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Key Points 

• Artificial Neural Network (ANN) approaches were used to model and predict water trading 
prices in the Murry Irrigation area, Australia.  

• Prices forecast using hybrid ANN-Bayesian modelling showed greater agreement with actual 
water prices. 

• Water security allocations, cereal and meat prices were significant determinants of future water 
trading prices. 

 

Abstract: This paper proposes an integrated (hybrid) Artificial Neural Network-Bayesian (ANN-B) 

modelling approach to improve the accuracy of predicting seasonal water allocation prices in 

Australia’s Murry Irrigation Area, which is part of one of the world’s largest interconnected water 

markets. Three models (basic, intermediate and full), accommodating different levels of data 

availability, were considered. Data were analyzed using both ANN and hybrid ANN-B approaches. 

Using the ANN-B modelling approach, which can simulate complex and non-linear processes, water 

allocation prices were predicted with a high degree of accuracy (RBASIC = 0.93, RINTER.= 0.96 and RFULL 

= 0.99); this was a higher level of accuracy than realized using ANN. This approach can potentially be 

integrated with online data systems to predict water allocation prices, enable better water allocation 

trade decisions, and improve the productivity and profitability of irrigated agriculture. 

Keywords: Water allocation prices, Artificial Neural Network model, hybrid Artificial Neural 

Network-Bayesian model, water trade, price prediction. 
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1. Introduction 

Existing irrigated agriculture will come under intense pressure due to shifts in weather patterns, 

changes in rainfall events and increasingly varied hydrological regimes (IPCC, 2012). These changes 

will cause increased agricultural water demand, especially during dry years. Most farm water use and 

management decisions are based on seasonal water allocations and the opportunity cost of water use 

(Randall, 1981). Water markets, where they exist, provide farmers with clear opportunity cost and 

price signals that can potentially improve the economic efficiency of water use in terms of higher 

profit per hectare and per megalitre of water, given limited water availability and higher inter-

temporal risk (Qureshi et al., 2010, 2013). This is because, in the absence of distortions, water 

markets allocate water to equalize the marginal benefits from its use across sectors/users and to 

magnify social welfare (Skurray, 2012). A perfectly competitive market, in equilibrium, will result in 

water prices equal to the value of its marginal product, while water prices generated under 

distortionary (e.g. political, institutional, infrastructural, informational) constraints may result in 

inefficient resource use at the margins (Chong et al., 2006). Access to water markets can also assist 

agricultural water users in their adjustment to uncertainty through participation in water allocation 

trade, consistent with their risk management and commodity options (Brennan, 2004). Thus, 

improved water allocation price information may lead to more efficient use of increasingly scarce and 

expensive water resources, resulting in increased farmer returns on investment and positive social 

welfare outcomes.  

 

Two types of water product are generally traded: water allocations (also known as seasonal or 

temporary trade) and water entitlements (also known as permanent trade). A water entitlement is 

defined as a perpetual or ongoing right to a share of water from a specified consumptive pool, while a 

water allocation is the specific volume of water allocated to water access entitlements in any given 

season (Wheeler et al., 2014). It is important to distinguish in the literature between studies that 

examine trade activity (e.g. Loch et al. 2012), price elasticity (e.g. Wheeler et al. 2008) and trade price 

drivers. Trade price drivers for water allocation products are the focus of this paper. In the United 
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Sates, for example, prices can be driven by the volume of water allocations traded between urban and 

agricultural users (Colby et al. 1993); although since >95% of water trades in Australia are 

agricultural in nature this may be of lesser concern (Bjornlund and Rossini 2007). Important drivers of 

Australian water allocation trade prices typically include: water scarcity (abundance) as a 

consequence of drought (flooding) events which also impact on rainfall and evaporation variations 

(Bjornlund 2004; Bjornlund and Rossini 2005); seasonal allocation announcements on the back of 

annual rainfall outcomes and water manager assessments (Bjornlund 2002, 2003; Peterson et al. 2004; 

Brennan 2006); risk averse attitudes held by farmers or different industries (Brennan 2006; Brooks 

and Harris 2008); the substitutability of water for other farming inputs such as feed (Bjornlund 2003; 

Peterson et al. 2004); spatial or physical trade restrictions within and between different areas (Gardner 

and Miller 1983; Brennan 2006); inefficient trade rule and/or price discovery processes (Brennan 

2006); cost-differences between water allocation and other trade products (Brooks and Harris 2008); 

the degree to which water is required to preserve capital-intensive production systems (Bjornlund and 

Rossini 2005; Adamson et al. 2017); and the bargaining strength of different traders in the market 

(Gardner and Miller 1983) or the presence of strategic bidding behaviour in the form of excessive 

demand variability (Oczkowski 2005).  

