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Abstract— A variety of scheduling strategies can be employed 
in wireless systems to satisfy different system objectives and to 
cater for different traffic types. Static persistent resource 
allocations can be employed to transfer small M2M data packets 
efficiently compared to dynamic packet-by-packet scheduling, 
even when the M2M traffic model is non-deterministic. Recently 
adaptive persistent allocations have been proposed in which the 
volume of allocated resources can change in sympathy with the 
instantaneous queue size at the M2M device and without 
expensive signaling on control channels. This increases the 
efficiency of resource usage at the expense of a (typically small) 
increased packet delay. In this paper, we derive a statistical 
model for the device queue size and packet delay in static and 
adaptive persistent allocations which can be used for any arrival 
process (i.e., Poisson or otherwise). The primary motivation is to 
assist with dimensioning of persistent allocations given a set of 
QoS requirements (such as a prescribed delay budget). We 
validate the statistical model via comparison with queue size and 
delay statistics obtained from a discrete event simulation of a 
persistent allocation system. The validation is performed for both 
exponential and gamma distributed packet inter-arrivals to 
demonstrate the model generality.                

Index Terms— M2M, persistent allocation, wireless system, 
delay model 

I. INTRODUCTION 

   Machine-to-Machine (M2M) applications are widespread 
in a wide variety of markets including automotive, healthcare 
and utilities. For example, a Smart Grid typically supports 
multiple user and network oriented M2M applications such as 
Advanced Metering Infrastructure (AMI), automated Demand 
Response (DR), Fault Detection, Isolation and Restoration 
(FDIR) and Wide Area Measurement System (WAMS) [1]. 
These applications can have diverse Quality-of-Service (QoS) 
requirements; for example, AMI is typically not particularly 
delay sensitive whereas FDIR and WAMS are. However, there 
are also some commonalities between many M2M applications 
[2]: a relatively large number of devices, relatively small 
packet sizes, uplink biased traffic and low or no mobility 
compared to Human-to-Human (H2H) and Human-to-Machine 
(H2M) communication. 

There has been considerable interest in employing wide 
area wireless broadband systems such as 3GPP Long Term 
Evolution (LTE) and IEEE 802.16/Worldwide Interoperability 
for Microwave Access (WiMAX) networks for M2M 

applications due to their ubiquity, high economies of scale, 
high spectral efficiency, relatively low latency, robust network 
security and support for a wide variety of frequency bands and 
bandwidths compared to previous cellular standards [3-6]. 
However, these standards were originally designed primarily 
for H2H and H2M communications (even though they are 
capable of supporting any IP based application) and the 
standards bodies have only recently started development of 
enhancements to efficiently support typical M2M applications 
[7-8]. One major concern has been the likelihood of an 
overloaded random access channel caused by a large number of 
M2M devices located in each cell. Much research has been 
dedicated to this specific topic and many different solutions 
proposed [9][10]. This paper addresses a different issue which 
occurs when M2M devices have successfully completed the 
random access procedure in order to send uplink data. 

For a wide area wireless system in which dynamic packet-
by-packet scheduling of resources is employed as illustrated in 
Fig. 1(a), one of the major issues in supporting M2M 
applications is that the downlink control channel on which 
uplink grants are issued by the base station to devices typically 
saturates before the uplink data channel [11]. This is a direct 
result of a large number of devices each sending a small packet 
in quick succession and results in some proportion of the uplink 
data channel capacity effectively being wasted. One solution to 
this problem is to provide M2M devices with a static persistent 
uplink resource allocation once they have requested uplink 
resources as illustrated in Fig. 1(b) and as investigated by other 
researchers in [12-15]. In this scheme, only the first uplink 
transmission from the device is explicitly scheduled by means 
of the base station sending an uplink grant on the downlink 
control channel to the device. This initial uplink grant 
establishes a fixed allocation of resources to be used by the 
device on a periodic basis, thereby obviating the need to send 
an uplink grant on the downlink control channel for each and 
every uplink transmission. This is similar to the use of Semi 
Persistent Scheduling (SPS) in LTE for VoIP traffic [16] on a 
talk spurt basis, but differs in the fact that M2M device traffic 
is typically not deterministic like VoIP traffic during a talk 
spurt. This implies that the fixed uplink resources assigned to a 
device on a periodic basis will sometimes be insufficient and 
sometimes excessive to serve the pending data at the device. If 



the M2M application is delay sensitive, there is clearly a need 
to establish the distribution of packet delays using this scheme. 

 

 

Fig. 1: Comparison of Resource Allocation Schemes (from the 
Perspective of One Device) 

We note that a (static) persistent uplink resource allocation 
tends to be most appropriate for event driven devices which 
send a stream of packets with an arbitrary arrival process once 
some event is detected. For example, a sensor may not send 
any packets for a considerable duration, but once it detects a 
specific event, it may send packets to communicate the 
ongoing situation for an extended duration. Concrete M2M 
applications listed in [17] that may be suitable for a persistent 
resource allocation because they involve an ongoing stream of 
packets include Wide Area Measurement System (WAMS) for 
the smart grid, oil/gas pipeline monitoring, a healthcare 
gateway and video surveillance at traffic lights. Some of these 
applications involve individual devices feeding in to an M2M 
gateway over a personal or local area network, and the gateway 
aggregating/relaying traffic over a wide area network. In these 
scenarios, the M2M gateway is usually a good candidate for a 
persistent resource allocation because it sends an aggregated 
stream of packets and the aggregation is performed over a 
duration that fits well with the concept of a periodic allocation 
of resources. Dynamic packet-by-packet scheduling may still 
be more appropriate than the use of a persistent uplink resource 
allocation for some types of M2M devices, particularly those 
that send a small amount of data on an infrequent basis. 

An extension of static persistent uplink resource allocation 
scheme is adaptive persistent uplink resource allocation as 
proposed in [18] for the specific case of an LTE network. In 
this scheme, the volume of uplink resources assigned to a 
device can vary from one transmission opportunity to the next 
as illustrated in Fig. 1(c) based upon common knowledge at the 
device and base station about the device queue size. Both the 
device and base station use the most recent queue size data 
available as input to a pre-agreed adaptation function to 
calculate the volume of uplink resources  required for the next 
transmission opportunity (up to some maximum negotiated 
when the persistent allocation is initiated) without any need to 
signal updated uplink grants on the downlink control channel. 

This is clearly more efficient than static persistent uplink 
resource allocation for non-deterministic traffic sources 
(provided the adaptation function is chosen rationally) since the 
device consumes only the necessary uplink resources as 
dictated by its prevailing queue size. The uplink resources 
saved using this method can then be used by the base station 
for dynamic packet-by-packet scheduling of other network 
users. There does need to be a common understanding between 
the device and base station about which subset of nominally 
assigned resources are used when less than the maximum is 
required, and the details of this subsetting arrangement can 
either be known implicitly by both parties or communicated 
explicitly in the initial setup message for the persistent resource 
allocation sent by the base station. The scheme is illustrated in 
more detail in Fig. 2 for an example subsetting policy in which 
assigned resources are always contiguous. 

 

 Fig. 2: Adaptive Persistent Uplink Resource Allocation Details 

The key aspect of the adaptive persistent resource 
allocation scheme is that the device and base station are 
independently calculating the volume ݎ (using the adaptation 
function ݃ሺ∙ሻ) and specific subset (in this example ሼ1, 2. .  ሽ) ofݎ
the ߰ resources (using the subsetting policy) which are 
required for each and every transmission opportunity one 
period in advance based upon the parameters in the initial 
uplink grant. There are two important implications of this: 

 
i. Since the device and base station independently 

calculate which specific resources to use for each and 
every transmission opportunity, there is no need for 
the base station to explicitly signal the resources to be 
used on the downlink control channel on an ongoing 
basis. 

 
ii. Since the base station knows which specific ݎ 

resources the device will be using during each and 
every transmission opportunity one period in advance, 
then if  ݎ ൏ ߰ the base station can effectively reclaim 
the specific ߰ െ  resources which the target device ݎ
will not be using and dynamically schedule those 
resources for other system users. This means that there 
is no inherent resource wastage with the adaptive 
persistent resource allocation scheme. 



