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Abstract

This paper presents displacement and equilibrium mesh-free formulation based on
integrated radial basis functions (iRBF) for upper and lower bound yield design
problems. In these approaches, displacement and stress fields are approximated by
the integrated radial basis functions, and the equilibrium equations and boundary
conditions are imposed directly at the collocation points. In the paper it has been
shown that direct nodal integration of the iRBF approximation can prevent volu-
metric locking in the kinematic formulation, and instability problems can also be
avoided. Moreover, with the use of the collocation method in the static problem,
equilibrium equations and yield conditions only need to be enforced at the nodes,
leading to the reduction in computational cost. The mean value of the approximated
upper and lower bound is found to be in excellent agreement with the available an-
alytical solution, and can be considered as the actual collapse load multiplier for
most practical engineering problems, for which exact solution is unknown.
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1 INTRODUCTION

The estimation of the plastic limit load of engineering structures has been
of great interest to practical engineers. Elastic-plastic incremental analysis
method can be employed to obtain such a limit load, but the plastic yield
design (limit analysis) method has been viewed to be more effective [1,2], i.e.
without performing a cumbersome series of incremental elastic-plastic analysis,
and only requiring the knowledge of a local strength criterion. Based on bound
theorems and numerical discretization techniques, the yield design approach
can directly find the critical status of a structure or body under static loading
and then the collapse load can be determined without intermediate steps.

A lower bound on the actual limit load of a structure or body can be achieved
by using the static theorem and approximated stress fields, while the upper
bound is obtained as a result of combining displacement-based model and
kinematic theorem [11]. In the static yield design formulation, the assumed
stress fields are often expressed in terms of nodal stress values. In the frame-
work of equilibrium finite elements, these approximated fields are also required
to satisfy a priori equilibrium conditions within elements and at their inter-
faces [3–6,11]. Due to these additional conditions, construction of such fields is
often difficult. Compared with the equilibrium models, the displacement for-
mulation is more popular. This may be because of the facts that the internal
compatibility condition can be satisfied straightaway in the assembly scheme,
and that essential (kinematic) boundary conditions can be enforced directly.

In recent decades, the development and application of mesh-free methods have
attracted much attention due to their flexibility, e.g. requiring nodal data only
and no need of nodal connectivity. The EFG method [7], one of the most
widely used mesh-free methods, has been applied successfully to the frame-
work of yield design problems [8–12], showing that the method is, in general,
well suited for yield design problems and that accurate solutions can be ob-
tained with a minimal computational cost. However, a typical limitation of the
EFG method is that its shape functions do not hold Kronecker delta prop-
erty, leading to difficulty in enforcing essential boundary conditions. Mesh-free
methods using radial basis functions (RBFs) have also been developed in par-
allel [13–19]. These RBF-based methods have been applied successfully to a
wide range of computational problems [20–26]. It has been shown that the
RBF approximation is powerful to represent regular and smooth functions in
arbitrary geometries and high-dimensional space, and enjoys spectral accuracy
and exponential convergence [17].

The aim of this paper is to study the performance of the integrated radial
basis function-based mesh-free method in the framework of yield design prob-
lems. The indirect/integrated radial basis function (iRBF) approaches pro-
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posed in [28,29] are employed to approximate both displacement and stress
fields. Multi-quadric iRBF method generally results in a high order approxi-
mation of the displacement fields (here, for convenience, ’displacement rate or
velocity’ is termed ’displacement’), and hence volumetric locking phenomena
in the kinematic yield design formulation can be prevented. Moreover, the
stress fields constructed based on iRBF are smooth over the entire problem
domain, and consequently there is no need to enforce continuity conditions at
interfaces within the problem domain. With the use of iRBF-approximated
stress fields the strong-form of equilibrium equations can be satisfied in point-
wise manner using collocation method. In addition, the iRBF-based approx-
imation possesses the Kronecker delta property. As a result, kinematic and
static boundary conditions can be imposed as easily as in the finite element
method (FEM). Finally, the kinematic and static formulations based on iRBF
discretization are formulated as a conic optimization problem, ensuring that
they can be solved using available efficient solvers.

