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Abstract 

A new BE-only method is achieved for the numerical solution of viscoelastic 
flows. A decoupled algorithm is chosen where the fluid is considered as 
being composed of an artificial Newtonian component and the remaining 
component is accordingly defined from the original constitutive equation. As 
a result the problem is viewed as that  of solving for the flow of a Newtonian 
liquid with the non-linear viscoelastic effects acting as a pseudo body force. 
Thus  the general solution is obtained by adding a particular solution to  the 
homogeneous one. The former is obtained by a BEM for the base Newtonian 
fluid and the latter is obtained analytically by approximating the pseudo 
body force in terms of suitable radial basis functions (RBFs). Embedded in 
the approximation of the pseudo body force is the calculation of the polymer 
stress. This is achieved by solving the constitutive equation using RBF 
networks (RBFNs).  Both the calculations of the particular solut.ion and the 
polymer stress are therefore meshless and trhe r e~u l t~an t  BEM-RBF method 
is a BE-only method. The complete elimination of any structured domain 
discretisat'ion is demonstrated wit,h a number of flow problen~s involving the 
Upper Convected Maxwell (UCM) and the Oldroyd-B fluids. 
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Figure 1: Planar Poiseuille flow of UCIlI and Oldroyd-B fluids a t  W, = 2.0: 
The analytical solution, computed first normal stress difference 
and computed shear stress on the middle plane are denoted by 
{dashed line, +, *) and {solid line, X ,  o) for UCM and Oldroyd- 
B fluids. respectively. 

1 Introduction 

The BEM has been successfully used in certain polymer flow analyses. How- 
ever, the most direct transformation of differential equations governing non- 
linear problems in continuum mechanics into equivalent integral equations 
usually retains volume integral terms. To make BEM generally competi- 
tive in comparison with FE-type numerical methods further improvements 
were effected by various techniques that help transform volume integrals 
into boundary integrals. These techniques include Dual Reciprocity Meth- 
ods (DRM), Multiple Reciprocity Methods (MRM) and Particular Solution 
(PS). In most situations the volume integrals can only be replaced by bound- 
ary integrals in an approximate manner. In polymer flow analysis the com- 
plex constitutive relations for highly nonlinear viscoelastic materials present 
a challenge in numerical simulation where the solution of the constitutive 
equat,ion is a difficult task on its own in additional to the transformation of 
the volume integrals. In the case of v~scoelastic materials the constitutive 

                                                             Transactions on Modelling and Simulation vol 28, © 2001 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



ecpat,ions for extra stresses are also partial differential equations (differen- 
tial models) to  be solved. This  paper presents a. REM-RBF formulation 
tha t  results in a BE-only numerical method for viscoelastic flows. 

Figure 2: Driven cavity flow of Oldroyd-B fluid: velocity field a t  Ili, = 0.1. 

2 Governing Equations 

The  flow is assumed to be isothermal, creeping, and incompressible for which 
the equations of motion are 

where U is the total stress tensor and  U is the velocity vector. For Oldroyd-B 
model, the total stress tensor U can be written as 

where P is the  pressure, 1 is t he  unit tensor, rl, IS t he  "Newtonian contri- 
bution" viscosity, D is the rate of strain tensor and T is the extra stress 
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t,ensor obeying 

in which X is the relaxation time, qp is the "polymer contribution" viscosity 

and is the upper convected derivative of T defined by 

In the  Oldroyd-B - model the parameter X is related to the  material retarda- 
tion time via X = crX, where oi = q s / ( q s  + r j p ) .  For a UCM fluid 7 ,  = 0 and 
(3) is rewritten as 

where 7 ,  is a conveniently chosen viscosity. In this work q, = vp is chosen. 
To  facilitate the general discussion applicable to both model fluids, the  
governing equations are now written as 

where B = -V. E ;  and q  = v s ,  E = T for the Oldroyd-B model and 
q =  ql, e = r - 2 i l n D  for the UCM model. 

