each of the 46 different slices per r per planet.

2D slices of each R− r− v∞ structure were also made
using a constant value of r and planet mass for each

slice. Within each slice, R varied only with v∞. Then
for each slice, a regression was done on R and v∞ values
to determine the best-fitting curve. Up to 20 different

2D slices of constant r were made per planet.
Using an analogous technique, 2D slices of our plot in

R − ms − v∞ space were made using a constant value

of planet mass along with either a constant ms or v∞
for each slice. Each slice was studied using regression.
18 slices were made with a constant ms and 46 with a
constant v∞ for each ms value. The entire analysis plan

is shown in Figure 1.

4.5. Applying Results to the Seven-body Non-planar

Problem

Finally, we extrapolated to find ring limit upper bound
values for close encounters between Chariklo and Jupiter

and compared those to dmin values reported by Araujo
et al. (2016) for the seven-body non-planar problem.

5. RESULTS

5.1. The Ring Limit in Three Dimensions

Figure 2 shows examples of plots of our data in R −
r− v∞ space for each planet for close encounters with a
Pluto-like body.

Figure 3 shows the same 3D graphs in a rotated view

for all planets on one plot with different colors being

used for each planet. A series of islands of data points
can be seen for each planet. The effect of planet mass
on the ring limit can clearly be seen. Given a constant

velocity at infinity and ring orbital radius, the ring limit
increases with planet mass.

This result is not surprising. We know that a planet

with a larger mass has a stronger gravitational pull than
a planet with a smaller mass. Therefore, a planet with
a larger mass is able to perturb the orbits of a small
body’s ring particles at a greater distance than a body

with a smaller mass.
The intersection between 138 2D slices of the struc-

ture in Figure 3 with constant r and 138 2D slices with

constant v∞ were examined - forty-six with constant r
= 30,000 km, forty-six with constant r = 50,000 km and
forty-six with constant r = 100,000 km. The intersec-
tion of each 2D slice of constant v∞ with each 2D slice of

constant r revealed that the variation in R as a function
of Mp could be accurately modeled by a power law of
the form:

R ∼Mγ
p (14)

The exponent γ ranged from 0.229 to 0.327. The max-
imum value of γ occurred for values of v∞ = 0 km/s and

r = 100,000 km. The minimum value of γ occurred for
values of v∞ = 3.9 km/s and r = 100,000 km. As an
example, Table A1 gives values of γ as a function of ve-

locity at infinity which can be used for close encounters
between any giant planet and a small body with a mass
equal to the mass of Pluto with ring orbital radius of
50,000 km.

Figure 4 shows the plot of our data in R −ms − v∞
space for a constant ring orbital radius of 50,000 km and
planet mass set equal to the mass of Jupiter. Table A2

gives ring limits for close encounters between Jupiter
and a Pluto-like body with a ring orbital radius of 50,000
km for the range 0 ≤ v∞ ≤ 9 km/s.

5.2. The Ring Limit in Two Dimensions

5.2.1. The Ring Limit Versus Velocity at Infinity

2D slices of R−r−v∞ space using a constant value of
r for each slice show that the mathematical relationship

between R and v∞ is too complex to fit into one form.
In Figure 5 we show a typical example of a 2D slice
of R − r − v∞ space at constant r for close encounters

between the four giant planets and a Pluto-like body.
The top graph is for a constant r value of 100,000 km,

and the bottom for a constant r value of 30,000 km.
Usually the ring limit increases with v∞, but in the top

graph R decreases with increasing v∞ for values above
7 km/s for Uranus and 7.75 km/s for Neptune. In the
bottom graph R increases with increasing v∞ over all
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Figure 1. This map shows how the two dimensional slices of the data are created.
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Figure 2. Plots of our data in R− r− v∞ space for each planet for close encounters with a Pluto-like body.
Jupiter’s graph is to the upper left, Saturn’s the upper right, Uranus’ to the lower left and Neptune’s to the
lower right. The color scheme Jupiter - red, Saturn - yellow, Uranus - cyan, and Neptune - blue will be used
here and in the next three figures.
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Figure 3. Plots of our data in R− r−v∞ space color coded
by planet for close encounters with a Pluto-like body. The
colors by planet are Jupiter - red, Saturn - yellow, Neptune
- blue and Uranus - cyan.
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Figure 4. The plot of our data in R −ms − v∞ space for
a constant ring orbital radius of 50,000 km and planet mass
equal to the mass of Jupiter.

values. The y intercepts of graphs of this type increase

with the mass of the planet.
The plots for Uranus and Neptune seem to plateau at

higher velocities while those of Jupiter and Saturn less

so. We speculate that the plots of Jupiter and Saturn
may also plateau but at higher velocities outside the
range of this study.

5.2.2. The Ring Limit Versus Ring Orbital Radius

2D slices of R − r − v∞ space using a constant value
of v∞ for each slice show that R varies with r according

to a power law of the form:
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Figure 5. The ring limit as a function of velocity at infinity
for a constant ring orbital radius of 100,000 km (top) and
30,000 km (bottom) for close encounters between a Pluto-
like body and Jupiter (red), Saturn (yellow), Neptune (blue)
and Uranus (cyan). Usually the ring limit increases with
v∞ but in the top graph R decreases with increasing v∞ for
values above 7 km/s for Uranus and 7.75 km/s for Neptune.
In the bottom graph R increases with increasing v∞ over all
values. Thus, the mathematical relationship between R and
v∞ is too complex to fit into one form. The y intercepts of
graphs of this type increase with the mass of the planet.

R ∼ rα (15)

with the exponent α varying with the value of v∞ used
for the slice. Figure 6 shows the behavior of α with
varying v∞. Each value of α was found from a regression

on twenty data points in R− r space over a ring orbital
radius range of 30,000 km - 100,000 km while holding the
velocity at infinity constant. α increases with increasing
v∞ over a range of zero to 7.5 km/s and then decreases

with increasing v∞ over a range of 7.5 km/s to 9 km/s. α
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values for close encounters between Jupiter and a Pluto-
like body can be seen in Table A3.

For slices with v∞ approaching zero (a parabolic or-
bit), α approaches 1.0. This means that for parabolic
orbits, the ring limit varies linearly with r.

Figure 7 shows two examples of 2D slices of the ring

limit versus ring orbital radius for close encounters be-
tween Jupiter and a Pluto-like body. The top slice is for
a constant v∞ of 9 km/s. The best-fit curve is shown

and corresponds to an α value of 1.15. The square re-
gression coefficient is 0.999.

The bottom slice is for a constant v∞ = 0.25 km/s.

The best-fit curve is shown and corresponds to an α
value of 1.0007. The square regression coefficient is
0.9999.
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Figure 6. 2D slices ofR−r−v∞ space using a constant value
of v∞ for each slice show that the ring limit varies with ring
orbital radius according to a power law of the form R ∼ rα

with the value of α varying with the value of v∞ used for the
slice. This graph shows the best-fit exponent, α, versus the
constant value of v∞ used for the slice for close encounters
between Jupiter and a Pluto-like body. α increases with
increasing v∞ over a range of zero to 7.5 km/s and then
decreases with increasing v∞ over a range of 7.5 km/s to 9
km/s. Notice how as v∞ approaches zero (a parabolic orbit),
the best-fit exponent approaches 1.0. This means that for
parabolic orbits, the ring limit varies linearly with r.

5.2.3. The Ring Limit Versus Small Body Mass

2D slices of R−ms−v∞ space using a constant value of
v∞ for each slice show that R varies with ms according

to a power law of the form:

R ∼ mβ
s (16)

One example is shown in Figure 8 for close encounters

with Jupiter for a constant v∞ = 0.75 km/s and ring
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Figure 7. Top - ring limit versus ring orbital radius for a
constant velocity at infinity of 9 km/s for close encounters
between Jupiter and a Pluto-like body. Graphs of this type
fit very well to a power law with the exponent on r approach-
ing 1 as the velocity at infinity approaches zero (a parabolic
orbit). In this graph, the best-fit exponent is 1.15, and the
square regression coefficient is 0.999. The standard error is
0.002. Bottom - ring limit versus ring orbital radius for a
constant velocity at infinity of 0.25 km/s for close encoun-
ters between Jupiter and a Pluto-like body. The exponent
on r is 1.0007. The square regression coefficient is 0.9999.
The standard error is 0.0005.

orbital radius = 50,000 km. In this example, β = -
0.3340 and the square regression coefficient = 0.999.

For any particular 2D slice of this type, β depends on

the value of v∞ used for the slice. In our data, β varies
between -0.39 to -0.33 with the value approaching -1/3
as the velocity at infinity approaches zero.

