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Abstract

In this PhD thesis, one-dimensional integrated radial basis function networks

(1D-IRBFNs) are further developed for the simulation of viscous and viscoelas-

tic flows in two dimensions. The thesis consists of two main parts.

In the first part, 1D-IRBFNs are incorporated into the Galerkin formulation to

simulate viscous flows. The governing equations are taken in the streamfunction-

vorticity formulation and in the streamfunction formulation. Boundary condi-

tions are effectively imposed with the help of the integration constants. The

proposed 1D-IRBFN-based Galerkin methods are validated through the numer-

ical simulation of several benchmark test problems including free convection in

a square slot and in a concentric annulus.

In the second part, 1D-IRBFNs are incorporated into the Galerkin and colloca-

tion formulations to simulate viscoelastic flows. The momentum and continuity

equations are taken in the streamfunction-vorticity formulation and two types

of fluid, namely Oldroyd-B and CEF models, are considered. Flows in a rect-

angular duct and in straight and corrugated tubes are simulated to validate the

proposed 1D-IRBFN-based Galerkin/Collocation methods.

Main attractive features of the proposed methods include (i) easy implementa-

tion; (ii) avoidance of the reduction in convergence rate caused by differentia-

tion; and (iii) effective treatment of derivative boundary conditions. Numerical

results show that the proposed methods are stable, high-order accurate and

converge well. This study further demonstrates the great potential of using

RBFs in CFD.
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Chapter 1

Introduction

The aim of this chapter is to give an introduction to this PhD project. It

begins with an overview of the numerical study of the motion of Newtonian and

non-Newtonian fluids. We then present the motivation and significance of the

research project. The chapter ends with the thesis outline.

1.1 Overview of computational fluid mechanics

1.1.1 Governing equations

Fluid flows, which are characterised by the evolution of physical properties

such as temperature, stress, velocity, mass and energy, can be mathematically

described by a set of partial differential equations (PDEs) together with a set

of boundary conditions.

Conservation equations: The conservation laws for momentum and mass of
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an incompressible fluid lead to

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + f , x ∈ Ω, (1.1)

∇ · u = 0, x ∈ Ω, (1.2)

where u is the velocity vector, f the body force vector per unit volume, ρ the

fluid density, σ the Cauchy stress tensor, t the time, x the position vector and

Ω the domain of interest.

The stress tensor can be decomposed into

σ = −pI + τ , (1.3)

where p is the pressure, I the unit tensor and τ the extra stress tensor.

For non-isothermal problems, a set of the field equations is completed with the

following energy equation

ρc

(
∂T

∂t
+ u · ∇T

)
= ∇ · (σ · u)−∇ · q + f · u+ r, (1.4)

where T is the temperature, q the heat flux vector, c the heat capacity, r the

heat source per unit of volume.

Constitutive equations: The process of establishing the mathematical rela-

tionship between the extra stress tensor τ and the kinematic tensors leads to

the constitutive equations.

One can split the tensor τ as

τ = 2µnd+ τ v, (1.5)

where τ v is the extra stress due to viscoelasticity, µn the “Newtonian-contribution”/solvent
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viscosity and d =
(
∇u+ (∇u)T

)
/2 the strain rate. Many differential consti-

tutive models can be written in the general form

aτ v + λ1
∇
τ v +λ2 {d · τ v + τ v · d}+ λ3 {τ v · τ v} = 2µpd, (1.6)

where µp is the “polymer-contribution” viscosity, {a, λ1, λ2, λ3} the constants

defined in Table 1.1 for various viscoelastic models, and
∇
τ v the upper-convected

derivative defined as

∇
τ v =

∂τ v
∂t

+ u · ∇τ v − (∇u)T · τ v − τ v · ∇u. (1.7)

Table 1.1: Definition of constants in several differential constitutive equations.
It is noted that λ is the relaxation time, and ξ and ε are the material parameters.

Constitutive model a λ1 λ2 λ3
Oldroyd-B 1 λ 0 0

Phan-Thien Tanner 1 e

(
λε
µp
tr(τv)

)

λ ξλ 0
Phan-Thien Tanner 2 1 + λε

µp
tr (τ v) λ ξλ 0

Giesekus-Leonov 1 λ 0 − λ
2µp

When µn = 0, the Oldroyd-B model reduces to a Upper-convected Maxwell

(UCM) model (τ = τ v).

1.1.2 Discretisation methods

Principal discrete methods for solving (1.1), (1.2) and (1.4) include finite dif-

ference (FDMs), finite element (FEMs), finite volume (FVMs) and boundary

element (BEMs) methods. These methods generally require the replacement of

the problem domain with a set of small subregions (elements) that are connected

through a fixed topology.

FDMs have a long history (e.g. Crochet et al., 1984). They are easy to program
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and work well for regular geometries. However, for irregular domains, one needs

to apply coordinate transformations to convert them into regular ones. Due to

this requirement, FDMs are seen to be less attractive than other methods. On

the contrary, FEMs and FVMs are capable of handling complex geometries in

a direct manner. FEMs have been well developed for the simulation of viscous

and viscoelastic flows (e.g. Zienkiewicz and Taylor, 1991; Reddy and Gartling,

1994). In comparison with FEMs, FVMs can be seen to be more stable and ef-

ficient (time and memory) (Chang and Yang, 2001; Araujo et al., 2009). Since

conventional FEMs and FVMs rely on low-order interpolation schemes (e.g.

linear and quadratic variations), one generally needs to use a large number of

elements for an accurate simulation. This drawback can make these methods

inefficient in solving large-scale problems. Other disadvantages include (i) less

accurate approximations for high-order derivatives such as velocity gradients;

and (ii) difficulty in handling problems with moving boundaries and transient

free surfaces. On the other hand, many fluid flow problems have been simu-

lated using BEMs (Brebbia et al., 1984). For homogeneous problems, only the

boundaries (lines/surfaces) of the domain have to be discretised, resulting in

a simple preprocessing. For inhomogeneous problems, special treatments are

required to transform volume integrals into boundary integrals (Brebbia et al.,

1984). Clearly, the discretisation of lines/surfaces is much simpler than that of

the whole domain. This is the main reason why BEMs become more attractive

for certain 3D problems with complex geometry. However, they do not work

well for highly-nonlinear problems, e.g. high Reynolds number and Weissenberg

number flows including the steady case (Tanner and Xue, 2002).

Recently, mesh-free/meshless/element-free techniques have been developed. As

the name implies, these techniques are based on a set of nodes that can be

randomly distributed in a domain without any connectivity required. Examples

of meshless methods include smooth particle hydrodynamics (SPH) methods

(e.g. Monaghan, 1990, 1994; Ellero and Tanner, 2005), element-free Galerkin

(EFG) methods (e.g. Belytschko et al., 1994; Huerta et al., 2004), reproducing
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kernel particle methods (RKPM) (e.g. Liu et al., 1995), and meshless local

Petrov-Galerkin (MLPG) methods (e.g. Atluri and Zhu, 1998; Atluri et al.,

2004; Sladek et al., 2004, 2007). A comprehensive survey of mesh-free methods

can be found in (Belytschko et al., 1996; Liu and Gu, 2005).

1.1.3 Radial basis function networks (RBFNs)

RBFNs have received a great deal of attention from both scientific and engi-

neering research communities. RBFNs, which have the property of universal

approximation, are widely used for the approximation of scattered data in high

dimensions (Franke, 1982; Wendland, 1995). Unlike high-order algebraic poly-

nomials, RBFNs do not suffer from the Runge phenomenon (Fornberg and Zuev,

2007; Mai-Duy et al., 2009; Boyd, 2010). The application of RBFNs in the con-

text of point collocation for solving ordinary differential equations (ODEs) and

PDEs was first reported by Kansa in 1990 (Kansa, 1990a). Since then, there

have been many RBF publications, showing RBFN-based methods as an alter-

native to conventional methods. Higher levels of accuracy and efficiency were

reported in many cases (e.g. Li et al., 2003; Cheng et al., 2003).

There are two basic approaches, namely direct and indirect, to construct the

RBF approximations, leading to differentiated RBFNs (DRBFNs) (Kansa, 1990a)

and integrated RBFNs (IRBFNs) (Mai-Duy, 2001; Mai-Duy and Tran-Cong,

2001a,b, 2003), respectively. In the former, a function is first represented

by an RBFN which is then differentiated to obtain approximate expressions

for its derivative functions. In the latter, the highest-order derivatives in the

ODE/PDE are first decomposed into RBFs, and lower-order derivatives and

the function itself are then obtained through integration. Through pioneering

numerical experiments (e.g. Mai-Duy and Tran-Cong, 2001a, 2003, 2005) and

subsequent theoretical analyses (e.g. Ling and Trummer, 2004; Sarra, 2006), it

was shown that IRBFN collocation methods are more accurate than DRBFN



1.2 Motivation and Significance 6

ones for both the representation of functions and the solution of ODEs/PDEs.

RBFN-based methods have been developed into their global and local ver-

sions. For global RBF methods (e.g. Kansa, 1990a,b; Mai-Duy and Tran-Cong,

2001a), the RBF approximations for the field variable at a nodal point involve

every node within the problem domain. Very accurate results were reported.

However, the use of these methods is limited to data sets up to a few hundreds of

nodes only due to the fact that the RBF interpolation matrix is fully populated

and its condition number grows rapidly with the increase of the RBF width

and the number of RBFs (Schaback, 1995). For local RBF methods (e.g. Lee

et al., 2003; Šarler and Vertnik, 2006; Divo and Kassab, 2007, 2008; Mai-Duy

and Tran-Cong, 2009b; Stevens et al., 2009), one uses only a few nodal points

to construct the approximations for the field variable at a node, resulting in

a sparse system matrix. Thus, local RBF solutions were reported for discrete

models with a much larger number of nodes. Further details can be found in a

comprehensive survey of local RBF methods for transport phenomena (Šarler,

2007) and a comparative study of their use for diffusion-reaction equations (Yao,

Islam and Šarler, 2010). In the context of IRBFNs, collocation schemes, based

on one-dimensional (1D) IRBFNs and Cartesian grids, for the solution of 2D

elliptic PDEs were reported in, for instance, (Mai-Duy and Tran-Cong, 2007).

The 1D-IRBFN approximations at a grid node use only nodes that lie on the

grid lines intersecting at that node rather than the whole set of nodes. As a

result, the construction process is conducted for a series of small matrices rather

than for a large single matrix.

1.2 Motivation and Significance

From the above survey, it can be seen that the development of RBFNs for the

solution of ODEs/PDEs is a relatively new research area. Unlike low-order poly-

nomials, RBFNs have the ability to produce an exponential rate of convergence
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(i.e. spectral accuracy). In contrast to high-order (Chebyshev) polynomials,

they can work well on uniformly-gridded and scattered data. Integrated RBFNs

have several advantages over differentiated RBFNs. The use of integration to

construct the approximations helps avoid the problem of reduced convergence

rate caused by differentiation as well as provides a powerful means of imple-

menting derivative boundary conditions. The use of IRBFNs constructed in

one dimension for the solution in two or higher dimensions facilitates the em-

ployment of a much larger number of nodes. For most works reported, RBFNs

are introduced as trial functions in the point collocation and there are so few

RBF results for the simulation of non-Newtonian fluid flows.

In this research project, we have developed new numerical methods based on

1D-IRBFNs for the simulation of viscous and viscoelastic flows: (i) 1D-IRBFNs

are introduced for the first time as the trial functions in the Galerkin formula-

tion; and (ii) viscoelastic flows are simulated by Galerkin/collocation methods

incorporating local RBF approximators (i.e. 1D-IRBFNs).

1.3 Outline of the Thesis

The thesis is comprised of six chapters which are organised as follows.

• Chapter 2 gives a review of weighted residual approaches including point-

collocation and Galerkin formulations, and radial basis function networks

including differentiated and integrated networks. A discussion on the basic

application of RBFNs for numerical solution of ODEs/PDEs is also given.

• Chapter 3 presents the development of 1D-IRBFN-based Galerkin method

for the discretisation of the streamfunction-vorticity formulation (a set

of two second-order PDEs) governing the motion of a Newtonian fluid.

Natural convection defined on 2D enclosured domains are simulated to

validate the proposed method.
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• Chapter 4 presents a further development of the 1D-IRBFN-based Galerkin

method for the discretisation of the streamfunction formulation (fourth-

order PDE) governing the motion of a Newtonian fluid. Linear and non-

linear problems, including a benchmark buoyancy-driven flow in a square

slot, are considered.

• Chapter 5 presents the development of 1D-IRBFN-based Galerkin/Collocation

methods for the discretisation of the streamfunction-vorticity formulation

governing the motion of a viscoelastic fluid. Flows in rectangular ducts

and in straight and corrugated tubes are considered.

• Chapter 6 gives some concluding remarks and identifies possible future

research directions.



Chapter 2

Reviews of the weighted residual

statements and radial basis

function network (RBFN)

approaches

In this chapter, we shall attempt to give brief reviews of the weighted residual

statements and RBFNs for solving ODEs/PDEs. Galerkin and point-collocation

formulations, and one-dimensional integrated RBFNs will be used in subsequent

chapters as basic tools.

2.1 Method of weighted residuals

Method of weighted residuals (MWR), a general approximation framework for

solving ODEs/PDEs, exists for a long time. Many discretisation methods (e.g.

FDMs, FEMs and BEMs) can be seen as special cases of the weighted residual

statement. A review of MWR including the discussion on how principal numer-
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ical methods can be derived from MWR can be found in (Brebbia et al., 1984;

Zienkiewicz and Taylor, 1991; Liu and Gu, 2005).

We consider a linear boundary value problem governed by the following ODE/PDE

L (ũ(x)) = b̄, x ∈ Ω, (2.1)

and the boundary conditions of the form

Q (ũ(x)) = q̄, x ∈ ΓQ, (2.2)

U (ũ(x)) = ū, x ∈ ΓU , (2.3)

where L is a prescribed differential operator; U and Q prescribed operators

that represent Dirichlet and Newmann boundary condition types, respectively;

x the position vector; ũ the field variable (scalar function); b̄, q̄ and ū given func-

tions; Ω the problem domain; Γu the Dirichlet boundary; and Γq the Neumann

boundary (ΓU and ΓQ constitute the boundary of Ω, i.e. Γ = ΓU ∪ ΓQ).

The exact solution ũ can be approximated by

ũ(x) ≈ u(x) =

N∑

i=1

αiφi(x), (2.4)

where u is an approximation to ũ, {αi}Ni=1 the set of unknown coefficients,

{φi(x)}Ni=1 the set of trial/basis functions and N the number of trial/basis func-

tions. To find u(x), one can substitute (2.4) into the governing equation (2.1)

and boundary conditions (2.2)-(2.3). Because (2.4) is approximate, this substi-

tution process produces errors or residual functions (RL, RQ and RU) which are
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defined by

RL = L (u(x))− b̄, (2.5)

RQ = Q (u(x))− q̄, (2.6)

RU = U (u(x))− ū. (2.7)

The unknown coefficients αi can then be found by constructing a scheme to

minimise the following statement

∫

Ω

WRL(x)dΩ+

∫

ΓQ

V RQ(x)dΓQ +

∫

ΓU

Y RUdΓU = 0, (2.8)

or

∫

Ω

W
(
L (u(x))− b̄

)
dΩ+

∫

ΓQ

V (Q (u(x))− q̄) dΓQ+

∫

ΓU

Y (U (u(x))− ū) dΓU = 0,

(2.9)

where W , V and Y are weighting functions to be chosen.

Equation (2.9) is the general form of MWR. The purpose of MWR is thus to use

the weighting functions W , V and Y to control the distribution of the residuals

over the domain and on the boundary (RL in Ω, RQ on ΓQ and RU on ΓU).

It can be seen that, through MWR, the original ODE/PDE is replaced with a

set of integral equations. Generally, the trial/basis functions in (2.4) are chosen

to satisfy Dirichlet boundary conditions. In this case, the third term in (2.9)

vanishes and the MWR statement reduces to

∫

Ω

W
(
L (u(x))− b̄

)
dΩ +

∫

ΓQ

V (Q (u(x))− q̄) dΓQ = 0. (2.10)

In principle, the weighting functions W and V can be chosen from any set
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of linearly independent functions. The choice of W and V leads to different

numerical approximation methods. Below are four typical formulations.

Galerkin formulation:

The weighting functions are chosen from the set of trial functions, i.e.

Wi = φi (x) , (2.11)

Vi = −φi (x) . (2.12)

Equation (2.10) thus becomes

∫

Ω

φi(x)
(
L (u(x))− b̄

)
dΩ−

∫

ΓQ

φi(x) (Q (u(x))− q̄) dΓQ = 0. (2.13)

The Galerkin approach has the following advantages: (i) the errors are min-

imised in an average sense; (ii) the system matrix is usually symmetric; and

(iii) the Galerkin approach leads to a formulation which is the same as that ob-

tained by the energy principle. This formulation is widely used in, e.g., FEMs

and BEMs. If the weighting functions Wi chosen do not come from {φi (x)}Ni=1,

the corresponding formulation is called the Petrov-Galerkin approach.

Point-collocation formulation:

The weighting functions are chosen as the Dirac delta function

Wi = δ(x− xi), (2.14)

Vi = δ(x− xi). (2.15)
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Substitution of (2.14)-(2.15) into (2.10) yields

∫

Ω

δ(x−xi)
(
L (u(x))− b̄

)
dΩ+

∫

ΓQ

δ(x−xi) (Q (u(x))− q̄) dΓQ = 0, (2.16)

or

L (u(xi))− b̄ = 0, xi ∈ Ω, (2.17)

Q (u(xi))− q̄ = 0, xi ∈ ΓQ. (2.18)

It can be seen that the residuals are simply forced to be zero at a set of points

(collocation points). This formulation requires less computational effort to form

the system matrix than the Galerkin formulation. However, one should pay

attention to the distribution of collocation points in order to achieve the optimal

accuracy for an approximate solution (Brebbia et al., 1984).

Subdomain-collocation formulation:

The weighting function is chosen as

Wi =





1, inside Ωi,

0, outside Ωi,
(2.19)

where Ωi is a subregion of the domain Ω. It is noted that Ωis are usually

non-overlapping and Ω is the union of all Ωi.

Equation (2.10) can be rewritten as

∫

Ωi

(
L (u(x))− b̄

)
dΩ = 0, x ∈ Ωi, (2.20)

Q (u(xi))− q̄ = 0, xi ∈ ΓQ. (2.21)
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It can be seen that the residual for the PDE/ODE is forced to be zero over

each and every element of a set of subregions and the residual for the boundary

condition is forced to be zero at a set of collocation points on ΓQ.

Least squares formulation:

The weighting functions are chosen to be

Wi =
∂RL

∂αi
=
∂L (u(x))

∂αi
, (2.22)

Vi =
∂RQ

∂αi
=
∂Q (u(x))

∂αi
. (2.23)

Equation (2.10) becomes

∫

Ω

WiRLdΩ +

∫

Γq

ViRQdΓq =

∫

Ω

∂L (u(x))

∂αi

(
L (u(x))− b̄

)
dΩ

+

∫

ΓQ

∂Q (u(x))

∂αi
(Q (u(x))− q̄) dΓQ = 0.

(2.24)

2.2 Radial basis functions networks

Neural networks (NNs) can be considered as function approximation schemes.

Two popular types of NNs are multilayer perceptron networks (MLPs) and

radial basis function networks (RBFNs). They can approximate any continuous

function to any degree of accuracy (universal approximation). RBFNs have a

simpler structure and a faster training process than MLPs. The former are

considered in the present research.
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Figure 2.1: Structure of RBFN

2.2.1 Description

As shown in Figure 2.1, the structure of an RBFN consists of three layers,

namely the input layer, the hidden layer and the output layer. Activation

functions used in the hidden layer are RBFs, denoted by gi(x). There are two

mappings involved: (i) nonlinear mapping from the input to the hidden layer;

and (ii) linear mapping from the hidden to the output layer. The network can

be described mathematically as

f(x) =

m∑

i=1

wigi (‖x− ci‖) , (2.25)

where x is the input vector, f the output, {wi}mi=1 the set of network weights,

{gi}mi=1 the set of RBFs, ‖·‖ the Euclidean norm, m the number of RBFs and

ci the centre of the ith RBF.

RBFNs (2.25) can be applied to determine the separate surfaces/lines for pat-

tern classifications. The problem is basically solved by transforming it into a
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high-dimensional space in a nonlinear way (Haykin, 1999). As stated in the

Cover’s theorem (Cover, 1965), the higher the dimension of the hidden layer,

the more separate the classification will be.