3 BEM-RBF formulation 

T h e  constitutive equation for extra stress (4) must be solved in conjunc- 
tion with the equations of motion (1) and (2). The  unknown fields are 
the  polymer stress T ,  the velocity U and the pressure P. Rewriting the 
governing equations as (7)-(10) allows us to view the problem as one involv- 
ing a Newtonian liquid defined by (8) with a pseudo body force defined by 
B = -V . E .  Therefore a decoupled technique is employed here to  break the 
problem down int,o two stages: the solution of an elliptic Newtonian-like flow 
(9) and (10) and the solution of the constitutive model (4). The two stages 
constitute a Picard-type iterative scheme where the pseudo body force is 
assumed known from the previous iteration. The first stage is solved by a 
BEM and the second is solved by radial basis function networks (RBFN). 
The  iterative procedure is terminated at the iteration k when 
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where CM is regarded as convegence measure, n is number of da ta  points 
and  to1 is a prcset tolerance which is set a t  5 . e  - 3 in the present work. 

3.1 Direct integral equation forinulation 

T h e  details of the process of recasting the set of governing equations into 
integral form are given elsewhere (e.g. [l-21) and the final IE is given by 

where V is the  solution domain of the problem with boundary dV; X ,  y  E V ;  
u i ( y )  is the j component of the velocity a t  y ;  t j ( y )  is the j component of 
boundary traction a t  y ;  E ~ ~ ( Y )  is the j k  component of e a t  y ;  uz j (x ,  y) is 
the  i component of velocity field a t  X due to a point force in j direction 
a t  y  (Kelvin fundamental solution) and t > ( x ,  y )  is its associated traction. 
C i j ( x )  depends on local geometry, C'ij(x) = hi; if X E V and C i j ( x )  = ;Sij 
if X E dV and dV is a Liapunov surface. 

3.2 Elimination of volume integral by PS techniques 

T h e  elementary process of numerically evaluating the volume integral in 
(12) normally requires some kind of volume discretization. This element- 
based numerical integration can be avoided by using the PS technique (e.g. 
[3-51). In the present technique, the total solution to (9)-(10) is decomposed 
into the homogeneous part and a particular solution as 

Note tha t  the solution u to (9)-(10) is also the solution to the original 
problem and therefore the superscript " is not necessary. At this point, it 
is more convenient to  consider the equivalent elasticity problem in obtaining 
a particular solution and the corresponding solution for the incompressible 
Newtonian liquid is obtained by allowing U -+ 112 in the final results and 
reinterpreting displacement as velocity. Thus the Navier's equation for a 
particular solution is considered and given by 
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where U is the Poisson's ratio and 7 the shear modulus. A particular solution 
of (15) for displacement v: and the corresponding stress 05 are given in 
terms of the Galerkin vector (e.g. [6]) by 

where Gi is the Gslerkin vecttor which is the solution to the following bi- 
harmonic equation 

To solve (18) approximately, the pseudo-body force term B is decomposed 
into suitable radial basis functions and the final solution for u p  and stress 
a; were given in [7]. The homogeneous solution to (9) and (10) is obtained 
via a BEM derived from the equivalent boundary integral form 

where the boundary conditions are determined by 

P 
U: = 7 l i  - U i  

H - N P  P 
(20) 

ffjk - ffjk - Ojk = U j k  - &jk - njk W )  

Substitution of (20) and the traction obtained from (21) into (19) yields 

where u j  and t j  are the velocity and the total traction, respectively. Note 
that by using the fixed kinematics obtained from the previous iteration, 
the pseudo body force term and the corresponding particular solution are 
known a t  the current iteration. Hence, the unknowns in the final equation 
(22) which contains only boundary integrals are the velocity and the total 
boundary traction. At this stage, it can be seen that the volume integral has 
been eliminated. We note, however, that the gradients of the stress and the 
velo~it~y still exist in (18) and (4),  respectively. Previously these gradients 
have been co~xput~ed via the deri~at~ives of t8he assumed shape functions of 
the finite elements representing the domain. It is part of the aim of this 
paper t80 show that we can cornputme t,hese gradients without discretising 
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Figure 3: Driven cavity flow of Oldroyd-B fluid: velocity field a t  We = 0.15. 