 

Despite this rich list of water allocation price drivers in a market, Australian water allocation prices 

typically show considerable temporal variation and are generally negatively correlated with supply; 

that is, prices rise with decreasing availability (Bjornlund and Rossini, 2007). Hence, during periods 

of drought, which are common in many contexts around the world, low opening and/or persistently 

constrained volumetric allocations create significant water allocation price uncertainty for farmers. 

For instance, in 2006–07 at the height of the ‘Millennium drought’ (1996–2010) in Australia, 

volumetric water allocations for some regions and property right categories in the Murray–Darling 

Basin (MDB)—one of the world’s largest interconnected water markets—were announced at 0% of 

total entitlement; as a consequence, water allocation prices were far higher than in previous years 

(Kirby et al., 2012). However, in such atypical years, risk averse irrigators may also pay a price 
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premium early in a season to reflect supply uncertainty and a risk premium above the expected water 

value, which would be likely to decline monthly over the season as a rule (Brennan 2006). So if the 

capacity of different water users to forecast allocation water prices can be improved, this may increase 

their respective gains from trade (and/or decrease the risk premiums incurred) by irrigators over the 

course of a season. 

 

1.1 The value of water allocation price predicting 

Future increased climatic and hydrological variability will significantly impact on future water 

allocation supply and pricing, resulting in a considerable interest in water market activity and 

governance emphasis on agricultural efficiency in regions such as the MDB (Adamson et al. 2017). 

These risks and impacts may be mitigated by more accurate forecasts of future water allocation prices 

at the start or end of cropping seasons, improving farmer capacity to make more efficient cropping 

decisions and increase total farm profitability. In recognition of this, the Australian government 

invested $460 million over ten years to improve availability and access to water information for better 

risk management by irrigators, environmental managers and policymakers, while a further $56 million 

was also invested in more transparent national market information for users (Horne, 2012). Improved 

water allocation price forecasts will also allow buyers and sellers to develop profitable cropping plans, 

in advance, based on soil types, irrigation systems, water availability and future climate and market 

outlooks. Studies have indicated that water allocation trading has been instrumental in enabling 

irrigators to better manage drought, debt levels and farm operations by selling/buying water 

allocations (National Water Commission, 2010; Wheeler et al. 2014). For example, rice producers in 

the Murray Irrigation Area were able to sustain income during drought years when volumetric 

allocations were extremely low (<10%) by selling their water allocations through markets (Mushtaq et 

al. 2013; National Water Commission, 2010). 
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Improved water allocation price forecasts will enable both buyers and sellers of water to make water 

market decisions with greater certainty with regard to the optimal use of their water assets, thereby 

buffering farm income when water allocations are constrained. Water allocation price forecasts 

several months in advance will allow irrigators to make early informed decisions, based on anticipated 

crop net production value ($/megalitre [ML], where 1ML = 810.6 acre-feet), regarding participating 

in water markets as either buyers or sellers. If the likely water allocation price exceeds the crop net 

production value, an irrigator might maximize farm income by reducing the crop area and selling 

water. However, if the likely water allocation price is less than potential crop net production values, 

buying water could enable a larger area of crop to be planted than would otherwise be possible (i.e. in 

the absence of water market information and land area constraints). Although Brennan (2008) 

suggests that losses in economic value associated with reduced reliability offset any potential gains 

from trade in the MDB, Grafton et al. (2012) estimate that total gains from trade in the MDB are 

worth hundreds of millions of dollars per annum. Modelling by the National Water Commission 

(2012) also estimated that MDB production during the drought period 2006–07 to 2010–11 was 

AU$4.3 billion higher with water allocation trade and that expanded access to water allocation trade 

had reduced drought impacts from AU$11.7 to AU$7 billion over that same period. Khan et al. (2010) 

showed the benefits of water allocation trade using a hypothetical mixed farming system in the MDB. 