RBFNs (2.25) can also be applied to represent an approximate function (Powell,

1988). For an interpolation problem (the input data does not contain noise),

the set of input vectors is chosen to be the set of centres, i.e. ci = xi, and the

set of network weights is found by minimising the cost function that is made

up of the sum of squared nodal function errors:

m∑

i=1

(di − f (xi))
2 → 0, (2.26)

where {xi, di}mi=1 is a given set of training points. It is noted that, as shown in

Micchelli’s theorem (Micchelli, 1986), the interpolation matrix obtained from

certain types of RBF is always invertible provided that the data points are

distinct. For an approximation problem (the input data contain noise), the

regularisation theory also needs be applied here to overcome the ill-conditioning

of the RBF matrices (Poggio and Girosi, 1990). The number of centres is usually

chosen to be less than the number of input vectors, and the set of network

weights is found by minimising the cost function that is made up of the sum of

squared nodal function errors and the regularisation term:

q∑

i=1

(di − f (xi))
2 +

q∑

i=1

λi (wi)
2 → 0, (q ≤ m), (2.27)

where {λi}qi=1 is the set of regularisation parameters.
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2.2.2 Types of RBF

Many RBFs are covered by Micchelli’s theorem. Some of them, which are of

particular interest, are given below

gi (x) = exp

(
−‖x− ci‖2

a2i

)
, Gaussian functions (2.28)

gi (x) =
√
‖x− ci‖2 + a2i , Multiquadrics (2.29)

gi (x) =
1√

‖x− ci‖2 + a2i
, Inverse multiquadrics (2.30)

where ai is the width/shape-parameter of the ith RBF. The variations of these

RBFs in one dimension are shown in Figure 2.2.
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x
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)
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Figure 2.2: Plots of RBFs: one-dimensional version of (2.28) through (2.30).
The centre is located at x = 0 and the value of a is chosen to be 1.

The Gaussian function (2.28) and the inverse multiquadrics (2.30) are both

localised functions; their interpolation matrices are positive definite. In con-
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trast, the multiquadrics (MQ) (2.29) is nonlocal and its interpolation matrix

is not positive definite. Various numerical experiments showed that the MQ

scheme gives the most accurate results (e.g. Franke, 1982). In this project,

only MQ-RBFNs are considered.

2.3 RBFN approaches for function approxima-

tion

This section describes two basic approaches for the construction of the RBF ap-

proximations. The first (direct/differential) approach is based on differentiation,

leading to differentiated RBFNs (Kansa, 1990a). The second (indirect/integral)

approach is based on integration, leading to integrated RBFNs (Mai-Duy and

Tran-Cong, 2001a).

2.3.1 Differentiated RBFNs (DRBFNs)

In the direct approach, an RBFN (2.25) is first used to represent the original

function s, and expressions for derivative functions of s are then obtained by

differentiating (2.25). It can be described mathematically as follows.

s(x) ≈ f(x) =

m∑

i=1

wigi(x), (2.31)

∂ps(x)

∂xpj
≈ ∂pf(x)

∂xpj
=
∂p (
∑m

i=1wigi(x))

∂xpj
=

m∑

i=1

wiD
[xj ](p)
i (x), (2.32)

where
{
D

[xj ](p)
i (x)

}m
i=1

is the set of basis functions used for the approximation

of the pth-order derivative of a function s with respect to xj , the superscript

[xj ] and (·) are used to denote the quantity associated with the xj direction and
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the order of the corresponding derivative function.

For an interpolation problem, the set of data points is chosen to be the set

of centres, i.e. {ci}mi=1 ≡ {xi}Ni=1 with m = N (N -the number of collocation

points). Collocating (2.31) at the set of centres leads to

f̂ = Ĝŵ, (2.33)

where Ĝ is the interpolation matrix defined by

G =




g1 (x1) g2 (x1) · · · gm (x1)

g1 (x2) g2 (x2) · · · gm (x2)
...

...
. . .

...

g1 (xm) g2 (xm) · · · gm (xm)




;

f̂ = {f(xi)}mi=1; and ŵ = {wi}mi=1.

Through solving (2.33), one can express the RBF weights in terms of nodal

function values

ŵ = Ĝ−1f̂ . (2.34)

The values of f and its derivatives at an arbitrary point x are computed by

substituting (2.34) into (2.31)-(2.32)

f(x) = [g1(x), g2(x), · · · , gm(x)] Ĝ−1f̂ , (2.35)

∂pf(x)

∂xpj
=

[
D

[xj ](p)
1 (x), D

[xj](p)
2 (x), · · · , D[xj](p)

m (x)
]
Ĝ−1f̂ . (2.36)
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2.3.2 Integrated RBFNs (IRBFNs)

In the indirect approach, RBFNs (2.25) are used to represent the highest-order

derivatives under consideration of a function s, e.g. ∂ps
/
∂xpj , and expressions for

lower-order derivatives and the function itself are then obtained by integrating

those RBFNs. It can be described mathematically as follows.

∂ps(x)

∂xpj
≈ ∂pf(x)

∂xpj
=

m∑

i=1

w
[xj]
i gi(x) =

m∑

i=1

w
[xj]
i I

[xj](p)
i (x), (2.37)

∂p−1s(x)

∂xp−1
j

≈ ∂p−1f(x)

∂xp−1
j

=

m∑

i=1

w
[xj]
i I

[xj ](p−1)
i (x) + C

[xj ]
1 , (2.38)

· · · · · · · · · · · · · · · · · · · · ·

∂s(x)

∂xj
≈ ∂f(x)

∂xj
=

m∑

i=1

w
[xj]
i I

[xj ](1)
i (x) +

xp−2
j

(p− 2)!
C

[xj ]
1

+
xp−3
j

(p− 3)!
C

[xj]
2 + · · ·+ xjC

[xj ]
p−2 + C

[xj]
p−1, (2.39)

s(x) ≈ f [xj](x) =

m∑

i=1

w
[xj]
i I

[xj ](0)
i (x) +

xp−1
j

(p− 1)!
C

[xj ]
1

+
xp−2
j

(p− 2)!
C

[xj]
2 + · · ·+ xjC

[xj ]
p−1 + C [xj]

p , (2.40)

where Cks are the constants of integration, which are functions of the indepen-

dent variables other than xj ; and

I
[xj ](p−1)
i =

∫
I
[xj](p)
i dxj,

I
[xj ](p−2)
i =

∫
I
[xj](p−1)
i dxj,

. . . . . . . . .

I
[xj](1)
i =

∫
I
[xj](2)
i dxj ,

I
[xj](0)
i =

∫
I
[xj](1)
i dxj

are basis functions used for the approximation of the (p−1)th-order derivative,

(p− 2)th-order derivative, . . ., 1st-order derivative and the original function s,
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respectively.

In (Mai-Duy and Tran-Cong, 2003), these functions Cks were represented by

IRBFNs. By also using the notations I
[·](·)
i (x) and w

[·]
i (i > m) to denote basis

functions and weights of these additional networks, respectively, expressions

(2.37)-(2.40) can be rewritten as

∂ps(x)

∂xpj
≈ ∂pf(x)

∂xpj
=

m∑

i=1

w
[xj]
i I

[xj](p)
i (x), (2.41)

∂p−1s(x)

∂xp−1
j

≈ ∂p−1f(x)

∂xp−1
j

=

m+q(p−1)∑

i=1

w
[xj]
i I

[xj](p−1)
i (x), (2.42)

· · · · · · · · · · · · · · · · · · · · ·

∂s(x)

∂xj
≈ ∂f(x)

∂xj
=

m+q(1)∑

i=1

w
[xj]
i I

[xj ](1)
i (x), (2.43)

s(x) ≈ f [xj](x) =

m+q(0)∑

i=1

w
[xj]
i I

[xj](0)
i (x), (2.44)

where {q(0), . . . , q(p−1)} are the sizes of subnetworks used for the representation

of the constants of integration (q(p−2) = 2q(p−1), . . . , q(0) = pq(p−1)).

Unlike the differential approach, the starting point of the integral approach can

vary in use, depending on the particular application under consideration.

The conversion process for IRBFNs is similar to that for DRBFNs. Following

the same process as used in DRBFNs, i.e. (2.33)-(2.34), the relationship between

the network weight space and the physical space for IRBFNs can be established

as

f̂ [xj] = Î [xj ](0)ŵ[xj], (2.45)

ŵ[xj] =
(
Î [xj ](0)

)−1

f̂ , (2.46)
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where f̂ [xj ] =
{
f [xj ](xi)

}m
i=1

; ŵ[xj] =
{
w

[xj]
i

}m+q(p)

i=1
; and Î [xj ](0) is the interpola-

tion matrix given by

Î [xj ](0) =




I
[xj ](0)
1 (x1) I

[xj ](0)
2 (x1) · · · I

[xj](0)

m+q(p)
(x1)

I
[xj ](0)
1 (x2) I

[xj ](0)
2 (x2) · · · I

[xj](0)

m+q(p)
(x2)

...
...

. . .
...

I
[xj ](0)
1 (xm) I

[xj ](0)
2 (xm) · · · I

[xj ](0)

m+q(p)
(xm)



.

The values of f and its derivatives at an arbitrary point x are computed by

substituting (2.46) into (2.41)-(2.44)

∂pf(x)

∂xpj
=
[
I
[xj ](p)
1 (x), I

[xj](p)
2 (x), · · ·

] (
Î [xj ](0)

)−1

f̂ , (2.47)

∂p−1f(x)

∂xp−1
j

=
[
I
[xj ](p−1)
1 (x), I

[xj](p−1)
2 (x), · · ·

] (
Î [xj ](0)

)−1

f̂ , (2.48)

· · · · · · · · · · · · · · · · · · · · ·
∂f(x)

∂xj
=
[
I
[xj ](1)
1 (x), I

[xj](1)
2 (x), · · ·

] (
Î [xj ](0)

)−1

f̂ , (2.49)

f [xj ](x) =
[
I
[xj ](0)
1 (x), I

[xj](0)
2 (x), · · ·

] (
Î [xj ](0)

)−1

f̂ . (2.50)

It can be seen that f(x) can be obtained from different [xj ]−IRBFNs. Due to

numerical error, these values are expected not to be identical. As a result, the

value of f at x needs be taken in an average sense

f(x) =
1

n

n∑

j=1

f [xj ](x), (2.51)

where n is the dimension of the problem.

One-dimensional IRBFNs:

In the case of one-dimensional domain (e.g. a curved/straight line), IRBFN
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expressions (2.41)-(2.44) reduce to

dpf(η)

dηp
=

Nη∑

i=1

wigi(η) =

Nη∑

i=1

wiI
(p)
i (η), (2.52)

dp−1f(η)

dηp−1
=

Nη∑

i=1

wiI
(p−1)
i (η) + C1, (2.53)

· · · · · · · · · · · · · · ·

df(η)

dη
=

Nη∑

i=1

wiI
(1)
i (η) + C1

ηp−2

(p− 2)!
+ C2

ηp−3

(p− 3)!
+ · · ·+ Cp−2η + Cp−1,

(2.54)

f(η) =

Nη∑

i=1

wiI
(0)
i (η) + C1

ηp−1

(p− 1)!
+ C2

ηp−2

(p− 2)!
+ · · ·+ Cp−1η + Cp,

(2.55)

where Nη is the number of nodes on the η line, gi(η) the RBF in one dimension

(e.g. gi(η) =
√
(η − ci)2 + a2i for the multiquadrics (ci the centre and ai the

width)), and {C1, C2, · · · , Cp} the constants of integration.

Evaluation of (2.55) at a set of collocation points {xj}Nη

j=1 leads to

f̂ = Î(0)ŵ, (2.56)

where

Î(0) =




I
(0)
1 (η1), I

(0)
2 (η1), · · · , I

(0)
Nη

(η1),
ηp−1
1

(p−1)!
,

ηp−2
1

(p−2)!
, · · · , η1, 1

I
(0)
1 (η2), I

(0)
2 (η2), · · · , I

(0)
Nη

(η2),
ηp−1
2

(p−1)!
,

ηp−2
2

(p−2)!
, · · · , η2, 1

...
...

. . .
...

...
...

. . .
...

...

I
(0)
1 (ηNη

), I
(0)
2 (ηNη

), · · · , I
(0)
Nη

(ηNη
),

ηp−1
Nη

(p−1)!
,

ηp−2
Nη

(p−2)!
, · · · , ηNη

, 1



;

ŵ =
(
w1, w2, · · · , wNη

, C1, C2, · · · , Cp
)T

;

and

f̂ =
(
f1, f2, · · · , fNη

)T
.
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A mapping from the physical space to the network weight space is thus given

by

ŵ =
(
Î(0)
)−1

f̂ . (2.57)

Making use of (2.57), the values of f and its derivatives at an arbitrary point η

are computed by

dpf(η)

dηp
=
[
I
(p)
1 (η), I

(p)
2 (η), · · · , I(p)Nη

, 0, 0, · · · , 0, 0
](

Î(0)
)−1

f̂ , (2.58)

dp−1f(η)

dηp−1
=
[
I
(p−1)
1 (η), I

(p−1)
2 (η), · · · , I(p−1)

Nη
, 1, 0, · · · , 0, 0

] (
Î(0)
)−1

f̂ ,

(2.59)

· · · · · · · · · · · · · · · · · · · · ·

df(η)

dη
=
[
I
(1)
1 (η), I

(1)
2 (η), · · · , I(1)Nη

(η),

ηp−2

(p− 2)!
,
ηp−3

(p− 3)!
, · · · , 1, 0

](
Î(0)
)−1

f̂ , (2.60)

f(η) =
[
I
(0)
1 (η), I

(0)
2 (η), · · · , I(0)Nη

(η),

ηp−1

(p− 1)!
,
ηp−2

(p− 2)!
, · · · , η, 1

](
Î(0)
)−1

f̂ . (2.61)

2.4 RBFN approaches for solution of ODEs/PDEs

In this section, we briefly outline the basic use of DRBFNs/IRBFNs for solv-

ing ODEs/PDEs. To introduce these RBFN approaches, we consider a linear

boundary value problem governed by the governing equation (2.1) and boundary

conditions (2.2)-(2.3).

The problem domain Ω is discretised by a set of collocation points that can be

randomly distributed. The field variable u can be sought by using DRBFNs



2.4 RBFN approaches for solution of ODEs/PDEs 25

(2.31)-(2.32) or using IRBFNs (2.47)-(2.50), which can be rewritten in the fol-

lowing generic form

u (x) =
N∑

i=1

φi (x)αi, (2.62)

∂pu (x)

∂xpj
=

N∑

i=1

∂pφi (x)

∂xpj
αi, (2.63)

where p = {1, 2, · · · }, N is the number of collocation points, {αi}Ni=1 the set of

unknown coefficients and {φi (x)}Ni=1 the set of known basis functions that are

linearly independent.

RBFNs (2.62)-(2.63) with their free parameters αi and ci need be trained to

satisfy the governing equation (2.1) and the boundary conditions (2.2)-(2.3)

∑

xk∈Ω

[
L (u (xk))− b̄k

]2
+

∑

xk∈ΓQ

[Q (u (xk))− q̄k]
2

+
∑

xk∈ΓU

[U (u (xk))− ūk]
2 → 0. (2.64)

In practice, the set of centres is chosen to be the same as the set of collocation

points, i.e. {ci}mi=1 ≡ {xi}Ni=1 (m = N). The cost function (2.64) may thus

simply reduce to a determined system of linear algebraic equations

L (u (xk)) = b̄k, (1 ≤ k ≤ Nip), (2.65)

Q (u (xk)) = q̄k, (Nip + 1 ≤ k ≤ Nip +NΓQ
), (2.66)

U (u (xk)) = ūk, (Nip +NΓQ
+ 1 ≤ k ≤ N), (2.67)
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where Nip is the number of interior points, NΓQ
the number of collocated points

on ΓQ.

Theoretical studies on accuracy of RBFN-based methods were reported in, e.g.,

(Madych and Nelson, 1988; Buhmann and Dyn, 1993; Franke and Schaback,

1998). In the case of function interpolation, spectral accuracy was shown for

certain types of RBF (Madych and Nelson, 1988; Buhmann and Dyn, 1993). In

the case of numerical solution of ODEs/PDEs, the reader is referred to (Franke

and Schaback, 1998) for a proof of error bounds of DRBFN-based collocation

methods. Numerical results for various engineering and science problems (e.g.

Li et al., 2003) indicated that RBFN-based collocation methods can yield a

high level of accuracy using a relatively low number of nodes. In the work of

(Cheng et al., 2003; Larson and Fornberg, 2003; Fornberg et al., 2010), an RBF

solution was numerically shown to converge at a rate as high as that of spectral

methods. In terms of numerical stability, RBFN systems generally have high

condition numbers even for only a few hundred nodes used. In order to improve

the conditioning of RBFN systems, the following schemes can be applied

• compactly-supported RBFs (e.g. Wendland, 1995; Wu, 1995)

• preconditioners (e.g. Ling and Kansa, 2004, 2005)

• domain decomposition (e.g. Zhou et al., 2003; Li and Hon, 2004; Divo

and Kassab, 2005, 2006)

• local RBF approximations (e.g. Shu, Ding, Chen andWang, 2005; Kovačvić

and Šarler, 2005; Šarler and Vertnik, 2006; Wright and Fornberg, 2006;

El-Zahab, Divo and Kassab, 2009)

In the case of IRBFN methods, Mai-Duy and Tran-Cong (2007) proposed an

one-dimensional IRBFN (1D-IRBFN) collocation approach. In this approach,

the approximations for the field variable at a grid node involve only nodal points

on the two associated grid lines for 2D problems or three associated grid lines
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for 3D problems. As a result, some degree of local approximation is achieved.

Numerical results (e.g. Mai-Duy and Tran-Cong, 2007; Le-Cao, Mai-Duy and

Tran-Cong, 2009; Le, Mai-Duy, Tran-Cong and Baker, 2010) showed that 1D-

IRBFNs can employ a larger number of nodes and are much more economical

in terms of storage space and CPU time than global IRBFNs (e.g. Mai-Duy

and Tran-Cong, 2001a).



Chapter 3

1D-IRBFN-based Galerkin

method for the

streamfunction-vorticity

formulation governing viscous

flows

This chapter reports a new discretisation technique for the streamfunction-

vorticity (ψ − ω) formulation governing thermally-driven viscous flows defined

in 2D enclosured domains. The proposed technique combines strengths of

three schemes, i.e. smooth PDE discretisations (Galerkin formulation), power-

ful high-order approximations (one-dimensional integrated radial-basis-function

networks) and pressure-free low-order PDE system (ψ−ω formulation). In addi-

tion, a new effective way of deriving computational boundary conditions for the

vorticity is proposed. Two benchmark test problems, namely free convection in

a square slot and in a concentric annulus, are considered, where a convergent

solution for the former is achieved up to the Rayleigh number of 108.
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3.1 Introduction

The application of radial basis function networks (RBFNs) for solving partial

differential equations (PDEs) has received a great deal of attention from both

scientific and engineering research communities over the past 20 years. From a

neural-network point of view, the unknown RBF weights can be found via the

least-squares principle as discussed earlier in Section 2.4. From the view of the

method of weighted residual (MWR) (Brebbia et al., 1984), a solution to an

PDE can be found through a number of channels, including point-collocation,

Galerkin and subdomain-collocation formulations (see Section 2.1). In this

MWR framework, most RBFN works reported in the literature can be viewed

as some sorts of a point-collocation approach, where RBFNs are used as trial

functions. Owing to their meshfree feature and spectral accuracy, RBFN-based

collocation methods can handle well problems defined on irregular domains and

provide accurate results using relatively coarse discretisations. However, due to

a fast growth of the matrix condition number, RBFN methods are generally lim-

ited to discretisations with a few hundred of nodes. In addition, RBFN-based

solutions to Neumann-type boundary-value problems are much less accurate

than those to Dirichlet-type ones. There have been only a few RBFN works

in conjunction with the Galerkin formulation (Wendland, 1999; Mai-Duy and

Tran-Cong, 2009c; and Fasshauer, 2007, chapter 45). In (Mai-Duy and Tran-

Cong, 2009c), a Galerkin method incorporating IRBFNs in one dimension was

shown to yield accurate results, high rates of convergence, and especially similar

levels of accuracy for both types of boundary condition (i.e. Dirichlet only and

Dirichlet-Neumann) for the solution of linear Poisson equations.

RBFN-based methods have been applied to simulate heat flow problems (e.g.

Divo and Kassab, 2007, 2008; Kosec and Šarler, 2007). Solutions were reported

not only to analytic test problems but also to complex and practical applica-

tions. For the latter, examples include (i) simulation of steady thermal flows in

porous media (Šarler, Perko and Chen, 2004; Kosec and Šarler, 2008); (ii) a flow
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of colder air from a plenum through a steel plate into a hotter incoming flow

(Divo and Kassab, 2007); (iii) heat generation in living tissue (Erhart, Divo and

Kassab, 2008); (iv) solid-solid and solid-liquid phase-change problems (Kovačvić

and Šarler, 2005; Vertnik and Šarler, 2006); and (v) continuous casting of alu-

minium (Vertnik, Založnik and Šarler, 2006). On the other hand, RBFNs were

employed in the dual reciprocity boundary element method (DRBEM) for cou-

pled fluid flow and heat transfer problems (e.g. Rahaim and Kassab, 1996) and

for transport phenomena in porous media (e.g. Šarler et al., 2000; Šarler, Perko,

Gobin, Goyeau and Power, 2004).

Natural convection, which occurs in many engineering applications, presents

a strong coupling of heat transfer and fluid flow. Problems of this type have

been extensively studied by means of experimental and numerical simulations.

Natural convection in a square slot and in an annulus are widely considered

as two benchmark problems for the testing of new numerical schemes in CFD.