Figure 9 shows one example of how β varies with the

velocity at infinity for close encounters with Jupiter us-
ing a constant ring orbital radius of 50,000 km. Each
value of β was found using regression on eighteen data
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points in R − ms space over a mass range of 2 × 1020

kg to the mass of Pluto (1.309× 1022 kg) while holding

the velocity at infinity constant. β decreases with v∞
over a range from 0 km/s to about 5.5 km/s and in-
creases with v∞ over a range from 5.5 km/s to 9 km/s.
Table A4 gives values of β for close encounters between

Jupiter and small bodies each with a ring orbital radius
of 50,000 km.
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Figure 8. A 2D slice of ring limit versus small body mass
for constant velocity at infinity = 0.75 km/s and constant
ring orbital radius = 50,000 km for close encounters with
Jupiter. The ring limit varies as a power law with the small
body mass: R ∼ mβ

s . In this example, β = -0.3340, and the
square regression coefficient is 0.999. The standard error is
0.003.

5.2.4. The Ring Limit Versus Velocity at Infinity Over a
Range of Small Body Masses

2D slices of R−ms− v∞ space using a constant value
of ms show that no particular mathematical form can be
used to describe how R varies with v∞. Slices with the

highest small body masses had more well defined plots
compared to slices with the lowest masses.

Two examples are shown in Figure 10 for a constant

small body mass of 2× 1020 kg and 1.309× 1022 kg (the
mass of Pluto) for close encounters with Jupiter and ring
orbital radius = 50,000 km.

The slice associated with the Pluto-like body is best

fit to an exponential function with square regression co-
efficient of 0.993. The slice associated with the lower
mass is best fit to a linear function and has a weaker fit

with a square regression coefficient of 0.966.

5.3. f , The Ring Limit Relative to the Tidal
Disruption Distance
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Figure 9. For 2D slices ofR−ms−v∞ space using a constant
value of v∞ for each slice, the ring limit varies as a power
law with small body mass in the form: R ∼ mβ

s . Values for
the best-fit exponent, β, vary with the value of the constant
v∞ used for the slice. This graph shows β versus the value
of v∞ used for the slice for close encounters with Jupiter.
The ring orbital radius is held constant at 50,000 km. β
decreases with v∞ over a range from 0 km/s to about 5.5
km/s and increases with v∞ over a range from 5.5 km/s to
9 km/s. The exponent approaches -1/3 as the velocity at
infinity approaches zero.

5.3.1. f Versus Velocity at Infinity

Figure 11 shows twenty 2D slices of f versus v∞ for
twenty different values of constant r for close encoun-

ters between Jupiter and a Pluto-like body. Contours
of constant ring orbital radius are color coded. Along a
contour, f increases with v∞. Two of the contours are

shown in blue as a set of data points on a smooth curve.
The top contour is for a constant r = 100,000 km, and

the bottom is for a constant r = 30,000 km. The higher

the v∞, the greater the range of f over all values of r.
The largest value obtained by f is 2.84.

As v∞ approaches zero, all contours converge onto
nearly one line, making f nearly independent of r and

linear with v∞. The y intercept for all contours is ap-
proximately fmin = 1.8.

5.3.2. f Versus Planet Mass

Graphs analogous to Figure 11 for other planets have
the same general shape but the average y intercept de-
creases with increasing planet mass as shown in Fig-
ure 12.

For each planet, an average y intercept was found by
averaging up to 20 values of f each taken from a 2D
slice of constant v∞ = 0 in R − r − v∞ space for close

encounters between that giant planet and a Pluto-like



Rings and Close Encounters 15

0 1 2 3 4 5 6 7 8 9

Velocity at Infinity (km/s)

6.5

7

7.5

8

8.5

9

9.5

10

R
in

g 
Li

m
it 

(k
m

)
10 6

0 1 2 3 4 5 6 7 8 9

Velocity at Infinity (km/s)

2.5

3

3.5

4

4.5

5

R
in

g 
Li

m
it 

(k
m

)

10 7

Figure 10. Top - a plot of ring limit versus velocity at
infinity for a constant ring orbital radius of 50,000 km and
constant small body mass equal to the mass of Pluto for close
encounters with Jupiter. The best fit is exponential with a
square regression coefficient of 0.993. Bottom - an analogous
plot for a constant small body mass of 2 × 1020 kg. Unlike
the top plot, the bottom curve is less well fit and less smooth.
The best-fit is linear with a square regression coefficient of
0.966.

body. It can be seen that the average y intercepts for
the different planets all lie around 1.8.

5.3.3. f Versus Ring Orbital Radius

Figure 13 shows forty-six 2D slices of constant v∞ for

close encounters between Jupiter and a Pluto-like body.
Contours of constant v∞ are color coded. Along a con-
tour, f generally increases with r. Two contours are

shown in blue as a set of data points on a smooth curve.
The top contour is a curve of constant v∞ = 9 km/s,
and the bottom is a curve of constant v∞ = 0 km/s
(parabolic orbits). The value of f along the top con-

tour increases with increasing orbital radius, however,
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Figure 11. Twenty 2D slices of f versus v∞ for twenty
different values of constant r per slice for close encounters
between Jupiter and a Pluto-like body. Contours of con-
stant ring orbital radius are color coded. Along a contour, f
increases with v∞. Two contours are shown in blue as a set
of data points on a smooth curve. The top contour is for a
constant r = 100, 000 km, and the bottom is for a constant
r = 30, 000 km. The function f has a wider range for higher
velocities but as v∞ approaches zero, all contours converge
onto nearly one line, making f nearly independent of r and
linear with v∞. The largest value obtained by f is 2.84. The
y intercept for all contours is approximately 1.8.

the value of f along the bottom contour remains re-

markably constant at a value around 1.8.

5.3.4. f Versus Small Body Mass

Figure 14 shows eighteen 2D slices of constant small
body mass for close encounters with Jupiter. r = 50,000

km. Contours of constant v∞ are color coded. Along a
contour, f generally decreases with ms. Two contours
are shown in blue as a set of data points on a smooth

curve. The top contour is a curve of constant v∞ =
9 km/s, and the bottom is a curve of constant v∞ =
0 km/s (parabolic orbits). The value of f along the
bottom contour remains remarkably constant at a value

around 1.8. The vertically aligned set of data points on
the far right is for Pluto.

5.4. Finding an Analytical Solution for the Ring Limit

Figures 11 - 14 show that the lower bound of f is ap-
proximately equal to 1.8 tidal disruption distances and
is nearly independent of the mass of the planet, the ring
orbital radius and small body mass. Furthermore, Fig-

ure 11 also shows that the ring limit equals this lower
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Figure 12. The average value of f for a constant v∞ =
0 km/s (a parabolic orbit) for each giant planet for close
encounters with a small body with the mass of Pluto. For
each planet, an average f value was found by averaging all
the values of f in a 2D slice of constant v∞ = 0 in R−r−v∞
space. Ring orbital radii ranged from 25,000 km - 100,000
km. Up to 20 different ring orbital radii were used. For
each planet, this average value of f corresponds to the lower
bound of f and rounds off to 1.8 to two significant figures.
The average value of f decreases with planet mass.

bound only for orbits with v∞ = 0 (ergo for parabolic or-

bits only). We now define 1.8 tidal disruption distances
as the approximate distance within which all encoun-
ters between a ringed small body and a giant planet are

noticeable.
Thus, from equation (13), an analytical solution for

the ring limit for parabolic orbits is:

R ' 1.8r

(
3Mp

ms

) 1
3

(17)

For hyperbolic orbits, no one mathematical form for
R could be found. However, analytical solutions for the

ring limit could be found for specific cases. For example,
a 2D slice of constant v∞ of the plot of our data in
R − r − v∞ space for the planet Jupiter in Figure 2

can be analysed using regression to obtain an analytical
solution for R for close encounters between Jupiter and
a Pluto-like body as a function of r over the range 30,000
km ≤ r ≤ 100,000 km. The best fit solution for R in

units of km for v∞ = 5 km/s is:

R ' 36.3r1.1395 (18)

5.5. Extrapolating the Data
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Figure 13. Forty-six 2D slices of constant v∞ for close
encounters between Jupiter and a Pluto-like body. Contours
of constant v∞ are color coded. Along a contour, f generally
increases with r. Two contours are shown in blue as a set of
data points on a smooth curve. The top contour is a curve of
constant v∞ = 9 km/s, and the bottom is a curve of constant
v∞ = 0 km/s (parabolic orbits). The value of f along the
top contour increases with increasing orbital radius, however,
the value of f along the bottom contour remains remarkably
constant at a value around 1.8.

Our data for the ring limits can be interpolated or
extrapolated to determine ring limit values for close en-

counters not done in this study.
As an example, suppose you wanted to know the ring

limit for a small body of mass 7.986 × 1018 kg with a

ring orbital radius of 50,000 km and a velocity at infinity
of 7.78 km/s for a close encounter with Jupiter. Call
these the target mass, target velocity and target radius
respectively. Call the ring limit for this body Rtarget.