The results indicated that, at lower water allocation prices (<$200/ML) associated with higher 

volumetric allocation levels, the irrigator could maximize farm income ($374,825) by buying 

additional water allocation (334ML) through the market, given the farm biophysical and economic 

constraints. However, at higher water allocation prices (>$630/ML) due to low volumetric allocation 

levels, the irrigator was better off reducing the area of irrigated crop and selling water allocation 

(425ML), potentially making $348,500. Finally, Adamson et al. (2017) highlight the differences in 

water allocation trade strategies across annual and perennial producers, and the theoretical constructs 

underpinning farmer responses to a given supply of water, and this informs the approach adopted in 

this paper. 
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While the benefits of improved water allocation demand (price) predicting accuracy may be mixed 

depending on an agricultural water users’ operation and accuracy requirements (Zareipour et al., 

2010), improved capacity by agricultural water users to make timely annual selections of annual 

commodities and/or adopt risk management arrangements with more accurate water allocation price 

predictions should create economic welfare and improved marginal water use outcomes 

(Dziegielewski, 2011). Further, the provision of effective information and institutional platforms to 

support water allocation price prediction has not matched market development (Wheeler, 2016; 

Wheeler et al., 2017; Cui and Schreider, 2009); this is particularly critical given the monthly price 

variation typically evident in water allocation price reporting (e.g. National Water Commission, 

2013). 

 

1.2 Prediction approaches 

Predicting water allocation prices faces significant challenges due to the complexity of the 

relationships involved. Typically, water resource researchers have used conventional modelling 

techniques such as regression analysis, time series analysis and autoregressive moving averages (Jain 

et al., 2001). More recently, due to the inherent complexity in modelling water resources, the non-

linearity of water allocations, and the difficulties of building linear relationships between water 

allocations for winter and summer periods using conventional models, researchers have adopted the 

artificial neural network (ANN) method to estimate these complex factors (Khan et al., 2005; 

Kingston et al., 2005; Maier et al., 2010; Sakaa et al., 2013; Liu et al., 2014; Li et al., 2015; Wu et 

al., 2014). ANN models emulate the properties of biological nervous systems for adaptive learning 

from historical data, using patterns in the data to predict the future (Nowlan and Hinton, 1992; 

Cancelliere et al., 2002). They can be trained to predict outputs through parallel processing of 

multiple-independent inputs (Haykin, 1999). From a review of 43 papers on the topic, Maier et al. 

(2010) concluded that ANNs provide a useful tool for the prediction and forecasting of water resource 

variables. The neural network approach is also commonly accepted as the best modelling method 

currently available, particularly for economic price forecasting, as it can capture nonlinearities in the 
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system (Lawrence, 1997; Smith and Mason, 1997; Khan et al., 2010). Neural networks are non-linear 

parallel computational techniques which are flexible and offer better fitting outputs with regard to the 

training data, than linear models. However, an error of over-fitting can occur during neural network 

training with a large number of parameters in the new data (Srivastava et al. 2014). 

 

Bayesian approaches, based on Bayes’ rule, incorporate a likelihood function, which calculates the 

probability of the observed data conditional on the values of other parameters in the dataset (MacKay, 

1992; Robert, 2007). Hence, a hybrid ANN-Bayesian modelling approach should enable a more 

probabilistic interpretation of the behaviour of a complex dataset. Kingston et al. (2005) used a 

Bayesian model selection (BMS) method based on Markov Chain Monte Carlo (MCMC) approach 

applied to a salinity forecasting case study. In contrast to a solely neural network model, the ANN-B 

model can solve the over-fitting problem using Bayesian regularization (MacKay, 1992). Ideally, the 

network training algorithm will adopt a Bayesian regularization back-propagation approach to update 

the weight and bias values according to Levenberg-Marquardt optimization. 

 

In this paper, we investigate the potential for a hybrid ANN-Bayesian (ANN-B) approach to further 

improve model accuracy in water allocation price prediction in a case study water market to 

potentially increase efficient agricultural water (re)allocation at the margin and improve gains from 

water allocation trade. Specifically, we forecast monthly New South Wales (NSW) Murray Irrigation 

Area water allocation prices using both Artificial Neural Network (ANN) and hybrid Artificial Neural 

Network-based Bayesian (ANN-B) modelling approaches. Our results indicate that, while ANN 

models can accurately predict water allocation prices with a less than 5% error margin on a monthly 

basis over the period 1999–2015, a hybrid ANN-B model provides greater consistency between actual 

and forecast prices, suggesting improved capacity to predict water allocation prices and potential for 

greater economic gains through water allocation trade. The paper contributes to the water market 

literature by providing a monthly water allocation price predicting model that can be used to 



  

anticipate water allocation prices across the cropping season; this information can be used in decision-

making to potentially improve the gains from trade. 