In the context of RBFN-based methods, the two problems were simulated with

(i) global approximation versions (e.g. Šarler et al., 2001; Šarler, 2005; Mai-

Duy and Tran-Cong, 2001a); and (ii) local approximation versions (e.g. Shu

et al., 2003; Kosec and Šarler, 2007; Divo and Kassab, 2008). Most works were

reported for a range of the Rayleigh (Ra) number from 102 to 106. For the case

of high Ra numbers (e.g. Ra ≥ 106 for natural convection in a square slot),

very thin boundary layers are formed, which presents a great challenge for any

numerical method. As a result, to simulate such cases, low-order techniques such

as finite-difference methods (FDMs) (e.g. Saitoh and Hirose, 1989) and finite-

element methods (FEMs) (e.g Manzari, 1999; Wan et al., 2001; Mayne et al.,

2000, 2001) typically require a very fine mesh. This requirement is alleviated

by employing high-order methods such as pseudo-spectral methods (e.g. Quéré,

1991), discrete singular convolution (DSC) methods (e.g. Wan et al., 2001),

meshless diffuse approximation methods (DAMs) (e.g. Sadat and Couturier,

2000), and mesh-free local RBF collocation methods (RBFCM) (e.g. Kosec

and Šarler, 2007). However, in general, there still exist some difficult problems
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associated with convergence (e.g. very few reported results for the case of

Ra > 106 for natural convection in a square slot) and accuracy (e.g. some

discrepancies in the prediction of the Nusselt number among published works).

In this chapter, we introduce 1D-IRBFNs as trial functions in the Galerkin

formulation for the simulation of natural convection in two dimensions. The

boundary conditions are satisfied in a local sense using the point collocation

formulation, and the solution to the problem is satisfied in a global sense using

the Galerkin formulation. Advantages of using 1D-IRBFNs over 2D-IRBFNs

are (i) the construction cost is much lower (“local” approximations); and (ii)

the matrix condition is greatly improved. However, tensor products are re-

quired to construct the 1D-IRBFN approximations over the whole domain. One

thus needs to use coordinate transformations to handle nonrectangular domains.

Unlike FD and Chebyshev interpolation schemes, IRBFNs can work well with

nonuniform and uniform Cartesian grids.

The streamfunction-vorticity (ψ − ω) formulation will be adopted here to take

the following advantages: (i) the continuity equation is satisfied automatically;

and (ii) its implementation is easier as the pressure variable is eliminated. How-

ever, when using the ψ−ω formulation, the classical difficulties lie in the treat-

ment of boundary condition for the vorticity. A new effective boundary scheme

is proposed, where computational boundary conditions for the vorticity are de-

rived in a precise manner (i.e. approximations used on the boundary have the

same order as those for the interior points, and derivative values of the stream-

function on the boundary are incorporated into the IRBFN approximations in

an exact manner). The resultant system of algebraic equations is symmetric

and has a relatively-low condition number, which facilitate the employment of

much larger numbers of nodes. The present method is verified through the

simulation of natural convection in 2D enclosed domains. Two different geome-

tries are considered: (i) a square slot; and (ii) a concentric annulus. It will

be shown that convergent solutions are achieved for very high values of the
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Rayleigh number (i.e. up to 108 for the former and 7× 104 for the latter). Nu-

merical results obtained are compared with those by other techniques available

in the literature.

The remainder of this chapter is organised as follows. Section 3.2 briefly de-

scribes the governing equations in both Cartesian and cylindrical coordinates.

Our proposed technique is presented in detail in section 3.3, including 1D-

IRBFN representations of the field variables, Galerkin discretisations of the

PDEs and a new treatment for the vorticity boundary condition. In section

3.4, the technique is verified through the simulation of several benchmark test

problems. Section 3.5 concludes this chapter.

3.2 Governing equations

The governing equations (1.1), (1.2) and (1.4) for viscous flows are written in

the streamfunction-vorticity-temperature form. Both Cartesian and cylindrical

coordinate systems are employed here. Using the Boussinesq approximation,

their 2D dimensionless forms can be written as

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (3.1)

∂ω

∂t
+ ux

∂ω

∂x
+ uy

∂ω

∂y
=

√
Pr

Ra

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+
∂T

∂x
, (3.2)

∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.3)

for Cartesian coordinates, where

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
,
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and

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
= −ω, (3.4)

∂ω

∂t
+

(
ur
∂ω

∂r
+
uθ
r

∂ω

∂θ

)
=

√
Pr

Ra

(
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2
∂2ω

∂θ2

)

−
(
sin θ

∂T

∂r
+

1

r
cos θ

∂T

∂θ

)
, (3.5)

∂T

∂t
+

(
ur
∂T

∂r
+
uθ
r

∂T

∂θ

)
=

1√
RaPr

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2

)
, (3.6)

for cylindrical coordinates, where

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
.

In (3.3) and (3.6), Pr and Ra are the Prandtl and Rayleigh numbers defined

as Pr = ν/α and Ra = βg∆TL3/αν, respectively in which ν is the kinematic

viscosity, α the thermal diffusivity, β the thermal expansion coefficient, g the

gravity, and L and ∆T the characteristic length and temperature difference,

respectively. In this dimensionless scheme, the velocity scale is taken as U =
√
gLβ∆T for the purpose of balancing the buoyancy and inertial forces.

The given velocity boundary conditions can be transformed into two boundary

conditions on the streamfunction and its normal derivative

ψ = A, (3.7)

∂ψ

∂n
= B, (3.8)

where n is the direction normal to the boundary, and A and B given functions

which are simply zero here. For problems presented in this chapter, the bound-

ary conditions for the energy equation are prescribed with both Dirichlet and
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Neumann types.

3.3 1D-IRBFN-based Galerkin technique

Let the problem domain be rectangular and represented by a Cartesian grid. On

each grid line, 1D-IRBFNs are employed to approximate the field variables (i.e.

ψ, ω and T ). The governing equations are discretised by means of Galerkin ap-

proximations (i.e. the residuals are set to zero in the mean). Vorticity boundary

conditions are derived globally.

3.3.1 One-dimensional IRBFN representations of the field

variables

The system of PDEs under consideration here is of second order. Consider

an η grid line. Making use of (2.52)-(2.55) with p = 2, a function f and its

derivatives with respect to η can be represented as follows

d2f (η)

dη2
=

Nη∑

i=1

wigi (η) =

Nη∑

i=1

wiI
(2)
i (η) , (3.9)

df (η)

dη
=

Nη∑

i=1

wiI
(1)
i (η) + C1, (3.10)

f(η) =

Nη∑

i=1

wiI
(0)
i (η) + C1η + C2, (3.11)

where Nη is the number of nodes on the grid line, {wi}Nη

i=1 the set of network

weights, and {gi (η)}Nη

i=1 ≡
{
I
(2)
i (η)

}Nη

i=1
the set of RBFs, I

(1)
i (η) =

∫
I
(2)
i (η)dη,

I
(0)
i (η) =

∫
I
(1)
i (η) dη, and C1 and C2 are the constants of integration. In

(3.9) - (3.11), the function f can be used to represent the streamfunction, the
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vorticity or the temperature, while the variable η is employed to denote the

(x, y) coordinate (Cartesian system), or (r, θ) coordinate (cylindrical system).

Evaluation of equations (3.9) - (3.11) at the grid nodes leads to

d̂2f

dη2
= Î(2)α̂, (3.12)

d̂f

dη
= Î(1)α̂, (3.13)

f̂ = Î(0)α̂, (3.14)

where the superscript (.) is used to denote the order of the corresponding deriva-

tive function;

Î(2) =




I
(2)
1 (η1) , I

(2)
2 (η1) , · · ·, I

(2)
Nη

(η1) , 0, 0

I
(2)
1 (η2) , I

(2)
2 (η2) , · · ·, I

(2)
Nη

(η2) , 0, 0
...

...
. . .

...
...

...

I
(2)
1

(
ηNη

)
, I

(2)
2

(
ηNη

)
, · · ·, I

(2)
Nη

(
ηNη

)
, 0, 0



;

Î(1) =




I
(1)
1 (η1) , I

(1)
2 (η1) , · · ·, I

(1)
Nη

(η1) , 1, 0

I
(1)
1 (η2) , I

(1)
2 (η2) , · · ·, I

(1)
Nη

(η2) , 1, 0
...

...
. . .

...
...

...

I
(1)
1

(
ηNη

)
, I

(1)
2

(
ηNη

)
, · · ·, I

(1)
Nη

(
ηNη

)
, 1, 0



;

Î(0) =




I
(0)
1 (η1) , I

(0)
2 (η1) , · · ·, I

(0)
Nη

(η1) , η1, 1

I
(0)
1 (η2) , I

(0)
2 (η2) , · · ·, I

(0)
Nη

(η2) , η2, 1
...

...
. . .

...
...

...

I
(0)
1

(
ηNη

)
, I

(0)
2

(
ηNη

)
, · · ·, I

(0)
Nη

(
ηNη

)
, ηNη

, 1



;

α̂ =
(
w1, w2, · · ·, wNη

, C1, C2

)T
;
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and

d̂2f

dη2
=

(
d2f1
dη2

,
d2f2
dη2

, · · ·, d
2fNη

dη2

)T
;

d̂f

dη
=

(
df1
dη
,
df2
dη
, · · ·, dfNη

dη

)T
;

f̂ =
(
f1, f2, · · ·, fNη

)T
,

in which d2fj/dη
2 = d2f (ηj)/dη

2, dfj/dη = df (ηj)/dη and fj = f (ηj) with

j = {1, 2, · · ·, Nη}.

The relations between the RBF-coefficient space α̂ and the physical space f̂ are

given by


 f̂

ê


 =


 Î(0)

K̂


 α̂ = Ĉα̂, (3.15)

α̂ = Ĉ−1


 f̂

ê


 , (3.16)

where ê = K̂α̂ represents the extra information (e.g. normal derivative values

at the two end-points) and Ĉ the conversion matrix.

Expressions for computing the values of f and its derivatives at an arbitrary
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point η on the grid line will be obtained by substituting (3.16) into (3.9)-(3.11)

f (η) =
(
I
(0)
1 (η) , I

(0)
2 (η) , · · · , I(0)Nη

(η) , η, 1
)
Ĉ−1


 f̂

ê


 , (3.17)

∂f (η)

∂η
=

(
I
(1)
1 (η) , I

(1)
2 (η) , · · · , I(1)Nη

(η) , 1, 0
)
Ĉ−1


 f̂

ê


 , (3.18)

∂2f (η)

∂η2
=

(
I
(2)
1 (η) , I

(2)
2 (η) , · · · , I(2)Nη

(η) , 0, 0
)
Ĉ−1


 f̂

ê


 . (3.19)

They can be rewritten in compact form

f (η) =

Nη∑

i=1

ϕi (η) fi + ϕNη+1 (η) e1 + ϕNη+2 (η) e2, (3.20)

∂f (η)

∂η
=

Nη∑

i=1

∂ϕi (η)

∂η
fi +

∂ϕNη+1 (η)

∂η
e1 +

∂ϕNη+2 (η)

∂η
e2, (3.21)

∂2f (η)

∂η2
=

Nη∑

i=1

∂2ϕi (η)

∂η2
fi +

∂2ϕNη+1 (η)

∂η2
e1 +

∂2ϕNη+2 (η)

∂η2
e2, (3.22)

where {ϕi}Nη+2
i=1 is the set of IRBFN basis functions in the physical space.

One can take products of integrated RBFs in each direction as basis functions

for the interpolation of f over the entire 2D domain. The IRBFN approximation

is defined everywhere in the domain. It is easy to get the value of f at any point

in the domain. Since the streamfunction and vorticity transport equations are

subject to Dirichlet boundary conditions only, the matrix K̂ and the vector ê

in equation (3.15) are simply set to null.

In the case of Cartesian coordinate system, approximate expressions for ψ and
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ω will take the form

ψ (x, y) =
Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)ϕ

[y]
j (y)ψi,j, (3.23)

ω (x, y) =

Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)ϕ

[y]
j (y)ωi,j, (3.24)

where ψi,j and ωi,j are the values of the ψ and ω variables at the intersection of

the ith horizontal grid line and jth vertical grid line; the products ϕ
[x]
i ϕ

[y]
j are

usually referred to as the trial/basis/approximating functions; and Nx and Ny

are the numbers of grid lines in the y and x directions, respectively.

The energy equation is subject to both types of boundary conditions. Assume

that Dirichlet and Neumann boundary conditions are prescribed on the two

vertical and two horizontal walls, respectively. The integral approach allows one

to incorporate Neumann boundary conditions into the IRBFN approximations

through integration constants. For each y grid line, the matrix K̂ and the vector

ê in (3.15) will become

K̂ =


 I

(1)
1 (y1), I

(1)
2 (y1), · · · , I

(1)
Ny

(y1), 1, 0

I
(1)
1

(
yNy

)
, I

(1)
2

(
yNy

)
, · · · , I

(1)
Ny

(
yNy

)
, 1, 0


 ,

ê =




∂T1
∂y

∂TNy

∂y


 ,

leading to

T (x, y) =
Nx∑

i=1

ϕ
[x]
i (x)

(
Ny∑

j=1

ϕ
[y]
j (y)Ti,j + ϕ

[y]
Ny+1 (y)

∂Ti,1
∂y

+ ϕ
[y]
Ny+2 (y)

∂Ti,Ny

∂y

)
.

(3.25)
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In (3.25), Ti,j is the values of the T variables at the intersection of the ith

horizontal grid line and jth vertical grid line; and ∂Ti,1/∂y and ∂Ti,Ny

/
∂y are

nodal derivative boundary conditions.

In the case of cylindrical coordinates, the independent variables x and y in

(3.23) - (3.25) will be replaced with r and θ.

3.3.2 Derivation of computation boundary conditions for

the vorticity

This section presents a new treatment for the vorticity boundary condition in

the discretisation of the ψ − ω formulation. Boundary conditions are over-

specified for the streamfunction equation (3.1)/(3.4), but under-specified for

the vorticity transport equation (3.2)/(3.5). There is the need to derive bound-

ary conditions for the vorticity. In practice, the vorticity boundary values are

usually derived from their definitions (3.1)/(3.4) and boundary conditions for

the streamfunction. Satisfaction of computational boundary conditions for the

vorticity will have a strong influence on the accuracy of the final solution.

In the context of FDMs, Thom’s formula and its variations have been widely

used to obtain the vorticity boundary condition (e.g. Roache, 1982; Weinan

and Liu, 1996; Spotz, 1998). These formulae are derived according to a local

relation of the vorticity at the boundary. Although their implementations are

quite straightforward, results by these formulae are observed to be uncertain

in some cases (e.g. lower-order formulae may give better accuracy than high-

order ones (Spotz, 1998)). Many other techniques such as the local radial point

interpolation method (LRPIM) (Wu and Liu, 2003) and the local RBF-based

differential quadrature method (RBF-DQM) (Shu et al., 2003) have also applied

these boundary FD schemes, where grids near and including the boundary are

required to be orthogonal.
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In this study, two boundary vorticity schemes, which are global, are discussed.

Taking into account the streamfunction boundary values (i.e. ψ = 0), expres-

sions for the vorticity on the boundaries will reduce to

ω =
∂2ψ

∂n2
, (3.26)

where n is the local direction normal to the wall. The two schemes presented

below are different in the sense that ∂ψ/∂n is incorporated differently into the

RHS of (3.26).

Approach 1: Consider an x grid line. Firstly, the RHS of (3.26) is expressed

in terms of ∂ψ/∂x

∂̂2ψ

∂x2
= Î(2)

(
Î(1)
)−1 ∂̂ψ

∂x
= Î(2)

(
Î(1)
)−1




∂̂ψip

∂x

∂ψ1

∂x

∂ψNx

∂x


 , (3.27)

in which ∂̂ψip/∂x and (∂ψ1/∂x, ∂ψNx
/∂x) are the values of ∂ψ/∂x at the interior

points (x2, · · · , xNx−1) and at the two boundary points (x1, xNx
), respectively.

Secondly, the given values of ∂ψ1/∂x and ∂ψNx
/∂x are substituted into (3.27),

leading to

∂̂2ψ

∂x2
= Ĝx

∂̂ψip
∂x

+ k̂x, (3.28)

where Ĝx is a known differentiation matrix in the physical space, and k̂x is

a known vector whose components are functions of derivative boundary con-

ditions. Thirdly, the first derivative values are written in terms of the nodal
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streamfunction values

∂̂ψ

∂x
= Î(1)

(
Î(0)
)−1

ψ̂ = Î(1)
(
Î(0)
)−1




ψ̂ip

ψ1

ψNx


 , (3.29)

in which ψ̂ip and (ψ1, ψNx
) are the values of the streamfunction at the interior

points and at the boundary points, respectively. Finally, by substituting (3.29)

into (3.28), one will obtain computational boundary conditions for the vorticity,

which are dependent on the nodal values of ψ at the interior points and at the

two end-points of the grid line. For more details, the reader is referred to

(Mai-Duy, Mai-Cao and Tran-Cong, 2007).

Approach 2: Here, we propose that the incorporation of ∂ψ/∂n into the RHS

of (3.26) is carried out with the help of the constants of integration. Consider

an x grid line. Owing to the fact that the present coefficient vector is larger (α̂

in (3.12)-(3.14) contains two constants of integration), one can add two extra

equations representing ∂ψ1/∂x and ∂ψNx
/∂x to the conversion process




ψ̂

∂ψ1

∂x

∂ψNx

∂x


 =


 Î(0)

K̂


 α̂ = Ĉα̂, (3.30)

in which K̂ is the matrix made up of the first and last rows of Î(1), i.e.

K̂ =


 I

(1)
1 (x1), I

(1)
2 (x1), · · · , I

(1)
Nx

(x1), 1, 0

I
(1)
1 (xNx

), I
(1)
2 (xNx

), · · · , I
(1)
Nx

(xNx
), 1, 0


 .
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It can be seen from (3.30) that, despite the presence of nodal derivative values,

the 1D-IRBFN for ψ is collocated at the whole set of centres on the grid line.

The second derivatives of ψ at the two boundary points can now be expressed

in terms of the values of ψ at every point on the grid line and the values of

∂ψ/∂x at the two boundary points (x1, xNx
)




∂2ψ1

∂x2

∂2ψNx

∂x2


 = D̂Ĉ−1




ψ̂

∂ψ1

∂x

∂ψNx

∂x


 , (3.31)

where D̂ is a sub-matrix of Î(2) given by the first and last rows as

D̂ =


 I

(2)
1 (x1), I

(2)
2 (x1), · · · , I

(2)
N (x1), 0, 0

I
(2)
1 (xNx

), I
(2)
2 (xNx

), · · · , I
(2)
N (xNx

), 0, 0


 ,

and Ĉ is defined in (3.30).

It can be seen that the IRBFN approximations for ∂2ψ/∂x2 at the boundaries

satisfy exactly the prescribed derivative boundary values. With equation (3.31),

one can obtain the computational boundary conditions for the vorticity. On a

y grid line, the process can be taken in a similar fashion. These boundary

condition derivation processes are also applicable to the cylindrical coordinate

system.
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3.3.3 Galerkin discretisations of the PDEs

The discretisation process for (3.1) - (3.3) is similar to that for (3.4) - (3.6). For

brevity, only the former is presented in detail here.

A distinguishing feature of the present method is that the IRBFNs approxima-

tions satisfy a priori not only the Dirichlet boundary conditions but also the

Neumann boundary conditions. As a result, the Galerkin weighting process

applied to (3.1) - (3.3) over the domain Ω simply produces the following results

(without the boundary-integral terms)

∫

Ω

W

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω

)
dΩ = 0, (3.32)

∫

Ω

W
∂ω

∂t
dΩ+

∫

Ω

W

(
ux
∂ω

∂x
+ uy

∂ω

∂y

)
dΩ

−
√
Pr

Ra

∫

Ω

W

(
∂2ω

∂x2
+
∂2ω

∂y2

)
dΩ−

∫

Ω

W
∂T

∂x
dΩ = 0, (3.33)

∫

Ω

W
∂T

∂t
dΩ+

∫

Ω

W

(
ux
∂T

∂x
+ uy

∂T

∂y

)
dΩ

− 1√
RaPr

∫

Ω

W

(
∂2T

∂x2
+
∂2T

∂y2

)
dΩ = 0, (3.34)

where W are the weighting/test functions which are taken from the set of trial

functions (i.e. W = ϕ
[x]
i ϕ

[y]
j , where the values of i and j depend on the equation

under consideration as will be shown later). Substituting (3.23) - (3.25) into

(3.32) - (3.34), one will obtain the following three sets of algebraic equations

Aψ {ψ}+Mω {ω} = 0, (3.35)

Mω {ω̇}+ (KUω +KVω) {ω} −
√
Pr

Ra
Aω {ω}+ {Fω} = 0, (3.36)

MT

{
Ṫ
}
+ (KUT +KVT ) {T} −

1√
RaPr

AT {T} = 0, (3.37)
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where ω̇ = ∂ω/∂t, Ṫ = ∂T /∂t, {ψ} and {ω} the vectors of interior nodal values

of ψ and ω, respectively, {T} the vector of nodal values of T at the interior

points and the Neumann boundary points, and

(Aψ)m,n =

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)

(
Nx∑

i=1

Ny∑

j=1

∂2ϕ
[x]
i (x)

∂x2
ϕ
[y]
j (y) +

Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)

∂2ϕ
[y]
j (y)

∂y2

)
dΩ,

(3.38)

(Mω)m,n =

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)dΩ, (3.39)

(KUω)m,n = (ux)m,n

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)

(
Nx∑

i=1

Ny∑

j=1

∂ϕ
[x]
i (x)

∂x
ϕ
[y]
j (y)

)
dΩ, (3.40)

(KVω)m,n = (uy)m,n

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)

(
Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)

∂ϕ
[y]
j (y)

∂y

)
dΩ, (3.41)

(Aω)m,n =

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)

(
Nx∑

i=1

Ny∑

j=1

∂2ϕ
[x]
i (x)

∂x2
ϕ
[y]
j (y) +

Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)

∂2ϕ
[y]
j (y)

∂y2

)
dΩ,

(3.42)

{Fω}m,n =
∂Tm,n
∂x

∫

Ω

ϕ[x]
m (x)ϕ[y]

n (y)dΩ, (3.43)

(KUT )m,l = (ux)m,l

∫

Ω

ϕ[x]
m (x)ϕ

[y]
l (y)

(
Nx∑

i=1

Ny∑

j=1

∂ϕ
[x]
i (x)

∂x
ϕ
[y]
j (y)

)
dΩ, (3.44)

(KVT )m,l = (uy)m,l

∫

Ω

ϕ[x]
m (x)ϕ

[y]
l (y)

(
Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)

∂ϕ
[y]
j (y)

∂y

)
dΩ, (3.45)
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(AT )m,l =

∫

Ω

ϕ[x]
m (x)ϕ

[y]
l (y)

(
Nx∑

i=1

Ny∑

j=1

∂2ϕ
[x]
i (x)

∂x2
ϕ
[y]
j (y) +

Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)

∂2ϕ
[y]
j (y)

∂y2

)
dΩ,

(3.46)

(MT )m,l =

∫

Ω

ϕ[x]
m (x)ϕ

[y]
l (y)dΩ, (3.47)

in whichm = (2, 3, ..., Nx−1) (Dirichlet boundary conditions), n = (2, 3, ..., Ny−
1) (Dirichlet boundary conditions) and l = (1, 2, ..., Ny) (Neumann boundary

conditions). It is noted that this discretisation process leads to symmetric ma-

trices.