In adaptive persistent uplink resource allocation, the device 
queue size information is typically communicated from the 
device to the base station during each transmission opportunity 
and then used by both entities to calculate the volume of uplink 
resources required for the next transmission opportunity. For 
example, in LTE, the Buffer Status Report (BSR) [16] provides 
this queue size information. The device may of course generate 
more packets between the two transmission opportunities; 
although the device clearly knows at all times its instantaneous 
queue size, the base station only knows the queue size at the 
previous transmission opportunity. Therefore both entities must 
use the base station knowledge as input to the adaptation 
function when calculating the volume of uplink resources 
required for the next transmission opportunity in order to arrive 
at a common result. The adaptation function may attempt to 
predict the number of packets generated between transmission 
opportunities based upon known or estimated traffic parameters 
in order to better match the calculated volume of uplink 
resources with the actual instantaneous queue size at the time 
of the next transmission opportunity. Even so, in general, there 
will be occasions when the calculated volume of uplink 
resources is less than the maximum permissible for the 
persistent allocation, but insufficient to serve the full device 
queue. Therefore the adaptation comes at a cost in terms of 
increased delay relative to a static persistent uplink resource 
allocation because a static allocation could have served more 
packets during the transmission opportunity in this scenario. 
The relative distribution of packet delays for static and adaptive 
persistent uplink resource allocations is therefore of great 
interest when the M2M application is delay sensitive. 

While one benefit of the adaptive persistent uplink resource 
allocation scheme is that it can reduce resource 
utilisation/wastage at the expense of packet delay in a 
stationary environment, a second and possibly more significant 
advantage is that it can automatically adjust the resource 
utilisation within the lifetime of a persistent allocation in 
sympathy with dynamic changes to the arrival process of 
packets at the device without additional signalling on the 
downlink control channel. For example, if there is a temporary 
cessation to packet generation at the device, the adaptive 
persistent uplink resource allocation scheme can automatically 
reduce the assigned resources to the minimal possible to 
preserve the persistent allocation, and then ramp up again once 
the device begins to generate more packets. This is not possible 
with the static persistent uplink resource allocation scheme; 
first the change in arrival process must be detected at the base 
station, then a persistent allocation modification or teardown 
message must be sent on the downlink control channel to the 
device. 

With reference to Fig. 1(a)-(c), if we assume that queue size 
overhead information is communicated during each 
transmission opportunity of a persistent allocation, it is possible 
that the total overhead in doing so may be more or less than the 
corresponding overhead that would have occurred if dynamic 
scheduling had been used instead. This depends upon the 
nature of the dynamic scheduling algorithm in use, and in 
particular whether the scheduler tends to provide uplink grants 

for small amounts of data frequently or large amounts of data 
infrequently. This is an important topic as it affects the 
efficiency of the system as a whole; however we do not discuss 
it further as the objective of this paper is to provide a 
performance model of individual static and adaptive persistent 
resource allocations.     

In order to quantify the delay in the static persistent uplink 
resource allocation scheme, we note that from the perspective 
of the device, the persistent allocation is similar to an 
assignment in a TDMA system in that a fixed amount of 
resources are assumed by both ends of the wireless link on a 
periodic basis. Queuing models for TDMA systems have been 
studied in depth in different contexts in the literature [19-24]. 
For example, in [19-20], one timeslot per TDMA frame is 
allocated to a device and one packet can be transferred per 
timeslot. In [21-23], multiple contiguous timeslots per TDMA 
frame can be allocated to a device to allow serial transfer of 
multiple packets. However, the static persistent uplink resource 
allocation scheme described in this paper is subtly different 
because the assumption is that multiple packets can be 
transmitted simultaneously (i.e., in parallel) during a 
transmission opportunity. This is sometimes referred to as bulk 
service [25] in queueing theory and clearly impacts the queue 
size and delay distributions. The bulk service assumption is 
consistent with the OFDM/OFDMA multiple access employed 
in LTE and 802.16 networks in which different packets are 
assigned to different subcarrier blocks, although we do not 
assume any specific features of OFDM/OFDMA or 
LTE/802.16 in our analysis. 

In this paper, we derive the device queue size probability 
mass function (pmf) and delay probability density function 
(pdf) for the static and adaptive persistent uplink resource 
allocation schemes for a general/arbitrary packet arrival 
process. The device is assumed to have a single queue of 
unlimited capacity in which packets are served with a First 
Come First Served (FCFS) queue discipline. This is typical of 
many M2M devices which have a single function and therefore 
do not need to support internal prioritisation of packets. We 
assume that the device has a fixed geographical location such 
that the channel quality is time invariant and therefore link 
adaptation is unnecessary. In addition we assume a constant 
packet size which is typical of many M2M applications [26-
28], particularly those related to monitoring such as Wireless 
Sensor Networks (WSNs). This implies that for a given amount 
of allocated resources, the volume of data that can be served in 
terms of the number of packets is time invariant. The primary 
motivation in deriving the queue size and delay distributions is 
to allow the parameters of a persistent resource allocation, in 
particular the transmission opportunity period and the 
(maximum) amount of allocated resources per transmission 
opportunity, to be easily and accurately determined to allow a 
delay sensitive M2M application to satisfy a specific packet 
delay budget criterion. 

Note that the choice between dynamic packet-by-packet 
scheduling, a static persistent resource allocation and an 
adaptive persistent resource allocation is somewhat subjective 
and depends upon multiple factors including QoS 



requirements, source traffic characteristics, charging policies 
and instantaneous carried traffic volume. It may involve online 
or offline input from the end user particularly if the different 
schemes are charged differently. We do not address policy or 
system related issues in this paper, but instead concentrate on 
objective performance characterisation of static and adaptive 
persistent resource allocations. 

The paper is organised as follows. In Section II, we present 
the system model for the static and adaptive persistent uplink 
resource allocation schemes. We use this model in Section III 
to derive the queue size and delay distributions. We also derive 
the expected service capacity for the adaptive case. In Section 
IV, we validate the mathematical models by comparison with 
the queue size and delay statistics generated by a discrete event 
simulation model of the persistent uplink resource allocation 
schemes. The validation involves consideration of packet inter-
arrivals which are distributed according to an exponential 
distribution and a gamma distribution in order to demonstrate 
the generic nature of the models. Finally, in Section V, we 
draw conclusions.                            

II. SYSTEM MODEL 

A. Static Allocation 

Fig. 3 illustrates the system model and parameters for static 
persistent uplink resource allocations as discussed in Section I. 
A device is provided with persistent allocation epochs with 
service time ߬௦௟௢௧ and period ߬௣௘௥௜௢ௗ such that up to ߰ packets 
pending in the device queue can be sent each epoch. We 
consider the packets which are to be sent as being removed 
from the queue at a single point in time (i.e., the epoch) which 
corresponds to the start of the service time. ߬௣௘௥௜௢ௗ will usually 
be an integer multiple of ߬௦௟௢௧ in practice, although we do not 
make this assumption in any of the following analysis. ߬௣௘௥௜௢ௗ, 
߬௦௟௢௧ and ߰ are parameters of the system and/or the specific 
persistent allocation and are assumed fixed for the duration of 
the allocation.  

When a new packet is generated by the device at a time Δݐ 
after the previous persistent allocation epoch, there is a random 
duration ௪ܶ௔௜௧ ൌ ߬௣௘௥௜௢ௗ െ Δݐ until the next epoch, which is 
the earliest point in time that the packet can be sent or served. 
௪ܶ௔௜௧ is a continuous uniform random variable such that 
௪ܶ௔௜௧~ܷ݊ሺ0, ߬௣௘௥௜௢ௗሻ. 

 

 

Fig. 3: System Model for Static Persistent Allocations 

Let the queue size at the time the packet is generated be ܮ. 
The packet is then the ሺܮ ൅ 1ሻ௧௛ packet in the queue and must 
wait ڿሺܮ ൅ 1ሻ ߰⁄  persistent allocation epochs to be sent. The ۀ
duration between the next persistent allocation epoch and the 
epoch in which the packet is sent is ሺڿሺܮ ൅ 1ሻ ߰⁄ ۀ െ
1ሻ߬௣௘௥௜௢ௗ ൌ ܮہ ߰⁄  ௣௘௥௜௢ௗ where we use the identity߬ۂ
ݔሺڿ ൅ 1ሻ ⁄ݕ ۀ െ 1 ൌ  .ۂݕ/ݔہ

 The delay ܹ for a packet to be sent is therefore: 
 

ܹ ൌ ௪ܶ௔௜௧ ൅ ඌ
ܮ
߰
ඐ ߬௣௘௥௜௢ௗ൅߬௦௟௢௧

ൌ ൬ඌ
ܮ
߰
ඐ ൅ 1൰ ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧ 

(1) 

 
Since ௪ܶ௔௜௧ and ܮ are random variables, so is ܹ. In order to 

derive the probability distribution of ܹ, the distribution of ܮ 
first needs to be determined. We note that ܮ is a function of 
time; as we move from one persistent allocation epoch (Δ0=ݐ) 
to the next (Δݐ=߬௣௘௥௜௢ௗ), the expected queue size ܧሼܮሽ 
increases linearly (assuming the rate parameter ߣ is constant) 
because new packets are being generated, but existing packets 
at the head of the queue are not being serviced. Then as we 
reach the next persistent allocation epoch, up to ߰ packets can 
be serviced in bulk simultaneously such that ܮ drops. 