 

2. Methods 

2.1 Study area 

The study area for the paper is the Murray Irrigation Area (MIA), located in the southern MDB 

(Figure 1). Irrigation farming activity in this region accounts for 7.7% of total MDB irrigation water 

use (MIL, 2006). The land-use pattern in the Murray Irrigation Area shows the diverse nature of 

agriculture in the region (see supplementary Table S1). In the MIA, the average level of allocation 

made against general security entitlements1 was about 124% before restrictions on water extraction 

were imposed in 1994–95 with the imposition of ‘the Cap’2, falling to 65% after this (see 

supplementary Figure S1). The region has an annual bulk water entitlement of 1,479,000ML (see 

supplementary Table S2) and is generally a net importer of water facilitated through the water market. 

The local privately-owned irrigation company, Murray Irrigation Limited (MIL), provides water from 

their bulk holding to about 2,416 landholdings (total land area of 748,000 ha), as well as urban water 

supply to eight local rural towns. 

 

 

 

 

 

 

                                                
1 General Security water entitlements are a lower-reliability product that may deliver an allocation in, for 
example, 50% of years subject to water demand/availability circumstances. 
2 The ‘Cap’ was a limit on total water extractions from the MDB that was first trialled (1994–95), and later fully 
implemented (1996–97) using the level of extractions current in the 1994–95 season. The Cap is flexible and 
adjusts each year, but has generally resulted in reduced total extractions in the MDB from 2002–03 onwards. 
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Figure 1: Murray Irrigation Area, Australia. (Source: http://www.murrayirrigation.com.au/). 

 

Markets for water have a lengthy history in Australia, and are now reasonably well established in the 

southern MDB (Loch et al., 2013). Relatively low transaction costs associated with water allocation 

trade mean that markets provide a useful risk-mitigation strategy for MDB irrigators, particularly 

during droughts (Wittwer and Griffith, 2011). Since 1994–95, when the Murray Darling Basin 

Commission imposed the Cap limit on total water diversions, water trading activity has gradually 

increased. The volume of water traded throughout the MIA has also risen steadily in response to 

periodic variations in seasonal water volumetric allocations. For instance, at the height of the 

Millennium Drought, some 95,000ML of water allocations worth AU$4.3 million was traded between 

August 2005 and May 2009 (MIL, 2006), and decreases in agricultural production and net income 

were lower than expected under the counterfactual, highlighting the value of water trade (Wittwer and 

Griffith, 2011). 

 

2.2. Analytical framework 

The findings of our study, whilst not specifically transferrable to other markets around the MDB or 

globally, provide a useful step toward identifying the value of price prediction for farmers and 

possible gains from trade. As outlined above, water allocation prices are determined by various supply 

and demand factors. These include seasonal rainfall conditions, volumetric allocations, current output, 

commodity prices (Wheeler et al., 2008, Bjornlund and Rossini, 2007, Loch et al. 2012) and farmers’ 

socio-economic characteristics and type of farm (Wheeler et al. 2010). 
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Three models are proposed to forecast water allocation prices; these are referred to as the basic, 

intermediate and full models (Khan et al., 2010) described below: 

(i) Basic model is designed with the weighted average price (A$ ML-1) of water allocations 

from the current month to 3 months earlier, as follows: 
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(ii) Intermediate model is based on the weighted average price (A$ ML-1) of water 
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In this model, drought is a more important factor, significantly impacting water allocation 

trade price and agricultural production over time. The SPI is used to determine the rarity 

of a drought at a given time scale for historic rainfall data. 

(iii) Full model is designed for the current month and the previous two months based on the 

parameters in the intermediate model plus the weighted average prices of cereal crops 

(wheat, barley, sorghum, and rice), and meat (beef, lamb, and pork) which are the main 

agricultural outputs of the MIA: 
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where: 
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M Month; 

T Year; 

Avg. Average; 

Pw(m+1) Predicted water allocation price (A$ ML-1) for the next month; 

Pw(Avg. (m, m-1, m-2)) Weighted average water allocation price (A$ ML-1) for the current 

month, last month and two months ago;  

Pw(Avg. (m-1, m-2, m-3)) Weighted average water allocation price (A$ ML-1) for the last 

month, last two months, and three months ago;  

SPI Avg. (m-1, m-2, m-3)
 

Average standardized precipitation index (SPI) for the current 

month, last month and two months ago; 

AAvg. (m, m-1, m-2) Average general security water volumetric allocation (percent) for 

the current month, last month and two months ago; 

AAvg. (m-1, m-2, m-3) Average general security water volumetric allocation (percent) for 

the last month, two months ago and three months ago;  