2 FUNDAMENTALS OF YIELD DESIGN THEORY

In this section, fundamentals of yield design theory are recalled, more details
can be found in [45,51–54]. Consider a elastic-plastic body of area Ω ∈ R2

with fixed boundary Γu and free portion Γt, satisfying Γu ∪ Γt = Γ, Γu ∩ Γt =
⊘, and is subjected to body forces f and surface tractions t. Let Σ denotes
a space of a statically admissible stress state, whereas Y is a space of a
kinematically admissible displacement state. For smooth fields σ and u, the
classical form of the equilibrium equation can always be transformed to a more
precise variational form as

a(σ,u) = F (u), ∀u ∈ Y (1)

where the internal and external work rates can be respectively expressed as

a(σ,u) =
∫
Ω
σTϵ(u) dΩ (2)

F (u) =
∫
Ω
fTu dΩ +

∫
Γt

tTu dΓ (3)

where ϵ(u) = [ ϵxx ϵyy γxy]
T are strain rates.

The static principle of yield design can now be expressed as
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λ=max λ−

s.t

λ−F (u) = a(σ,u), ∀u ∈ Y

∃σ ∈ B, B = {σ ∈ Σ |ψ(σ(x)) ≤ 0 ∀ x ∈ Ω}
(4)

where the so-called yield criterion ψ(σ) is convex.

The kinematic principle of yield design, the dual form of (4), is

λ = min
u∈C

D(u) (5)

where the set C is defined by C = {u ∈ Y |F (u) = 1}, and the plastic
dissipation D(u) is defined by

D(u) = max
σ∈B

a(σ,u), (6)

For the von Mises criterion, the power of dissipation can be formulated in
terms of strain rates as

D(ϵ(u)) =
∫
Ω
σp
√
ϵTΘ ϵ (7)

where σp is the yield stress and

Θ =



1

3


4 2 0

2 4 0

0 0 1

 plane stress


1 −1 0

−1 1 0

0 0 1

 plane strain

(8)

The incompressibility condition, i.e. ΛTϵ = 0, where Λ =
[
1 1 0

]T
, must be

enforced for plane strain problem, ensuring that the plastic dissipationD(ϵ(u))
is finite. This kinematic constraint results in a reduction of the number of
degrees of freedom, and hence the volumetric locking problem occurs in the
kinematic formulation using low-order approximation of displacement fields.
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3 INDIRECT/INTEGRATED RADIAL BASIS FUNCTION (iRBF)
METHOD

In this approach, usually the highest-order (second-order in the present case)
derivative of the original approximate function is computed first. The first-
order partial derivative and the original function are then constructed by suc-
cessive integration as follows [29]

uh,ij(x) =
N∑
I=1

gI(x) aI = H2(x)b (9)

uh,i(x) =
∫ N∑

I=1

gI(x)aI dxj =
N +p1∑
I=1

H1I(x) aI = H1(x)b (10)

uh(x) =
∫∫ N∑

I=1

gI(x)aI dxj dxi =
N +p2∑
I=1

H0I(x) aI = H0(x)b (11)

where N denotes the number of nodes in the local support domain, b is a
vector consisting of the vector of coefficients and integration constants, and

H2(x)= [ g1(x), g2(x), . . . , gN (x), 0, . . . , 0︸ ︷︷ ︸
p2

]

H1(x)= [H11(x), H12(x), . . . , H1N +p1(x), 0, . . . , 0︸ ︷︷ ︸
p1

] (12)

H0(x)= [H01(x), H02(x), . . . , H0N +p2(x)]

(13)

in which p1 and p2 are the number of integration constants, and p2 = 2p1;
detailed calculation of H1I(x) and H0I(x) can be found in [28,29]. In this
study, multi-quadrics (MQ) basis function, which is ranked the best in terms
of accuracy among RBFs [13,28], will be employed. MQs are defined by

gI(x) =
√
r2I + c2I (14)

where rI = ∥x − xI∥, the shape parameter cI = β dI (β is a positive scalar),
and dI is the minimum of distances from node I to its neighbors in the support
domain.

The evaluation of Equation (11) at a set of collocation points yields the fol-
lowing equation in matrix form

u = HQ b (15)
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where

HQ =


. . . . . . . . . . . .

H01(xk) H02(xk) . . . H0N +p2(xk)

. . . . . . . . . . . .

 (16)

By inversion, the vector b is expressed in terms of nodal function values u as

b = H−1
Q u (17)

Substituting b into Equations (9) – (11), we obtain

uh(x) = H0(x)H
−1
Q u = Φu (18)

uh,i(x) = H1(x)H
−1
Q u = Φ,i u (19)

uh,ij(x) = H2(x)H
−1
Q u = Φ,ij u (20)

in which the shape functions and its derivatives are defined by

Φk(x)=
N∑
I=1

H0I(x)χ̂Ik

Φk,i(x)=
N∑
I=1

H1I(x)χ̂Ik (21)

Φk,ij(x)=
N∑
I=1

gI(x)χ̂Ik

where χ̂Ik is the (I, k) element of the matrix H−1
Q .