A stable system for which the number of packets in the 
queue does not increase in an unbounded manner requires the 
expected number of packet arrivals during ߬௣௘௥௜௢ௗ, ߬ߣ௣௘௥௜௢ௗ, to 
be less than the maximum number ߰ of packet departures 
during the same period. Alternatively, we may say that the load 
ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰⁄ ൏ 1 for a stable system. 

B. Adaptive Allocation 

The same system model applies for the adaptive persistent 
uplink resource allocations discussed in Section I with the 
exception that the number of packets that can be sent during 
each epoch can vary from one epoch to the next. We represent 
the instantaneous service capacity at an epoch as a random 
variable ܩ. We let ܩ ൌ ݃ሺܮᇱ, ߰ሻ where ݃ሺܮᇱ, ߰ሻ is a generic 
adaptation function of the size ܮᇱ of the remaining queue 
immediately after the previous epoch and the maximum service 
capacity ߰. The only assumption we make about ݃ሺܮᇱ, ߰ሻ is 
that it provides a rational mapping in the sense that: 

 
݃ሺܮᇱ, ߰ሻ ∈ Գ 

 
1 ൑ ݃ሺܮᇱ, ߰ሻ ൑ ߰ 

 
݃ሺܮᇱ, ߰ሻ ൒ ᇱܮ								,ᇱܮ ൑ ߰ 

    
݃ሺܮᇱ, ߰ሻ ൌ ߰, ᇱܮ						 ൐ ߰ 

(2)

    
This means that the instantaneous service capacity ܩ is 

greater than or equal to the size ܮᇱ of the remaining queue 
immediately after the previous epoch unless the maximum 
service capacity ߰ would be exceeded as a result, in which case 
the maximum service capacity ߰ is employed. These 

τperiod

τslotΔt

Packet arrival

time t

epoch epoch

Service 
capacity of ψ 

packets



conditions minimize the possibility that the queue grows 
without bound.  

݃ሺܮᇱ, ߰ሻ is not allowed to return a zero value when ܮᇱ ൌ 0 
because it must always be possible for a device to 
communicate its remaining queue size to the base station as 
part of the next persistent allocation transmission even if there 
are no application packets pending in the queue at the time of 
this transmission. We assume that the remaining queue size ܮᇱ 
is not communicated via its own packet; rather it is 
piggybacked in the header of a packet serviced from the device 
queue, or else piggybacked in the header of a dummy packet if 
the device queue is empty. 

With regard to the delay ܹ for a packet to be sent in the 
adaptive case, we note here that ܹ is a random variable which 
is a function of the queue size ܮ at the time the packet arrives 
and the adaptation function ݃ሺܮᇱ, ߰ሻ. This is discussed in 
greater detail in Section III.    

III. ANALYSIS 

A. Queue Size Distribution (Static Allocation) 

In this section, we first derive the probability mass function 
(pmf) of the queue size ܮ immediately after packets have been 
removed or serviced from the queue for a static persistent 
resource allocation. This can be used as the basis for deriving 
the pmf of ܮ at an arbitrary point in time by considering the 
statistics of packet arrivals since the last service time. 

We assume packets are removed from the queue for service 
at single points in time, the persistent allocation epochs, which 
occur periodically at times ݐ଴, ݐ଴ ൅ ߬௣௘௥௜௢ௗ … etc. as illustrated 
in Fig. 4. We define a time ݐ଴ ൅  immediately after the first ݐߜ
epoch at which ܮ ൌ ݅. If the number of packet arrivals between 
the first and second epochs is ݆, ܮ ൌ ݅ ൅ ݆ immediately prior to 
the second epoch. Since a maximum of ߰ packets can be 
removed from the queue and sent at the second epoch, then at 
time ݐ଴ ൅ ߬௣௘௥௜௢ௗ ൅  ,immediately after the second epoch ݐߜ
ܮ ൌ 0 if ݅ ൅ ݆ ൑ ߰ and ܮ ൌ ݅ ൅ ݆ െ ߰ if ݅ ൅ ݆ ൐ ߰. 
Alternatively, this can be expressed as ܮ ൌ ݅ ൅ ݆ െ ݉݅݊	ሼ݅ ൅
݆, ߰ሽ. 

 

Fig. 4: Background to the Analysis of Queue Size L Immediately After 
a Static Persistent Allocation Epoch 

 

To derive the limiting probability that ܮ ൌ ݊ at time ݐ଴ ൅
߬௣௘௥௜௢ௗ ൅ ݐߜ immediately after the second epoch as ݐߜ → 0, 
which we denote as lim

ఋ௧→଴
଴ݐ௡൫݌ ൅ ߬௣௘௥௜௢ௗ ൅  ൯. we considerݐߜ

the various combinations of events (i.e., packet arrivals and 
departures) that can occur starting one period earlier at time 
଴ݐ ൅ ܮ when  ݐߜ ൌ ݅.  

There are two individual components of lim
ఋ௧→଴

଴ݐ௡൫݌ ൅

߬௣௘௥௜௢ௗ ൅  ൯ to consider defined by different relationshipsݐߜ
between ݅, ݆ and ߰: 

 
i. ݅ ൅ ݆ ൑ ߰. In this case, 0 ൑ ݅ ൑ ߰ and 0 ൑ ݆ ൑ ߰ െ ݅ by 

definition. The complete queue of size ܮ ൌ ݅ ൅ ݆ that exists 
immediately prior to the second epoch can be serviced 
such that ܮ ൌ ݊ ൌ 0 at time ݐ଴ ൅ ߬௣௘௥௜௢ௗ ൅  ݐߜ
immediately after the epoch. Therefore 	 lim

ఋ௧→଴
଴ݐ଴൫݌ ൅

߬௣௘௥௜௢ௗ ൅  ൯ is given by considering all possible values ofݐߜ
݅ and ݆ that satisfy the above constraints as follows: 
 

lim
ఋ௧→଴

଴ݐ଴൫݌ ൅ ߬௣௘௥௜௢ௗ ൅ ൯ݐߜ

ൌ෍ቌ lim
ఋ௧→଴

଴ݐ௜ሺ݌ ൅ ሻ෍ݐߜ ௝ܽ൫߬௣௘௥௜௢ௗ൯

టି௜

௝ୀ଴

ቍ

ట

௜ୀ଴

 

 

(3)

 
where: 

 
 ܽ௠ሺΔݐሻ is the probability of ݉ packets arriving during 

the interval Δݐ. For example, for Poisson arrivals with 

rate parameter ߣ, ܽ௠ሺΔݐሻ ൌ
ሺఒ୼௧ሻ೘

௠!
݁ିఒ୼௧. 

 
ii. ݅ ൅ ݆ ൐ ߰. In this case, the queue of size ܮ ൌ ݅ ൅ ݆ that 

exists immediately prior to the second epoch can only be 
partially serviced such that ܮ ൌ ݊ ൌ ݅ ൅ ݆ െ ߰ ൐ 0 at time 
଴ݐ ൅ ߬௣௘௥௜௢ௗ ൅   .immediately after the epoch ݐߜ
Considering the equation ݊ ൌ ݅ ൅ ݆ െ ߰ leads to the 
constraints 0 ൑ ݅ ൑ ߰ ൅ ݊ and ݆ ൌ ߰ ൅ ݊ െ ݅. Therefore 
݈݅݉
ఋ௧→଴

଴ݐ௡൫݌ ൅ ߬௣௘௥௜௢ௗ ൅  ൯ is given by considering allݐߜ

possible values of ݅ and ݆ that satisfy the above constraints 
as follows: 

 
lim
ఋ௧→଴

଴ݐ௡൫݌ ൅ ߬௣௘௥௜௢ௗ ൅ ൯ݐߜ

ൌ ෍ lim
ఋ௧→଴

଴ݐ௜ሺ݌ ൅ ሻݐߜ ܽటା௡ି௜൫߬௣௘௥௜௢ௗ൯

టା௡

௜ୀ଴
∀ ݊ ൒ 1

(4)

 
For a stable system as described in Section II such that 

௣௘௥௜௢ௗ߬ߣ ൏ ߰, or alternatively ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰⁄ ൏ 1:  
 
lim
ఋ௧→଴

଴ݐ௡൫݌ ൅ ߬௣௘௥௜௢ௗ ൅ ൯ݐߜ ൌ lim
ఋ௧→଴

଴ݐ௡ሺ݌ ൅ 	ሻݐߜ ∀ ݊ 

  
(5)

 
Combining Eq. (3), (4) and (5): 



 
lim
ఋ௧→଴

଴ݐ௡ሺ݌ ൅ ሻݐߜ

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
෍ቌ lim

ఋ௧→଴
଴ݐ௜ሺ݌ ൅ ሻ෍ݐߜ ௝ܽ൫߬௣௘௥௜௢ௗ൯

టି௜

௝ୀ଴

ቍ

ట

௜ୀ଴

,												݊ ൌ 0

෍ lim
ఋ௧→଴

଴ݐ௜ሺ݌ ൅ ሻݐߜ ܽటା௡ି௜൫߬௣௘௥௜௢ௗ൯

టା௡

௜ୀ଴

,														݊ ൒ 1

 

	

(6)

 
Eq. (6) forms a system of homogeneous linear equations in 

the variables ሼ lim
ఋ௧→଴

଴ݐ௡ሺ݌ ൅  ሻሽ which collectively representݐߜ

the pmf of the queue size ܮ immediately after a persistent 
allocation epoch. The equation coefficients are derived from 
the count model ሼܽ௠൫߬௣௘௥௜௢ௗ൯ሽ which in theory can be 
calculated according to any appropriate arrival process, 
whether Poisson or otherwise. Although there is no known 
general closed form solution for Eq. (6), a solution can be 
evaluated numerically and efficiently using linear algebra 
techniques such as Gaussian elimination. 