The volume integrals above can be evaluated using repeated integrals, for which

Gauss quadratures are employed along the grid lines.

3.3.4 Solution procedure

Due to the presence of convection terms (KUω, KVω, KUT and KVT ) in the

vorticity transport and energy equations, the resultant coupled sets of equations

are nonlinear. We will adopt a time-marching approach, where the diffusion and

convection terms are treated implicitly and explicitly, respectively. All equa-

tions involve the Laplacian term and their discrete form remains unchanged

during the solution process. Moreover, the two matrices Aψ and Aω are identi-

cal. At each time level, the three equations are solved separately for efficiency

purposes. The solution procedure can be summarised as follows.

1. Guess values of T , ψ, ω and their first-order spatial derivatives at time

t = 0

2. Discretise spatial derivatives using 1D-IRBFNs, resulting in a high-order
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approximation scheme in space

3. Discretise time derivatives using Euler (forward difference) method, re-

sulting in a first-order accurate scheme in time

4. Compute the boundary conditions for ω and the convective terms

5. Solve the energy equation (3.37) for T , subject to Dirichlet and Neumann

conditions

Solve the vorticity equation (3.36) for ω, subject to Dirichlet conditions

Solve the streamfunction equation (3.35) for ψ, subject to Dirichlet con-

ditions

6. Check to see whether the solution has reached a steady state

√
∑N

i=1

(
T

(k)
i − T

(k−1)
i

)2

√
∑N

i=1

(
T

(k)
i

)2 < ǫ, (3.48)

where k is the time level and ǫ is a prescribed tolerance

7. If it is not satisfied, advance time step and repeat from step 3. Otherwise,

stop the computation and output the results.

3.4 Numerical results

Several test problems are considered to validate the proposed technique. The

first problem is for the treatment of the vorticity boundary condition, while the

last two problems, namely natural convection in a square slot and in a concentric

annulus, are employed to study the accuracy of the method. For all numerical

examples, uniform rectangular grids are used to represent the computational
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domain, and 1D-IRBFNs are implemented with the MQ function

gi (η) =

√
(η − ci)

2 + a2i ,

where ci and ai are the centre and the width/shape-parameter of the ith MQ-

RBF. The MQ width is simply chosen to be the grid size.

3.4.1 Problem 1 (vorticity boundary condition)

The two approaches, namely Approach 1 and Approach 2, for the treatment

of boundary conditions for the vorticity are investigated here numerically by

employing test problems whose solutions are available in analytic form. Errors,

which can be measured exactly, are computed using the relative discrete L2

norm of the error (denoted by Ne). Consider the following governing equations

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (3.49)

∂2ω

∂x2
+
∂2ω

∂y2
= f(x, y), (3.50)

with two cases of boundary condition.

Homogeneous boundary conditions: For this case, the problem domain is

a unit square (Ω = [0, 1]× [0, 1]) and the exact solution is taken as

ψ̃ (x, y) = [1− cos (2πx)] [1− cos (2πy)] , (3.51)

from which one can easily derive analytic forms for ω(x, y) and f(x, y) on the

RHSs of (3.49) and (3.50), respectively. Values of ψ and ∂ψ/∂n are all zero

along the boundaries.

Numerical results for the solutions ψ and ω shown in Table 3.1 indicate that the
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proposed treatment (Approach 2) results in a significant improvement in accu-

racy. It can be seen that one order of magnitude better is generally observed

for all grids used. For example, at a grid of 61 × 61, the Ne errors of ω are

2.0 × 10−4 and 3.9 × 10−5 for Approach 1 and Approach 2, respectively. Com-

putational boundary conditions for the vorticity thus have a strong influence

on the accuracy of the final solutions.

Inhomogeneous boundary conditions: For this case, the exact solution is

taken as

ψ̃ (x, y) = sin (2πx) cos (2y)− cos (2πx) sinh (2y) , (3.52)

on domain Ω = [−1, 1] × [−1, 1]. Results obtained are given in Table 3.2.

Again, Approach 2 outperforms Approach 1 regarding accuracy. Approach 2 is

recommended for use in practice. In the following, only Approach 2 is employed.
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Table 3.1: Problem 1 (homogeneous boundary conditions): Ne errors of the
solution ψ and ω. Notice that a(-b) means a× 10−b

Errors of ω Errors of ψ
Grid Approach 1 Approach 2 Approach 1 Approach 2
6× 6 1.168(-1) 2.808(-2) 1.460(-1) 3.547(-2)
11× 11 1.687(-2) 2.985(-3) 2.238(-2) 3.835(-3)
21× 21 2.680(-3) 5.075(-4) 3.712(-3) 6.951(-4)
31× 31 9.917(-4) 1.903(-4) 1.401(-3) 2.671(-4)
41× 41 5.034(-4) 9.718(-5) 7.187(-4) 1.381(-4)
51× 51 3.016(-4) 5.840(-5) 4.334(-4) 8.363(-5)
61× 61 1.999(-4) 3.879(-5) 2.887(-4) 5.584(-5)

Table 3.2: Problem 1 (inhomogeneous boundary conditions): Ne errors of the
solution ψ and ω. Notice that a(-b) means a× 10−b

Errors of ω Errors of ψ
Grid Approach 1 Approach 2 Approach 1 Approach 2
6× 6 6.096(-1) 1.845(-1) 2.137(0) 6.046(-1)
11× 11 3.788(-2) 1.271(-2) 7.389(-2) 2.406(-2)
21× 21 8.719(-3) 2.986(-3) 1.088(-2) 3.639(-3)
31× 31 4.189(-3) 1.433(-3) 4.337(-3) 1.454(-3)
41× 41 2.518(-3) 8.605(-4) 2.325(-3) 7.804(-4)
51× 51 1.701(-3) 5.807(-4) 1.449(-3) 4.866(-4)
61× 61 1.235(-3) 4.212(-4) 9.894(-4) 3.324(-4)
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3.4.2 Problem 2: Natural convection in a square slot

This problem is schematically defined in Figure 3.1. The direction of gravity is

parallel to the vertical walls. The problem is solved in Cartesian coordinates

with the governing equations being (3.1) - (3.3). All walls are stationary, leading

to ψ = ∂ψ/∂n = 0 on the boundaries. The two horizontal walls are adiabatic

(i.e. ∂T/∂y = 0), while the two vertical walls are maintained at constant

temperatures (i.e. T = +0.5 (left wall) and T = −0.5 (right wall)).

6

-
x

y

g
ψ
=
∂
ψ
/∂
x
=

0;
T
=

−
0.
5

ψ
=
∂
ψ
/∂
x
=

0;
T
=

0.
5

ψ = ∂ψ/∂y = 0; ∂T/∂y = 0

ψ = ∂ψ/∂y = 0; ∂T/∂y = 0

Figure 3.1: Problem 2, natural convection flow in a square slot: geometry defi-
nition, boundary conditions and discretisation. Note that ∂ψ/∂x = ∂ψ/∂y = 0
are used to compute the boundary conditions for ω.

Numerical results for this problem are extensive. A range of Ra from 103 to 106

has been widely used for the validation of new numerical schemes. Davis (1983)

provided finite-difference results which are often cited in the literature for com-

parison purposes. Later on, there are increased levels of interest for higher values

of Ra, namely 107 and 108. Works reported include the pseudo-spectral method

(Quéré, 1991), FEM (Wan et al., 2001), h−adaptive FEM (Mayne et al., 2000,

2001), discrete singular convolution (DSC) method (Wan et al., 2001), mesh-
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less diffuse approximation method (DAM) (Sadat and Couturier, 2000), and

mesh-free local RBF collocation method (RBFCM) (Kosec and Šarler, 2007).

For this higher range of Ra values, it has been generally observed that (i) the

strength of boundary layers is significantly increased; (ii) convergence becomes

much more difficult; and (iii) significant discrepancies in the Nusselt number

occur in some cases (e.g. between the pseudo-spectral technique (Quéré, 1991)

and the DSC method (Wan et al., 2001)).

The Galerkin-IRBFN method is employed to study this problem for 103 ≤
Ra ≤ 108. Results are presented in the form of contour plots for ψ, ω and T

and through the values of the following quantities

• The average Nusselt numbers on the vertical plane at x = 0 (left wall)

and at x = 1/2 (middle cross-section), which are defined by

Nu0 = Nu( x = 0, y),

Nu1/2 = Nu( x = 1/2, y),

in which

Nu (x, y) =

∫ 1

0

(
uxT − ∂T

∂x

)
dy. (3.53)

• The average Nusselt number throughout the cavity, which is defined by

Nu =

∫ 1

0

Nu(x, y)dx. (3.54)

• Maximum Nusselt number, Numax, on the plane x = 0 and its location

• Minimum Nusselt number, Numin, on the plane x = 0 and its location

It is noted that integrals (3.53) and (3.54) are computed here using Simpson’s

rule.
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Results for Ra from 103 to 106 are presented in Table 3.3 and Figures 3.2 - 3.4,

and they are compared with those of Davis (1983). Denser grids are needed for

higher values of Ra. When compared with low-order methods, the proposed

technique requires relatively-coarse grids for the same level of accuracy. Results

concerning the Nusselt numbers are shown in Table 3.3, where a fast convergence

is observed. Figures 3.2 - 3.4 show the distributions of the streamfunction,

vorticity and temperature fields, which are all in good qualitative agreement

with the benchmark results. For example, the three fields are skew-symmetric

with respect to the centre of the slot, and the isotherms are nearly horizontal

in the core flow as the Rayleigh number increases.

Results for Ra from 107 to 108 are presented in Table 3.4, Figure 3.5 and Fig-

ure 3.6. Table 3.4 shows a comparison of the average Nusselt numbers between

the present method and several other methods. It can be seen that there are

significant discrepancies among various numerical techniques. For the case of

Ra = 107, the DSC (Wan et al., 2001) and FEM (Manzari, 1999) produced

values of 13.86 and 13.99 for the average Nusselt number, while the pseudo-

spectral (Quéré, 1991), FE (Wan et al., 2001), DA (Sadat and Couturier, 2000)

and RBFCM (Kosec and Šarler, 2007) techniques yielded the following values:

16.523, 16.656, 16.59 and 16.92. The differences between the two groups are

much wider for the case of Ra = 108: 23.67 for the DSC method, and (30.225,

31.486, 30.94, 32.12) for the second group. The Galerkin-IRBFN results are in

close agreement with the second group, particularly with the pseudo-spectral

technique (Quéré, 1991). Variations of the local Nusselt number on the left and

right walls are presented in Figure 3.7. It is clearly shown that the proposed

technique is able to capture very steep changes of the local Nusselt number in

the region close to the boundary. It can be seen from Figures 3.5 - 3.6 that the

present contour plots for the streamfunction, vorticity and temperature vari-

ables look feasible when compared with those of the pseudo-spectral technique

(Quéré, 1991). Very thin boundary layers are formed at these high values of

Ra. It is noted that iso-values used in these plots are the same as those used

in (Quéré, 1991).
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Table 3.3: Problem 2, natural convection flow in a square slot: Comparison of
the Galerkin-IRBFN results with the benchmark solution of Davis (1983) for
103 ≤ Ra ≤ 106 and Pr = 0.71

Characteristic values

Ra Grid size Nu Nu1/2 Nu0 Numax y Numin y

103 21× 21 1.118 1.119 1.117 1.503 0.094 0.693 1

(Davis, 1983) 1.118 1.118 1.117 1.505 0.092 0.692 1

21× 21 2.254 2.258 2.242 3.514 0.149 0.592 1

104 31× 31 2.249 2.251 2.244 3.526 0.147 0.588 1

41× 41 2.247 2.248 2.244 3.529 0.146 0.587 1

(Davis, 1983) 2.243 2.243 2.238 3.528 0.143 0.586 1

31× 31 4.552 4.555 4.521 7.682 0.083 0.744 1

105 41× 41 4.539 4.540 4.519 7.689 0.086 0.736 1

51× 51 4.533 4.534 4.520 7.706 0.084 0.733 1

61× 61 4.529 4.530 4.521 7.712 0.083 0.731 1

(Davis, 1983) 4.519 4.519 4.509 7.717 0.081 0.729 1

41× 41 8.934 8.935 9.023 18.506 0.046 1.025 1

106 51× 51 8.899 8.900 8.872 17.794 0.041 1.008 1

61× 61 8.877 8.878 8.835 17.523 0.039 1.000 1

71× 71 8.864 8.865 8.827 17.458 0.040 0.993 1

(Davis, 1983) 8.8 8.799 8.817 17.925 0.038 0.989 1
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Ra = 103 Ra = 104

Ra = 105 Ra = 106

Figure 3.2: Problem 2, natural convection flow in a square slot: Contour plots
for the ψ variable at four different values of Ra using a grid of 51 × 51. Each
plot draws 21 contour lines whose values vary uniformly from the minimum to
maximum values.
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Ra = 103 Ra = 104

Ra = 105 Ra = 106

Figure 3.3: Problem 2, natural convection flow in a square slot: Contour plots
for the ω variable at four different values of Ra using a grid of 51 × 51. Each
plot draws 21 contour lines whose values vary uniformly from the minimum to
maximum values.
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Ra = 103 Ra = 104

Ra = 105 Ra = 106

Figure 3.4: Problem 2, natural convection flow in a square slot: Contour plots
for the T variable at four different values of Ra using a grid of 51 × 51. Each
plot draws 21 contour lines whose values vary uniformly from the minimum to
maximum values.
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Table 3.4: Problem 2, natural convection flow in a square slot: Comparison of
the Galerkin-IRBFN results with those of other techniques for the two highest
values of Ra

Ra Technique Nu Nu1/2

107 Present study 16.661 16.661

(Grid size: 91× 91)

(Quéré, 1991) 16.523 16.523

(Manzari, 1999) 13.99

(Sadat and Couturier, 2000) 16.59

(Wan et al., 2001) (FEM) 16.656

(Wan et al., 2001) (DSC) 13.86

(Kosec and Šarler, 2007) 16.92

108 Present study 30.548 30.525

(Grid size: 91× 91)

(Quéré, 1991) 30.225 30.225

(Sadat and Couturier, 2000) 30.94

(Wan et al., 2001) (FEM) 31.486

(Wan et al., 2001) (DSC) 23.67

(Kosec and Šarler, 2007) 32.12
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Streamlines

Iso-vorticity lines

Isotherms

Figure 3.5: Problem 2, natural convection flow in a square slot: Contour plots
for the ψ, ω and T variables at Ra = 107 using a grid of 91 × 91. Iso-values
used in these plots are the same as those in (Quéré, 1991).
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Streamlines

Iso-vorticity lines

Isotherms

Figure 3.6: Problem 2, natural convection flow in a square slot: Contour plots
for the ψ, ω and T variables at Ra = 108 using a grid of 91 × 91. Iso-values
used in these plots are the same as those in (Quéré, 1991).
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Figure 3.7: Problem 2, natural convection flow in a square slot: Variations of
the local Nusselt number along the left and right walls.
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3.4.3 Problem 3: Natural convection in a concentric an-

nulus

Consider natural convection between two concentric cylinders that are separated

by a distance L, the inner cylinder is heated and the outer cylinder cooled. Most

reported cases have been for Pr = 0.71 and L/Di = 0.8, in which Di is the

diameter of the inner cylinder. These conditions are also employed in the present

work.

Since the flow is symmetric with respect to the vertical centreline, only half of

the domain needs be discretised. We employ cylindrical coordinates to solve

this problem. Figure 3.8 schematically shows the domain of analysis, the com-

putational domain, a typical dicretisation used and the boundary conditions.

The governing equations are employed in the form of (3.4) - (3.6), subject to

the following boundary conditions

• on the symmetry plane: ψ = 0, ω = 0 and ∂T/∂θ = 0,

• on the outer cylinder: ψ = 0, ∂ψ/∂r = 0 and T = 0,

• on the inner cylinder: ψ = 0, ∂ψ/∂r = 0 and T = 1.

This problem was studied in detail by various techniques. Among them are

FDM (Kuehn and Glodstein, 1976), the differential quadrature (DQ) method

(Shu, 1999) and the RBF-based DQ method (Shu et al., 2003; Shu and Wu,

2007) whose results are utilised here for comparison purposes.

This problem is studied for the following values of Ra: 102, 103, 3 × 103, 6 ×
103, 104, 5 × 104 and 7 × 104. Contour plots for the streamfunction and tem-

perature are shown in Figures 3.9–3.11, which look feasible in comparison with

those of Kuehn and Glodstein (1976). When the Rayleigh number increases,

the centre of rotation of the flows is observed to shift upward and the pattern of
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the temperature field becomes more complicated. At high values of Ra (5×104

and 7 × 104), thermal boundary layers appear near the lower portion of the

inner cylinder and the top of the outer cylinder.

Another important result is the average equivalent conductivity denoted by keq.

This quantity is defined as the actual heat flux divided by the heat flux that

would occur by pure conduction in the absence of the fluid motion:

keqi =
− ln (Ro/Ri)

π (Ro/Ri − 1)

∫ π

0

∂T

∂r
dθ, (3.55)

for the inner cylinder, and

keqo =
− (Ro/Ri) ln (Ro/Ri)

π (Ro/Ri − 1)

∫ π

0

∂T

∂r
dθ, (3.56)

for the outer cylinder, in which Ri and Ro are the radii of the inner and outer

cylinders, respectively. Table 3.5 summarises the Galerkin-IRBFN results for

various Rayleigh numbers using several grids and those of FDM (Kuehn and

Glodstein, 1976) and DQM (Shu, 1999), which shows good agreement between

the methods for both the outer and inner cylinders.
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Figure 3.8: Problem 3, natural convection flow in an annulus: domain of interest
(upper figure), computational domain (lower figure), boundary conditions and
discretisation
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Table 3.5: Problem 3, natural convection flow in an annulus: Convergence of
the computed average equivalent conductivities with grid refinement for 102 ≤
Ra ≤ 7× 104.