Here are the steps you would take:

• Using Table A2, find the ring limit for a Pluto-

like body with a v∞ value closest to the target
v∞. From the table, the closest v∞ would be 7.75
km/s. Set the source mass, msource, equal to the

mass of Pluto.

• Use interpolation of our data in Table A2 to con-
vert the ring limit for v∞ = 7.75 km/s to a ring
limit for v∞ = 7.78 km/s. Call this the source ring

limit, Rsource.

• Using Table A4, find the value of the exponent on
the small body mass, β, for v∞ = 7.75 km/s. Use

interpolation to find β for v∞ = 7.78 km/s.
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Figure 14. f versus small body mass for eighteen 2D
slices of constant small body mass for close encounters with
Jupiter. r = 50,000 km. Contours of constant v∞ are color
coded. Along a contour, f generally decreases with ms.
Two contours are shown in blue as a set of data points on a
smooth curve. The top contour is a curve of constant v∞ = 9
km/s, and the bottom is a curve of constant v∞ = 0 km/s
(parabolic orbits). The value of f along the bottom contour
remains remarkably constant at a value around 1.8. The
vertically aligned set of data points on the far right is for
Pluto.

• Use a proportion to find the ring limit for ms =

7.986× 1018 kg. Rtarget = Rsource

(
mtarget

msource

)β

For close encounters with Saturn, Uranus or Neptune,

Table A5, A6 or A7 can be used respectively instead of
Table A2. We tested the β values to make sure that
they were applicable to close encounters between small

bodies and any giant planet - not just Jupiter.
We accomplished this by calculating ring limits for

close encounters between the other three giant planets
and selected small bodies of various masses and v∞ using

two different techniques. The first technique made use
of the relation R ∼ Mγ

p . The exponent γ was found
using Table A1 for the v∞ in question. A proportion

was then used to convert ring limits for close encounters
with Jupiter to ring limits for close encounters with each
giant planet.

Rplanet = RJupiter

(
Mp

MJupiter

)γ
(19)

where Rplanet is the ring limit for a close encoucnter
between the planet and the small body in question,

RJupiter is the ring limit for a close encounter between
Jupiter and the small body in question, Mp the mass of
the other planet, and MJupiter the mass of Jupiter.

The second technique made use of the relation R ∼
mβ
s . Using the second technique, the ring limit was

found from Table A5, A6 or A7 depending on the planet
for the v∞ in question. β was determined for the v∞ in

question using Table A4. A proportion was then used
to convert ring limits for close encounters between the
planet and Pluto to ring limits for close encounters be-

tween the planet and the small body in question.

Rplanet = RPluto

(
ms

mPluto

)β
(20)

where RPluto is the ring limit for a close encounter be-
tween Pluto and the planet and mPluto is the mass of
Pluto. We found good enough agreement between corre-

sponding values found using the two techniques to war-
rant the use of β values to find approximate ring limits
for close encounters for each of the giant planets.

To test the accuracy of our results, we used extrapo-

lation to find ring limit values for close encounters be-
tween Jupiter and a Chariklo with a mass of 7.986×1018

kg and ring orbital radius of 50,000 km over the range

0 ≤ v∞ ≤ 9 km/s.
We compared our extrapolated ring limit values to

dmin values reported by Araujo et al. (2016) for no-

ticeable close encounters between giant planets and
Chariklo. Araujo et al. (2016) used a mass of 7.986×1018

kg for Chariklo, and a ring orbital radius of 410 km.
Each reported dmin value had a different velocity at in-

finity. Their system was non-planar and included the
Sun, the four giant planets of the Solar system, Chariklo
and 100 massless test particles for the outer ring (effec-

tively the seven-body problem).
As their simulation was non-planar, the rings of

Chariklo were not restricted to the plane of the hy-
perbolic or parabolic orbit about the planet as they

were in our study. Since planar rings are more easily
perturbed than non-planar rings, then for any notice-
able close encounter with a given v∞, the ring limit

will be greater than or equal to the dmin value of the
encounter.

This reflects the fact that given all other quantities

constant, a small body with inclined rings must get
closer to the planet than a small body with planar rings
in order for the close encounter to have a noticeable ef-
fect because when the rings are inclined, only the planar

component of the gravitational force perturbs the ec-
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centicity of the ring particle orbits (Murray & Dermott
1999).

Given that f decreases with decreasing r if all other
variables are constant, the ring limit for a Chariklo with
a ring orbital radius of 410 km for any particular v∞
value will have a smaller f than the corresponding ex-

trapolated value at the same v∞ found for r = 50,000
km. Thus, in this case, our extrapolated values form a
ring limit upper bound curve in dmin− v∞ space rather

than a curve of actual ring limits for a Chariklo with a
ring orbital radius of 410 km. Even though 50,000 km
and 410 km differ by an order of magnitude, the method

was reasonable because as Figure 11 shows, f maintains
the same order of magnitude even over order of magni-
tude variations in r and in fact becomes independent of
r as v∞ approaches zero.

The results for Jupiter are shown in Figure 15. The
set of our extrapolated data points shown in gray forms
a ring limit upper bound curve. dmin values reported

by Araujo et al. (2016) are shown in red. To cover the
full velocity range of these dmin values, we extrapolated
our upper bound curve to extend the range to v∞ = 11
km/s.

Nineteen out of twenty dmin values lie within the ring
limit upper bound curve. The one exception lies at
(v∞ = 1.25 km/s, dmin = 2.81 Rtd). At this time we

cannot explain this discrepancy. Another peculiar value
lies at (v∞ = 3.17 km/s, dmin = 2.61 Rtd). Though
seemingly on our curve, it is actually 0.02 Rtd below it.

Over all planets, we find that 26 out of 27 dmin values re-
ported by Araujo et al. (2016) lie within their respective
ring limit upper bound curve.

We present three different ways to use the ring limit

upper bound curve in dmin − v∞ space:

• Include velocity effects and set the ring limit equal
to the curve so that the ring limit varies with v∞ as

has just been shown. This curve would be different
for each planet.

• Ignore velocity effects and set the ring limit equal

to the maximum value of the curve over the v∞
range in question. This maximum value would
vary with the planet mass.

• Ignore velocity effects and set the ring limit equal
to a constant lower bound value of 1.8 tidal dis-
ruption distances for each planet

Each method has its own advantages and disadvan-

tages. Including velocity effects is the most accurate
method but is more complicated as each value of ve-
locity at infinity has its own unique ring limit upper

bound. This makes computations of close encounter

severity more intensive and may require interpolation
or extrapolation.

Setting the ring limit equal to a maximum curve value

for each planet is simpler but may cause some close en-
counters to be classified as moderate when actually they
are not noticeable. As an example of using this method,

consider Figure 15. The figure shows that over the range
0 ≤ v∞ ≤ 9 km/s the ring limit upper bound curve
reaches a maximum value of about 3.5 Rtd. Therefore,
using this method, the ring limit would be set to a con-

stant maximum value of R = 3.5 Rtd (or fmax = 3.5)
for close encounters with Jupiter. This technique would
have to be repeated to obtain the maximum values for

the other giant planets.
Using the second method would ensure that all close

encounters subject to the condition dmin > R are not

noticeable. However, notice in the figure that as v∞
approaches zero there is a region that lies below 3.5 Rtd
but above the ring limit upper bound curve. Using this
method, close encounters with dmin values in this region

would be mistakenly classified as moderate.
Also shown in Figure 15 are ∆emax values for selected

close encounters. It can be seen that using our scale,

even a close encounter of moderate severity can cause
the change in eccentricity of a ring particle to exceed
0.5. With no correction, it would then possibly only
take two moderate close encounters to remove a ring

particle from its orbit entirely. Though this may not
result in the entire loss of a ring, the cumulative effect
of multiple moderate encounters may not be negligible

and may result in the loss of ring particles.
Using extrapolation, we also found fmax for close en-

counters between Chariklo and the other giant planets.

The results were fmax = 3.9 for Saturn, fmax= 4.4 for
Uranus and fmax = 4.4 for Neptune.

To test these values, we compared them to dmin val-
ues for noticeable close encounters between Chariklo and

Saturn or Uranus reported by Araujo et al. (2016). All
of these dmin values fell within their respective fmax
value as can be seen in Table A8. fmax values for close

encounters between each giant planet and a Chiron or
Haumea with r = 50,000 km were also found and are
shown along with Chariklo’s values in Table A9.

Using the third method would ensure that all close
encounters subject to the condition dmin < R would
be noticeable. The drawback with this method is that
some noticeable close encounters with dmin above 1.8

Rtd but below the ring limit upper bound curve would
be mistakenly counted as being not noticeable.