 To derive the probability ݌௡ሺݐ଴ ൅  ሻ that the queue sizeݐ∆
ܮ ൌ ݊ at time ݐ଴ ൅ where 0 ݐ∆ ൏ ݐ∆ ൑ ߬௣௘௥௜௢ௗ, consider that 
ܮ ൌ ݅ (where 0 ൑ ݅ ൑ ݊) immediately after the epoch at time 
݆ ଴. Then there must be exactlyݐ ൌ ݊ െ ݅ packet arrivals in the 
period ∆ݐ in order for ܮ ൌ ݊ at time ݐ଴ ൅  Summing over . ݐ∆
all possible values of ݅ yields: 

  

଴ݐ௡ሺ݌ ൅ ሻݐ∆ ൌ෍ lim
ఋ௧→଴

଴ݐ௜ሺ݌ ൅ ሻݐߜ
௡

௜ୀ଴

ܽ௡ି௜ሺ∆ݐሻ 

0 ൏ ݐ∆ ൑ ߬௣௘௥௜௢ௗ

(7)

 
Eq. (7) provides a simple means of calculating ݌௡ሺݐ଴ ൅  ሻݐ∆

once ሼ lim
ఋ௧→଴

଴ݐ௡ሺ݌ ൅ ݐ∆ ሻሽ from Eq. (6) is known. Whenݐߜ ൌ

߬௣௘௥௜௢ௗ, we obtain the probability ݌௡൫ݐ଴ ൅ ߬௣௘௥௜௢ௗ൯ that ܮ ൌ ݊ 
immediately prior to the persistent allocation epoch. 

B. Queue Size Distribution (Adaptive Allocation) 

The probability mass function (pmf) of the queue size ܮ 
immediately after packets have been removed or serviced from 
the queue for an adaptive persistent resource allocation can be 
derived in a similar manner to the static allocation case. Again 
there are two individual components to consider defined by 
different relationships between ݅ (the queue size at time ݐ଴ ൅  ݐߜ
immediately after the first persistent allocation epoch), ݆ (the 
number of packet arrivals between the first and second 
persistent allocation epochs) and the adaptation function 
݃ሺ݅, ߰ሻ:  

 
i. ݅ ൅ ݆ ൑ ݃ሺ݅, ߰ሻ. In this case, which results in ܮ ൌ ݊ ൌ 0 

immediately after the second epoch, given that the 
maximum value of ݃ሺ݅, ߰ሻ is ߰ from Eq. (2), 0 ൑ ݅ ൑ ߰ 
and 0 ൑ ݆ ൑ ݃ሺ݅, ߰ሻ െ ݅ by definition.  
 

ii. ݅ ൅ ݆ ൐ ݃ሺ݅, ߰ሻ. In this case, the queue of size ܮ ൌ ݅ ൅ ݆ 
that exists immediately prior to the second epoch can only 

be partially serviced such that ܮ ൌ ݊ ൌ ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ ൐
0 immediately after the epoch. Considering the equation 
݊ ൌ ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ, and given that the maximum value of 
݃ሺ݅, ߰ሻ is ߰ from Eq. (2), leads to the constraints 0 ൑ ݅ ൑
߰ ൅ ݊ and ݆ ൌ ݃ሺ݅, ߰ሻ ൅ ݊ െ ݅. 

 
We denote the limiting probability that ܮ ൌ ݊ at time ݐ଴ ൅

ݐߜ as ݐߜ → 0 as ݈݅݉
ఋ௧→଴

଴ݐ௡஺ሺ݌ ൅  to ’ܣ‘ ሻ with a superscriptݐߜ

distinguish the adaptive case. Then considering all possible 
values of ݅ and ݆ that satisfy the above constraints yields: 

 
lim
ఋ௧→଴

଴ݐ௡஺ሺ݌ ൅ ሻݐߜ

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
෍ቌ lim

ఋ௧→଴
௜݌
஺ሺݐ଴ ൅ ሻݐߜ ෍ ௝ܽ൫߬௣௘௥௜௢ௗ൯

௚ሺ௜,టሻି௜

௝ୀ଴

ቍ

ట

௜ୀ଴

,												݊ ൌ 0

෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ ܽ௚ሺ௜,టሻା௡ି௜൫߬௣௘௥௜௢ௗ൯

టା௡

௜ୀ଴

,														݊ ൒ 1

(8)

 
The probability ݌௡஺ሺݐ଴ ൅ ܮ ሻ that the queue sizeݐ∆ ൌ ݊ at 

time ݐ଴ ൅ where 0 ݐ∆ ൏ ݐ∆ ൑ ߬௣௘௥௜௢ௗ for the adaptive 
allocation case can be derived using the same reasoning as for 
the static allocation case. Specifically: 

 

଴ݐ௡஺ሺ݌ ൅ ሻݐ∆ ൌ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

௡

௜ୀ଴

ܽ௡ି௜ሺ∆ݐሻ 

0 ൏ ݐ∆ ൑ ߬௣௘௥௜௢ௗ

(9)

C. Count Models 

The queue size probabilities defined by Eq. (6) and Eq. (7) 
for static allocation, and by Eq. (8) and Eq. (9) for adaptive 
allocation, depend upon a count model for the probability of a 
specific number of packet arrivals over a specific duration. In 
some cases, such a count model may be directly available, but 
it is more likely that the count model will need to be derived on 
the basis of an actual or estimated distribution for the packet 
inter-arrival times. For example, with exponentially distributed 
packet inter-arrivals, the count model is the familiar Poisson 
distribution. Count models are available for other inter-arrival 
distributions, for example the Gamma [29] and Weibull [30] 
distributions, although they are typically more complex than 
the simple Poisson distribution. 

  A significant issue with applying count models in this 
context is that the start time for the duration ∆ݐ over which the 
count applies is a persistent allocation epoch. As illustrated in 
Fig. 5, this does not in general correspond to the start of the 
stochastic process which generates packets. Therefore the 
duration from the persistent allocation epoch to the first packet 
arrival after the epoch is not a (full) inter-arrival time, but 
rather a partial inter-arrival time. Most published count models 
do not take into account the effect of an initial partial inter-
arrival time. For exponentially distributed packet inter-arrivals, 
this is not an issue because the memoryless property of the 
exponential distribution implies that the distribution of partial 
inter-arrival times is the same as that of full inter-arrival times 



[25]; therefore the Poisson count model applies regardless. 
However, since no other inter-arrival time distribution shares 
this memoryless property, the initial partial inter-arrival time 
must be considered in general. 

 

   

Fig. 5: Background to the Use of Count Models with an Initial 
Partial Inter-arrival Time  

As illustrated in Fig. 5, the inter-arrival time between the 
first packet arrival after a persistent allocation epoch and the 
previous packet arrival can be broken down into two 
component random variables: the current age ܺ of the inter-
arrival at the time of the epoch and the residual lifetime ܻ. ܻ 
depends upon ܺ for all inter-arrival distributions apart from the 
exponential distribution. Therefore, in general, we must 
consider both ܺ and ܻ when developing a model for the count 
of packet arrivals over the the duration ∆ݐ. There is a theorem 
in renewal theory [31] which states that the pdf of ܻ, ௒݂ሺݕሻ, is 
given  by:  

 

௒݂ሺݕሻ ൌ 	
ܴ௑ା௒ሺݕሻ

ߤ
 (10)

where: 
 

 ܴ௑ା௒ሺ∙ሻ is the survival function (i.e., the complement 
of the cumulative distribution function) of the inter-
arrival time ܺ ൅ ܻ 

 ߤ is the expected inter-arrival time ܧሼܺ ൅ ܻሽ.    
 