the domain into structured finite elements by using neural networks such as 
RBFN. Furthermore, the constitutive equation for extra stress is also solved 
by a rneshless RBFN method as described in the nest  section 

3.3 RBFN for the  solution of constitutive model 

The function is decomposed into weighted radial basis functions in which 
each radial basis function contains the center and the width parameters. In 
order to keep the mathematics simple (only linear algebra), these parame- 
ters are chosen in advance and the unknowns therefore are RBFN weights 
only. The network only needs an unstructured distribution of collocation 
points throughout the volume for approximation and hence the need for dis- 
cretisation of the volume of the analysis domain into a set of finite elements 
is eliminated. It should be not,ed here that although RBFN theoretically 
have an ability to  represent any continuous function to a prescribed degree 
of accuracy, they cannot practically acquire sufficient approximation accu- 
racy in most cases. The so called indirect approach (IRBFN) appears to be 
superior among alternative RBFN approaches for function approximation 
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over a set of noiseless data  points and for numerical solution of PDE [a-91. 
This IRBFN approach is therefore employed in the present work. In the 
case of numerical solution of the constitutive equation (4), each variable rij 
is represented by an IRBFN. The kinematics assumes the value obtained in 
the first part of the iteration. Then the training processes for networks are 
employed simultaneously by minimizing the following sum squared error 

SSE = 

where n is the number of colocation points (also the number of centres here), 
rij and Tij are the polymer stress obtained by symbolically integrating rij,ll 
and rij,~:, respectively. Note that if the boundary conditions for the polymer 
stress rij exist, the above SSE will also contain error terms corresponding 
to  these boundary conditions. 

4 Planar Poiseuille Flow 

The problem of planar Poiseuille flow of UCM and Oldroyd-B ( a  = 119) 
fluids has an analytical solution given by 

where U is the maximum speed, L is one half of t>he width of the chanel 
and zl-axis is chosen to coincide with the centreline. Owing to  symmetry, 
only one half of the fluid domain is considered wit8h the dimension being 
L X L. The maximum speed U and the width L are talcen to be units. At 
the inlet and the outlet, Dirichlet boundary conditions for the velocity and 
Neumann boundary conditions for the extra stress are imposed. No-slip 
conditions are enforced on the solid boundary and symmetry conditions are 
specified on the plane of symmetry. The Weissenberg number W, is defined 
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by T/tk = Xj where 9 is t he  shear rate at  the wall. It is observed that  RBFNs 
are able to  represent the numerical solution of (4) using relative lower centre 
density. Using 160 linear boundary elements for the BEM, 41 X 41 centres 
for the approximation of the PS and a centre density 11 X 11 for RBFN for 
polymer stress, the present method achieves up to W,  = 10 for both UCM 
and Oldroyd-B models. The simulation is arbitrarily stopped a t  W, = 10 
for lack of interest,. T h e  stress obtained at W, = 2 on a middle plane is 
displayed in Figure 1 showing good agreement wit,h the analytical solution. 

5 2D Driven Square Cavity Flow 

One of the benchmark problems for viscous fluids is the lid-driven cavity 
flow. However, for viscoelastic fluids there are very few numerical results 
reported [10-121, which are all based on finite element methods. The  present 
results cannot be compared directly with tlmse just cited due to the different 
model fluids used in each case. However, the general behaviour of the flow 
field, including the core vortex, is in agreement with the experimental result 
using an  ideal elastic Boger fluid [13] (Figures 2-3.) In the  above figures the 
results are obtained using 128 linear BEs, 33 X 33 centres for PS, and 17 X 17 
centres for polymer stress. The Weissenberg number is I/Ve = XU/L where U 
is the speed of the lid, L is the size of the square cavity and X is the material 
time constant of the Oldroyd-B fluid with ct = 1/9. The centre of the  core 
vortex shifts progressively upstream as the W, number increases. This is in 
contrast with the Newtonian results where tjhe vort,ex shifts downstream as 
the  Re number increases. 