Using the third method, the ring limit was set to a

constant 1.8 tidal disruption distances. We compared
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Figure 15. The dmin values reported by Araujo et al. (2016)
and ring limit upper bound curve vs velocity at infinity for
close encounters between Chariklo and Jupiter. Our extrap-
olated ring limit upper bound values are shown in gray for a
Chariklo with a ring orbital radius of 50,000 km. The dmin
values are shown in red for a Chariklo with a ring orbital
radius of 410 km. All of the close encounters are notice-
able (∆emax ≥ 0.01) with ∆emax ranging from 0.01 to 0.57.
∆emax values are shown for selected data points. Only one
dmin value (v∞ = 1.25 km/s, dmin = 2.81 Rtd) lies beyond
its ring limit upper bound. At this time we cannot explain
this discrepancy.

this ring limit lower bound to the 27 dmin values re-
ported by Araujo et al. (2016).

Figure 16 shows those dmin values within 1.8 Rtd.
dmin values for Jupiter are in red, and the one value
for Saturn in yellow. Only one close encounter was se-

vere, and there were no extreme encounters. Only 11
dmin values lied within 1.8 Rtd. This means that out
of the reported 27 noticeable close encounters, only 11

would be counted as noticeable using this method.
Our improved determination of the ring limit using

any method showed that the ring limit was far below
our initial estimate of 10 tidal disruption distances for

every planet. This makes moderate close encounters less
likely than the frequencies found using our previous close
encounter severity scale on integrations of Chariklo and

Chiron. Regardless of which method is used, the result
is a more accurate measure of the value of the ring limit.

6. CONCLUSIONS

The field of ringed small bodies in the Solar system is
only a few years old and started with the unexpected dis-
covery of two narrow rings around the Centaur Chariklo.
Since then, the field has been slowly growing with the

discovery of rings around the dwarf planet Haumea and
the potential of rings around the Centaur Chiron.

Close encounters with planets are an important part

of the history of ringed small bodies as they have conse-
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Figure 16. The dmin values reported by Araujo et al. (2016)
within 1.8 tidal disruption distances for close encounters be-
tween Chariklo and Jupiter or Saturn. dmin values for close
encounters with Jupiter are shown in red and those with
Saturn are shown in yellow. All of the close encounters are
noticeable (∆emax ≥ 0.01) with ∆emax ranging from 0.2 to
0.57. The dashed lines from top to bottom are 1.8 Rtd, Rtd,
the Roche limit of Saturn, and the Roche limit of Jupiter.
Out of 27 noticeable close encounters reported by Araujo et
al. (2016), only 11 of these would be counted as noticeable if
the ring limit is set to 1.8 tidal disruption distances.

quences for ring origin theories and ring longevity. The

severity of such an encounter depends on the mass of
the small body, the mass of the planet, the inclination
of the rings, the relative velocity of the small body at

infinity, the initial ring orbital radius and the minimum
separation distance, dmin (or encounter distance).

In our previous works, we studied close encounters
of Charklo and Chiron with the giant planets using nu-

merical integration. The severity of each close encounter
was found using a close encounter severity scale which
we developed. In this scale, dmin is compared to the

critical distances Hill radius, tidal disruption distance,
Roche Limit and “ring limit”, R.

The ring limit separates “non-noticeable” encounters
from “noticeable” encounters. Encounters for which

dmin is larger than the tidal disruption distance but
less than the ring limit are classified as moderate en-
counters. Though one moderate encounter may not be

strong enough to completely remove a ring, the effect
of multiple moderate close encounters may result in the
loss of ring particles.

We define the ring limit as the dmin value associated
with a close encounter for which the effect on the ring is
just “noticeable” for a small body in a parabolic or hy-
perbolic orbit about the planet in the three-body planar

problem. The effect is just noticeable if the maximum
change in eccentricity of the orbit of any ring particle is
0.01.
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Unlike the other critical distances, the ring limit is a
relatively new parameter which currently has no simple

analytical expression. In our previous close encounter
severity scale, the ring limit was set to a constant value
of 10 tidal disruption distances for any giant planet.
However, this estimate is crude and ignores the effects

of the velocity at infinity. In this work, we seek to im-
prove our close encounter severity scale by refining our
expression for the ring limit so that the effects of small

body mass, ms, planet mass, Mp, velocity at infinity,
v∞, and ring orbital radius, r, are fully accounted for.

Using the technique of numerical integration, close en-

counters between hypothetical one-ringed bodies with
each of the four giant planets are simulated using vary-
ing values of small body mass, ring orbital radius and
velocity at infinity.

We investigate the relationship between the ring limit
and each of the variables ms, r, v∞ and the planet mass
by plotting our data in three dimensional R − r − v∞
and R−ms− v∞ space and examining 2D slices of each
with a third quantity held constant in the slice.

Regression is used on a slice to determine the rela-

tionship between the ring limit and a single quantity.
To find the planet mass dependence, an intersection of
two slices - one of constant r and one of constant v∞
is used. We find that the ring limit varies as a power

law with Mp, ms and r in the forms R ∼ Mγ
p , R ∼ mβ

s

and R ∼ rα with the exponents α, β and γ each be-
ing a function of v∞ and other variables. The variation

of R with v∞ did not fit any one mathematical form.
The ring limit increases with increasing r and Mp but
decreases with increasing ms.

For each planet, we show that the ring limit has a

lower bound of approximately 1.8 tidal disruption dis-
tances (or fmin = 1.8) regardless of the mass of the
small body or ring orbital radius. We find that fmin
decreases with increasing planet mass, but we consider
this dependence to be small.

This means that if the encounter distance between a

one-ringed small body and a planet is within ≈1.8 tidal
disruption distances then the close encounter always has
a noticeable effect on the ring.

We introduce this lower bound distance as a new crit-

ical distance for close encounters between ringed small
bodies and giant planets. The ring limit equals this crit-
ical distance when the small body is in a parabolic orbit

about the planet (and thus v∞ = 0 by definition).
Using this critical distance, an analytical solution of

the ring limit for parabolic orbits is found and is approx-

imately

R ' 1.8r

(
3Mp

ms

) 1
3

(21)

We are unable to find a general analytical solution for
R that fits all hyperbolic orbits. However, we show that
analytical solutions for R can be found for specific cases.

We test our results by extrapolating our ring limit
values to those for close encounters between the giant
planets and a Chariklo with a ring orbital radius of r =
50,000 km and compare them to dmin values reported

by Araujo et al. (2016) for Chariklo-planet encounters
in the seven-body non-planar problem (Sun, Chariklo,
four giant planets, ring particle).

We successfully show that our ring limit values can be
extrapolated to find a ring limit upper bound curve in
dmin − v∞ space for close encounters between a giant

planet and Chariklo. We suggest three different uses for
this curve: 1) use it as is and set the ring limit equal
to the curve 2) set the ring limit equal to the maxi-
mum value of the curve over the v∞ range in question

(R = fmax) and 3) set the ring limit equal to a con-
stant lower bound value of 1.8 tidal disruption distances
(R = fmin).

The advantage of the first method is its accuracy in
determining the ring limit which varies with v∞. The
drawback is that it is more complicated to use and may
involve interpolation or extrapolation. Using the first

method, we find that 26 out of 27 dmin values for no-
ticeable encounters reported by Araujo et al. (2016) lie
within their respective ring limit upper bound curve.

We are unable to explain the one discrepancy.
The second method is simpler than the first method

as the ring limit is set to a value which does not vary

with v∞ but does vary with the planet. The drawback is
that some close encounters of low severity lying beyond
the ring limit upper bound curve but within fmax would
be mistakenly classified as moderate encounters.

Using the second method, we use extrapolation to
find fmax values for close encounters between each giant
planet and Chariklo, Chiron and Haumea. For Chariklo,

the results are fmax = 3.5 for Jupiter, fmax = 3.9 for
Saturn, fmax = 4.4 for Uranus and fmax = 4.4 for Nep-
tune. These values are much more accurate than the

constant distance of 10 tidal disruption distances used
for R in our previous studies. When using this method,
all 27 dmin values for noticeable encounters reported by
Araujo et al. (2016) lie within their respective ring limit.

Using the third method, we set the ring limit equal
to a constant lower bound of 1.8 Rtd. The advantage of
this method is that any close encounter occuring within

the ring limit would be noticeable. The drawback of this
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method is that some moderate close encounters occuring
beyond 1.8 Rtd but within the ring limit upper bound

curve would be mistakenly classified as non-noticeable
encounters. As an example, we find that out of the 27
noticeable close encounters reported by Araujo et al.
(2016), only 11 of these would be counted as noticeable

with this method.
In the future, it would be ideal to run further simu-

lations to extend the phase covered by our “standard”

simulations, so that any extrapolations can begin closer
to the desired outcome. Such work may also help to
resolve the uncertainties in the form of the relationship
between the ring limit and the various variables that can

influence the final answer.
In particular, it would be interesting to examine more

scenarios for which v∞ was greater than the 9 km/s value

used in this work, to see whether the ring limit curves
for Jupiter and Saturn exhibit the same behaviour as for
Uranus and Neptune.