If the residual lifetime ܻ is greater than the count duration 
Δݐ, there are no packet arrivals during Δݐ. However, if ܻ ൏ Δݐ, 
there is exactly one packet arrival after a duration ܻ and there 
may or may not be further packet arrivals during the remaining 
period of Δݐ െ ܻ. The duration Δݐ െ ܻ starts immediately after 
a packet arrival, therefore a traditional count model can be 
applied for this period. For ݉ ൒ 1 packet arrivals during the 
complete count duration Δݐ, one packet arrives after a duration 
ܻ and ݉ െ 1 packets arrive during Δݐ െ ܻ. Therefore the 
effective count model is as follows:  

 

ܽ௠ሺΔݐሻ ൌ

ە
ۖ
۔

ۖ
ሺܻܲۓ ൐ Δݐሻ ൌ න ௒݂ሺݕሻ	݀ݕ

ஶ

୼௧

, ݉ ൌ 0

න ܽ௠ିଵ
ᇱ ሺΔݐ െ ሻݕ ௒݂ሺݕሻ	݀ݕ

୼௧

଴

, ݉ ൒ 1

 (11)

 
where: 
 

 ܽ௠ିଵ
ᇱ ሺΔݐሻ is the probability of ݉ െ 1 packets arriving 

during the interval Δݐ assuming that a packet arrives 
immediately before the start of this interval. 

D. Expected Service Capacity (Adaptive Allocation) 

The expectation of the instantaneous service capacity ܩ ൌ
݃ሺܮᇱ, ߰ሻ can be calculated as follows: 

 

ሽܩሼܧ ൌ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ஶ

௜ୀ଴

݃ሺ݅, ߰ሻ

ൌ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ట

௜ୀ଴

݃ሺ݅, ߰ሻ ൅ ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ஶ

௜ୀటାଵ

݃ሺ݅, ߰ሻ

ൌ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ట

௜ୀ଴

݃ሺ݅, ߰ሻ ൅ ߰ ෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ஶ

௜ୀటାଵ

ൌ ൮෍ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ

ట

௜ୀ଴

݃ሺ݅, ߰ሻ൲ ൅ ߰ ቀ1 െ lim
ఋ௧→଴

టܥ
஺ሺݐ଴ ൅  ሻቁݐߜ

(12)

where we have used the property that ݃ሺ݅, ߰ሻ ൌ ߰ for ݅ ൐ ߰ 
from Eq. (2) and ܥట

஺ሺݐ଴ ൅  ሻ is the cumulative distributionݐߜ
function of the queue size for adaptive allocations representing 
the probability that ܮ ൑ ߰ at time ݐ଴ ൅  .ݐߜ

E. Delay Distribution (Static Allocation) 

We now consider the conditional delay ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ 
for a packet which arrives at time ܶ ൌ ଴ݐ ൅ Δݐ that is an 
interval Δݐ after the persistent allocation epoch at time ݐ଴, 
where 0 ൏ ݐ∆ ൑ ߬௣௘௥௜௢ௗ. Eq. (1) illustrates that ܹ|ሺܶ ൌ ଴ݐ ൅
Δݐሻ is a discrete random variable which is quantised into the 
sum of a fixed offset (the interval to the next epoch of 
߬௣௘௥௜௢ௗ െ  plus the service time ߬௦௟௢௧) and an integer multiple ݐ∆
of ߬௣௘௥௜௢ௗ that depends upon the instantaneous queue size ܮ at 
the time of packet arrival.  

Therefore we can represent ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ in terms of 
another discrete random variable ܵ ∈ Գ଴ ൌ ሼ0,1,2,… ሽ where 
ܵ ൌ ܮہ ߰⁄  :as follows ۂ

 
ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ ൌ ሺܵ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧ (13)

 
Clearly the delay ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ takes the same value 

for any queue size ܮ such that ܵ߰ ൑ ܮ ൑ ሺܵ ൅ 1ሻ߰ െ 1. 
Therefore the conditional pmf for ܵ or ܹ for a packet arrival at 
time ܶ ൌ ଴ݐ ൅ Δݐ is given by: 

 



ܲ൫ܹ ൌ ሺݏ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧	ห	ܶ ൌ ଴ݐ ൅ Δݐሻ

ൌ ܲሺܵ ൌ ܶ	|	ݏ ൌ ଴ݐ ൅ Δݐሻ ൌ ෍ ଴ݐ௟ሺ݌ ൅ Δݐሻ

ሺ௦ାଵሻటିଵ

௟ୀ௦ట

 
(14)

 
In practice, this conditional pmf based upon the time of 

packet arrival is not very useful because packets arrive 
randomly in the interval between two adjacent persistent 
allocation epochs. The marginal probability density function 
ௐ݂ሺݓሻ for ܹ averaged over all time of arrivals is given by: 

 
ௐ݂ሺݓሻ

ൌ න ܲ൫ܹ ൌ ሺݏ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧	ห	ܶ ൌ ଴ݐ ൅ Δݐሻ்݂ ሺܶ ൌ ଴ݐ ൅ Δݐሻ
௧బାఛ೛೐ೝ೔೚೏

௧బ

dt

ൌ
1

߬௣௘௥௜௢ௗ
න ܲ൫ܹ ൌ ሺݏ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ ൅	߬௦௟௢௧	ห	ܶ ൌ ଴ݐ ൅ Δݐሻ
௧బାఛ೛೐ೝ೔೚೏

௧బ

dt

(15)

 
where we use the result that the pdf ்݂ ሺܶ) of the time of 

packet arrival ܶ over the period ߬௣௘௥௜௢ௗ is uniform and 
therefore ்݂ ሺܶሻ ൌ 1 ߬௣௘௥௜௢ௗ⁄ . 

F. Delay Distribution (Adaptive Allocation) 

The derivation of the distribution of the conditional delay 
ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ for a packet arrival at time ܶ ൌ ଴ݐ ൅ Δ0) ݐ ൏
ݐ∆ ൑ ߬௣௘௥௜௢ௗ) in the adaptive case is considerably more 
complex than in the static case because the delay depends not 
only upon the prevailing queue size at this time, but also on the 
instantaneous queue size immediately after the preceding epoch 
at time ݐ଴ which determines the instantaneous service capacity 
଴ݐ at the following epoch at time ܩ ൅ ߬௣௘௥௜௢ௗ. 

Assume the queue size ܮ ൌ ݅ immediately after the epoch at 
time ݐ଴ and there are ݆ packet arrivals in the period from time 
଴ݐ ଴ to timeݐ ൅ Δݐ before the packet in question arrives, so it 
sits behind a pre-existing queue of size ݅ ൅ ݆ and the total 
queue size immediately after the packet arrival is ݅ ൅ ݆ ൅ 1. 
The instantaneous service capacity at the following epoch at 
time ݐ଴ ൅ ߬௣௘௥௜௢ௗ is ݃ሺ݅, ߰ሻ. If ݅ ൅ ݆ ൏ ݃ሺ݅, ߰ሻ, there is 
capacity at the epoch at time ݐ଴ ൅ ߬௣௘௥௜௢ௗ to serve the packet 
under consideration and the delay is ߬௣௘௥௜௢ௗ െ ݅ If .ݐ݋݈ݏ߬	൅	ݐ∆ ൅
݆ ൒ ݃ሺ݅, ߰ሻ, there is not capacity at the epoch at time ݐ଴ ൅
߬௣௘௥௜௢ௗ to serve the packet under consideration. Instead the 
packet now sits behind a queue of size ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ so the 
total queue size is at least ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ ൅ 1 immediately 
after the epoch at time ݐ଴ ൅ ߬௣௘௥௜௢ௗ. According to Eq. (2), the 
instantaneous service capacity at the next epoch at time ݐ଴ ൅
2߬௣௘௥௜௢ௗ	must be greater than or equal to ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ ൅ 1 if 
݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ ൅ 1 ൑ ߰, otherwise it is equal to ߰, so either 
the packet under consideration is served at this epoch with 
delay 2߬௣௘௥௜௢ௗ െ  ߬௦௟௢௧ or ߰ packets ahead of it in the	൅	ݐ∆
queue are served such that after the epoch, it sits behind a 
queue of size ܮ ൌ ݅ ൅ ݆ െ ݃ሺ݅, ߰ሻ െ ߰. This process continues 
such that at each subsequent epoch, either the packet under 
consideration is served or ߰ packets ahead of it in the queue are 
served. The number of epochs required to serve the packet 
under consideration can be derived by considering that this 
packet has position ݅ ൅ ݆ ൅ 1 in the queue, up to ݃ሺ݅, ߰ሻ 
packets can be served at the first epoch following packet arrival 

and up to ߰ packets can be served at each subsequent epoch.  
ඃ൫݅ ൅ ݆ ൅ 1 െ ݃ሺ݅, ߰ሻ൯ ߰⁄ ඇ ൅ 1 ൌ ඃ൫݅ ൅ ݆ ൅ 1 ൅ ߰ െ ݃ሺ݅, ߰ሻ൯ ߰⁄ ඇ 
epochs are therefore required and the delay is given by 
߬௣௘௥௜௢ௗ െ ߬௦௟௢௧	൅	ݐ∆ ൅ ൫ඃ൫݅ ൅ ݆ ൅ 1 ൅ ߰ െ ݃ሺ݅, ߰ሻ൯ ߰⁄ ඇ െ 1൯߬௣௘௥௜௢ௗ. 
Using the identity ڿሺݔ ൅ 1ሻ ⁄ݕ ۀ െ 1 ൌ  the delay ,ۂݕ/ݔہ
ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ can be written as : 

 
ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ ൌ ሺܵᇱ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧ (16)

 

where ܵᇱ ൌ ቔ௜ା௝ାటି௚
ሺ௜,టሻ

ట
ቕ ∈ Գ଴ ൌ ሼ0,1,2,… ሽ. 