Ra Grid size Outer cylinder Inner cylinder

keqo keqi
102 11× 11 1.000 1.000

21× 21 1.001 1.001
(Kuehn and Glodstein, 1976) 1.002 1.000

(Shu, 1999) 1.001 1.001
31× 31 1.077 1.079

103 41× 41 1.078 1.080
51× 51 1.079 1.080

(Kuehn and Glodstein, 1976) 1.084 1.081
(Shu, 1999) 1.082 1.082
31× 31 1.373 1.379

3× 103 41× 41 1.378 1.384
51× 51 1.381 1.387

(Kuehn and Glodstein, 1976) 1.402 1.404
(Shu, 1999) 1.397 1.397
31× 31 1.676 1.689

6× 103 41× 41 1.684 1.697
51× 51 1.690 1.701

(Kuehn and Glodstein, 1976) 1.735 1.736
(Shu, 1999) 1.715 1.715

104 41× 41 1.937 1.959
51× 51 1.945 1.964
61× 61 1.953 1.967

(Kuehn and Glodstein, 1976) 2.005 2.010
(Shu, 1999) 1.979 1.979
41× 41 2.794 2.938

5× 104 51× 51 2.835 2.943
61× 61 2.866 2.946

(Kuehn and Glodstein, 1976) 2.973 3.024
(Shu, 1999) 2.958 2.958
41× 41 2.970 3.174

7× 104 51× 51 3.027 3.180
61× 61 3.070 3.182

(Kuehn and Glodstein, 1976) 3.226 3.308
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Ra = 103

Ra = 3× 103

Figure 3.9: Problem 3, natural convection flow in an annulus: Contour plots
for the ψ (left) and T (right) variables at Ra = 103 and Ra = 3 × 103 using a
grid of 51× 51.
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Ra = 6× 103

Ra = 104

Figure 3.10: Problem 3, natural convection flow in an annulus: Contour plots
for the ψ (left) and T (right) variables at Ra = 6 × 103 and Ra = 104 using a
grid of 51× 51.
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Ra = 5× 104

Ra = 7× 104

Figure 3.11: Problem 3, natural convection flow in an annulus: Contour plots
for the ψ (left) and T (right) variables at Ra = 5× 104 and Ra = 7× 104 using
a grid of 51× 51.
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3.5 Concluding Remarks

We have successfully implemented a Galerkin-IRBFN method for the simulation

of natural convection governed by the streamfunction-vorticity formulation in

two dimensions. Its attractive features include: (i) easy implementation; (ii) ef-

fective treatment of the vorticity boundary condition; (iii) effective handling of

the Neumann boundary condition; and (iv) ability to capture very thin bound-

ary layers using relatively-coarse grids. Numerical experiments show that the

proposed method achieves very high Ra solutions. It appears that this work is

one of the earliest RBF reports which have successfully simulated the flow in a

square slot at Ra = 108.



Chapter 4

1D-IRBFN-based Galerkin

method for the streamfunction

formulation governing viscous

flows

The 1D-IRBFN-based Galerkin method is now further developed for the dis-

cretisation of thermally-driven flows of a Newtonian fluid, which are governed

by a set of the biharmonic equation for the streamfunction variable and the har-

monic equation for the temperature variable. The field variables are approxi-

mated by global high-order 1D-IRBFNs on uniform grids without suffering from

Runge’s phenomenon. All boundary conditions including double boundary con-

ditions, which can be of complicated shapes, for the streamfunction equation

are imposed in an exact manner (they are satisfied identically). The proposed

technique is validated through the solution of several test problems, including

a benchmark buoyancy-driven flow in a square slot. Good accuracy and fast

convergence are obtained.
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4.1 Introduction

Many science and engineering problems including the deformation of thin plates,

the motion of fluids, the transport of chemicals in porous media and the combi-

nation of fundamental processes (e.g. particulate suspensions) can be governed

by the biharmonic equation (Selvadurai, 2000, 2002). Solving biharmonic prob-

lems numerically typically involves significant challenges with respect to the

approximation of high-order derivatives and the imposition of double boundary

conditions.

A Galerkin formulation is a powerful approach for the discretisation of differen-

tial problems. The weighting functions are chosen from a set of trial functions,

usually leading to a symmetric system of algebraic equations. Owing to its

integral nature, another attractive feature of the Galerkin formulation lies in

its smoothing capability. The literature on Galerkin solutions to biharmonic

problems is extensive.

In the context of Galerkin finite-element methods (Zienkiewicz and Taylor,

1991), the discretisations of the Galerkin formulation for Dirichlet biharmonic

problems require C1 continuity of the shape functions. The field variable and

its first partial derivatives need to be continuous over the problem domain.

Such shape functions are much more difficult to construct than those needed

for C0 continuity. As a result, alternative approaches have been developed,

including the use of non-conforming/incompatible finite elements and mixed

formulations. For the latter, for example, (i) one can approximate the field

variable and its gradient using independent interpolations with their relation

imposed as a special constraint; and (ii) one can introduce a new variable such

as the one involving second derivatives to avoid the necessity of C1 continuity.

In the context of Galerkin spectral methods (Canuto et al., 1988), the trial func-

tions are required to individually satisfy the boundary conditions. It is difficult
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to hold this property for the case of non-homogeneous boundary conditions. In

such a case, the tau method is a preferred option. Some equations in the final

system are set to use for the imposition of boundary conditions. The Galerkin

equation is thus not considered for all weighting functions (the highest-order

equations are dropped), leading to a supplementary error. Solutions by both

Galerkin and tau methods are approximated in terms of the expansion coeffi-

cients.

In this chapter, we present a Galerkin approach, in which IRBFNs in one dimen-

sion are utilised as trial functions, for natural convection flows. For conventional

interpolation schemes, the order of accuracy for the approximation of a deriva-

tive function is known to be a decreasing function of derivative order. It is

expected that the use of integration to construct the RBF approximations (i.e.

IRBFNs) overcomes the problem of reduced convergence rate caused by differ-

entiation. The employment of IRBFNs in one dimension is much more econom-

ical than that in higher dimensions as the number of RBFs used to construct

the approximations for a nodal point is significantly reduced. A distinguish-

ing feature of the proposed method is that the 1D-IRBFN trial functions are

constructed to identically satisfy (i) not only function values but also normal

derivative values at the boundary points (i.e. double boundary conditions) for

the streamfunction equation; and (ii) derivative/function values at the bound-

ary points for the temperature equation. Moreover, Cartesian grids made of

equally-spaced points can be used to generate the trial and test spaces. By

applying tensor products, all derivatives derived from 1D-IRBFNs are defined

and continuous throughout the entire problem domain. The unknown vectors

in the present 1D-IRBFN-Galerkin method consists of nodal values of the field

variable (streamfunction/temperature) at the interior nodes. Numerical results

indicate that the present technique yields a high level of accuracy and a fast

rate of convergence with increasing number of RBFs.

The remainder of the chapter is organised as follows. A brief description of
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the governing equations expressed in terms of the streamfunction and temper-

ature variables only (the streamfunction-temperature formulation) is given in

Section 4.2. Section 4.3 presents the proposed 1D-IRBFN-Galerkin method for

the simulation of thermally-driven viscous flows. Special attention is given to

the discretisation of the biharmonic equation. The accuracy of the method is

numerically studied by considering several test problems in Section 4.4. Section

4.5 concludes the chapter.

4.2 Governing equations

The governing equations (1.1), (1.2) and (1.4) for viscous flows are written in

the streamfunction-temperature form in two dimensions. Using the Boussinesq

approximation, the dimensionless form of the governing equations can be writ-

ten in the Cartesian coordinates as

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
=

√
Ra

Pr

(
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)

− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
+
∂T

∂x

)
, (4.1)

∂2T

∂x2
+
∂2T

∂y2
=

√
RaPr

(
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
, (4.2)

where ψ is the stream function, T the temperature, and Pr and Ra the Prandtl

and Rayleigh numbers, respectively. Pr and Ra are defined as Pr = ν/α

and Ra = βg∆TL3/αν, in which ν is the kinematic viscosity, α the thermal

diffusivity, β the thermal expansion coefficient, g the gravity, and L and ∆T the

characteristic length and temperature difference, respectively. It is noted that

the velocity components ux and uy are defined in terms of the streamfunction
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as

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
.

4.3 1D-IRBFN-based Galerkin technique

Let the problem domain Ω be rectangular. We employ a Cartesian grid of

Nx × Ny to represent Ω and 1D-IRBFNs to approximate the streamfunction

and temperature variables on each grid line. The governing equations (4.1) and

(4.2) are discretised by means of the Galerkin formulation. In the following,

details are presented for three main parts: (i) 1D-IRBFN representations of

the field variables; (ii) Imposition of boundary conditions; and (iii) Galerkin

discretisation of the governing equations.

4.3.1 One-dimensional IRBFN representations of the field

variables

The governing equations for thermally-driven flows contain one fourth order

PDE (i.e. (4.1)) and one second order PDE (i.e. (4.2)). We employ 1D-IRBFNs

of fourth and second order to discretise (4.1) and (4.2), respectively. Consider

an η grid line (η represents x or y).
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Fourth-order 1D-IRBFNs

Making use of (2.52)-(2.55) with p = 4 and f ≡ ψ, the following approximate

expressions are obtained

d4ψ(η)

dη4
=

Nη∑

i=1

wigi(η) =

Nη∑

i=1

wiI
(4)
i (η), (4.3)

d3ψ(η)

dη3
=

Nη∑

i=1

wiI
(3)
i (η) + C1, (4.4)

d2ψ(η)

dη2
=

Nη∑

i=1

wiI
(2)
i (η) + C1η + C2, (4.5)

dψ(η)

dη
=

Nη∑

i=1

wiI
(1)
i (η) + C1

η2

2
+ C2η + C3, (4.6)

ψ(η) =

Nη∑

i=1

wiI
(0)
i (η) + C1

η3

6
+ C2

η2

2
+ C3η + C4, (4.7)

where {wi}Nη

i=1 is the set of network weights, and {gi(η)}Nη

i=1 ≡
{
I
(4)
i (η)

}Nη

i=1

the set of RBFs, Nη the number of points, I
(3)
i (η) =

∫
I
(4)
i (η)dη, I

(2)
i (η) =

∫
I
(3)
i (η)dη, I

(1)
i (η) =

∫
I
(2)
i (η)dη, I

(0)
i (η) =

∫
I
(1)
i (η)dη, and {C1, C2, C3, C4}

the constants of integration.

Evaluation of (4.3)-(4.7) at a set of collocation points {ηj}Nη

j=1 leads to

d̂4ψ

dη4
= Î(4)

[4] α̂[4], (4.8)

d̂3ψ

dη3
= Î(3)

[4] α̂[4], (4.9)

d̂2ψ

dη2
= Î(2)

[4] α̂[4], (4.10)

d̂ψ

dη
= Î(1)

[4] α̂[4], (4.11)

ψ̂ = Î(0)
[4] α̂[4], (4.12)

where subscript [.] and superscript (.) are used to denote the order of IRBFN
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scheme and the order of the corresponding derivative function, respectively;

Î(4)
[4] =




I
(4)
1 (η1), I

(4)
2 (η1), · · · , I

(4)
Nη

(η1), 0, 0, 0, 0

I
(4)
1 (η2), I

(4)
2 (η2), · · · , I

(4)
Nη

(η2), 0, 0, 0, 0
...

...
. . .

...
...

...
...

...

I
(4)
1 (ηNη

), I
(4)
2 (ηNη

), · · · , I
(p)
Nη

(ηNη
), 0, 0, 0, 0



,

Î(3)
[4] =




I
(3)
1 (η1), I

(3)
2 (η1), · · · , I

(3)
Nη

(η1), 1, 0, 0, 0

I
(3)
1 (η2), I

(3)
2 (η2), · · · , I

(3)
Nη

(η2), 1, 0, 0, 0
...

...
. . .

...
...

...
...

...

I
(3)
1 (ηNη

), I
(3)
2 (ηNη

), · · · , I
(3)
Nη

(ηNη
), 1, 0, 0, 0



,

Î(2)
[4] =




I
(2)
1 (η1), I

(2)
2 (η1), · · · , I

(2)
Nη

(η1), η1, 1, 0, 0

I
(2)
1 (η2), I

(2)
2 (η2), · · · , I

(2)
Nη

(η2), η2, 1, 0, 0
...

...
. . .

...
...

...
...

...

I
(2)
1 (ηNη

), I
(2)
2 (ηNη

), · · · , I
(2)
Nη

(ηNη
), ηNη

, 1, 0, 0



,

Î(1)
[4] =




I
(1)
1 (η1), I

(1)
2 (η1), · · · , I

(1)
Nη

(η1), η21/2, η1, 1, 0

I
(1)
1 (η2), I

(1)
2 (η2), · · · , I

(1)
Nη

(η2), η22/2, η2, 1, 0
...

...
. . .

...
...

...
...

...

I
(1)
1 (ηNη

), I
(1)
2 (ηNη

), · · · , I
(1)
Nη

(ηNη
), η2Nη

/2, ηNη
, 1, 0



,

Î(0)
[4] =




I
(0)
1 (η1), I

(0)
2 (η1), · · · , I

(0)
N (η1), η31/6, η21/2, η1, 1

I
(0)
1 (η2), I

(0)
2 (η2), · · · , I

(0)
N (η2), η32/6, η22/2, η2, 1

...
...

. . .
...

...
...

...
...

I
(0)
1 (ηNη

), I
(0)
2 (ηNη

), · · · , I
(0)
N (ηNη

), η3Nη
/6, η2Nη

/2, ηNη
, 1



;

α̂[4] =
(
w1, w2, · · · , wNη

, C1, C2, C3, C4

)T
;

and

d̂kψ

dηk
=

(
dkψ1

dηk
,
dkψ2

dηk
, · · · , d

kψNη

dηk

)T
, k = {1, 2, 3, 4},

ψ̂ =
(
ψ1, ψ2, · · · , ψNη

)T
,
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in which dkψj/dη
k = dkψ(ηj)/dη

k and ψj = ψ(ηj) with j = {1, 2, · · · , Nη}.

Second-order 1D-IRBFNs

Making use of (2.52)-(2.55) with p = 2 and f ≡ T , the following approximate

expressions are obtained

d2T (η)

dη2
=

Nη∑

i=1

wigi (η) =

Nη∑

i=1

wiI
(2)
i (η) , (4.13)

dT (η)

dη
=

Nη∑

i=1

wiI
(1)
i (η) + C1, (4.14)

T (η) =

Nη∑

i=1

wiI
(0)
i (η) + C1η + C2. (4.15)

where Nη is the number of nodes on the grid line, {wi}Nη

i=1 the set of network

weights, and {gi (η)}Nη

i=1 ≡
{
I
(2)
i (η)

}Nη

i=1
the set of RBFs, I

(1)
i (η) =

∫
I
(2)
i (η)dη,

I
(0)
i (η) =

∫
I
(1)
i (η) dη, and C1 and C2 are the constants of integration.

Evaluation of (4.13) - (4.15) at the grid nodes leads to

d̂2T

dη2
= Î(2)

[2] α̂[2], (4.16)

d̂T

dη
= Î(1)

[2] α̂[2], (4.17)

T̂ = Î(0)
[2] α̂[2], (4.18)
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where

Î(2)
[2] =




I
(2)
1 (η1) , I

(2)
2 (η1) , · · ·, I

(2)
Nη

(η1) , 0, 0

I
(2)
1 (η2) , I

(2)
2 (η2) , · · ·, I

(2)
Nη

(η2) , 0, 0
...

...
. . .

...
...

...

I
(2)
1

(
ηNη

)
, I

(2)
2

(
ηNη

)
, · · ·, I

(2)
Nη

(
ηNη

)
, 0, 0



;

Î(1)
[2] =




I
(1)
1 (η1) , I

(1)
2 (η1) , · · ·, I

(1)
Nη

(η1) , 1, 0

I
(1)
1 (η2) , I

(1)
2 (η2) , · · ·, I

(1)
Nη

(η2) , 1, 0
...

...
. . .

...
...

...

I
(1)
1

(
ηNη

)
, I

(1)
2

(
ηNη

)
, · · ·, I

(1)
Nη

(
ηNη

)
, 1, 0



;

Î(0)
[2] =




I
(0)
1 (η1) , I

(0)
2 (η1) , · · ·, I

(0)
Nη

(η1) , η1, 1

I
(0)
1 (η2) , I

(0)
2 (η2) , · · ·, I

(0)
Nη

(η2) , η2, 1
...

...
. . .

...
...

...

I
(0)
1

(
ηNη

)
, I

(0)
2

(
ηNη

)
, · · ·, I

(0)
Nη

(
ηNη

)
, ηNη

, 1



;

α̂[2] =
(
w1, w2, · · ·, wNη

, C1, C2

)T
;

and

d̂2T

dη2
=

(
d2T1
dη2

,
d2T2
dη2

, · · ·, d
2TNη

dη2

)T
;

d̂T

dη
=

(
dT1
dη

,
dT2
dη

, · · ·, dTNη

dη

)T
;

T̂ =
(
T1, T2, · · ·, TNη

)T
,

in which d2Tj/dη
2 = d2T (ηj)/dη

2, dTj/dη = dT (ηj)/dη and Tj = T (ηj) with

j = {1, 2, · · ·, Nη}.
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4.3.2 Imposition of boundary conditions

Unlike conventional interpolation schemes, the present integral interpolation

scheme produces some extra arbitrary constant values (i.e. the integration con-

stants) which can be treated like the RBF weights. These additional coefficients

can be utilised to include derivative boundary conditions in the 1D-IRBFN ap-

proximations. Details are as follows.

Double boundary conditions for the streamfunction

Double boundary conditions (ψ and ∂ψ/∂η given at η1 and at ηNη
) are incor-

porated into the 1D-IRBFN approximations through the process of conversion

of the network-weight space into the physical space


 ψ̂

êψ


 =


 Î(0)

[4]

K̂[4]


 α̂[4] = Ĉ[4]α̂[4], (4.19)

where êψ = (∂ψ1/∂η, ∂ψNη
/∂η)T ; ψ̂, α̂[4] and Î(0)

[4] defined as before; Ĉ[4] the
conversion matrix; and K̂[4] is the matrix made of the first and last rows of Î(1)

[4] :

K̂[4] =


 I

(1)
1 (η1), I

(1)
2 (η1), · · · , I

(1)
Nη

(η1), η21/2, η1, 1, 0

I
(1)
1 (ηNη

), I
(1)
2 (ηNη

), · · · , I
(1)
Nη

(ηNη
), η2Nη

/2, ηNη
, 1, 0


 .

It can be seen from (4.19) that, despite the presence of nodal derivative bound-

ary conditions, the approximate solution ψ is still collocated at the whole set of

centres and the obtained system is not over-determined. Solving (4.19) for α̂[4]

yields

α̂[4] = Ĉ−1
[4]


 ψ̂

êψ


 , (4.20)
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where Ĉ−1
[4] is the pseudo-inverse of Ĉ[4]. Substitution of (4.20) into (4.3)-(4.7)

leads to

ψ(η) =
(
I
(0)
1 (η), I

(0)
2 (η), · · · , I(0)Nη

(η), η3/6, η2/2, η, 1
)
Ĉ−1
[4]


 ψ̂

êψ


 ,

(4.21)

∂ψ(η)

∂η
=
(
I
(1)
1 (η), I

(1)
2 (η), · · · , I(1)Nη

(η), η2/2, η, 1, 0
)
Ĉ−1
[4]


 ψ̂

êψ


 , (4.22)

∂2ψ(η)

∂η2
=
(
I
(2)
1 (η), I

(2)
2 (η), · · · , I(2)Nη

(η), η, 1, 0, 0
)
Ĉ−1
[4]


 ψ̂

êψ


 , (4.23)

∂3ψ(η)

∂η3
=
(
I
(3)
1 (η), I

(3)
2 (η), · · · , I(3)Nη

(η), 1, 0, 0, 0
)
Ĉ−1
[4]


 ψ̂

êψ


 , (4.24)

∂4ψ(η)

∂η4
=
(
I
(4)
1 (η), I

(4)
2 (η), · · · , I(4)Nη

(η), 0, 0, 0, 0
)
Ĉ−1
[4]


 ψ̂

êψ


 , (4.25)

or

ψ(η) =

Nη∑

i=1

ϕ
[η]
i (η)ψi + ϕ

[η]
Nη+1(η)

∂ψ1

∂η
+ ϕ

[η]
Nη+2(η)

∂ψNη

∂η
, (4.26)

∂ψ(η)

∂η
=

Nη∑

i=1

∂ϕ
[η]
i (η)

∂η
ψi +

∂ϕ
[η]
Nη+1(η)

∂η

∂ψ1

∂η
+
∂ϕ

[η]
Nη+2(η)

∂η

∂ψNη

∂η
, (4.27)

∂2ψ(η)

∂η2
=

Nη∑

i=1

∂2ϕ
[η]
i (η)

∂η2
ψi +

∂2ϕ
[η]
Nη+1(η)

∂η2
∂ψ1

∂η
+
∂2ϕ

[η]
Nη+2(η)

∂η2
∂ψNη

∂η
, (4.28)

∂3ψ(η)

∂η3
=

Nη∑

i=1

∂3ϕ
[η]
i (η)

∂η3
ψi +

∂3ϕ
[η]
Nη+1(η)

∂η3
∂ψ1

∂η
+
∂3ϕ

[η]
Nη+2(η)

∂η3
∂ψNη

∂η
, (4.29)

∂4ψ(η)

∂η4
=

Nη∑

i=1

∂4ϕ
[η]
i (η)

∂η4
ψi +

∂4ϕ
[η]
Nη+1(η)

∂η4
∂ψ1

∂η
+
∂4ϕ

[η]
Nη+2(η)

∂η4
∂ψNη

∂η
, (4.30)

where {ϕ[η]
i }Nη+2

i=1 is the set of 1D-IRBFN basis functions in the physical space

for ψ.
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Boundary conditions for the temperature

Case 1: Neuman-Neumann boundary conditions

Assume that boundary conditions for T at the two ends of the grid line are of

Neumann type (i.e. ∂T1/∂η and ∂TNη
/∂η). Those values are also incorporated

into the 1D-IRBFN approximations through the process of conversion as in the

case of double boundary conditions. Through such a mapping, the value of T

and its derivatives at an arbitrary point η on the grid line can then be computed

by

T (η) =
(
I
(0)
1 (η) , I

(0)
2 (η) , · · · , I(0)Nη

(η) , η, 1
)
Ĉ−1
[2]


 T̂

êT


 , (4.31)

∂T (η)

∂η
=

(
I
(1)
1 (η) , I

(1)
2 (η) , · · · , I(1)Nη

(η) , 1, 0
)
Ĉ−1
[2]


 T̂

êT


 , (4.32)

∂2T (η)

∂η2
=

(
I
(2)
1 (η) , I

(2)
2 (η) , · · · , I(2)Nη

(η) , 0, 0
)
Ĉ−1
[2]


 T̂

êT


 , (4.33)

where

êT =




∂T1
∂η

∂TNη

∂η


 ,

Ĉ[2] =


 Î(0)

[2]

K̂[2]


 ,

in which Î(0)
[2] is defined as before, and

K̂[2] =


 I

(1)
1 (η1), I

(1)
2 (η1), · · · , I

(1)
Nη

(η1), 1, 0

I
(1)
1 (ηNη

), I
(1)
2 (ηNη

), · · · , I
(1)
Nη

(ηNη
), 1, 0


 .
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Expressions (4.31)-(4.33) can be rewritten in the compact form

T (η) =

Nη∑

i=1

ϑ
[η]
i (η)Ti + ϑ

[η]
Nη+1(η)

∂T1
∂η

+ ϑ
[η]
Nη+2(η)

∂TNη

∂η
, (4.34)

∂T (η)

∂η
=

Nη∑

i=1

∂ϑ
[η]
i (η)

∂η
Ti +

∂ϑ
[η]
Nη+1 (η)

∂η

∂T1
∂η

+
∂ϑ

[η]
Nη+2 (η)

∂η

∂TNη

∂η
, (4.35)

∂2T (η)

∂η2
=

Nη∑

i=1

∂2ϑ
[η]
i (η)

∂η2
Ti +

∂2ϑ
[η]
Nη+1 (η)

∂η2
∂T1
∂η

+
∂2ϑ

[η]
Nη+2 (η)

∂η2
∂TNη

∂η
, (4.36)

where {ϑ[η]i }Nη+2
i=1 is the set of 1D-IRBFN basis functions in the physical space

for T .