AAvg. (m-2, m-3,m-4) Average general security water volumetric allocation (percent) for 

two months ago, three months ago and four months ago;  

Pc(Avg. (m, m-1, m-2))  Weighted average commodity price (A$ tonne-1) of cereal (c) 

crops for the current month, last month and two months ago 

(wheat, barley, sorghum, rice); 

Pg(Avg. (m, m-1, m-2)) Weighted average grape (g) prices (A$ tonne-1) for the current 

month (m), last month and two months ago; 

Pm(Avg. (m, m-1, m-2)) Weighted average meat (m) prices (cent kg-1) for the current 

month, last month and two months ago (beef, lamb, pork). 

Descriptive statistics for all variables are presented in Table S3. 

 

2.3 Data sources 
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Time series data on water allocation trade covering the period from 1998 to 2015 were obtained from 

the Water Exchange (the MIL water allocation trade platform) and various annual and environmental 

reports from MIL (MIL, 2008–2015). Data for high and general security water volumetric allocation 

were obtained from MIL (2017) and the federal Department of Agriculture and Water Resources 

(2017). 

 

Water use, and thereby water allocation demand, is a function of precipitation and evaporation, for 

which SPI—a normalized continuous rainfall variability function—is a proxy. The SPI was computed 

for four major regions in the study area (31.50S–360S, 143.70W–149.50W) from rainfall data for 

January 1999 to August 2015 obtained from the Australian Bureau of Meteorology (BOM, 2015). The 

index is based on statistical techniques and can quantify the degree of wetness and evaporation by 

comparing monthly rainfall totals with historical rainfall data (McKee et al., 1993). Data on 

commodity prices (see Supplementary Table S3) were obtained from the Australian Bureau of 

Agricultural and Resource Economics (ABARE, 2015). 

 

Belsley collinearity diagnostics (Belsley et al. 1980) were used to assess the strength and sources of 

collinearity among variables in the multiple linear regression model; no significant correlations were 

identified. 

 

2.4 Model Development: Hybrid Artificial Neural Network-Bayesian (ANN-B) modelling 

Assuming the data are observations from a continuous probability distribution, the ANN-B model will 

begin by studying the distribution of the data in order to model their behaviour. According to the 

nature of ANN, the neural inputs are then processed by the likelihood function in Bayes’ rule. If the 

data are represented by ),...,,( 21 nxxxX =  and the set of parameters θ determines the probability 

distributions of X , the probability densities of X  can be presented as )|( θixP . The likelihood 
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function )|( XL θ  is then the probability of the observed data X conditional on the values of 

parameter θ (MacKay, 1992; Robert, 2007): 

∏
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where P 	denotes the prior pdf of θ. The posterior distribution combines the prior function with the 

likelihood function (Figure 2). 
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Figure 2: Prior, likelihood and posterior density functions of the fluctuation of allocation trading 

prices. Posterior probability is the product of prior probability and likelihood. 

 

A Bayesian function can predict the value of an unknown quantity 
1+n

x  with respect to the posterior 

distribution of the parameters as: 
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The objective of this model is to predict the distribution of the target values
1+n

y . The weights and 

biases are trained, based on a set of the maximum of likelihood values for the input data 

),...,,( 21 nxxxX =  and associated targets ),...,,( 21 nyyyY = . From equation (6), the predicted 

distribution of 
1
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+ny  can be presented as: 
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2.5 Model training and sensitivity analysis 

When the network was trained, the divide function was automatically accessed and the data were 

randomly divided into three subsets. The fraction of data placed in the training set, validation set, and 

test set were as follows: 

 (i)  a training set (train_ratio = 60%), used for computing the gradient and updating the network 

weights and biases;  

(ii)  a validation set (validation_ratio = 20%) in which the error on the validation set was 

monitored during the training process; and 

(iii)  a test set (test_ratio  = 20%), used for testing the final solution in order to confirm the actual 

predictive power of the network. 
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The basic, intermediate and full model networks were trained through 1,000 iterations, where the 

mean squared error for both sub-samples decreased and then started to increase for the 

second/validation sub-sample, indicating that the network had learnt very effectively, conforming to 

the ANN and ANN-B primary principal of error minimization. When the training in Neural Networks 

was complete, the network performance could be used to check and determine if any changes needed 

to be made to the training process, the network architecture, or the data sets. 