It should be noted that the iRBF shape functions satisfy the Kronecker-delta
property, and hence boundary conditions can be enforced in a way similar to
one in the finite element method.

4 DUAL YIELD DESIGN FORMULATION USING THE iRBF
METHOD

4.1 iRBF discretization of kinematic formulation

In a numerical upper-bound yield design problem, the displacement fields of
the problem domain can be approximated by discretization methods. The ap-
proximate displacement fields can be expressed in terms of nodal displacement
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values as

uh(x) =

u
v

 =
N∑
I=1

ΦI(x)

uI
vI

 (22)

where ΦI(x) are the iRBF shape functions described above.

The strain rates are then calculated by

ϵ(x) =


ϵxx

ϵyy

γxy

 =
N∑
I=1


ΦI,x(x) 0

0 ΦI,y(x)

ΦI,y(x) ΦI,x(x)


uI
vI

 = B(x)d (23)

where d is the nodal displacement vector andB is the so-called strain-displacement
matrix, and they are given by

dT = [u1, u2, . . . , uN , v1, v2, . . . , vN ] (24)

B=


Bxx

Byy

Bxy

 =


Φ1,x Φ2,x . . . ΦN ,x 0 0 . . . 0

0 0 . . . 0 Φ1,y Φ2,y . . . ΦN ,y

Φ1,y Φ2,y . . . ΦN ,y Φ1,x Φ2,x . . . ΦN ,x

 (25)

The internal dissipation power is computed as

D =
∫
Ω

σ0
√
ϵTΘ ϵ dΩ =

N∑
I=1

σ0AI

√
(BI d)TΘBI d (26)

where AI is the area of the I th nodal representative domain, i.e. Voronoi cell.

In fact, a form containing a sum of norms can be used to compute the power
of internal dissipation as the following expression

D =
N∑
I=1

σ0AI∥ρI∥ (27)
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where ρI are additional variables defined by

ρI =




ρ1

ρ2

ρ3

 =
1√
3


2 0 0

1
√
3 0

0 0 1

BId plane stress

 ρ1
ρ2

 =

BxxId−ByyId

2BxyId

 plane strain

(28)

Hence, the optimization problem (5) associated with the iRBF method can
now be rewritten as

λ+=min
N∑
I=1

σ0AI∥ρI∥

s.t

d = 0 on Γu

F (d) = 1
(29)

Introducing auxiliary variables t1, t2, . . . , tN , the problem (29) can be for-
mulated in the form of a standard conic programming as

λ+=min
N∑
I=1

σ0AItI

s.t


d = 0 on Γu

F (d) = 1

||ρI || ≤ tI I = 1, 2, . . . ,N

(30)

Note that for plane strain problems, incompressibility conditions, ΛTϵ = 0,
must be introduced. If low-order displacement approximations are used, volu-
metric locking phenomena in the kinematic formulations associated with the
von Mises may occur due to these incompressibility conditions. However, here
the iRBF method results in high-order displacement fields, and hence volu-
metric locking problem can be prevented. Moreover, it is evident that the size
of optimization problem (30) depends on the number of integration points to
be used. In this paper, nodal integration technique is used, and hence the size
of the resulting optimization problem is kept to be minimum.
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4.2 iRBF discretization of static formulation

While in the upper bound formulation the displacement fields are approxi-
mated, here the stress fields need to be approximated. With the use of the
iRBF method, approximations of these stress fields can be presented as

σh(x) =


σh
xx

σh
yy

σh
xy

 =
N∑
I=1

ΦI(x)


σxxI

σyyI

σxyI

 = Cs (31)

where

sT = [σxx1, σxx2, . . . , σxxN , σyy1, σyy2, . . . , σyyN , σxy1, σxy2, . . . , σxyN ] (32)

C =


Cxx

Cyy

Cxy

 =


Φ1 Φ2 . . . ΦN 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 Φ1 Φ2 . . . ΦN 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 Φ1 Φ2 . . . ΦN

 (33)

These approximated stress fields must be ensured to be statically admissi-
ble, meaning that equilibrium and continuity conditions within elements and
on their boundary must be satisfied. While the strong form of equilibrium
equations can be treated using collocation method, its equivalent weak form
(involving integrals) is often handled using the weighted residual method. The
strong-form method is simple and fast, and hence the collocation method us-
ing the iRBF will be considered in this study. The equilibrium equations can
be imposed at N nodes, and are expressed as

A1σ1 +A2σ3 = 0 (34)

A1σ3 +A2σ2 = 0 (35)

where

A1 =


. . . . . . . . . . . .