As of this writing, it is not known if rings around
small bodies are ubiquitous or rare. That may change
in the near future with the release of the catalogue of

stellar positions obtained by Gaia. Then, the location
of the stars in the sky will become much more pre-
cisely known, which will in turn reduce the uncertainty

in the path that stellar occultation event shadows will
take over Earth. That will allow more observations to
be made, and since all small body rings thus far have
been discovered by stellar occultation, more rings may

be found. We hope that this work has laid a foundation
which will be built upon and applied to other ringed
bodies currently awaiting discovery.
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Hyodo, Ryuki, Charnoz, Sébastien, Genda, Hidenori, &

Ohtsuki, Keiji 2016, ApJL, 828, L8

Jeans, J. H. 1928, Cambridge [Eng.] The University press,

1928.,

Jeffreys, H. 1947, MNRAS, 107, 260

Jewitt, D., & Kalas, P. 1998, ApJ, 499, L103

Kowal, C.T., Liller, W., & Marsden, B.G. 1979, IAU Symp.

81: Dynamics of the Solar System, 81, 245

Lacerda, P., & Jewitt, D. C. 2007, AJ, 133, 1393

Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 13

Lykawka, P. S., Horner, J., Mukai, T., & Nakamura, A. M.

2012, MNRAS, 421, 1331

Meech, K. J., & Svoren, J. 2004, Comets II, 317

Murray, C.D., & Dermott, S. F. 1999, Solar System

Dynamics (Cambridge University Press)



22 Wood et al.

Ortiz, J. L., Duffard, R., Pinilla-Alonso, N.,

Alvarez-Candal, A., Santos-Sanz, P., Morales, N.,

Fernández-Valenzuela, E., Licandro, J., Campo Bagatin,

A., & Thirouin, A. 2015, A&A, 576, id.A18

Ortiz, J. L., Santos-Sanz, P., Sicardy, B., et al. 2017,

Nature, 550, 219

Pan, Margaret, & Wu, Yanqin 2016, AJ, 821, article id. 18

Philpott, C. M., Hamilton, D. P., & Agnor, C. B. 2010,

Icarus, 208, 824

Rabinowitz, D. L., Barkume, K., Brown, M. E., et al. 2006,

ApJ, 639, 1238

Ragozzine, D., & Brown, M. E. 2009, AJ, 137, 4766

Rawal, J. J., & Nikouravan, B. 2011, International Journal

of Fundamental Physical Sciences (IJFPS), Vol. 1, No. 1,

p. 6-10, 1, 6

Rein, H., & Liu, S.-F. 2012, A&A, 537, A128

Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424

Scotti, J. V., & Williams, G. V. 1997, Minor Planet

Electronic Circulars, 1997-Y24,

Sheppard, S., Jewitt, D., Trujillo, C., Brown, M., & Ashley,

M. 2000, AJ, 120, 2687

Sicardy, B., El Moutamid, M., Quillen, A. C., et al. 2016,

arXiv:1612.03321

Sykes, M. V., & Walker, R. G. 1991, Science, 251, 777

Tiscareno, M., & Malhotra, R. 2003, AJ, 126(6), 3122

Volk, Kathryn, & Malhotra, Renu 2008, ApJ, 687, 714

Wang, L., Spurzem, R., Aarseth, S., et al. 2015, MNRAS,

450, 4070

Wood, J., Horner, J., Hinse, T. C., & Marsden, S. C. 2017,

AJ, 153, 245

Wood, J., Horner, J., Hinse, T. C., & Marsden, S. C. 2018,

AJ, 155, 2



Rings and Close Encounters 23

APPENDIX

Table A1. The ring limit varies with the planet mass as a power law of the form R ∼ Mγ
p . This table gives values of γ as a

function of velocity at infinity for close encounters between any giant planet and a small body with a mass equal to the mass
of Pluto with a ring orbital radius of 50,000 km. Each value of γ was found from a regression on four data points in R −Mp

space while holding the velocity at infinity constant.

v∞ (km/s) γ v∞ (km/s) γ

9 0.2699 4.5 0.2347

8.9 0.2689 4.25 0.2346

8.75 0.2674 4 0.2349

8.5 0.265 3.9 0.2352

8.25 0.2627 3.75 0.2357

8 0.2602 3.5 0.2374

7.9 0.2592 3.25 0.2395

7.75 0.2577 3 0.2427

7.5 0.2554 2.9 0.2442

7.25 0.2531 2.75 0.2469

7 0.2508 2.5 0.2521

6.9 0.2499 2.25 0.2584

6.75 0.2486 2 0.2658

6.5 0.2464 1.9 0.269

6.25 0.2443 1.75 0.2741

6 0.2423 1.5 0.2834

5.9 0.2416 1.25 0.293

5.75 0.2405 1 0.302

5.5 0.2389 0.9 0.3054

5.25 0.2375 0.75 0.3099

5 0.2361 0.5 0.3159

4.9 0.2358 0.25 0.3194

4.75 0.2353 0 0.323
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Table A2. Ring limit values for close encounters between Jupiter and a small body with a ring orbital radius of 50,000 km and
mass equal to the mass of Pluto.

v∞ (km/s) R (km) f v∞ (km/s) R (km) f

9 9784298 2.5826 4.5 7972237 2.1043

8.9 9750201 2.5736 4.25 7862748 2.0754

8.75 9698677 2.5600 4 7754395 2.0468

8.5 9613056 2.5374 3.9 7709690 2.0350

8.25 9527056 2.5147 3.75 7648316 2.0188

8 9434615 2.4903 3.5 7544889 1.9915

7.9 9397109 2.4804 3.25 7442977 1.9646

7.75 9338765 2.4650 3 7347884 1.9395

7.5 9247461 2.4409 2.9 7311135 1.9298

7.25 9149338 2.4150 2.75 7258096 1.9158

7 9047805 2.3882 2.5 7175505 1.8940

6.9 9009162 2.3780 2.25 7098598 1.8737

6.75 8948545 2.3620 2 7028510 1.8552

6.5 8843223 2.3342 1.9 7003505 1.8486

6.25 8740175 2.3070 1.75 6965241 1.8385

6 8631444 2.2783 1.5 6913338 1.8248

5.9 8587118 2.2666 1.25 6868633 1.8130

5.75 8524607 2.2501 1 6830748 1.8030

5.5 8413223 2.2207 0.9 6819003 1.7999

5.25 8305250 2.1922 0.75 6802334 1.7955

5 8192351 2.1624 0.5 6782254 1.7902

4.9 8149541 2.1511 0.25 6769752 1.7869

4.75 8080968 2.1330 0 6757250 1.7836
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Table A3. The ring limit varies with the ring orbital radius as a power law of the form R ∼ rα. This table gives values of α as
a function of velocity at infinity for close encounters between Jupiter and a small body with a mass equal to the mass of Pluto.
Each value of α was found from a regression on twenty data points in R− r space over a ring orbital radius range of 30,000 km
- 100,000 km while holding the velocity at infinity constant.

v∞ (km/s) α v∞ (km/s) α

9 1.1461 4.5 1.1298

8.9 1.1468 4.25 1.1241

8.75 1.1476 4 1.1176

8.5 1.1491 3.9 1.115

8.25 1.1507 3.75 1.1101

8 1.152 3.5 1.1023

7.9 1.1524 3.25 1.093

7.75 1.1528 3 1.0839

7.5 1.1536 2.9 1.0797

7.25 1.1538 2.75 1.0741

7 1.1537 2.5 1.0636

6.9 1.1537 2.25 1.0527

6.75 1.1535 2 1.042

6.5 1.1527 1.9 1.0397

6.25 1.1522 1.75 1.0325

6 1.1508 1.5 1.0238

5.9 1.1501 1.25 1.017

5.75 1.1488 1 1.0111

5.5 1.1462 0.9 1.008

5.25 1.1428 0.75 1.0057

5 1.1395 0.5 1.0025

4.9 1.138 0.25 1.0007

4.75 1.1353 0 1.0000
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Table A4. The ring limit varies with the small body mass as a power law of the form R ∼ mβ
s . This table gives values of β

as a function of velocity at infinity for close encounters between Jupiter and a small body with a ring orbital radius of 50,000
km. Each value of β was found using regression on eighteen data points in R −ms space over a mass range of 2 × 1020 kg to
the mass of Pluto (1.309 × 1022 kg) while holding the velocity at infinity constant.