 

The models were also tested with regard to their sensitivity to the input variables (i.e. the relative 

impact of each input variable on water allocation price). Sensitivity analysis provided a key measure 

of the effect of an input value on the output value; hence, input variables with low sensitivity may be 

removed to decrease the network calculations as these will have little or no impact on the prediction 

result.  

 

A nonlinear auto regressive model with an external input (ARX) was also used to predict the water 

allocation price over the time span of measured data to enable comparison and validation of the ANN 

and ANN-B models (Billings, 2013).  

 

3. Results and Discussion 

A total of 19,723 sub-daily water allocation market transactions, converted into monthly values, were 

used. Of these, 11,753 (60% of total observations) were used for model training, with no major 

problems encountered. The best performing networks for the basic, intermediate and full models are 

shown in Table 1; these were identified as those models with the lowest errors in the training, 

validation and testing processes (Best-perf., Best-vperf., Best-tperf., respectively). Training and 

testing errors were lowest in the ANN-B Full models compared with ANN models. 

 



  

Table 1. Results for training, validation and testing of ANN and ANN-B models.  

Item 
Basic Model Intermediate Model Full Model 

ANN ANN-B ANN ANN-B ANN ANN-B 

Best-perf. 0.45 0.54 0.20 0.25 0.17 0.01 

Best-vperf. 0.07 0.05 0.10 0.15 0.09 0.07 

Best-tperf. 0.12 0.05 0.27 0.16 0.17 0.04 

Perf. : performance; vperf.: validation performance; tperf.: testing performance. 

 

Figure 3 shows the value of the performance function versus the iteration number of training, 

validation, and test performance. The best network results for the ANN models were found at the 

12th, 3th and 4th iterations for the basic, intermediate and full models, respectively (Fig. 3 a, b, c). For 

the ANN–B models, the best network results were found at the 4th iteration for the basic model, 4th 

iteration for intermediate model and at 5th iteration for the full model (Fig. 3 d, e, f). In these figures, 

there are no major problems with the training. Validation and test curves were similar, and no 

overfitting occurred. 

 

Figure 3: Validation performance results for the ANN basic (a), intermediate (b) and full (c) models 

and ANN-Bayesian basic (d), intermediate (e) and full (f) models.  



  

 

 

3.1 Model validation 

The validation of network performance was based on a regression of scatter plots of predicted versus 

observed water allocation trading prices, as shown in Figure 4. The regression coefficient (0≤R≤1) 

indicates the relationship between the actual water allocation price and the predicted water allocation 

price. The full ANN-B model showed better predicting performance, as reflected by the regression 

coefficients (RFull = 0.99) between actual and model generated water allocation prices, than either the 

intermediate (RInter.= 0.96) or basic (RBasic = 0.93) models. For the ANN model, regression coefficient 

values were RFull= 0.89, RInter.= 0.87 and RBasic= 0.82. 

 

Figure 4: Regression of predicted water allocation price (network output) and the corresponding 

observed water allocation price for the basic, intermediate and full ANN (a–c) and ANN-B (d–f) 

models. (The solid line shows the best linear fit and the dashed line shows the perfect fit.)  

 

The responses of the predicted water allocation prices for the time series are shown in Figure 5 (a–c) 

for the ANN model and 5 (d–f) for the ANN-B model. In these figures, errors are highest in the basic 

and intermediate ANN models, and lowest in the full ANN-B model. The better performance of the 
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full ANN-B model is mainly associated with the inclusion of water volumetric allocations and cereal 

and meat prices, which enabled water allocation price volatility to be better captured than in other 

models, especially during the period between 2006–07 and March 2009, when water allocation prices 

were very high due to extremely low seasonal water volumetric allocations in the MIL.  

 

Figure 5: Time series responses for observed water allocation prices and predicted water allocation 

prices of various models. (Time scale on the x-axis may vary because data were randomly 

divided into three subsets when training the multilayer networks, as described in subsection 

2.5) 

 

3.2 Model testing 

Overall, the models showed good predictive capabilities, with predicted water allocation prices close 

to actual water allocation prices in all six (basic, intermediate, and full ANN and ANN-B) models 

(Table 2). The full ANN-B model had the lowest minimum error, primarily due to the inclusion of 

more parameters than the basic or intermediate models. The full ANN-B model was also better able to 

forecast future water allocation prices with lower forecast error margins than the intermediate or basic 

ANN-B models across all months (Table 2, Figure 6). In all cases, the medians are roughly centered 

E
rr
o
r

T
im
e
-s
e
ri
e
s
 r
e
s
p
o
n
s
e

E
rr
o
r

T
im
e
-s
e
ri
e
s
 r
e
s
p
o
n
s
e



  

19 

between the quartiles indicating that the middle half of the errors are roughly symmetric and the error 

distributions are not skewed. 