 
Clearly the delay ܹ|ሺܶ ൌ ଴ݐ ൅ Δݐሻ takes the same value 

when ݏᇱ߰ ൑ ݅ ൅ ݆ ൅ ߰ െ ݃ሺ݅, ߰ሻ ൑ ሺݏᇱ ൅ 1ሻ߰ െ 1. For an 
arbitrary value ܵᇱ ൌ ᇱ, ݅ can therefore vary in the range 0ݏ ൑
݅ ൑ ሺݏᇱ ൅ 1ሻ߰ െ 1 and ݆ can independently vary in the range 
ሺݏᇱ െ 1ሻ߰ ൅ ݃ሺ݅, ߰ሻ െ ݅ ൑ ݆ ൑ ᇱ߰ݏ ൅ ݃ሺ݅, ߰ሻ െ 1 െ ݅ 
provided the lower limit is non-negative. Therefore the 
conditional pmf for ܵᇱ or ܹ for a packet arrival at time 
ܶ ൌ ଴ݐ ൅ Δݐ is given by: 

 
ܲ൫ܹ ൌ ሺݏᇱ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ ൅ ߬௦௟௢௧	ห	ܶ ൌ ଴ݐ ൅ Δݐሻ
ൌ ܲሺܵᇱ ൌ ᇱݏ | ܶ ൌ ଴ݐ ൅ Δݐሻ

ൌ ෍ ቌ lim
ఋ௧→଴

௜݌
஺ሺݐ଴ ൅ ሻݐߜ ෍ ௝ܽሺ∆ݐሻ

௦ᇲటା௚ሺ௜,టሻିଵି௜

௝ୀ୫ୟ୶	ሼ଴,ሺ௦ᇲିଵሻటା௚ሺ௜,టሻି௜ሽ

ቍ

൫௦ᇲାଵ൯టିଵ

௜ୀ଴

(17)

 
With reference to Eq. (15), the marginal probability density 

function ௐ݂ሺݓሻ for ܹ averaged over all time of arrivals is 
given by: 
 

ௐ݂ሺݓሻ ൌ
1

߬௣௘௥௜௢ௗ
න ܲ൫ܹ ൌ ሺݏᇱ ൅ 1ሻ߬௣௘௥௜௢ௗ െ Δݐ	൅	߬௦௟௢௧	ห	ܶ ൌ ଴ݐ ൅ Δݐሻ
௧బାఛ೛೐ೝ೔೚೏

௧బ

dt (18)

IV. VALIDATION 

A. Introduction 

In this section, we validate the statistical models for queue 
size ܮ and delay ܹ developed in Section III for static and 
adaptive persistent uplink resource allocations. This involves 
comparing the predicted results from the statistical models 
(evaluated numerically) for various scenarios against those 
arising from a discrete event simulation of a custom OPNET 
model. In the simulation, the device queue is physically 
modelled and its size can be inspected at arbitrary times 
relative to the persistent allocation epochs; likewise the delay 
between a packet being generated by the device and it being 
sent at a persistent allocation can be measured on a per packet 
basis. Therefore we can compare the predicted distributions of 
queue size ܮ and delay ܹ from the theoretical models against 
those arising from the simulations. 

The validation is based upon exponentially distributed 
packet inter-arrivals and also gamma distributed packet inter-
arrivals in order to demonstrate the generality of the underlying 
theoretical models for queue size ܮ and delay ܹ. The gamma 
probability density function ݂ሺݐ; ,ߙ	  ሻ for a packet inter-arrivalߚ
time ݐ is given by: 
 



݂ሺݐ; ,ߙ	 ሻߚ ൌ 	
ఈିଵ݁ିఉ௧ݐఈߚ

Γሺߙሻ
	 (19)

 
where ߙ ൐ 0 is the shape parameter, ߚ ൐ 0 is the rate 

parameter and Γሺ∙ሻ is the gamma function. The gamma 
distribution was chosen primarily because the exponential 
distribution is a special case (when ߙ ൌ 1) and it facilitates 
understanding of the effect of overdispersion (i.e., larger 
variance than the exponential distribution with the same mean) 
when 0 ൏ ߙ ൏ 1 and underdispersion (i.e., lower variance than 
the exponential distribution with the same mean) when ߙ ൐ 1. 
Although real M2M applications are characterised by a variety 
of inter-arrival distribution models, validating the theoretical 
models for a single non-exponential (and therefore non-
memoryless) distribution such as the gamma distribution 
provides confidence in their generic nature. 

The probability density functions for three different 
parameterizations of the gamma inter-arrival distribution all 
having the same mean value ߙ ߚ ൌ 1/800⁄  seconds are 
compared in Fig. 6, along with that of the exponential inter-
arrival distribution with an identical mean value 1 ߣ ൌ 1/800⁄  
seconds. Alternatively, we can say the long term arrival rate ߣ 
of all four distributions is 800 packets/second.  We employ 
these specific distributions in a part of the validation along with 
a maximum service capacity of ߰ ൌ 10 packets and a 
persistent allocation period ߬௣௘௥௜௢ௗ ൌ  which equates to a ݏ10݉
load of ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰ ൌ 0.8⁄ . Another part of the validation 
involves examining the effect of changing the load ߩ; for the 
exponential distribution, we facilitate this by changing the rate 
parameter ߣ appropriately, whereas for the gamma distribution, 
we maintain the set values of the shape parameter ߙ and vary 
the rate parameter ߚ to realise a required rate ߙ/ߚ.      

 

     
Fig. 6: Comparison of the Pdf of the Gamma and Exponential 

Distributions with the Same Mean 
 
The count model for the gamma distribution assuming the 

stochastic process begins at the same time as the counting 
process is given in [28]. With reference to Eq. (11), the count 
model can be specified as: 

 
ܽ௠ᇱ ሺΔݐሻ ൌ ,݉ߙሺܪ ሻݐΔߚ െ ݉ߙሺܪ ൅ ,ߙ  ሻݐΔߚ

 
(20)

,݉ߙሺܪ ሻݐΔߚ ൌ
1

Γሺ݉ߙሻ
න ఈ௠ିଵݑ
ఉ୼௧

଴
݁ି௨݀ݑ ൌ

,݉ߙሺߛ ሻݐΔߚ
Γሺ݉ߙሻ

 

 
where γሺ∙ሻ is the lower incomplete gamma function. 
 
We employ the following predictive adaptation function 

݃ሺܮᇱ, ߰ሻ to validate the adaptive persistent uplink resource 
allocation model: 
 

݃ሺܮᇱ, ߰ሻ ൌ minሼඃܮᇱ ൅ ,ඇ݀݋݅ݎ݁݌߬ߣ ߰ሽ	 (21)
 
 ௣௘௥௜௢ௗ is the expected number of packet arrivals during߬ߣ

߬௣௘௥௜௢ௗ, therefore ܮᇱ ൅  ௣௘௥௜௢ௗ is the expected queue size at߬ߣ
the next persistent allocation epoch given that the queue size 
immediately after the previous persistent allocation epoch was 
,ᇱܮᇱ. The predictive adaptation function ݃ሺܮ ߰ሻ represented by 
Eq. (21) therefore attempts to reserve just enough resources at 
the next persistent allocation epoch to serve the conditional 
expected queue size at that epoch, subject to the constraint that 
a maximum of ߰ packets can be served at any one epoch. 

The use of Eq. (21) assumes both the device and base 
station know the true value of the packet inter-arrival rate ߣ. In 
a real deployment, such a priori knowledge is unlikely, 
therefore an estimate of ߣ is more likely to be employed. This 
estimate may or may not be updated dynamically based upon 
real time measurements of packet transfer rate, but clearly both 
the device and base station must use the same estimated value 
at any arbitrary point in time.     