Case 2: Dirichlet-Dirichlet boundary conditions

Assume that boundary conditions for T at the two ends of the grid line are of

Dirichlet type. Unlike Case 1, the extra information vector êT in the conversion

process here is simply set to null. Expressions (4.34)-(4.36) thus reduce to

T (η) =

Nη∑

i=1

ϑ
[η]
i (η)Ti, (4.37)

∂T (η)

∂η
=

Nη∑

i=1

∂ϑ
[η]
i (η)

∂η
Ti, (4.38)

∂2T (η)

∂η2
=

Nη∑

i=1

∂2ϑ
[η]
i (η)

∂η2
Ti. (4.39)

4.3.3 Galerkin discretisations

Assume that (i) Dirichlet boundary conditions are prescribed on the two vertical

lines and Neumann boundary conditions on the two horizontal lines for the

energy equation (4.2); and (ii) double boundary conditions are prescribed on

all boundary lines for the streamfunction equation (4.1).
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We utilise 1D-IRBFN expressions (4.26)-(4.30) to construct the approximations

for ψ on the x and y grid lines (i.e. η ≡ x and η ≡ y), (4.34)-(4.36) for T

on the y grid lines (i.e. η ≡ y), and (4.37)-(4.39) for T on the x grid lines

(i.e. η ≡ x). One can then take products of those in each direction as basis

functions for the interpolation of ψ and T over the whole domain Ω. The

1D-IRBFN approximations are thus defined everywhere in the domain through

tensor products, which allows one to get the value of ψ and T at any point of

the domain

ψ (x, y) =

Nx∑

i=1

ϕ
[x]
i (x)

(
Ny∑

j=1

ϕ
[y]
j (y)ψi,j + ϕ

[y]
Ny+1 (y)

∂ψi,1
∂y

+ ϕ
[y]
Ny+2 (y)

∂ψi,Ny

∂y

)

+

Ny∑

j=1

ϕ
[y]
j

(
ϕ
[x]
Nx+1 (x)

∂ψ1,j

∂x
+ ϕ

[x]
Nx+2 (x)

∂ψNx,j

∂x

)
, (4.40)

T (x, y) =
Nx∑

i=1

ϑ
[x]
i (x)

(
Ny∑

j=1

ϑ
[y]
j (y)Ti,j + ϑ

[y]
Ny+1 (y)

∂Ti,1
∂y

+ ϑ
[y]
Ny+2 (y)

∂Ti,Ny

∂y

)
.

(4.41)

In (4.40) - (4.41), ψi,j , and Ti,j are the values of the ψ and T variables at the

intersection of the ith horizontal grid line and jth vertical grid line; the products

ϕ
[x]
i ϕ

[y]
j and the products ϑ

[x]
i ϑ

[y]
j are usually referred to as the trial/basis/approximating

functions; ∂Ti,1/∂y and ∂Ti,Ny

/
∂y are nodal derivative boundary conditions

for T ; and ∂ψi,1/∂y, ∂ψi,Ny

/
∂y, ∂ψ1,j/∂x and ∂ψNx ,j/∂x are nodal derivative

boundary conditions for ψ.

Discretisation of the streamfunction equation

Since expressions (4.40)-(4.41) over Ω are constructed to satisfy all boundary

conditions, only the residual term for the governing equation in the integral

weighted residual statement needs be considered. The Galerkin weighting pro-
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cess applied to (4.1) over Ω produces the results

∫

Ω

W

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
dΩ−

√
Ra

Pr

∫

Ω

W

(
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)

− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
+
∂T

∂x

)
dΩ = 0,

(4.42)

where W is the weighting/test functions which are taken from the set of trial

functions (i.e. W = ϕ
[x]
i ϕ

[y]
j , 2 ≤ i ≤ (Nx − 1) and 2 ≤ j ≤ (Ny − 1)). The

above volume integrals can be evaluated using repeated integrals, for which

Gauss quadratures are employed along the grid lines. The determinate system

of equations, (4.42), can then be used to solve for the nodal value of the variable

ψ.

Discretisation of of the energy equation

In the same manner, the Galerkin weighting process applied to (4.2) over domain

Ω produces the results

∫

Ω

W

(
∂2T

∂x2
+
∂2T

∂y2

)
dΩ−

√
RaPr

∫

Ω

W

(
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
dΩ = 0, (4.43)

where W = ϑ
[x]
i ϑ

[y]
j , 2 ≤ i ≤ (Nx − 1) and 1 ≤ j ≤ Ny.

4.4 Numerical results

1D-IRBFNs are implemented with the multiquadric (MQ) function gi(η) =
√

(η − ηi)2 + a2i in which ηi and ai are the centre and width of the ith MQ,

respectively. The MQ centres are distributed uniformly, from which the trial

and test spaces are generated. The MQ width is simply taken to be the grid

size h. Furthermore, the collocation points are the centres themselves. We
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employ the discrete relative L2 norm of the error, denoted by Ne, to measure

the accuracy of a numerical scheme. Some properties of 1D-IRBFNs of fourth

and second order are first studied through the interpolation of a function (the

first two problems), and they are then utilised in the solution of the biharmonic

equation (third problem) and the streamfunction-temperature formulation (last

problem).

4.4.1 Problem 1: Equidistant interpolating points (Runge’s

phenomenon)

When using algebraic polynomials to represent certain functions that are sam-

pled at equally-spaced points, the error between the function and the interpo-

lating polynomial can grow quickly as the number of sample points increases,

which is called Runge’s phenomenon. Figure 4.1a illustrates this phenomenon

for the interpolation of a function f(x) = 1/(1 + 25x2) with −1 ≤ x ≤ 1. The

oscillation between the interpolating points, especially in the region close to the

boundaries, is significantly magnified when changing from 6 to 11 points. To

minimise/eliminate the oscillation, it is necessary to employ Chebyshev nodes

that cluster at the boundaries of the domain or to use piecewise low-order poly-

nomials. For the latter, the quality of the interpolation is improved by increasing

the number of polynomial pieces.

It is interesting to see the behaviour of 1D-IRBFNs when they are applied to

interpolate the above function. As shown in Figure 4.1b, there is no oscil-

lation between the interpolating points for the IRBFN scheme. Indeed, the

interpolation error is reduced with increasing the number of equidistant points.

1D-IRBFNs can thus work well with the equidistant points.
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a) Polynomial interpolation
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b) IRBFN interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact
approximate

31 equidistant points

x

y
,f

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact
approximate

51 equidistant points

x

y
,f

Figure 4.1: Problem 1, function interpolation, f(x) = 1/(1 + 25x2), −1 ≤ x ≤
1: Performances of polynomial and IRBFN interpolants using equally-spaced
interpolating points denoted by ◦. The latter does not suffer from Runge’s
phenomenon. It is noted that the approximate function is plotted using 501
uniformly-distributed points.
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4.4.2 Problem 2: Extra information

When interpolating a function, in some cases, one is also given some extra

information apart from nodal function values. Extra information can be deriva-

tive function values at some interpolating points. It will be shown that the

1D-IRBFN scheme can handle such cases very well.

Consider a function f(x) = sin(2πx) with 0 ≤ x ≤ 1. The domain is represented

by a set of uniformly-distributed points. At the two endpoints, first derivative

values are also given. To provide a useful basis for comparison, conventional

RBFNs (DRBFNs) are also employed. There are two basic cases to be studied

here.

Case 1: the data input consists of function values only (Legend “function

values only” in Figure 4.2). We use DRBFN and IRBFNs (IRBFN interpolation

for second-order PDEs). In both of cases, the approximate function is collocated

at all centres.

Case 2: the data input consists of function values at the set of points and

derivative values at the two boundary points (Legend “function and derivative

values” in Figure 4.2). For DRBFNs, the function is not collocated at the two

centres adjacent to the boundaries in favor of the imposition of two deriva-

tive values. For IRBFN, the presence of two integration constants allows the

addition of two extra equations to represent the two derivative values.

The results are given in Figure 4.2. When changing from the first to second case,

the accuracy is reduced for DRBFNs (Figure 4.2a), but enhanced for IRBFNs

(Figure 4.2b). This capability of IRBFNs will be utilised to implement double

boundary conditions in solving biharmonic problems.
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Figure 4.2: Problem 2, function interpolation, f(x) = sin(2πx), 0 ≤ x ≤ 1:
Error versus the grid spacing. The domain is discretised using uniform grids
made of 3 to 101 points with increment of 2. Errors are computed at a test grid
of 501 uniformly-distributed points. The DRBFN’s Ne is O(h

1.67) and O(h1.62)
for case 1 and 2, respectively. The corresponding IRBFN’s Ne is O(h

3.93) and
O(h3.67). It is noted that the above figures have the same scaling.
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4.4.3 Problem 3: Linear test problem

The proposed 1D-IRBFN-based Galerkin technique is first verified through a

linear biharmonic problem, of which the exact solution is available. In this

example, we consider the following equation

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
=

4π4

1 + 2π2
cos(πx) cos(πy − π/2), (4.44)

which is defined on a square −1 ≤ x, y ≤ 1 and the boundary conditions are of

Dirichlet type (i.e. ψ and ∂ψ/∂n). The exact solution can be verified to be

ψ̃(x, y) =
1

1 + 2π2
cos(πx) cos(πy − π/2), (4.45)

whose variation is shown in Figure 4.3. It can be seen that the boundary data

are nonhomogeneous. An attractive feature of the present technique is that

it can work directly with the prescribed boundary conditions of complicated

shapes.

The trial and test spaces are generated from a set of N centres (N = NxNy). To

study the convergence behaviour of the proposed method, we employ a number

of uniform grids for the MQ centres. Results concerning Ne are given in Table

4.1. It can be seen that a very fast rate of convergence (indicated by Ne of

O(h6.07)) is achieved. At N = 961 that corresponds to a density of 31× 31, the

approximate solution is accurate up to at least 8 significant digits.
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Figure 4.3: Problem 3: Exact solution.
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Table 4.1: Problem 3, linear problem: Error Ne(ψ) versus the number of RBFs
N .

N Ne(ψ)
9 1.52e+1
25 8.34e-2
49 2.89e-3
81 3.77e-4
121 9.82e-5
169 3.70e-5
225 1.73e-5
289 9.37e-6
361 5.56e-6
441 3.53e-6
529 2.36e-6
625 1.64e-6
729 1.17e-6
841 8.67e-7
961 6.47e-7

O(h6.07)
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4.4.4 Problem 4: Nonlinear buoyancy-driven flow

The proposed method is further validated with a nonlinear test, namely a

buoyancy-driven flow problem. This problem is governed by (4.1) and (4.2).

The domain of interest is an enclosed square cavity with insulated top and

bottom walls and heated vertical walls:

• ψ = 0 and ∂ψ/∂n = 0 (u = 0 and v = 0) on the boundaries Γ of Ω

• T = 0.5 on x = 0 and T = −0.5 on x = 1

• ∂T/∂y = 0 on y = 0 and y = 1

This problem with the fluid being gas (Pr = 0.71) is widely used as a model

for testing new numerical schemes in CFD. The level of complexity in structure

of the flow field is considerably increased when Ra > 106. Benchmark solutions

can be found in (Davis, 1983) for Ra ≤ 106 and in (Quéré, 1991) for Ra ≥ 106.

The former used finite-difference approximations and a Richardson extrapola-

tion scheme, while the latter employed pseudo-spectral approximations with

Chebyshev polynomials.

Because of the strong coupling between the flow and heat transfer, the momen-

tum equation (fourth-order differential equation for ψ) and the energy equation

(second-order differential equation for T ) must be solved simultaneously. De-

tails of 1D-IRBFN-based Galerkin discretisations of momentum equation and

energy equation are presented in Section 4.3. We apply a Picard scheme to

handle the nonlinearity of this heated cavity problem. The solution procedure

involves the following main steps

1. Solve (4.42) for ψ using the latest available temperature and stream func-

tion fields.

Relax the stream function field
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2. Solve (4.43) for T using the stream function field from Step 1 and the

temperature field from the previous iteration.

Relax the temperature field

3. Check for convergence. If not converged, return to step 1. If converged,

stop

This computational procedure is economical owing to: (i) the matrices to be

handled are of minimal size because the temperature and stream function prob-

lems are solved as separate systems; and (ii) the system matrices remain un-

changed with iteration and Ra.

A wide range of Ra, namely (103, 104, 105, 106, 107), is considered. All calcula-

tions are carried out using a relaxation factor of 0.001. It is noted that using

larger values of the relaxation factor is possible. The nearest lower Ra solution

is used as an initial guess.

Convergence behaviour: Four uniform grids of centres, (21×21, 31×31, 41×
41, 51× 51), are employed. Convergence for the temperature and stream func-

tion fields for Ra = 107 are given in Figures 4.4 and 4.5, respectively. It is noted

that the fields obtained with 51 × 51 have structures that are similar to those

by the benchmark spectral results. It can be seen that all fields (i.e. ψ and

T ) converge very fast with the MQ centre’s density refinement. Figure 4.6 con-

cerning velocity profiles on the horizontal and vertical centrelines indicates that

velocity boundary layers significantly increase in strength when Ra increases.

Solution accuracy: Some important measures associated with this type of

flow are

• Maximum horizontal velocity ux−max on the vertical mid-plane and its

location;
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• Maximum vertical velocity uy−max on the horizontal mid-plane and its

location;

• The average Nusselt number throughout the cavity, which is defined as

Nu =

∫ 1

0

Nu(x)dx, (4.46)

where

Nu(x) =

∫ 1

0

(uxT − ∂T

∂x
)dy. (4.47)

In (4.46) and (4.47), integrals are computed using Simpson rule. The results at

51× 51 for various Ra values are given in Table 4.2. It can be seen they are in

very good agreement with the benchmark solutions.
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Table 4.2: Problem 4: Natural convection flow, 51× 51.

Ra uy−max Error(%) x ux−max Error(%) y Nu Error(%)
Present 103 3.6978 0.02 0.1783 3.6499 0.02 0.8132 1.1176 0.03

Benchmark 103 3.697 0.178 3.649 0.813 1.118
(Davis, 1983)

Present 104 19.6373 0.10 0.1189 16.1944 0.10 0.8233 2.2441 0.04
Benchmark 104 19.617 0.119 16.178 0.823 2.243
(Davis, 1983)

Present 105 68.6867 0.14 0.0659 34.8203 0.26 0.8547 4.5188 0.00
Benchmark 105 68.59 0.066 34.73 0.855 4.519
(Davis, 1983)

Present 106 220.8393 0.10 0.0378 65.1827 0.54 0.8504 8.8116 0.15
Benchmark 106 220.6 0.038 64.83 0.850 8.825

(Quéré, 1991)
Present 107 693.3044 0.84 0.0213 149.4011 0.53 0.8772 16.3468 1.06

Benchmark 107 699.2 0.021 148.6 0.879 16.523
(Quéré, 1991)
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21× 21 31× 31

41× 41 51× 51

Figure 4.4: Problem 4, natural convection flow, Ra = 107: Convergence for the
temperature field with respect to the MQ centre’s density refinement. Iso-values
used are (−0.5 : 0.1 : 0.5) which are the same as those in (Quéré, 1991). The
plot at 51× 51 has a similar structure to that of the benchmark spectral result
(Quéré, 1991).
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21× 21 31× 31

41× 41 51× 51

Figure 4.5: Problem 4, natural convection flow, Ra = 107: Convergence for the
stream function field with respect to the MQ centre’s density refinement. Iso-
values used are −1/

√
Pr(0, 0.0005, 0.002, 0.004, 0.006, 0.007, 0.0075, 0.0079,

0.0083, 0.0088, 0.0092, 0.0094) which are the same as those in (Quéré, 1991).
The plot at 51 × 51 has a similar structure to that of the benchmark spectral
result (Quéré, 1991).
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Figure 4.6: Problem 4, natural convection flow, 51 × 51: Velocity profiles on
the horizontal and vertical centrelines for various Ra values.
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4.5 Concluding Remarks

This chapter presents a 1D-IRBFN discretisation of Galerkin approximations

for 2D viscous flows governed by the streamfunction-temperature formulation.

The present approximate solution satisfies all boundary conditions (i.e. func-

tion and derivative values) in an exact manner. The Galerkin equation is

considered for all weighting functions that are associated with the unknown

nodal values. Moreover, for the biharmonic equation, homogeneous and non-

homogeneous boundary conditions are implemented in a similar fashion. Un-

like Galerkin spectral methods, the proposed method can work with uniform

grids. Unlike Galerkin finite-element methods, all derivatives of the field vari-

able are continuous over the problem domain. Numerical results show that the

1D-IRBFN-based Galerkin method achieves a high rate of convergence with in-

creasing number of RBFs. For a benchmark thermally-driven flow in a square

slot, accurate highly non-linear solutions are obtained using relatively-low data

densities.



Chapter 5

1D-IRBFN-based

Galerkin/Collocation methods

for the streamfunction-vorticity

formulation governing

viscoelastic flows

In this chapter, integrated radial-basis-function networks in one dimension (1D-

IRBFNs) are introduced into the Galerkin and point-collocation formulations

to simulate viscoelastic flows. The computational domain is represented by a

Cartesian grid and IRBFNs, which are constructed through integration, are

employed on each grid line (i.e. 1D-IRBFNs) to approximate the field variables

including stresses in the streamfunction-vorticity formulation. Two types of

fluid, namely Oldroyd-B and CEF models, are considered. The proposed meth-

ods are validated through the numerical simulation of several benchmark test

problems including flows in a rectangular duct and in a corrugated tube. Nu-

merical results show that accurate results are obtained using relatively-coarse

grids.
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5.1 Introduction

Numerical simulation of viscoelastic flows still faces a lot of challenges. Main

difficulties, which numerical methods have to deal with, are (i) complex material

properties of fluids; (ii) mixed characters (elliptic for momentum equations and

hyperbolic for constitutive equations); and (iii) high degrees of freedom (DOFs)

(2D problems: 6 DOFs/node and 3D problems: 10 DOFs/node). In the case

of large deformations, free/moving surfaces and complex geometries, further

numerical difficulties will be added. One can classify discretisation methods

into two categories: low order and high order. The former, e.g. traditional

finite difference (FDMs), finite element (FEMs), finite volume (FVMs) and

boundary element (BEMs) methods (possibly block-banded BEM), leads to a

system matrix that is generally sparse and banded, while the latter, e.g. spectral

and RBFN methods, can offer a significant saving on the computational cost

owing to their high-order rates of convergence. Further details can be found in

(Crochet and Walters, 1983; Crochet et al., 1984; Crochet, 1989; Tanner and

Xue, 2002; Owens and Phillips, 2002).