A nonlinear auto regressive model with an external input (ARX) was also considered in the case of 

the full generic model for comparison (Billings, 2013). Predicting with ANN-B model gave better 

results than predicting with the ARX model. 

 

Table 2. Model statistics for ANN and ANN-B basic, intermediate and full models used to predict 

water allocation prices for September 1999 to May 2013 in the Murray Irrigation Area, Australia.  

Item 

Basic model Intermediate model Full model 
Nonlinear 

ARX model 

ANN ANN-B ANN ANN-B ANN ANN-B  

RMS 0.59 0.62 0.44 0.47 0.40 0.13 0.70 

MAE 0.33 0.23 0.33 0.29 0.23 0.05 0.41 

R 0.82 0.93 0.87 0.96 0.89 0.99 0.802 

RMS: Root Mean Square; MAE: Mean Absolute Error.  

 

 

 

Figure 6: Error boxplots for the basic, intermediate and full ANN and ANN-B models. 
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3.3 Predicting water allocation prices 

Network performance was assessed by comparing model outputs (prediction) with target (actual) 

water allocation prices in Figures 7(a, b, c) for ANN models, and 7(d, e, f) for ANN-B models. The 

ANN-B-model-generated predictions appear to more closely fit the actual data curves (Figure 7), 

indicating that, over the entire data set, ANN-B models show greater agreement between actual and 

predicted prices, and were therefore better able to predict prices. Overall, the full ANN-B model 

showed better prediction ability due to the inclusion of more parameters in the model which capture 

the volatility in prices during the 2002–03 drought, when volumetric allocations were very low, and 

2006–07, when initial water allocations up to March 2007 were close to zero. 

 

Figure 7: Observed and monthly predicted water allocation prices (model output) for basic, 

intermediate and full ANN and ANN-B models. 

 

The results from the ANN-B Full, ANN-B Intermediate and ANN-B Basic models were tested by 

predicting water allocation prices. Table 3 shows the overall performance of the Basic, Intermediate 

and Full models in a real setting from February 2006 to December 2006, excluding winter months 

(May–July 2006) when there was little or no water allocation trading; this period was during the 

‘Millennium drought’ (1996–2010) when water allocation prices were far higher than in previous 
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years. The results from the ANN-B Full model has smaller errors than either the ANN-B Intermediate 

or ANN-B Basic models (Table 3); overall the error range (1.53%%–12.08%) highlights the superior 

capabilities of the ANN-B models.  

 

 

Table 3: Observed prices, predicted prices and model errors for Basic, Intermediate and Full ANN-B 

forecast water allocation prices for the eight month period from February to December 2006 during 

the Millennium Drought in Australia’s Murray-Darling Basin. 

Year 

2006 

Observed 

price 

Full model Inter. Model Basic model 

Months ($/ML) Predicted 

price 

Error (%) Predicted 

price 

Error 

(%) 

Predicted 

price 

Error 

(%) 

February 06 41.66 43.63 -4.75 47.04 -12.93 45.78 -9.90 

March 06 41.21 39.15 4.99 43.09 -4.57 40.19 2.45 

April 06 43.79 42.02 4.04 45.26 -3.36 42.67 2.55 

August 06 144.69 139.77 3.39 138.13 4.52 148.52 -2.65 

September 06 174.27 182.93 -3.12 177.40 -2.83 172.52 1.01 

October 06  215.95 221.98 -2.28 217.03 -4.02 208.64 3.39 

November 06 283.41 285.58 5.67 302.73 -12.08 270.11 4.69 

December 06 435.84 433.86 -1.53 427.30 -7.30 398.22 8.63 

 

In Table 3, the observed and predicted price data are presented for the normal period (February to 

April 2006) and the extreme period (August to December 2006). The models show good predictive 

capabilities within the training range using unsupervised learning from February 2006 through to 

December 2006, when predicted water allocation prices were close to actual water allocation prices. 

In the ANN-B Full model, the maximum error (5.67%) ocurrs when the price increased 24% from 

AU$215.95/ML in October to AU$283.41/ML in November.  
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3.4 Network sensitivity 

Finally, we examined the sensitivity values of the model outputs to each input variable varied across 

input levels (Table 4). For example, water allocation prices were most influential in the basic, 

intermediate and full ANN models and in the basic and intermediate ANN-B models. However, meat 

and cereal prices were the most significant parameters impacting the predicted water allocation price 

in the full ANN-B model. The full ANN-B model was most sensitive to the water allocation price and 

meat and cereal prices (Table 4). 