B. Queue size L 

Fig. 7 illustrates the probability mass function (pmf) of 
queue size ܮ for different values of Δݐ, the time since the 
previous persistent allocation epoch. Five values of Δݐ are 
employed for static persistent allocation, but for display clarity, 
only the minimum and maximum of these values are used for 
adaptive persistent allocation. These plots are for ߰ =10, 
߬௣௘௥௜௢ௗ ൌ  Poisson arrivals (i.e., exponentially ,ݏ10݉
distributed packet inter-arrivals) and ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰⁄ ൌ 0.8. 
The developed statistical models for the pmf of the queue size 
 .exhibit excellent agreement with the results of the simulation ܮ
As Δݐ increases, the expected value of the queue size increases 
and its distribution becomes more normal in shape. As 
expected, the queue size for adaptive allocation is on average 
larger than for static allocation. This is because, with adaptive 
allocation, there are instances when the calculated 
instantaneous service capacity is less than the maximum ߰, but, 
due to a relatively large number of packet arrivals after the 
service capacity is calculated, the complete device queue 
cannot be served at the next persistent allocation epoch. In the 
same scenario with static allocation, it may be possible to serve 
the complete device queue with a fixed service capacity of ߰. 
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Fig. 7: Pmf of Queue Size ܮ for Different Values of Δt  

ሺ߰ ൌ ݀݋݅ݎ݁݌߬	,10 ൌ ߩ Poisson arrivals and ,ݏ10݉ ൌ 0.8ሻ 
 
Fig. 8 illustrates the pmf of queue size ܮ for different values 

of ߩ and Δݐ ൌ ߬௣௘௥௜௢ௗ ൌ ߰ ,ݏ10݉ ൌ 10 and Poisson arrivals. 
We focus on Δݐ ൌ ߬௣௘௥௜௢ௗ because it corresponds to the instant 
before the persistent allocation epoch and therefore the queue 
size is at its maximum; this is the most interesting case from a 
queue dimensioning perspective. Four values of ߩ are 
employed for static persistent allocation, but for display clarity, 
only two of these values are used for adaptive persistent 
allocation. Again the developed statistical models for the pmf 
of the queue size ܮ exhibit excellent agreement with the results 
of the simulation. As ߩ approaches unity, the pmf of ܮ becomes 
increasingly skewed to the right which is to be expected as the 
system is approaching instability and unbounded growth in the 
queue size. For ߩ ൌ 0.95, the graphs for static and adaptive 
allocation schemes are identical (even though this is not 
explicitly shown) because the predictive adaptation function 
employed for this validation always returns a value of ߰ under 
these circumstances. 

 

 
Fig. 8: Pmf of Queue Size ܮ for Different Values of ߩ  

ሺ߰ ൌ 10, ߬௣௘௥௜௢ௗ ൌ ݐPoisson arrivals and Δ ,ݏ10݉ ൌ ߬௣௘௥௜௢ௗሻ 
 

Fig. 9 illustrates the probability mass function (pmf) of 
queue size ܮ for different packet inter-arrival distributions and 
Δݐ ൌ ߬௣௘௥௜௢ௗ ൌ ߰ ,ݏ10݉ ൌ 10 and ߩ ൌ 0.8. Four packet inter-
arrival distributions are employed for static persistent 
allocation, but for display clarity, only two of these, the most 

extreme under dispersed and over dispersed parameterizations 
of the gamma distribution, are used for adaptive persistent 
allocation. The developed statistical models for the pmf of the 
queue size ܮ exhibit excellent agreement with the results of the 
simulation for all studied parameterizations of the gamma 
distribution. Unsurprisingly, for over dispersed 
parameterizations of the gamma distribution (i.e., 0 ൏ ߙ ൏ 1), 
the distribution of the queue size ܮ is also over dispersed with 
respect to the case of exponentially distributed packet inter-
arrival times. Similarly, for under dispersed parameterizations 
of the gamma distribution (i.e., ߙ ൐ 1), the distribution of the 
queue size ܮ is also under dispersed with respect to the case of 
exponentially distributed packet inter-arrival times.   
 

 
Fig. 9: Pmf of Queue Size ܮ for Different Packet Inter-Arrival 

Distributions ሺ߰ ൌ 10,	߬௣௘௥௜௢ௗ ൌ ,ݏ10݉ ߩ ൌ 0.8 and Δݐ ൌ ߬௣௘௥௜௢ௗ) 

C. Delay ܹ 

Fig. 10 illustrates the marginal pdf of delay ܹ for different 
values of ߩ. These plots are for ߰ ൌ 10, ߬௣௘௥௜௢ௗ ൌ  ,ݏ10݉
߬௦௟௢௧ ൌ ߬௣௘௥௜௢ௗ/10 ൌ  and Poisson arrivals. Four values of ݏ1݉
 are employed for static persistent allocation, but for display ߩ
clarity, only two of these values are used for adaptive persistent 
allocation. The developed statistical models for the pdf of the 
marginal delay ܹ clearly exhibit excellent agreement with the 
results of the simulation. 

For the static allocation scheme, we see that for a relatively 
small load (e.g. ߩ ൌ 0.5), the delay pdf appears to be almost 
uniform i.e., ܹ~ܷ݂݊݅݉ݎ݋ሺ߬௦௟௢௧, ߬௣௘௥௜௢ௗ ൅ ߬௦௟௢௧ሻ. This is 
expected because with a small load, almost all packet arrivals 
can be served at the very next persistent allocation epoch, and 
the delay is then only determined by the waiting time ߬௣௘௥௜௢ௗ െ
 to that next epoch which is itself uniformly distributed for ݐ߂
Poisson arrivals. As the load ߩ increases, the queue size ܮ 
increases and there is a greater probability that packets cannot 
be served at the very next persistent allocation epoch after they 
arrive. Consequently the pdf decreases for ܹ ൏ ߬௣௘௥௜௢ௗ ൅ ߬௦௟௢௧  
and increases for ܹ ൐ ߬௣௘௥௜௢ௗ ൅ ߬௦௟௢௧. In general, the pdf 
exhibits a significant sharp reduction as the delay surpasses 
߬௣௘௥௜௢ௗ ൅ ߬௦௟௢௧, such that the shape of the pdf as a whole 
resembles a “shark fin”. This suggest that it might be possible 
to model the pdf as two piecewise functions, one either side of 
the discontinuity, although we do not consider this further in 
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this paper. It also demonstrates the complexity of the delay pdf 
even when the simple Poisson arrival process is considered. 

For the adaptive allocation scheme, the shape of the delay 
pdf resembles a shark fin for both small and high loads. This is 
a consequence of attempting to use the minimum amount of 
allocated resources to serve the expected queue size at the next 
persistent allocation epoch. This also explains why the 
expected delay is larger for the adaptive allocation scheme than 
the static allocation scheme.   

Note also that for ߩ ൌ 0.95, as with the queue size ܮ, the 
graphs for static and adaptive allocation schemes are identical 
(even though this is not explicitly shown) because the 
predictive adaptation function employed for this validation 
always returns a value of ߰ under these circumstances. 

 

 
Fig. 10: Marginal Pdf of Delay ܹ for Different Values of ߩ 

ሺ߰ ൌ 10,	߬௣௘௥௜௢ௗ ൌ ௦௟௢௧߬ ,ݏ10݉ ൌ ߬௣௘௥௜௢ௗ/10 and Poisson arrivalsሻ 
 
For completeness, Fig. 11 illustrates the marginal 

cumulative distribution function (cdf) of delay ܹ for different 
values of ߩ that corresponds to the pdf plots in Fig. 10.   

 

 
Fig. 11: Marginal Cdf of Delay ܹ for Different Values of ߩ 

ሺ߰ ൌ 10, ߬௣௘௥௜௢ௗ ൌ ,ݏ10݉ ߬௦௟௢௧ ൌ ߬௣௘௥௜௢ௗ/10 and Poisson arrivalsሻ 
 

Fig. 12 illustrates the marginal pdf of delay ܹ for different 
packet inter-arrival distributions and ݐ߂ ൌ ߬௣௘௥௜௢ௗ ൌ  ,ݏ10݉
߰ ൌ 10 and ߩ ൌ 0.8. Four packet inter-arrival distributions are 
employed for static persistent allocation, but for display clarity, 
only two of these, the most extreme under dispersed and over 

dispersed parameterizations of the gamma distribution, are used 
for adaptive persistent allocation. 