Φ1,x(xk) Φ2,x(xk) . . . ΦN ,x(xk)

. . . . . . . . . . . .


N ×N

(36)
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A2 =


. . . . . . . . . . . .

Φ1,y(xk) Φ2,y(xk) . . . ΦN ,y(xk)

. . . . . . . . . . . .


N ×N

(37)

σ1 =
[
σxx1 . . . σxxN

]T
(38)

σ2 =
[
σyy1 . . . σyyN

]T
(39)

σ3 =
[
σxy1 . . . σxyN

]T
(40)

Additionally, the approximated stress fields must belong to a convex domain,
B. In other words, these stress fields must satisfy the following second-order
cone constraints obtaining from the von Mises criterion

σh(x) ∈ B ≡


LPS =

{
ρ ∈ R3 | ρ1 ≥ ∥ρ2→4∥L2 =

√
ρ22 + ρ23 + ρ24

}
plane stress

LPD =
{
ρ ∈ R3 | ρ1 ≥ ∥ρ2→3∥L2 =

√
ρ22 + ρ23

}
plane strain

(41)
where

ρ1 = σ0 (42)

ρ2→4 =


ρ2

ρ3

ρ4

 =
1

2


2 −1 0

0
√
3 0

0 0 2
√
3

 Cs plane stress (43)

ρ2→3 =

 ρ2
ρ3

 =


1

2
(Cxxs−Cyys)

Cxys

 plane strain (44)

Hence the static yield design formulation (4) can now be expressed as
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λ−=max λ

s.t


A1σ1 +A2σ3 = 0

A1σ3 +A2σ2 = 0

ρk ∈ L k, k = 1, 2, . . . , N

(45)

and accompanied by appropriate boundary conditions.

It should be emphasized that in the present static formulation equilibrium
equations and yield criterion are enforced at nodes only, and therefore the
strict property of the lower bound λ− is not guaranteed. However, using a
fine nodal distribution one can hope to achieve a reliable approximated lower
bound on the actual limit load multiplier. Moreover, by enforcing the equilib-
rium equations and yield criterion at nodes only the number of constraints in
optimization problem (45) is kept to be minimum, and hence the presented
static method is computationally inexpensive.

5 NUMERICAL EXAMPLES

The described procedures are tested by their application to solve various prob-
lems for which, in most cases, exact and numerical solutions are available. Up-
per and lower bound solutions based on direct radial basis function (dRBF)
are also carried out for comparison purpose. Optimization problems (30) and
(45) are implemented in the Matlab environment. Mosek optimization solver
version 6.0 is used to solve the conic optimization problem obtained (using a
2.8 GHz Intel Core i5 PC running Window 7).

5.1 Prandtl problem

The first example is the classical punch problem presented in [30], as shown
in Figure 1. Due to symmetry, a rectangular region of dimensions B = 5 and
H = 2 is considered. Appropriate displacement and stress boundary conditions
are enforced as shown in Figure 2. For a load of 2τ0, the analytical limit
multiplier is λ = 2 + π = 5.142.

Approximations of upper and lower bounds on the actual limit load for both
dRBF and iRBF methods with various nodal discretizations are reported in
Table 1. From these results, it can be seen that for both kinematic and static
formulations the iRBF-based method can provide more accurate solutions than
the dRBF-based method. Convergence analysis and relative errors in collapse
multipliers versus number of variables are also shown in Figures 3 and 4,
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Fig. 1. Prandtl problem: geometry and loading

(a) Displacement boundary conditions

(b) Stress boundary conditions

Fig. 2. Prandtl problem: appropriate displacement and stress boundary conditions

respectively. It should be stressed that the mean values of upper and lower
approximations obtained using the iRBF-based numerical procedures are in
excellent agreement with the analytical solutions for all nodal discretizations,
as shown in Figure 3, with less than 0.4% even for coarse nodal distribution.
Furthermore, as mentioned, the present procedure can not theoretically pro-
vide strict lower bound solutions, it is evident that all approximated lower
bound results are below the exact value.