Table 4. Summary of parameter contributions for all models 

Performance Type 

%100)( ×ixC  

ANN Model 

%100)( ×ixC  

ANN-B Model 

Basic 

 (%) 

Inter. 

(%)  

Full  

(%) 

Basic 

 (%) 

Inter. 

(%)  

Full  

(%) 

Water Allocation Trading Price 

(Pw(m-1)) 
25.82 20.10 34.56 18.68 20.44 11.95 

Water Allocation Trading Price 

(Pw(m-2)) 
35.90 30.05 28.58 37.22 25.40 12.22 

Water Allocation Trading Price 

(Pw(m-3)) 
38.28 42.12 21.49 44.10 28.12 14.70 

General Security Water Allocation 

(m) 
-- 0.98 1.00 -- 0.15 14.65 

General Security Water Allocation 

(m-1) 
-- 0.48 0.53 -- 0.19 0.15 

General Security Water Allocation 

(m-2) 
-- 2.07 1.72 -- 0.27 0.18 

General Security Water Allocation 

(m-3) 
-- 4.05 3.11 -- 0.33 0.19 
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Standard Precipitation Index (SPI) -- 0.15 0.05 -- 25.10 12.06 

Cereal price (m)a -- -- 6.48 -- -- 14.78 

Meat price (m)b -- -- 2.48 -- -- 19.12 

Total/constant 100 100 100 100 100 100 

aCereal includes wheat, barley, sorghum and rice 

bMeat includes beef, lamb and pork 

-- Not applicable 

 

4. Conclusions and implications 

Water scarcity is a key constraint to profitable agriculture. Water markets can reallocate water from 

low to high valued agricultural uses enabling gains in efficiency and overall productivity (White et al., 

2006; Qureshi et al., 2013; An-Vo et al. 2015). In periods of scarcity, volumetric water allocations 

and water allocation prices will remain uncertain, hindering efficient decision-making regarding land 

and water management, investments into inputs, and potential national, regional and individual gains 

from trade. Continued drought can exacerbate this situation, and under such conditions water buyers 

and sellers will likely face high levels of water allocation price uncertainty in markets. The ability to 

forecast water allocation prices (e.g. seasonal allocation prices) could enable irrigators to make more 

informed decisions on water allocation and natural resource management to help boost returns to their 

investments by more effectively using increasingly scarce and expensive water supplies to gain from 

trade. 

 

This paper presents a novel hybrid Artificial Neural Network-Bayesian (ANN-B) model developed to 

better predict water allocation prices in the Murray Irrigation Area in Australia. The results indicate 

that both ANN and ANN-B modelling approaches can be successfully used for time series prediction 

by simulating complex and non-linear processes which are often not adequately addressed by 

conventional regression or time series models. While ANN approaches are often used for such 

purposes, our modelling results also show that water allocation prices can be more successfully 
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predicted (R=0.99) using an ANN-B approach, with simulation results from the ANN-B models found 

to be more accurate than those of the standard ANN models across a range of data inputs. The results 

indicate that current water allocation prices, general water security volumetric allocations and other 

data such as cereal and meat prices are significant determinants of future water allocation prices. 

Application of the ANN-B model in a real world setting indicates the potential for good water 

allocation price prediction capability within the training range of the model. ANN-B models will be 

considered and improved for further commercialized applications such as spreadsheets and real time 

data acquisition to enhance their functionality. The applications can also be useful for addressing a 

range of issues such as water allocation price risk, irrigation infrastructure investments and asset 

management decisions; contingency planning for drought; natural resource management planning; 

and regional development planning. Further, the framework could be used to forecast volumetric 

allocations or water allocation prices in other irrigation districts to generate valuable information. 

With continued commitment by policy makers to the water allocation market, improved capacity of 

agricultural water users in the timely selection of annual commodities and/or risk management 

arrangements with more accurate water allocation market price predicting in water markets should 

create greater economic and water use efficiency. 
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Key Points 
• Artificial Neural Network (ANN) approaches were used to model and 

predict water trading prices in the Murry Irrigation area, Australia.  

• Prices forecast using hybrid ANN-Bayesian modelling showed greater 

agreement with actual water prices. 

• Water security allocations, cereal and meat prices were significant 

determinants of future water trading prices. 

 