 

 
Fig. 12: Marginal Pdf of Delay ܹ for Different Packet Inter-Arrival 

Distributions ሺ߰ ൌ 10, ߬௣௘௥௜௢ௗ ൌ ,ݏ10݉ ߬௦௟௢௧ ൌ ߬௣௘௥௜௢ௗ/10 and 
ߩ ൌ 0.8) 

 
The developed statistical models for the pdf of the marginal 

delay ܹ clearly exhibit excellent agreement with the results of 
the simulation for all studied parameterizations of the gamma 
distribution. Similarly to the discussion on queue size ܮ, for 
over dispersed parameterizations of the gamma distribution 
(i.e., 0 ൏ ߙ ൏ 1), the marginal pdf of delay ܹ is also over 
dispersed with respect to the case of exponentially distributed 
packet inter-arrival times. Similarly, for under dispersed 
parameterizations of the gamma distribution (i.e., ߙ ൐ 1), the 
marginal pdf of delay ܹ is also under dispersed with respect to 
the case of exponentially distributed packet inter-arrival times 
and in fact tends towards a uniform distribution. This is 
because there is less chance of relatively short inter-arrivals 
time with an under dispersed distribution and therefore almost 
all packet arrivals can be served at the very next persistent 
allocation epoch, so the delay is then only determined by the 
waiting time ߬௣௘௥௜௢ௗ െ  .to that next epoch ݐ߂

D. Expected Service Capacity E{G} for Adaptive Allocations 

Recall from Section II.B that the instantaneous service 
capacity ܩ is a random variable that represents the volume of 
resources on the uplink data channel dedicated to an adaptive 
persistent resource at an arbitrary persistent allocation epoch. 
Fig. 13 illustrates the normalized expected service capacity 
 for different packet inter-arrival ߩ ሽ/߰ as a function ofܩሼܧ
distributions when using adaptive persistent uplink resource 
allocation. This plot is for ߰ ൌ 10, ߬௣௘௥௜௢ௗ ൌ  and ݏ10݉
߬௦௟௢௧ ൌ ߬௣௘௥௜௢ௗ/10 ൌ  There is close agreement between .ݏ1݉
the theoretical statistical model and the simulation results. 

As expected, for small values of ߩ, the instantaneous 
service capacity ܩ calculated by the adaptation function is in 
general less than ߰ since fewer resources are required to serve 
the offered traffic, therefore ܧሼܩሽ/߰ is correspondingly 
smaller. As ߩ increases, ܧሼܩሽ/߰ also increases in sympathy 
although the relationship is not strictly linear. This plot 
demonstrates an advantage of the adaptive scheme over the 
static scheme in that resources can be allocated more efficiently 
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as the expected service capacity ܧሼܩሽ for an adaptive 
allocation is always less than ߰ required by a static allocation 
for ߩ ൏ 1. Furthermore, the adaptive scheme can automatically 
adapt to changes in the packet inter-arrival distribution or the 
load ߩ without expensive signalling on the downlink control 
channels.  

 

 
Fig. 13: Normalized  Expected Service Capacity ܧሼܩሽ/߰ for 

Different Values of ߩ and Adaptive Allocation 
ሺ߰ =10, ߬௣௘௥௜௢ௗ ൌ and ߬௦௟௢௧ ݏ10݉ ൌ ߬௣௘௥௜௢ௗ/10ሻ 

 
For over dispersed parameterizations of the gamma 

distribution (i.e., 0 ൏ ߙ ൏ 1), the normalized expected service 
capacity ܧሼܩሽ/߰ for an arbitrary value of ߩ is larger than for 
exponentially distributed packet inter-arrival times. This is to 
be expected because there is a greater chance of larger queue 
sizes in such cases (see Section IV. B). For under dispersed 
parameterizations of the gamma distribution (i.e., ߙ ൐ 1), the 
the normalized expected service capacity ܧሼܩሽ/߰ for an 
arbitrary value of ߩ is smaller than the case of exponentially 
distributed packet inter-arrival times. Again this is to be 
expected because there is a lower chance of larger queue sizes 
in such cases. 

For completeness, we note that, in terms of the downlink 
assignment control channel, there is no difference in resource 
savings between static and adaptive persistent resource 
allocations since only a single assignment message is required 
for both when they are first established. 

E. Additional Results 

When dimensioning a persistent resource allocation for a 
given source with a given packet inter-arrival distribution, there 
are two parameters of the allocation which can be assigned 
independently: the transmission opportunity period ߬௣௘௥௜௢ௗ and 
the (maximum) amount of allocated resources ߰ per 
transmission opportunity. Therefore it is possible to maintain a 
certain desired load ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰⁄  with different pairs of ߰ 
and ߬௣௘௥௜௢ௗ values which have a constant ratio. The choice of 
values to employ depends upon such factors as the delay 
budget, jitter tolerance and desired duty cycle of the source. In 
this section, we demonstrate that the theoretical models predict 
the correct queue size and delay distributions for different pairs 
of ߰ and ߬௣௘௥௜௢ௗ values for a target desired load ߩ.    

Fig. 14 illustrates the probability mass function (pmf) of 
queue size ܮ for different pairs of ߰ and ߬௣௘௥௜௢ௗ values such 
that ߩ ൌ ௣௘௥௜௢ௗ߬ߣ ߰⁄ ൌ 0.8 for a constant packet inter-arrival 
rate of ߣ ൌ 800 packets/second. Fig. 15 illustrates the marginal 
pdf of delay ܹ under the same conditions. Four pairs of ߰ and 
߬௣௘௥௜௢ௗ values are employed for static persistent allocation, but 
for display clarity, only two of these, the smallest and largest 
pairs, are used for adaptive persistent allocation. 

 

 
Fig. 14: Pmf of Queue Size ܮ for Different Values of ߰ and 
߬௣௘௥௜௢ௗ ሺPoisson arrivals, ߩ ൌ 0.8 and Δݐ ൌ ߬௣௘௥௜௢ௗ) 

 

 
Fig. 15: Marginal Pdf of Delay ܹ for Different Values of ߰ and 

߬௣௘௥௜௢ௗ ሺPoisson arrivals, ߩ ൌ 0. 8 and ߬௦௟௢௧ ൌ  (ݏ1݉
 

Unsurprisingly, as ߬௣௘௥௜௢ௗ(and ߰) increase, the expected 
queue size and delay also increase on account of the fact that 
generated packets must wait longer on average until the next 
persistent allocation epoch. For the static allocation scheme, the 
delay pdf tends to a uniform distribution i.e., 
,ሺ߬௦௟௢௧݉ݎ݋݂ܷ݅݊~ܹ ߬௣௘௥௜௢ௗ ൅ ߬௦௟௢௧ሻ as ߬௣௘௥௜௢ௗ increases. This 
is expected because almost all packet arrivals can be served at 
the very next persistent allocation epoch, and the delay is then 
only determined by the waiting time ߬௣௘௥௜௢ௗ െ  to that next ݐ߂
epoch which is itself uniformly distributed for Poisson arrivals.  

For the adaptive allocation scheme, the shape of the delay 
pdf becomes more uniform in shape as ߬௣௘௥௜௢ௗ increases but 
still resembles a shark fin. This is a consequence of attempting 
to use the minimum amount of allocated resources to serve the 
expected queue size at the next persistent allocation epoch. 
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This also again explains why the expected delay is larger for 
the adaptive allocation scheme than the static allocation 
scheme. 

V. CONCLUSIONS 

In this paper, we have derived theoretical statistical models 
to represent the queue size and packet delay for static and 
adaptive persistent uplink resource allocations provided to 
M2M applications with an arbitrary non-deterministic packet 
arrival process sending small packets over wireless systems. 
These theoretical models were shown to exhibit very close 
agreement with the queue size and packet delay statistics 
obtained from a custom discrete event simulation model, both 
when using exponential and gamma distributed packet inter-
arrivals. The packet delay distribution is quite complex in 
general even when a simple packet arrival process such as the 
Poisson arrival process is considered. An adaptive persistent 
uplink resource allocation scheme utilises resources more 
efficiently than a static persistent uplink resource allocation 
scheme at the expense of increased expected queue size and 
increased expected packet delay. The performance difference 
depends upon the exact adaptation function in use at the device 
and base station to calculate the instantaneous service capacity 
at the next transmission opportunity based upon the remaining 
queue size at the previous transmission opportunity. An 
additional advantage of the adaptive allocation scheme is that it 
automatically adapts to changes in the nature of the packet 
arrival process (e.g. start/stop transmission) without requiring 
expensive signalling on control channels. 

The primary motivation of this work has been to facilitate 
dimensioning of persistent resource allocations given a set of 
QoS requirements, in particular those related to delay. By 
employing the statistical models developed in this paper, the 
base station can determine the period and (maximum) volume 
of persistent resources required to meet a given delay budget a 
certain percentage of the time.  

One item of future work will be to characterize the tradeoff 
between delay and resource allocation efficiency in using 
different adaptation functions for adaptive persistent uplink 
resource allocations. The predictive adaptation function 
employed for model validation in this paper attempts to match 
the instantaneous volume of resources with the conditional 
expected queue size at each transmission opportunity, however 
this does result in some resource wastage when fewer packets 
are generated between transmission opportunities than 
expected. A less aggressive predictive adaptation function or 
non-predictive adaptation function will result in less resource 
wastage at the expense of higher expected delay.   
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