The use of RBFNs for solving ordinary (ODEs) and partial (PDEs) differen-

tial equations including those governing fluid mechanics problems has been

an active research area. RBFNs can be constructed through differentiation

(the differential approach/DRBFNs) and through integration (the integral ap-

proach/IRBFNs). Pioneering numerical investigations (e.g. Mai-Duy and Tran-

Cong, 2001a, 2003) and subsequent theoretical studies (Sarra, 2006) showed that

IRBFN-based collocation methods yield better accuracy than DRBFN ones for

the representation of functions and the solution of PDEs. In the early stages,

the differential and integral approaches used every RBF to construct the ap-

proximations for the field variable at a nodal point, leading to a fully-populated

system matrix. It was found that the matrix condition number grows rapidly

with respect to the increase in the RBF width and/or the number of RBFs (Sch-

aback, 1995). There were some reports on global RBF simulations of steady
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viscoelastic flows (e.g. Tran-Cong, Mai-Duy and Phan-Thien, 2002; Tran-Canh

and Tran-Cong, 2002; Mai-Duy and Tanner, 2006). Later on, local RBF tech-

niques, where the approximations are constructed using only a few nodal points,

have been developed (e.g. Atluri et al., 2003; Kosec and Šarler, 2008; Divo and

Kassab, 2007; Mai-Duy and Tran-Cong, 2009a). The construction processes

are thus conducted for a series of small matrices rather than for a large single

matrix. In the context of IRBFNs, collocation schemes, based on 1D-IRBFNs

and Cartesian grids, for the solution of 2D elliptic PDEs were reported in (e.g.

Mai-Duy and Tran-Cong, 2007). The use of 1D-IRBFNs, where only nodal

points on some relevant grid lines rather than on the whole grid are activated,

requires much less memory and computational time than 2D-IRBFN schemes

do. Therefore, the 1D-IRBFN approach achieves some degree of local approxi-

mation.

1D-IRBFNs were successfully introduced into the point-collocation and Galerkin

formulations for the simulation of heat transfer and Newtonian-fluid flows (e.g.

Mai-Duy and Tran-Cong, 2007; Mai-Duy et al., 2009; Ho-Minh et al., 2009). It

was shown that those methods are stable, accurate and converge well. The 1D-

IRBFN-based Galerkin method can obtain similar levels of accuracy for both

types of boundary condition, i.e. Dirichlet only and Dirichlet-Neumann. In

addition, its resultant system of algebraic equations is often symmetric and has

a relatively-low condition number, which facilitates the employment of a much

larger number of nodes.

In this chapter, we develop two methods (point collocation and Galerkin), which

are based on 1D-IRBFNs and Cartesian grids, for the simulation of flows of

viscoelastic fluids. The governing equations are taken in the streamfunction-

vorticity formulation. A computational boundary condition for the vorticity is

globally derived with the help of the constants of integration. Three bench-

mark test problems are considered to validate the proposed methods. In the

first problem, fully-developed flows of a CEF fluid in a rectangular duct are
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simulated. This problem is widely used to study secondary flows in a straight

tube of non-circular cross-section. It is noted that CEF (Criminale et al., 1957)

is seen as an attractive constitutive model in the numerical modelling of poly-

mer flow systems owing to its low computational cost. The second problem is

concerned with the simulation of Poiseuille flows in a straight tube of circular

cross-section, where analytic solutions are available. The third problem is about

the motion of an Oldroyd-B fluid in a corrugated tube - a standard test prob-

lem for numerical methods in non-Newtonian Fluid Mechanics (Burdette et al.,

1989). In addition, this problem is also regarded as one of effective models in

the study of viscoelastic flows in porous media. The obtained 1D-IRBFN results

agree well with those produced by other techniques available in the literature.

The remainder of this chapter is organised as follows. In Section 5.2, a brief

review of the governing equations for the motion of CEF and Oldroyd-B fluids is

given. Section 5.3 presents the proposed 1D-IRBFN-based Galerkin/collocation

methods. Three test problems are solved in Section 5.4. Section 5.5 concludes

the chapter.

5.2 Governing equations

In this chapter, the working fluids are of the CEF and Oldroyd-B types. Accord-

ing to (1.3), the total stress tensors can be decomposed into two components,

namely the pressure and the extra stress tensor.

For the CEF model, the extra stress tensor is defined as

τ = 2µ (d)d− Φ1

∇

d+4Φ2d · d, (5.1)

where d = 1/2(∇u+ (∇u)T ) is the rate of deformation tensor, d =
√

2tr (d · d)
the scalar magnitude of d (tr the trace operation), µ (d) = k|d|n−1 the viscosity

(k the consistency factor and n the power law index), Φ1 and Φ2 the first and
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the second normal stress coefficients, respectively, and
∇

[ ] the upper-convected

derivative given by

∇

[ ] =
∂[ ]

∂t
+ u · ∇[ ]− (∇u)T · [ ]− [ ] · ∇u. (5.2)

For the Oldroyld-B model, the extra stress tensor is computed as

τ = 2µnd+ τv, (5.3)

τv + λ
∇
τv = 2µpd, (5.4)

where µn is the “Newtonian-contribution” viscosity, µp the “polymer-contribution”

viscosity, τv the extra stress tensor due to viscoelasticity, and λ the relaxation

time of the fluid. The Oldroyd-B model reduces to the UCM model when µn is

set to zero and to the Newtonian model when λ = 0.

In this chapter, we consider the steady state of flows only and adopt the

streamfunction-vorticity formulation. The equations for the conservation of

momentum and mass of an incompressible fluid, (1.1) and (1.2), thus reduce to

∇2ψ + ω = 0, (5.5)

∇2ω = F (u · ∇ω, τ , f), (5.6)

where ψ is the streamfunction, ω the vorticity, and the RHS of (5.6) the func-

tion of u, ω, τ and f . Numerical examples to be presented are solved in two

coordinate systems, namely Cartesian and cylindrical.
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The velocity components are related to the streamfunction via

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
(Cartesian coordinates), (5.7)

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
(cylindrical coordinates). (5.8)

For the CEF model, simulations are to be carried out using Cartesian coordi-

nates and equation (5.1) is taken in the form

Txx = 2µdxx − Φ1

(
ux
∂dxx
∂x

+ uy
∂dxx
∂y

+
∂ux
∂x

dxx +
∂uy
∂x

dxy +
∂uz
∂x

dxz + dxx
∂ux
∂x

+dxy
∂uy
∂x

+ dxz
∂uz
∂x

)
+ (Φ1 + 4Φ2)

(
d2xx + d2xy + d2xz

)
,

(5.9)

Txy = 2µdxy − Φ1

(
ux
∂dxy
∂x

+ uy
∂dxy
∂y

+
∂ux
∂x

dxy +
∂uy
∂x

dyy +
∂uz
∂x

dyz + dxx
∂ux
∂y

+dxy
∂uy
∂y

+ dxz
∂uz
∂y

)
+ (Φ1 + 4Φ2) (dxxdxy + dxydyy + dxzdyz) ,

(5.10)

Txz = 2µdxz − Φ1

(
ux
∂dxz
∂x

+ uy
∂dxz
∂y

+
∂ux
∂x

dxz +
∂uy
∂x

dyz +
∂uz
∂x

dzz + dxx
∂ux
∂z

+dxy
∂uy
∂z

+ dxz
∂uz
∂z

)
+ (Φ1 + 4Φ2) (dxxdxz + dxydyz + dxzdzz) ,

(5.11)

Tyy = 2µdyy − Φ1

(
ux
∂dyz
∂x

+ uy
∂dyz
∂y

+
∂ux
∂y

dyx +
∂uy
∂y

dyy +
∂uz
∂y

dyz + dxy
∂ux
∂y

+dyy
∂uy
∂y

+ dyz
∂uz
∂y

)
+ (Φ1 + 4Φ2)

(
d2yx + d2yy + d2yz

)
,

(5.12)

Tyz = 2µdyz − Φ1

(
ux
∂dyz
∂x

+ uy
∂dyz
∂y

+
∂ux
∂y

dxz +
∂uy
∂y

dyz +
∂uz
∂y

dzz + dxy
∂ux
∂y

+dyy
∂uy
∂y

+ dyz
∂uz
∂y

)
+ (Φ1 + 4Φ2) (dyxdxz + dyydyz + dyzdzz) ,

(5.13)
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where Txx, Txy, Txz, Tyy, Tyz are components of the extra stress τ ;

µ = k

(
2

((
∂ux
∂x

)2

+

(
∂uy
∂y

)2
)

+

(
∂ux
∂y

+
∂uy
∂x

)2

+

(
∂uz
∂x

)2

+

(
∂uz
∂y

)2
)(n−1

2 )

;

(5.14)

and




dxx dxy dxz

dyx dyy dyz

dzx dzy dzz


 =




∂ux
∂x

1
2

(
∂ux
∂y

+ ∂uy
∂x

)
1
2

(
∂ux
∂z

+ ∂uz
∂x

)

1
2

(
∂uy
∂x

+ ∂ux
∂y

)
∂uy
∂y

1
2

(
∂uy
∂z

+ ∂uz
∂y

)

1
2

(
∂uz
∂x

+ ∂ux
∂z

)
1
2

(
∂uz
∂y

+ ∂uy
∂z

)
∂uz
∂z


 .

(5.15)

The Oldroyd-B fluid flow is simulated using cylindrical coordinates and one

thus has (5.4) in the form

Trr + λ

(
ur
∂Trr
∂r

+ uz
∂Trr
∂z

− 2

(
∂ur
∂r

Trr +
∂ur
∂z

Trz

))
= 2µp

∂ur
∂r

, (5.16)

Trz + λ

(
ur
∂Trz
∂r

+ uz
∂Trz
∂z

− ∂ur
∂r

Trz −
∂ur
∂z

Tzz −
∂uz
∂r

Trr

− ∂uz
∂z

Trz

)
= µp

(
∂ur
∂z

+
∂uz
∂r

)
, (5.17)

Tzz + λ

(
ur
∂Tzz
∂r

+ uz
∂Tzz
∂z

− 2

(
∂uz
∂r

Trz +
∂uz
∂z

Tzz

))
= 2µp

∂uz
∂z

, (5.18)

Tθθ + λ

(
ur
∂Tθθ
∂r

+ uz
∂Tθθ
∂z

− 2
ur
r
Tθθ

)
= 2µp

ur
r
, (5.19)

where Trr, Trz, Tzz, Tθθ are components of the extra stress due to viscoelasticity

τv.

5.3 Galerkin/Collocation 1D-RBFN technique

The computational domain is simply represented by a Cartesian grid. On each

grid line, 1D-IRBFNs are employed to approximate the field variables, i.e. ψ,
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ω, Txx, Txy, Tyy, Txz, Tyz, Trr, Trz, Tzz and Tθθ. The governing equations (5.5)-

(5.6), (5.9)-(5.13) and (5.16)-(5.19) are discretised by means of point collocation

(the residual set to zero at the collocation points) or Galerkin formulation (the

residual set to zero in the mean). In the following, details are presented for

three main parts of the proposed methods. In the first part, the use of 1D-

IRBFNs to represent the field variables is discussed. In the second part, the

implementation of boundary conditions is described. In the third part, 1D-

IRBFs are incorporated into the Galerkin and point-collocation formulations as

the trial functions.

5.3.1 One-dimensional IRBFN representation of the field

variables

It can be seen that (5.5) - (5.6) involve second-order derivatives of the field

variables including stresses. As a result, the second-order integral RBF scheme

(Mai-Duy and Tran-Cong, 2003) is applied in this work. Processes of construct-

ing the 1D-IRBFN approximations for the field variables can be conducted in

a similar fashion. For brevity, we introduce the notation f to represent ψ, ω,

Txx, Txy, Tyy, Txz, Tyz, Trr, Trz, Tzz or Tθθ, and the notation η to denote x or y

(Cartesian coordinates) and r or z (cylindrical coordinates).

On an η grid line, the field variable f and its derivatives with respect to η can

be represented as follows.

d2f (η)

dη2
=

Nη∑

i=1

wigi (η) =

Nη∑

i=1

wiI
(2)
i (η) , (5.20)

df (η)

dη
=

Nη∑

i=1

wiI
(1)
i (η) + C1, (5.21)

f(η) =

Nη∑

i=1

wiI
(0)
i (η) + C1η + C2, (5.22)
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where Nη is the number of nodes on the grid line, {wi}Nη

i=1 the set of network

weights, {gi (η)}Nη

i=1 ≡
{
I
(2)
i (η)

}Nη

i=1
the set of RBFs, I

(1)
i (η) =

∫
I
(2)
i (η)dη,

I
(0)
i (η) =

∫
I
(1)
i (η) dη, and C1 and C2 are the constants of integration.

Evaluation of (5.20) - (5.22) at every node on the grid line leads to

d̂2f

dη2
= Î(2)α̂, (5.23)

d̂f

dη
= Î(1)α̂, (5.24)

f̂ = Î(0)α̂, (5.25)

where superscript (.) is used to denote the order of the corresponding derivative

function,

Î(2) =




I
(2)
1 (η1) , I

(2)
2 (η1) , · · ·, I

(2)
Nη

(η1) , 0, 0

I
(2)
1 (η2) , I

(2)
2 (η2) , · · ·, I

(2)
Nη

(η2) , 0, 0
...

...
. . .

...
...

...

I
(2)
1

(
ηNη

)
, I

(2)
2

(
ηNη

)
, · · ·, I

(2)
Nη

(
ηNη

)
, 0, 0



,

Î(1) =




I
(1)
1 (η1) , I

(1)
2 (η1) , · · ·, I

(1)
Nη

(η1) , 1, 0

I
(1)
1 (η2) , I

(1)
2 (η2) , · · ·, I

(1)
Nη

(η2) , 1, 0
...

...
. . .

...
...

...

I
(1)
1

(
ηNη

)
, I

(1)
2

(
ηNη

)
, · · ·, I

(1)
Nη

(
ηNη

)
, 1, 0



,

Î(0) =




I
(0)
1 (η1) , I

(0)
2 (η1) , · · ·, I

(0)
Nη

(η1) , η1, 1

I
(0)
1 (η2) , I

(0)
2 (η2) , · · ·, I

(0)
Nη

(η2) , η2, 1
...

...
. . .

...
...

...

I
(0)
1

(
ηNη

)
, I

(0)
2

(
ηNη

)
, · · ·, I

(0)
Nη

(
ηNη

)
, ηNη

, 1



;

α̂ =
(
w1, w2, · · ·, wNη

, C1, C2

)T
;
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and

d̂kf

dηk
=

(
dkf1
dηk

,
dkf2
dηk

, · · ·, d
kfNη

dηk

)T
, k = {1, 2} ,

f̂ =
(
f1, f2, · · ·, fNη

)T
,

in which dkfj
/
dηk = dkf (ηj)

/
dηk and fj = f (ηj) with j = {1, 2, · · ·, Nη}.

The relations between the RBF-coefficient space α̂ and the physical space f̂ can

be established as


 f̂

ê


 =


 Î(0)

K̂


 α̂ = Ĉα̂, (5.26)

α̂ = Ĉ−1


 f̂

ê


 , (5.27)

where ê = K̂α̂ is used to represent extra information (derivative data), which

would otherwise be wasted resulting in less accurate solutions, and Ĉ the con-

version matrix. In (5.26) - (5.27), owing to the presence of the two integration

constants, the vector ê can have up to two entries. Since the conversion ma-

trix Ĉ is not over-determined, extra values ei are incorporated into the IRBFN

approximations in an exact manner. We will utilise this capability to impose

normal derivative values at the two end-points of the grid line as well as to

derive a computational boundary condition for the vorticity.

Making use of (5.27), the values of f and its derivatives at an arbitrary point η
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on the grid line will be computed by

f (η) =
(
I
(0)
1 (η) , I

(0)
2 (η) , · · · , I(0)Nη

(η) , η, 1
)
Ĉ−1


 f̂

ê


 , (5.28)

∂f (η)

∂η
=

(
I
(1)
1 (η) , I

(1)
2 (η) , · · · , I(1)Nη

(η) , 1, 0
)
Ĉ−1


 f̂

ê


 , (5.29)

∂2f (η)

∂η2
=

(
I
(2)
1 (η) , I

(2)
2 (η) , · · · , I(2)Nη

(η) , 0, 0
)
Ĉ−1


 f̂

ê


 . (5.30)

They can be rewritten in compact form

f (η) =

Nη∑

i=1

ϕi (η) fi + ϕNη+1 (η) e1 + ϕNη+2 (η) e2, (5.31)

∂f (η)

∂η
=

Nη∑

i=1

∂ϕi (η)

∂η
fi +

∂ϕNη+1 (η)

∂η
e1 +

∂ϕNη+2 (η)

∂η
e2, (5.32)

∂2f (η)

∂η2
=

Nη∑

i=1

∂2ϕi (η)

∂η2
fi +

∂2ϕNη+1 (η)

∂η2
e1 +

∂2ϕNη+2 (η)

∂η2
e2, (5.33)

where {ϕi}Nη+2
i=1 is the set of IRBFN basis functions in the physical space.

5.3.2 Imposition of boundary conditions

Dirichlet boundary conditions: Assume that f is given at η1 and ηNη
. In

the conversion process, (5.26) - (5.27), the matrix K̂ and the vector ê are simply
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set to null. The 1D-IRBFN expressions (5.31) - (5.33) thus reduce to

f (η) =

Nη∑

i=1

ϕi (η) fi, (5.34)

∂f (η)

∂η
=

Nη∑

i=1

∂ϕi (η)

∂η
fi, (5.35)

∂2f (η)

∂η2
=

Nη∑

i=1

∂2ϕi (η)

∂η2
fi. (5.36)

Neumann boundary conditions: Assume that ∂f/∂η is given at η1 and ηNη
.

The matrix K̂ and the vector ê in (5.26) - (5.27) take the form

K̂ =


 I

(1)
1 (η1), I

(1)
2 (η1), · · · , I

(1)
Nη

(η1), 1, 0

I
(1)
1

(
ηNη

)
, I

(1)
2

(
ηNη

)
, · · · , I

(1)
Nη

(
ηNη

)
, 1, 0


 ,

ê =




∂f1
∂η

∂fNη

∂η


 .

The 1D-IRBFN expressions (5.31) - (5.33) thus become

f (η) =

Nη∑

i=1

ϕi (η) fi + ϕNη+1 (η)
∂f1
∂η

+ ϕNη+2 (η)
∂fNη

∂η
, (5.37)

∂f (η)

∂η
=

Nη∑

i=1

∂ϕi (η)

∂η
fi +

∂ϕNη+1 (η)

∂η

∂f1
∂η

+
∂ϕNη+2 (η)

∂η

∂fNη

∂η
, (5.38)

∂2f (η)

∂η2
=

Nη∑

i=1

∂2ϕi (η)

∂η2
fi +

∂2ϕNη+1 (η)

∂η2
∂f1
∂η

+
∂2ϕNη+2 (η)

∂η2
∂fNη

∂η
. (5.39)

Dirichlet and Neumann boundary conditions: Assume that f and ∂f/∂η

are given at η1 and ηNη
, respectively. The latter is imposed by taking the matrix
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K̂ and the vector ê in (5.26) - (5.27) as

K̂ =
[
I
(1)
1

(
ηNη

)
, I

(1)
2

(
ηNη

)
, · · · , I

(1)
Nη

(
ηNη

)
, 1, 0

]
,

ê =
(

∂fNη

∂η

)
.

One thus has (5.31) - (5.33) in the form

f (η) =

Nη∑

i=1

ϕi (η) fi + ϕNη+1 (η)
∂fNη

∂η
, (5.40)

∂f (η)

∂η
=

Nη∑

i=1

∂ϕi (η)

∂η
fi +

∂ϕNη+1 (η)

∂η

∂fNη

∂η
, (5.41)

∂2f (η)

∂η2
=

Nη∑

i=1

∂2ϕi (η)

∂η2
fi +

∂2ϕNη+1 (η)

∂η2
∂fNη

∂η
. (5.42)

5.3.3 Incorporating 1D-IRBFNs into Galerkin and point-

collocation formulations

Each governing equation in (5.5) - (5.6), (5.9) - (5.13) and (5.16) - (5.19) can

be rewritten in the following form

L (f) = 0, x ∈ Ω, (5.43)

where L is a differential operator. 1D-IRBFN expressions (5.31) - (5.33) are

utilised here to construct the approximations for f over Ω. On a 2D rectangular

domain, this construction process can simply be done by means of Kronecker
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products. The use of tensor products leads to, for instance,

f (x, y) =

Nx∑

i=1

Ny∑

j=1

ϕ
[x]
i (x)ϕ

[y]
j (y) fi,j, (5.44)

for the case of Dirichlet boundary conditions only, and

f (x, y) =
Nx∑

i=1

ϕ
[x]
i (x)

(
Ny∑

j=1

ϕ
[y]
j (y) fi,j + ϕ

[y]
Ny+1 (y)

∂fi,1
∂y

+ ϕ
[y]
Ny+2 (y)

∂fi,Ny

∂y

)
.

(5.45)

for the case of Dirichlet and Neumann boundary conditions (Dirichlet conditions

prescribed on the two vertical boundaries while Neumann conditions on the two

horizontal boundaries). In (5.44) and (5.45), fi,j is the value of the variable f

at the intersection of the ith horizontal grid line and jth vertical grid line, and

∂fi,1/∂y and ∂fi,Ny

/
∂y are nodal boundary derivative values. The products

ϕ
(x)
i ϕ

(y)
j are usually referred to as the trial/basis/approximating functions.

It is noted that the independent variables x and y in (5.44) - (5.45) will be

replaced with r and z if cylindrical coordinates are employed.

One can find the unknown nodal values of f by constructing a scheme to min-

imise the following residual

R = L (f) . (5.46)

This process can be stated mathematically as

∫

Ω

WRdΩ = 0, (5.47)
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where W is the weighting function to be chosen. In the point-collocation

approach, the weighting function is chosen as the Dirac delta function, i.e.