v∞ (km/s) β v∞ (km/s) β

9 -0.3734 4.5 -0.3815

8.9 -0.3738 4.25 -0.3801

8.75 -0.3743 4 -0.3785

8.5 -0.3752 3.9 -0.3782

8.25 -0.3759 3.75 -0.3772

8 -0.3767 3.5 -0.3754

7.9 -0.377 3.25 -0.3736

7.75 -0.3774 3 -0.3698

7.5 -0.3781 2.9 -0.3684

7.25 -0.379 2.75 -0.3657

7 -0.38 2.5 -0.3627

6.9 -0.3804 2.25 -0.3594

6.75 -0.381 2 -0.3535

6.5 -0.3818 1.9 -0.3515

6.25 -0.3822 1.75 -0.3492

6 -0.3826 1.5 -0.3449

5.9 -0.3829 1.25 -0.3399

5.75 -0.3833 1 -0.3363

5.5 -0.3839 0.9 -0.3338

5.25 -0.3838 0.75 -0.334

5 -0.3832 0.5 -0.3307

4.9 -0.383 0.25 -0.3303

4.75 -0.3826 0 -0.3333
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Table A5. Ring limit values for close encounters between Saturn and a small body with a ring orbital radius of 50,000 km and
mass equal to the mass of Pluto.

v∞ (km/s) R (km) f v∞ (km/s) R (km) f

9 7397991.29 2.9189 4.5 6094491.026 2.4046

8.9 7379235.891 2.9115 4.25 5991843.232 2.3641

8.75 7351609.694 2.9006 4 5881084.994 2.3204

8.5 7305228.098 2.8823 3.9 5838758.62 2.3037

8.25 7254791.28 2.8624 3.75 5770073.305 2.2766

8 7201059.595 2.8412 3.5 5658808.165 2.2327

7.9 7177742.072 2.832 3.25 5544248.157 2.1875

7.75 7142258.884 2.818 3 5429181.247 2.1421

7.5 7080163.304 2.7935 2.9 5381278.943 2.1232

7.25 7018828.079 2.7693 2.75 5314874.691 2.097

7 6954704.889 2.744 2.5 5200821.586 2.052

6.9 6927332.144 2.7332 2.25 5094625.473 2.0101

6.75 6884498.866 2.7163 2 4990710.421 1.9691

6.5 6809223.817 2.6866 1.9 4950918.56 1.9534

6.25 6733695.316 2.6568 1.75 4896933.424 1.9321

6 6655885.754 2.6261 1.5 4811520.321 1.8984

5.9 6622176.725 2.6128 1.25 4739540.139 1.87

5.75 6569458.845 2.592 1 4678711.817 1.846

5.5 6482271.583 2.5576 0.9 4659956.417 1.8386

5.25 6393056.71 2.5224 0.75 4632330.221 1.8277

5 6295224.491 2.4838 0.5 4600141.9 1.815

4.9 6256953.338 2.4687 0.25 4580626.146 1.8073

4.75 6199419.883 2.446 0 4561110.393 1.7996
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Table A6. Ring limit values for close encounters between Uranus and a small body with a ring orbital radius of 50,000 km and
mass equal to the mass of Pluto.

v∞ (km/s) R (km) f v∞ (km/s) R (km) f

9 4287793.84 3.1648 4.5 3873619.618 2.8591

8.9 4285761.582 3.1633 4.25 3820916.389 2.8202

8.75 4282239.001 3.1607 4 3760355.094 2.7755

8.5 4276548.678 3.1565 3.9 3735697.028 2.7573

8.25 4268419.645 3.1505 3.75 3697490.574 2.7291

8 4259477.709 3.1439 3.5 3626090.569 2.6764

7.9 4255819.644 3.1412 3.25 3551845.403 2.6216

7.75 4249180.934 3.1363 3 3469471.204 2.5608

7.5 4235226.094 3.126 2.9 3435600.234 2.5358

7.25 4219780.932 3.1146 2.75 3381000.23 2.4955

7 4201897.06 3.1014 2.5 3287516.353 2.4265

6.9 4194038.995 3.0956 2.25 3189290.539 2.354

6.75 4181980.929 3.0867 2 3086187.307 2.2779

6.5 4160709.96 3.071 1.9 3044458.271 2.2471

6.25 4137406.733 3.0538 1.75 2981051.816 2.2003

6 4110309.957 3.0338 1.5 2875780.841 2.1226

5.9 4097980.924 3.0247 1.25 2775658.253 2.0487

5.75 4079284.148 3.0109 1 2685290.505 1.982

5.5 4044735.759 2.9854 0.9 2653316.309 1.9584

5.25 4008561.563 2.9587 0.75 2610367.919 1.9267

5 3969000.27 2.9295 0.5 2556038.883 1.8866

4.9 3950980.914 2.9162 0.25 2524471.139 1.8633

4.75 3922800.267 2.8954 0 2492903.395 1.84
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Table A7. Ring limit values for close encounters between Neptune and a small body with a ring orbital radius of 50,000 km
and mass equal to the mass of Pluto.

v∞ (km/s) R (km) f v∞ (km/s) R (km) f

9 4518021.816 3.156 4.5 4035727.282 2.8191

8.9 4515015.527 3.1539 4.25 3976603.612 2.7778

8.75 4510148.203 3.1505 4 3913185.245 2.7335

8.5 4500986.182 3.1441 3.9 3885842.337 2.7144

8.25 4490106.282 3.1365 3.75 3844183.771 2.6853

8 4477079.032 3.1274 3.5 3769456.034 2.6331

7.9 4471352.769 3.1234 3.25 3689002.033 2.5769

7.75 4462190.748 3.117 3 3602964.926 2.5168

7.5 4446014.053 3.1057 2.9 3566603.153 2.4914

7.25 4427690.011 3.0929 2.75 3510915.242 2.4525

7 4407075.462 3.0785 2.5 3414141.39 2.3849

6.9 4398056.598 3.0722 2.25 3312643.372 2.314

6.75 4383597.783 3.0621 2 3207566.439 2.2406

6.5 4357972.754 3.0442 1.9 3165048.933 2.2109

6.25 4330057.22 3.0247 1.75 3101487.409 2.1665

6 4298419.615 3.0026 1.5 2997126.259 2.0936

5.9 4284962.896 2.9932 1.25 2898348.215 2.0246

5.75 4263775.721 2.9784 1 2811022.699 1.9636

5.5 4226411.852 2.9523 0.9 2780387.19 1.9422

5.25 4184466.973 2.923 0.75 2740017.033 1.914

5 4139372.649 2.8915 0.5 2688766.975 1.8782

4.9 4120189.667 2.8781 0.25 2657988.31 1.8567

4.75 4089554.157 2.8567 0 2627209.644 1.8352
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Table A8. The dmin values reported by Araujo et al. (2016) for close encounters between Chariklo and the planets Jupiter,
Saturn and Uranus. All of the close encounters are noticeable (∆emax ≥ 0.01) with ∆emax ranging from 0.01 to 0.57.

Planet dmin (Rtd) v∞ (km/s) ∆emax

Jupiter

0.82 9.87 0.2

1.29 8 0.54

1.35 4.67 0.28

1.62 4.17 0.4

1.64 4.96 0.33

1.64 10.32 0.51

1.66 5.81 0.45

1.66 7.23 0.2

1.72 3.76 0.32

1.79 5.03 0.57

2.16 4.93 0.03

2.16 5.2 0.19

2.32 6.62 0.1

2.61 3.17 0.04

2.63 7.4 0.02

2.81 1.25 0.01

3 7 0.02

3 5.72 0.01

3.12 7.78 0.01

3.26 9.65 0.01

Saturn

1.67 4.87 0.34

1.82 3.12 0.53

1.94 2.68 0.3

2.02 4.42 0.07

2.29 5.29 0.06

2.56 3.63 0.031

Uranus

2.11 3.00 0.11
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Table A9. Ring limit upper bound maximum values over the range 0 ≤ v∞ ≤ 9 km/s for each giant planet for close encounters
between each planet and Chiron, Chariklo, or Haumea. The masses used for Chiron, Chariklo, or Haumea were 3.05 × 1018

kg, 7.986 × 1018 kg, and 4.006 × 1021 kg respectively. Using this method, close encounters between one of these bodies and a
giant planet could be studied by ignoring velocity effects and setting the ring limit equal to a constant maximum value. Then,
close encounters with dmin values below this maximum value but larger than the tidal disruption distance would be considered
moderate close encounters.

Body Planet fmax

Chiron

Jupiter 3.6

Saturn 4.1

Uranus 4.6

Neptune 4.6

Chariklo

Jupiter 3.5

Saturn 3.9

Uranus 4.4

Neptune 4.4

Haumea

Jupiter 2.7

Saturn 3.1

Uranus 3.3

Neptune 3.3



5 Conclusions

The recent discovery of rings or ring-like structures around three small bodies of
the Solar system has given birth to a new subfield of Solar system astronomy -
the study of ringed small bodies. Two of these bodies are classified as Centaurs
and move on dynamically unstable orbits. Studying their orbital evolution and,
in particular, close encounter history can shed light on the survivability of their
rings over the short and long term. Here, we present our conclusions on the
results of our three previously done studies combined (chapters 2, 3 and 4) that
investigate these newly discovered ring systems.