Note that in the kinematic formulation, volumetric (or isochoric) locking of-
ten occurs when adding the incompressibility condition to the low-order dis-
placement based yield design problem. The volumetric locking behavior of the
Prandtl yield design problem has been studied in [35,12]. In these papers, it
has been demonstrated that when smoothed strains were used, the volumet-
ric locking problem can be eliminated. Here, we have shown that the iRBF
method used in combination with direct nodal integration can remove such the
volumetric locking behavior and also result in stable and accurate solutions.
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Table 1
Prandtl problem: upper and lower bound approximation of collapse multiplier

Nodes

dRBF iRBF

Upper-bound Lower-bound Upper-bound Lower-bound

λ+ e (%) λ− e (%) λ+ e (%) λ− e (%)

40 6.857 33.35 2.761 46.31 6.036 17.39 4.218 17.97

160 5.548 7.90 4.244 17.46 5.279 2.66 4.960 3.54

360 5.289 2.86 4.800 6.65 5.209 1.30 5.061 1.58

640 5.211 1.34 5.042 1.95 5.191 0.95 5.108 0.66

1000 5.189 0.91 5.125 0.33 5.180 0.74 5.134 0.16
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Analytical solution
dRBF−Upper bound
iRBF−Upper bound
dRBF−Lower bound
iRBF−Lower bound
dRBF−Mean value
iRBF−Mean value

Fig. 3. Bounds on the collapse multiplier versus the number of nodes

In Table 2 the solutions obtained using the present methods with 2560 nodes
are compared with those obtained previously by different yield design ap-
proaches using FEM, smoothed finite element (SFEM) and EFG simulations.
In general, the present solutions are close to results in the literature. Consid-
ering upper solutions, the result obtained using the iRBF method is slightly
lower than the one obtained using the EFG mesh-free method with the same
nodal discretization [12].

5.2 Thin square plates with cutouts subjected to tension load

Next, two thin square plates with a central square cutout and a thin crack
subjected to a uniform tension load, as shown in Figure 5, are considered.
These problems have been investigated numerically by finite elements [37,39],
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Fig. 4. Relative error in collapse multipliers versus the number of variables

Table 2
The punch of problem: comparison with previous solutions

Authors Approach
Collapse multiplier

Upper-bound Lower-bound

Present method (dRBF) Kinematic and static 5.159 5.133

Present method (iRBF) Kinematic and static 5.146 5.140

Vicente da Silva and Antao [31] Kinematic 5.264 -

Sloan & Kleeman [32] Kinematic 5.210 -

Makrodimopoulos et al. [33,34] Kinematic and static 5.148 5.141

Le et al. [12], EFG Kinematic 5.147 -

Le et al. [35], SFEM Kinematic 5.143 -

Capsoni & Corradi [36] Mixed formulation 5.240

symmetric Galerkin boundary elements [38], and mesh-free methods [40,41].
Owing to the symmetry, only the top-right quarter of plates is modeled, as
shown in Figure 6. Uniform nodal distribution is be used to discretize the
computational domain, see Figure 7.

Limit load multipliers obtained using uniform nodal distributions are reported
in Tables 3 and 4. Collapse load multiplier versus the number of nodes is also
shown in Figure 8. Again, it can be observed that the iRBF-based method can
provide more accurate solutions than the dRBF-based method, particularly
for the static approach.
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(a) Square cutout (b) Thin crack

Fig. 5. Thin square plates

(a) Square cutout (b) Thin crack

Fig. 6. The upper-right quarter of plates

(a) Square cutout (b) Thin crack

Fig. 7. Uniform nodal discretization

Table 3
Collapse multipliers for the square plate with a central square cutout

Nodes
dRBF iRBF

Upper-bound Lower-bound Upper-bound Lower-bound

273 0.750 0.734 0.702 0.712

589 0.750 0.732 0.715 0.726

851 0.749 0.732 0.715 0.729
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Fig. 8. Convergence of limit load factor for the plates

Table 4
Collapse multipliers for the square plate with a central thin crack

Nodes
dRBF iRBF

Upper-bound Lower-bound Upper-bound Lower-bound

441 0.520 0.482 0.532 0.499

625 0.516 0.484 0.523 0.502

841 0.514 0.487 0.516 0.504

Table 5 shows that the results obtained by using RBF methods are in good
agreement with previously reported numerical solutions. Considering upper
bound limit factor, the present results are close to Zhou & Liu’s solutions, with
the maximum error of only 2.79%. It is important to note that the estimated
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lower bounds reported in [38,40] are higher than the present lower bound
solutions, and surpasses the upper bound of the present iRBF method for the
plate with square cutout. This can be explained by the fact that in [38,40] the
strong form of the equilibrium equations were transformed into the so-called
weak form, and to be satisfied locally in an average sense using approximated
virtual displacement fields. Therefore, the static method in [38,40] may result
in a higher value than the actual limit multiplier. In contrast, it is clear that
all the present lower bound solutions obtained are below the upper bounds
reported in Table 5.