6 Concluding Remarks 

This work demonstrates the successful implementation of two new key ideas 
of formulating the viscoelastic flow problems in terms of boundary integral 
only via the use of particular solution and the solution of the constitutive 
equation for polymer stress using RBFNs. The ideas are not restricted to 
viscoelastic flows and can be applied to other problems governed by PDEs. 

Acknowledgements: N.RI-D is supported by a US& Scholarship. This 
support is gratefully acknowledged. 

References 

[l] Bush, M.B. k Tanner, R.I. Numerical solutlon of viscous flows using 
itegral equation methods. Internntlonwl Jour nu1 of Numerzcal Meth- 
ods zn Fluzds, 3, pp. 71-92, 1983 

                                                             Transactions on Modelling and Simulation vol 28, © 2001 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



[2] Tran-Cong, T. & Phan-Thien, N .  Three-dimensional study of extru- 
sion processes by boundary element method. Part  2 .  Extrusion of 
viscoelastic: fluid. Rheologica Acta, 27, pp. 639-648, 1988. 

[3] Nardini, D. & Brebbia, C.A. A new approach to  free vibration analysis 
using boundary elements. Boundary Elenzent Methods zn Engzneerzng, 
eds. C A .  Hrebbia, Springer: Berlin, Heidelberg and New York, 1982. 

[4] Coleman, C.J., Tullock, D.L. &L Phan-Thien, N.  An effective bound- 
ary element method for inhomogeneous partial differential equations. 
Journal of Applzed Mathematzcs and Phys~cs.  4 2 ,  pp. 730-745, 1991. 

[5] Nguyen-Thien, T., Tran-Cong, T .  gi Phan-Thien, N. An improved 
boundary element method for analysis of polymer profile extrusion. 
Engzneerzng Analyszs wzth Boundary Elements, 20 ,  pp. 81-89, 1997. 

[6] Phan-Thien. N. & Kim, S. Mzcrostrz~ctures 111 Elustzc Medza. Przncz- 
ples and Computatzonal Methods, Oxford University Press: New York 
and Oxford, pp. 74, 1994. 

[7] Zheng, R.,  Phan-Thien, N. & Coleman, C.J. A boundary element 
method approach for non-linear boundary-value problems. Computa- 
tional hfechunzcs, 8, pp. 71-86, 1991. 

[8] Mai-Duy, N. & Tran-Cong, T. Numerical solution of differential equa- 
tions using n~ultiquadric radial basis function networks. Neural Net- 
works, ( to  appear). 

[g] Mai-Duy, N. Sc Tran-Cong, T .  Numerical solution of Navier-Stokes 
equations using multiquadric radial basis function networks. Interna- 
tzonal Journal of Numerzcal Methods 111 Fluzds. ( to  appear). 

[l01 Mende l~on~  M A . ,  Yell, P.-W.! Brown, R.A. & Armstrong, R.C. Ap- 
proxin~ation error in finite element calculation of viscoelastic fluid 
flows. J .  of Non-Newtonian Fluid Mechanics, 1 0 ,  pp. 31-54, 1982. 

[l11 Phelan, F.R. Jr . ,  Malone, M.F.  & Winter, H .H .  A purely hyperbolic 
model for unsteady viscoelastic flow. Journal of Non-Newtonzan Fluzd 
Mechanzcs, 32, pp. 197-224, 1989. 

[l21 Grillet, A .M, ,  Yang, B.,  Khomami, R .  Sc Shaqfeh, E.S.G. Modeling 
of viscoelastic lid driven cavity flow using finite element simulations. 
Journal of Non-Newtonian Fluid h,fechanics. 88, pp. 99-131, 1999. 

[l31 Pakdel, F'., Spiegelberg, S.H. & McKinley, G 13. Cavity flows of elastic 
liquids: Two-di~nensional flows. Physics of Fluzcls, 9(11) ,  pp. 3123- 
3140. 1997. 

                                                             Transactions on Modelling and Simulation vol 28, © 2001 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 