5.1 Chariklo and Chiron

Chariklo and Chiron represent the only two Centaurs known to have rings or
ring-like structures. Though we can state that the orbital radii of any rings
around either body have the same order of magnitude ∼ 102 km we cannot
say at this time if Chariklo and Chiron represent typical examples of ringed
Centaurs in regards to the survivability of their rings or in regards to other
properties (orbital radius, orbital eccentricity, etc.).

In this work, Chariklo and Chiron were studied using the technique of nu-
merical integration to determine the chaoticity of their orbits and if their rings
could predate their entrance into the Centaur region. To determine the latter,
the likelihood that these bodies have had a close encounter with a giant planet
severe enough to badly damage or even destroy any ring structure around the
body must be determined.

Our results showed that both Chiron and Chariklo exist in highly chaotic
orbits with the orbit of Chariklo showing a degree of stable chaos that the orbit
of Chiron does not. Integrations of Chiron clones showed that Chiron is most
likely a random-walk Centaur. This means that Chiron likely spends less time in
mean motion resonances which can extend the dynamical lifetime of the object.

Chiron’s orbit is indeed less stable than Chariklo’s as exemplified by its
lower half-life against backwards removal from the Centaur region of 0.7 Myr
compared to Chariklo’s 3 Myr. Our results showed that clones initially in planet
crossing orbits had dynamical lifetimes as much as two orders of magnitude
shorter than the longest lifetimes exhibited by the longest-lived clones.

Furthermore, the integrations showed that both bodies originated from some-
where beyond the orbit of Neptune where they would have been classified as
Trans-Neptunian Objects or TNOs. Chiron likely entered the Centaur region
within the last 8.5 Myr and Chariklo within the last 20 Myr.

To determine if rings around either of these bodies could have survived their
journey through the Centaur region up to now, the close encounters of clones of
these two objects with the four giant planets were examined to determine the
probability of ring survival in the highly chaotic Centaur region.

To facilitate this, a scale to measure the relative severity of a close encounter
between a ringed small body and a planet was developed and used in our first
two papers without the ring particles themselves ever being simulated.
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This scale was based entirely on the minimum distance obtained between
the small body and planet (the close encounter distance) during the encounter.
As such, it was not necessary to simulate the ring particles themselves as only
the close encounter distance was needed.

In this scale, the close encounter distance is compared to the well known
critical distances Hill radius, tidal disruption distance and Roche limit as well
as a brand new parameter which we call the “ring limit”.

We defined the ring limit as the value of the minimum approach distance
for close encounters between a planet and a ringed small body in a hyperbolic
or parabolic orbit about the planet in the three-body planar problem for which
the effect on the ring is just noticeable.

The effect was considered noticeable if the close encounter changed the or-
bital eccentricity of the orbit of any ring particle by 0.01 or more. In the first
version of our scale, we set the ring limit equal to a constant value of 10 tidal
disruption distances based on previous work by Araujo et al. (2016). This sim-
plistic approach ignored velocity effects.

By comparing the close encounter distance to the previously mentioned crit-
ical distances and ring limit, the severity of a close encounter was ranked as
very low, low, moderate, severe or extreme. Close encounters of moderate or
higher severity were noticeable.

Severe encounters were those which could destroy the rings. Extreme en-
counters were those which could result in the destruction of the rings and the
small body itself due to tidal forces.

We showed that it is very unlikely that a single close encounter could have
removed or have even severely damaged any ring system around either Chariklo
or Chiron as 99% of close encounters experienced by clones of these two objects
were of moderate or lower severity. Though it is interesting that this same result
was found for both Chariklo and Chiron, we cannot state that this result will be
the same for any ringed Centaurs found in the future as we only have a sample
size of two. But if extreme encounters are the exception then the destruction of
comet Shoemaker-Levy 9 by Jupiter in 1994 was a truly rare event for a body
of that size (Jessup et al., 2000).

The paucity of severe and extreme encounters displayed by clones of these
objects means that any ring system around either body could have formed while
the body was a TNO before it entered the Centaur region provided that ring
dispersal by other means did not occur. This idea is bolstered by the discovery
of rings around the Trans-Neptunian Object Haumea.

5.2 Ring Origins

At this time, the population size of ringed small bodies is too small to make
a prediction as to which of the proposed ring formation mechanisms is the
dominant one. Each ringed body is unique, and it can only be said that we see
inklings of possible formation mechanisms in each body.

For example, Chiron has displayed activity but neither Chariklo nor Haumea
has ever known to be active. Haumea is a member of a collisional family while
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Chariklo and Chiron are not. Chariklo and Chiron move on planet-crossing
orbits while Haumea does not.

Thus, while we see small hints of possible ring formation by activity, collisions
and tidal disruption, none of these hints provide conclusive proof of a dominant
formation mechanism. One or multiple mechanisms may be involved in the
creation of small body rings, and any ring formation scenario is certainly possible
for any of these three bodies. It will take more discoveries to know for sure.

We can however conclude that ring creation by tidal disruption of Chiron
or Chariklo seems unlikely given that our results showed that close encounters
within the Roche limit were extremely rare.

5.3 Measuring Close Encounter Severity

The ring limit, R, was better defined in our third paper in which ring particles
around hypothetical small bodies were actually simulated during close encoun-
ters with each of the four giant planets with the small body in a parabolic or
hyperbolic orbit about the planet.

As in our first two papers, the ring limit was defined as that minimum
separation distance, dmin, of a close encounter for which the effect on the ring
was just noticeable when the small body was in a hyperbolic or parabolic orbit
about the planet in the planar three-body problem. As in our first two papers,
we sought to approximate an upper bound of the ring limit so that if dmin < R
then the encounter was considered noticeable and was considered non-noticeable
otherwise.

We again defined the encounter as being just noticeable if the maximum
change in eccentricity of the orbit of any ring particle equaled 0.01.

The simulations led to the determination of the ring limit over a range of
ring orbital radii spanning an order of magnitude and a small body mass range
spanning two orders of magnitude.

It was discovered that the ring limit was a complex function of ring orbital
radius, small body mass, planet mass, velocity at infinity, v∞, and ring incli-
nation. Though we did not study rings inclined to the orbital plane, it had
already been previously established that inclined rings are harder to perturb
than planar rings (Murray & Dermott, 1999).

We found that the ring limit increased with ring orbital radius and planet
mass as a power law (R ∼ rα and R ∼ Mγ

p ) and decreased with small body

mass as a power law (R ∼ mβ
s ). The exponents α, β and γ were themselves a

function of the velocity at infinity and other variables. The variation of the ring
limit with velocity at infinity could not be fit to any one particular form.

We discovered that the ring limit had a lower bound of approximately 1.8
tidal disruption distances and that this lower bound was virtually independent
of the ring orbital radius and small body mass. The mass of the planet had
a small effect which was negligible to two significant figures. The ring limit
equaled this lower bound when the small body was in a parabolic orbit (for
which v∞ = 0 by definition). We introduced the lower bound as a new critical
distance. If a close encounter between a one-ringed small body and a planet
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occurs within a distance of approximately 1.8 tidal disruption distances then
the close encounter is always noticeable.

When our ring limit values were extrapolated for Chariklo-planet encounters,
they formed a ring limit upper bound curve in dmin − v∞ space rather than a
curve of actual ring limit values. This occurred because of our choice of ring
orbital radius of 50,000 km which was an order of magnitude larger than the
ring orbital radius of the outer ring of Chariklo.

This was by design so that our extrapolated values would apply to a very
large range of ring orbital radii so that our results could be used to study close
encounters of ringed small bodies that have yet to be discovered. This was
reasonable as we found that the ring limit expressed in units of tidal disruption
distances maintained the same order of magnitude even over order of magnitude
changes in ring orbital radius. We presented three different ways to use the ring
limit upper bound curve in dmin − v∞ space:

• include velocity effects and set the ring limit equal to the curve so that the
ring limit varies with v∞. This curve would be different for each planet.

• ignore velocity effects, use the curve to determine a maximum value for
the ring limit upper bound over the velocity at infinity range in question
and set the ring limit equal to this value. This maximum value would vary
with the planet mass.

• ignore velocity effects and set the ring limit equal to a constant lower
bound value of 1.8 tidal disruption distances for each planet

Each method has its own advantages and disadvantages. Including veloc-
ity effects is the most accurate method but is more complicated as each value
of velocity at infinity has its own unique ring limit upper bound. This makes
computations of close encounter severity more intensive and may require inter-
polation or extrapolation.