Table 5
Plates with cutouts problem: Comparison with previous solutions

Authors Approach
Square cutout Thin crack

UB LB UB LB

Present method (dRBF) Kinematic and static 0.749 0.715 0.514 0.487

Present method (iRBF) Kinematic and static 0.732 0.729 0.516 0.504

Belytschko & Hodge [37] Static – 0.693 – 0.498

Zhang et al. [38] Static – 0.747 – 0.514

Zhang et al. [39] Kinematic 0.764 - 0.534 -

Chen et al. [40] Static – 0.736 – 0.513

Zhou & Liu (Sibson) [41] Kinematic 0.753 – 0.515 –

Zhou & Liu (Laplace) [41] Kinematic 0.752 – 0.513 –

5.3 Notched tensile specimen

Finally, a double notched specimen consists of a rectangular specimen with
two thin cracks under in-plane tensile stresses τ0, as shown in Figure 9, is
also considered. This problem exhibits volumetric locking phenomena [42]
and became a popular benchmark test for plastic yield design procedures.
The locking problem was handled using various techniques proposed in the
literature, including higher-order displacement-based finite element method
[43], mixed finite elements [36,44,45] and discontinuous elements [46,32,47],
mesh-free methods [12], smoothed finite elements [35,48]. Owing the symme-
try, only the upper-right quarter of the double notched problem is discretized.

Several uniform nodal distributions are employed. Computed solutions and
convergence analysis are presented in Table 6 and Figure 10. Table 7 com-
pares the present solutions with those obtained previously. The mean values
of the dRBF and iRBF results are 1.1343 and 1.1342, respectively. It can be
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(a) Geometry (W= L = 2a = 1) and loading

(b) Computational model

Fig. 9. Double notched specimen

observed that these mean values are very close to the benchmark solution
obtained using mixed formulation by Christiansen & Andersen [45].

Table 6
Double notched specimen: limit load multiplier

Nodes

dRBF iRBF

Upper-bound Lower-bound Upper-bound Lower-bound

λ+ e(%) λ− e(%) λ+ e(%) λ− e(%)

289 1.156 0.21 1.092 5.56 1.150 0.56 1.100 2.79

441 1.152 0.33 1.116 2.24 1.146 0.34 1.114 1.31

625 1.149 0.29 1.120 0.37 1.143 0.23 1.122 0.66

841 1.146 0.20 1.122 0.20 1.141 0.15 1.127 0.48

6 CONCLUSIONS

The present contribution has presented displacement and equilibrium mesh-
free formulation based on integrated radial basis functions (iRBF) for dual
yield design problems. In the kinematic formulation, the high-order approxi-
mation of the displacement fields using the integrated radial basis functions
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Fig. 10. Convergence study for the double notched specimen problem

Table 7
The double notched specimen: comparison with previous solutions

Authors Approach
Collapse multiplier

Upper-bound Lower-bound

Present method (dRBF) Kinematic and static 1.146 1.122

Present method (iRBF) Kinematic and static 1.141 1.127

Ciria et al. (Uniform) [49] Kinematic and static 1.149 1.131

Ciria et al. (Adaptive) [49] Kinematic and static 1.139 1.132

Le et al. [35] Kinematic 1.137 -

Le et al. [12] Kinematic 1.154 -

Krabbenhoft et al. [50] Static - 1.132

Tin-Loi & Ngo [43] Static - 1.166

Christiansen et al. [45] Mixed formulation 1.136

can prevent volumetric locking. Moreover, direct nodal integration of the iRBF
approximation not only results in inexpensive computational cost, but also
overcomes the instability problems. In the static formulation, with the use of
iRBF approximation of the stress fields in combination with the collocation
method, equilibrium equations and yield conditions only need to be enforced
at the nodes, leading to the reduction in computational effort. It has been
shown in several examples that the mean values of the iRBF upper and lower
bounds are accurate, and can be considered as the actual collapse load mul-
tiplier for most practical engineering problems, for which exact solution is
unknown.
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