Setting the ring limit equal to a constant maximum value is simpler but may
cause some close encounters to be classified as moderate when actually they are
not noticeable. This can occur because when the ring limit is defined in this way,
it is possible for a close encounter distance to be larger than its corresponding
value of the ring limit upper bound curve (and therefore be non-noticeable) but
be smaller than the maximum value of the curve.

If the ring limit is set equal to the lower bound value of 1.8 tidal disruption
distances then this would avoid this error, however, this would introduce a
new problem in that a close encounter distance could be larger than this lower
bound but be smaller than its corresponding value of the ring limit upper bound
curve (and thus be noticeable). This would mean that some noticeable close
encounters would mistakenly be classified as non-noticeable.

To test each of the three methods, we extrapolated our results to find the
ring limit upper bound curve for noticeable close encounters between Jupiter
and Chariklo. We found that if velocity effects were included, then 19 out of 20
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published dmin values were smaller than their corresponding ring limit values
on the curve as expected.

Using the second method, we found maximum ring limit values for close
encounters between Chariklo and each giant planet over the range 0 ≤ v∞ ≤ 9
km/s and set the ring limit equal to each value for each planet. Then we
compared these ring limit values to previously published dmin values for close
encounters between Chariklo and Jupiter, Saturn and Uranus (there were no
published values for Neptune).

The results were R = 3.5 Rtd for Jupiter, R = 3.9 Rtd for Saturn, R = 4.4
Rtd for Uranus and R = 4.4 Rtd for Neptune. With this second method, we
found that all 27 previously published close encounter distances lay within their
respective ring limit in agreement with our results.

Our improved determination of the ring limit using this method showed
that the ring limit was far below our initial estimate of 10 tidal disruption
distances for every planet. This makes moderate close encounters less likely
than the frequencies found using our previous close encounter severity scale on
integrations of Chariklo and Chiron.

Finally, we set the ring limit equal to a constant value of the ring limit lower
bound of 1.8 tidal disruption distances. We found that with this method only
11 of the previously reported 27 noticeable close encounters would be classified
as noticeable.

An analytical solution for the ring limit could be found only for parabolic
orbits and special cases for hyperbolic orbits. In general, the ring limit increased
with the ring orbital radius as a power law but decreased with the mass of the
small body as a power law. No single relationship between the ring limit and
velocity at infinity of the small body could be found.

5.4 The Future

There are major questions which are in need of answering for this very young
field. Are rings around small bodies commonplace or rare? How stable are
rings around small bodies? Do shepherd moons exist around Chariklo? Were
all small body rings created in the same way or were multiple ring creation
scenarios responsible?

It is hoped that this pioneering work has laid a foundation for the study of
any rings that are found around small bodies in the future by demonstrating
practical techniques, providing a severity scale for close encounters and provid-
ing data which can be extrapolated to determine ring limits for close encounters
between giant planets and other ringed small bodies. Our own work here itself
could be built upon by simulating close encounters for small bodies outside the
mass range used in this work. It our hope that future research will corroborate
our results. Our work may also have applications in other fields such as the
study of circumstellar disks and planetary systems which have encounters with
other stars.

Our knowledge in this field could grow significantly with an increase in the
number of probe missions to small bodies. A probe mission to Chariklo could
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determine if it has shepherd moons to help stabilize its rings as has been pro-
posed (El Moutamid et al., 2014; Ortiz et al., 2015). It could also help determine
if the gap between Chariklo’s rings is caused by a moon in the gap, outside the
gap, or by neither of these. If it is the former, then the gap would be formed
in the same way that the moon Pan helps create Saturn’s Encke gap (Porco et
al., 2005).

If the latter, then a moon outside the gap would exist in an orbit in a mean
motion resonance with a radial location inside the gap. In this scenario, the gap
would have been created by sculpting. Of course the gap could be caused by
neither of these mechanisms. A probe mission to Chiron could finally determine
conclusively if the detected circum-nuclear material around this body is a ring,
an arc, jets or something else entirely.

Now that we know that Haumea is the only known ringed dwarf planet with
moons and is a member of a collisional family, this makes it an object of interest.
And space probes are just now beginning to visit the Trans-Neptunian region.
The New Horizons Space Probe16 has visited the Trans-Neptunian Object Pluto
and is set to rendezvous with the TNO (486958) 2014 MU69 in 2019. This author
proposes that Haumea be selected as the next TNO to be visited by a probe.

Innovations by the SpaceX company are making probe missions more afford-
able. The company recently launched a car into space and demonstrated again
the reusability of its booster rockets.

As costs go down, missions to the outer Solar system will become more
affordable, which should lead to a significant enhancement of our knowledge of
small bodies. Already, history is being made as the Dawn mission17 uncovers
secrets of Vesta and Ceres. And the future Lucy mission18 will be the first space
mission ever to Jupiter’s Trojan asteroids.

Ground work will still play a significant role in the advancement of the field
in two ways: observations and computer simulations. As the results from the
Gaia space probe19 are revealed, the location of stars in our galaxy will become
better known. This will reduce the uncertainty in the paths that shadows take
across the Earth during an occultation event. This in turn may lead to more
observations of stellar occultations and to the discovery of more ringed small
bodies.

Thus, we may be on the verge of tremendous growth in this field. In fact,
given that the number of Centaurs with diameters larger than 1 km is believed
to exceed 44,000, there could exist a large undiscovered population of ringed
Centaurs (Horner et al., 2004).

A reanalysis of the close encounters of the clones of Chariklo and Chiron
using our improved close encounter severity scale is of interest. For Chariklo
and Chiron, the boundary separating close encounters of low severity from close

16https://www.nasa.gov/mission pages/newhorizons/main/index.html (accessed January
18, 2018)

17https://dawn.jpl.nasa.gov/ (accessed February 8, 2018)
18https://www.nasa.gov/content/goddard/lucy-the-first-mission-to-jupiter-s-trojans (ac-

cessed February 8, 2018)
19http://sci.esa.int/gaia/ (accessed January 18, 2018)
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encounters of moderate severity has changed. A reanalysis would yield a more
accurate count of the moderate and low severity close encounters.

More integrations of Chariklo and Chiron should be carried out to study
ring stability. Of interest is whether or not rings can remain stable over time
frames comparable to their Centaur lifetime. These integrations should involve
the small body and a ring structure both with and without shepherd moons.

Also, integrations of initially non-circular rings could be done to determine
a time frame within which stabilizing factors such as shepherd moons and self-
gravitating rings can heal the damage done to the ring structure. Once this is
known, our own integrations of Chariklo and Chiron could be reanalysed using
our improved close encounter severity scale to determine likely time intervals
between moderate or higher close encounters. Of interest is whether or not the
rings can heal themselves via shepherd moons (El Moutamid et al., 2014) or self-
gravitating rings (Rimlinger et al., 2017) before another destructive encounter
occurs.

Integrations of actual collisions between small bodies could also be simulated
using smooth particle hydrodynamics (Canup, 2005; Benz et al., 2008) to study
ring formation. These would involve collisions with the small body itself with
bodies of various masses and collisions between satellites about the small body.
Admittedly, these integrations would be time intensive given the large number
of separate particles involved.

Integrations of possible formation scenarios of the Haumea system including
its ring are also of interest. The exact ring formation mechanism is far from
clear. Haumea is a member of the only known Tran-Neptunian collisional family,
but this does not necessarily mean that its rings were formed by a collision.
Especially since the ring also lies within Haumea’s Roche limit (Ortiz et al.,
2017).

It is also interesting that the orbital radius of the ring around Haumea is an
order of magnitude larger than those of Chariklo or Chiron. Though Haumea
currently does not cross the orbit of any planet, the possibility that Haumea
has crossed the orbits of planets in the past cannot be excluded.

The larger members of the Trojan populations of Jupiter and Neptune should
also be checked for rings. This need not involve a probe necessarily but instead
could be conducted using stellar occultations. Also, integrations of potential
ring-bearing Trojans would make an interesting study.

Then the effect of other asteroids on rings could be studied. This is espe-
cially true in the Jupiter Trojan region where significantly more asteroids have
been discovered. Though many thousands of Neptune Trojans could remain
undiscovered (Sheppard & Trujillo, 2006; Lykawka et al., 2011).

For Jupiter Trojans, possible candidates include 624 Hektor, 911 Agamem-
non, and 1437 Diomedes which have diameters comparable to those of Chariklo
and Chiron20. For Neptune Trojans, possible candidates include 2001 QR322,
2011 HM102, 2006 RJ103, 2007 VL305, (316179) 2010 EN65, 2011 WG157, and
2013 KY18.

20https://ssd.jpl.nasa.gov/sbdb.cgi (accessed Feb. 5, 2018)
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Whether by ground or space mission, our knowledge of ringed small bodies
is sure to increase. As our knowledge of this young field grows, many more
ringed small bodies may be found. One day, their number may rival that of the
currently known Centaurs themselves. Then, perhaps questions involving the
nature and origin of the rings will be answered.
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