Wi = δ(x − xi). In the Galerkin approach, the weighting function is chosen

from the set of trial functions, i.e. Wi = φi (x), and the volume integrals in

(5.47) can be numerically evaluated using Gauss quadrature.

As mentioned earlier, Neumann boundary conditions are presently imposed in

an exact manner. This is numerically demonstrated here through the solution

of the following ODE

d2f

dx2
+ f + x = 0, 0 ≤ x ≤ 1, (5.48)

subject to a Dirichlet and Neumann boundary condition at x = 0 and x = 1,

respectively.

In the case of conventional Galerkin methods, the approximation for f can be

constructed to satisfy the Dirichlet condition at x = 0. The Neumann boundary

condition df/dx = q at x = 1 is imposed through the following statement

1∫

0

(
df

dx

dW

dx
− (f + x)W

)
dx = [qW ]x=1 , (5.49)

which is obtained by applying integration by parts on (5.47). As shown in

(Brebbia et al., 1984), by differentiating the approximate function f , one has

df

dx

∣∣∣∣
x=1

= 1.22E-1 + (1 + 1.22E-1)q,

which clearly indicates that the Neumann boundary condition is imposed in an

approximate manner.

In the present Galerkin technique, the IRBFN approximation is constructed to

satisfy not only the Dirichlet condition at x = 0 but also the Neumann boundary
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condition df/dx = q at x = 1. Using (5.40), the solution f is expressed as

f(x) =
∑Nx

i=1
ϕi(x)fi + ϕNx+1(x)q̄. (5.50)

This approximation is then forced to satisfy the ODE through

∫ 1

0

(
d2f

dx
+ f + x

)
Wdx = 0, (5.51)

from which one is able to obtain the nodal values of f . By differentiating (5.50),

one has

df

dx

∣∣∣∣
x=1

=
∑Nx

i=1

dϕi (x = 1)

dx
fi +

dϕNx+1 (x = 1)

dx
q̄.

With Nx = 5, it reduces to

df

dx

∣∣∣∣
x=1

= (-1.87E-14) + (1 + 5.07E-14)q ≃ q,

which clearly shows that the Neumann boundary condition is imposed in an

exact manner.

5.4 Numerical results

The proposed methods are validated through the simulation of viscoelastic flows

in rectangular ducts (with Galerkin formulation), and in straight and corrugated

tubes (point collocation) with circular cross sections. Fluid models under con-

sideration here are CEF and Oldroyd-B. We employ uniform Cartesian grids

to represent the computational domain and implement 1D-IRBFNs with the

multiquadric (MQ) function

gi (η) =

√
(η − ci)

2 + a2i , (5.52)
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where ci and ai are the centre and the width/shape-parameter of the ith MQ-

RBF, respectively. The latter is simply chosen to be the grid size.

5.4.1 Problem 1: Fully-developed flows of CEF fluid in

rectangular ducts

The flow of a viscoelastic fluid in a rectangular duct has received a great deal of

attention because of its fundamental and practical importance. Such a flow was

simulated with different constitutive models, e.g., Reiner-Rivlin (Green and

Rivlin, 1956), CEF (Gervang and Larsen, 1991; Mai-Duy and Tanner, 2006)

and modified PTT (MPTT) (Xue et al., 1995). Results by Gervang and Larsen

(1991), where the CEF model is employed and simulations are conducted both

numerically and experimentally, are often cited in the literature for comparison

purposes. In this study, we also consider the CEF model and its parameters

are taken to be the same as those in (Gervang and Larsen, 1991). The govern-

ing equations are expressed in terms of streamfunction, vorticity, pressure and

primary velocity as

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (5.53)

µ

(
∂2ω

∂x2
+
∂2ω

∂y2

)
= ρ

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
− ∂2Txy

∂x2
+
∂2 (Txx − Tyy)

∂x∂y
+
∂2Txy
∂y2

,

(5.54)

µ

(
∂2uz
∂x2

+
∂2uz
∂y2

)
=
∂p

∂z
+ ρ

(
∂ψ

∂y

∂uz
∂x

− ∂ψ

∂x

∂uz
∂y

)
− ∂Tzx

∂x
− ∂Tzy

∂y
, (5.55)

where the function F in (5.6) is now given explicitly. The flow is generated by

a pressure drop ∂p/∂z and the computation domain is only a 2D region (cross-

section) on the x−y plane. Let χ be the aspect ratio. Four values of χ, namely

1, 1.56, 4 and 6.25, are considered.

Non-slip boundary conditions lead to ψ = 0, uz = 0 and ∂ψ/∂n = 0 on the wall
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(n is the coordinate direction normal to the wall). The condition ∂ψ/∂n = 0 is

used to derive a computational boundary condition for ω. This process is carried

out here with the help of the integration constants; the detailed implementation

is presented in Section 3.3.2. Equations (5.53) - (5.55) for ψ, ω and uz are thus

all subject to Dirichlet boundary conditions.

We apply the Galerkin formulation to discretise the governing equations and a

Picard iterative scheme to handle the resultant nonlinear system of algebraic

equations. All the terms on the RHS of (5.54) and (5.55) are lumped together

in the “pseudo-body forces”. The solution procedure can be summarised as

follows.

1. Discretise spatial derivatives using 1D-IRBFNs, resulting in a high-order

approximation scheme in space

2. Guess values of ψ, ω and uz, and their first-order spatial derivatives

3. Compute the pseudo-body forces and the boundary values for ω. It is

noted that the CEF stress components are simply obtained through direct

calculation of (5.9) - (5.13)

4. Solve the coupled linearised governing equations (5.53) - (5.55), where the

system matrix is generated from the linear terms on their LHS

5. Check to see whether the solution has reached a steady state

√
∑N

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2
+
∑N

i=1

(
ω
(k)
i − ω

(k−1)
i

)2
+
∑N

i=1

(
u
(k)
zi − u

(k−1)
zi

)2

√
∑N

i=1

(
ψ

(k)
i

)2
+
∑N

i=1

(
ω
(k)
i

)2
+
∑N

i=1

(
u
(k)
zi

)2 < ǫ,

(5.56)

where k indicates the iteration number and ǫ is a prescribed tolerance
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6. If it is not satisfied, for every interior node, relax the solution fields

ψi = γψ
(k)
i + (1− γ)ψ

(k−1)
i , (5.57)

ωi = γω
(k)
i + (1− γ)ω

(k−1)
i , (5.58)

uzi = γu
(k)
zi + (1− γ) u

(k−1)
zi , (5.59)

where γ is the relaxation factor (0 < γ < 1), and then repeat from step

3. Otherwise, stop the computation and output the results.

Computations are carried out using γ = 0.01 and grids of {11 × 11, 21 ×
21, · · · , 61 × 61}. Figures 5.1 and 5.2 show the convergence behaviour of the

streamfunction and vorticity fields at χ = 1, respectively. It can be seen that

the flow is symmetric about the vertical and horizontal centreline and the two

fields converge very fast with grid refinement. There are eight vortices in total,

where secondary circulations have the same magnitude but different signs (i.e.

one vortex is in opposite direction to its two adjacent vortices). Figures 5.3 and

5.4 show patterns of the secondary flow for χ = {1.56, 4, 6.25} on one quarter of

the cross-section. Each quadrant has two vortices, whose patterns and strength

strongly depend on the aspect ratio for a given mean primary velocity. Unlike

the case of χ = 1, where the two vortices are symmetric about the diagonal

plane, the case of χ > 1 produces two vortices of different sizes. The vortex

near the long wall moves towards the short wall with increasing χ, while the

vortex near the short wall is reduced in size. Figures 5.5 and 5.6 show patterns

of the primary flow and the second normal stress difference for all aspect ratios.

The 1D-IRBFN Galerkin results are similar to those reported in (Gervang and

Larsen, 1991; Xue et al., 1995).
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11× 11 21× 21

31× 31 41× 41

51× 51 61× 61

Figure 5.1: Problem 1: Convergence behaviour of the streamfunction field with
respect to grid refinement.
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11× 11 21× 21

31× 31 41× 41

51× 51 61× 61

Figure 5.2: Problem 1: Convergence behaviour of the vorticity field with respect
to grid refinement.
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a) χ = 1.56, 61× 61

b) χ = 4, 81× 61

c) χ = 6.25, 81× 61

Figure 5.3: Problem 1: Streamlines of the secondary flow in one quarter of the
cross section for several values of the aspect ratio.
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a) χ = 1.56, 61× 61

b) χ = 4, 81× 61

c) χ = 6.25, 81× 61

Figure 5.4: Problem 1: Contour plots for the vorticity in one quarter of the
cross-section computed for several values of the aspect ratio.
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a) χ = 1, 61× 61 b) χ = 1.56, 61× 61

c) χ = 4, 81× 61

d) χ = 6.25, 81× 61

Figure 5.5: Problem 1: Contour plots for the primary velocity in one quarter
of the cross-section computed for several values of the aspect ratio.
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a) χ = 1, 61× 61 b) χ = 1.56, 61× 61

c) χ = 4, 81× 61

d) χ = 6.25, 81× 61

Figure 5.6: Problem 1: Contour plots for the second normal stress difference in
one quarter of the cross-section computed for several values of the aspect ratio.
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5.4.2 Problem 2: Fully-developed flows of Oldroyd-B

fluid in circular tubes

This problem is concerned with the so-called Poiseuille flow in a circular tube.

Let R be the radius of the tube. The governing equations (1.1) - (1.2) and (5.16)

- (5.19) are made dimensionless by scaling lengths by R, velocity components

by Q/R2, and stress components and pressure by (µn+ µp)Q/R
3 in which Q is

the flow rate. In a cylindrical coordinate system, the non-dimensional form of

(5.5) - (5.6) for the motion of an Oldroyd-B fluid is given by (Pilitsis and Beris,

1989)

(
∂2ψ

∂r2
+
∂2ψ

∂z2
− 1

r

∂ψ

∂r

)
+ ω = 0, (5.60)

α

(
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2
+
∂2ω

∂z2

)
=
∂2Trz
∂r2

− ∂2Trr
∂z∂r

− ∂2Trz
∂z2

− 1

r

(
∂Trr
∂z

− ∂Tθθ
∂z

)
+
∂2Tzz
∂r∂z

− 1

r2
Trz +

1

r

∂Trz
∂r

,

(5.61)

where α = µn/(µn + µp) and the inertia terms are set aside. The velocity and

stress fields can be obtained analytically and their exact forms are

ũz = 1− r2, ũr = 0, (5.62)

T̃zz = We(1− α)
(
∂ũz
∂r

)2
, T̃rz = (1− α)∂ũz

∂r
, T̃rr = 0, (5.63)

where We = λQ/R3 is the Weissenberg number. In the present simulation, the

length and the radius of the tube are all chosen to be 1. Boundary conditions

are prescribed as follows.
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• On the centreline:

ψ = ω = Trz =
∂Trr
∂r

=
∂Tzz
∂r

=
∂Tθθ
∂r

= 0 (symmetrical conditions)

• On the wall: Through (5.8) (uz = 1/r(∂ψ/∂r)), the streamfunction value

is determined as ψ = Q/2π. Given Q = π/2, one has ψ = 1/4. The

vorticity value can be obtained using the same procedure as in Problem

1.

• On the inlet and the outlet:

ψi = ψo,
∂ψi

∂n
=
∂ψo

∂n
, ωi = ωo,

∂ωi

∂n
=
∂ωo

∂n
,

T irr = T orr, T irz = T orz, T izz = T ozz, T iθθ = T oθθ,

where periodicity is taken into account, and superscripts i and o denote

the inlet and outlet, respectively.

Unlike Problem 1, the point-collocation formulation is employed here. We take

α = 0.85 and also apply a Picard iterative scheme to handle the nonlinearity of

the system. Results obtained are presented in Table 5.1 and Figure 5.7. Table

5.1 is concerned with the study of grid convergence at We = 9. Errors are

consistently reduced as the grid density increases. Figure 5.7 shows profiles

of the velocity, the shear stress and the first normal stress difference on the

middle plane (z = 0.5) for the Weissenberg number in the range of 0.5 to 10. It

can be seen that the 1D-IRBFN collocation results agree well with the analytic

solutions.
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Table 5.1: Problem 2: Grid-convergence study at We = 9.

Relative L2 norm of the error, Ne

Grid Ne(uz) Ne(Tzz) Ne(Trz)
11× 11 5.6228E-04 2.6259E-03 1.0973E-03
21× 21 1.5928E-04 8.9349E-04 3.6454E-04
31× 31 7.4343E-05 3.6953E-04 1.5495E-04
41× 41 4.2581E-05 2.1614E-04 9.4571E-05
51× 51 2.7541E-05 1.4178E-04 6.4001E-05
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a) Velocity b) Shear stress
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Figure 5.7: Problem 2: Profiles of velocity and stress on the middle plane
z = 0.5 computed at several values of We using grid of 21×21. It is noted that
uz and Trz are independent of We and their corresponding computed results
are indistinguishable.
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5.4.3 Problem 3: Flows of Oldroyd-B fluid in corrugated

tubes

The 1D-IRBFN collocation method is further validated through the simulation

of flows in corrugated tubes. It is well known that such flows, where their solu-

tions are smooth and there are no inflow/outflow boundary conditions applied,

are chosen as a benchmark test problem for validating new solvers in compu-

tational rheology. Solutions to these flows were reported for several numerical

methods, e.g. the pseudospectral finite difference method (PSFD), pseudo-

spectral cylindrical finite difference method (PCFD) and full pseudo-spectral

method (FCC) by Pilitsis and Beris (1989, 1991, 1992), the spectral method

(SM) by Momeni-Masuleh and Phillips (2004), EEME/FEM by Burdette et al.

(1989); Rajagopalan et al. (1990), EVSS/FEM by Szady et al. (1995), BEM by

Zheng et al. (1990), and 2D-IRBFN by Mai-Duy and Tanner (2006).

Figure 5.8a shows the flow geometry, where the radius of the corrugated tube

along the z axis is given by

rw = R(1− ε cos(2πz/L)), (5.64)

where R is the average radius of an equivalent straight tube, ε the amplitude of

the corrugation and L the wavelength. In addition to ε, two more characteristic

dimensionless numbers are also used. They are the aspect ratio N = R/L and

the wave number l; their relation is N = l/(2π). Since the flow is axisymmetric

and periodic, only a reduced domain (Figure 5.8b) needs be considered for the

numerical study.

The streamfunction and vorticity equations as well as the boundary conditions

here are similar to those in Problem 2. The governing equations are solved in

a stretched cylindrical coordinate system (r̂, θ, ẑ), where r̂ ≡ r/rw and ẑ ≡ z.

One important measure for corrugated tube flows is the flow resistance defined
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as

fRe =
2π∆PR4

L(µn + µp)Q
, (5.65)

where ∆P is the constant pressure drop per unit cell.

Newtonian fluid

The proposed method is first tested with the case of a Newtonian fluid. With

the presence of the inertial term, the vorticity equation (5.6) becomes (Pilitsis

and Beris, 1991)

(
∂2ω

∂r2
+

1

r

∂ω

∂r
− ω

r2
+
∂2ω

∂z2

)
=
πRe

2

(
uz
∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω

)
, (5.66)

where Re is the Reynolds number defined as

Re =
2ρQ

πRµ
. (5.67)

Results concerning fRe for Re = 0 employed with several geometries by the

present method and by SM, FCC, PSFD and PCFD are presented in Table 5.2.

It can be seen that a good agreement is achieved for all cases. Figure 5.9 shows

streamlines for ε = 0.5 and N = 0.5, whose structure can be seen to be similar

to that in (Pilitsis and Beris, 1991). As expected, the streamfunction field is

symmetric about the widest cross-section of the tube, i.e. z = 1/2.

For Re > 0, we consider the tube with (ε = 0.16, N = 0.3) and Re up to a value

of 783. Table 5.3 reports fRe for a wide range of Re. Results obtained by the

global spectral method (Lahbabi and Chang, 1986), and by the Galerkin finite

element method (GFE) and FCC (Pilitsis and Beris, 1992) are also included for

comparison purposes. The 1D-IRBFN results approach the FCC ones as the

grid is refined. Furthermore, they are in better agreement with the FCC results

than the GFE ones. Contour plots for the streamfunction and vorticity are
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shown in Figure 5.10, which look feasible in comparison with those reported in

(Lahbabi and Chang, 1986; Mai-Duy and Tanner, 2006). It can be seen that the

flows are no longer symmetric. There appears a recirculation. As Re increases,

its size grows and its centre moves towards the tube axis.

Oldroyd-B fluid

The Oldroyd-B model is implemented with α = 0.85 that is widely used in

the literature (e.g. Pilitsis and Beris, 1989). Like in (Pilitsis and Beris, 1989),

we only consider creeping flows. Taking non-slip and symmetrical boundary

conditions into account, the constitutive equations reduce to algebraic equations

on the wall and to ODEs on the centreline, respectively. As a result, the stress

equations on these boundary lines can be solved separately from the set of stress

equations associated with the interior nodes. On the other hand, the value of

uz on the centreline can be obtained by means of L’Hospital’s rule.

In this work, instead of considering ODEs, the values of Trr, Tzz and Tθθ on the

centreline are computed by directly employing 1D-IRBFNs (function interpola-

tion). Those values are regarded as nodal unknowns and they can be found using

the symmetric conditions. On each radial grid line zi with i = (2, · · · , Nz − 1),

through (5.35), one has

∂Trr(zi, r = 0)

∂r
=

Nr∑

j=1

∂ϕj (r = 0)

∂r
(Trr)i,j = 0, (5.68)

∂Tzz(zi, r = 0)

∂r
=

Nr∑

j=1

∂ϕj (r = 0)

∂r
(Tzz)i,j = 0, (5.69)

∂Tθθ(zi, r = 0)

∂r
=

Nr∑

j=1

∂ϕj (r = 0)

∂r
(Tθθ)i,j = 0. (5.70)

Equations (5.68) - (5.70) need be solved in conjunction with the set of stress
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equations associated with the interior nodes. The advantage of this approach

is that one can avoid computing velocity derivatives in the constitutive equa-

tions on the centreline. We apply a coupled approach to handle the governing

equations, in which the resultant nonlinear algebraic set is solved by means of

Newton-based method (trust region techniques with the brief procedure given

in Appendix B).

In the case of moderate corrugation amplitude and small wave length (ε = 0.1,

N = 0.5), simulations are carried out with four grids of 11 × 11, 21 × 21,

31×31 and 41×41. The obtained results are shown in Figure 5.11 for velocity,

Figure 5.12 and Figure 5.13 for stress, and Figure 5.14a for flow resistance. In

Figure 5.11, the distribution of ur at We = 2 is plotted showing the influence

of the grid size. As the grid is refined, the smoothness of the computed field is

improved and the maximum and minimum values of ur remain unchanged. A

grid density of 21 × 21 appears to be sufficient for computing ur at We = 2.

Figure 5.12 shows the behaviour of Trz with increasing We. At high values of

We, steep layers are formed in the area close to the wall. This behaviour can

also be seen for Tzz as shown in Figure 5.13. In Figure 5.14a, the 1D-IRBFN

solution is shown to converge up to We = 6 and the values of fRe are in good

agreement with the benchmark solution (Pilitsis and Beris, 1992) (solutions in

(Pilitsis and Beris, 1992) reported only for three values ofWe, namely 0, 1.2071

and 3.6213). Denser grids are required for higher-We solutions. It is noted that

the two coarse grids, 11× 11 and 21× 21, fail to yield a convergent solution for

high values of We.

In the case of moderate corrugation amplitude and moderate wave length (ε =

0.1, N = 0.16), three grids of 11×11, 21×21 and 31×31 are employed. The plot

of fRe versus We is shown in Figure 5.14b. It can be seen that a convergent

fRe solution is obtained up to We = 7 using 11 × 11, We = 8 using 21 × 21,

and We = 18 using 31 × 31. Other remarks here are similar to those in the

previous case (ε = 0.1, N = 0.5).
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Table 5.2: Problem 3, Newtonian fluid: Comparison of the flow resistance fRe for Re = 0 computed for several values of ε and N

ε 0.1 0.1 0.2 0.286 0.3 0.5
N 0.5 0.1592 0.1042 0.2333 0.1592 0.5

Present method
21× 21 17.71385 16.91518 19.75360 26.33921 26.40423 95.18132
41× 41 17.73548 16.92656 19.76213 26.37003 26.42937 95.51616
61× 61 17.74106 16.92760 19.76351 26.37759 26.43378 95.61778

SM a 17.7514 16.9290 19.7658 26.3724 26.437 95.6363
FCC b 19.765 26.383 26.437
PSFD c 19.765 26.383 26.436
PCFD d 19.761 26.377 26.432
a Spectral method (Phillips and Owens, 1997)
b Fourier-Chebyshev Collocation (Pilitsis and Beris, 1991)
c Pseudospectral/finite difference method (Pilitsis and Beris, 1989)
d Modified PSFD in a stretched cylindrical coordinate (Pilitsis and Beris, 1989)
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Table 5.3: Problem 3, Newtonian fluid, ε = 0.3, N = 0.16: comparison of the flow resistance fRe for a wide range of Re

Re
0 12 22.6 51 73 132 207.4 264 387.2 783

Present method
21× 21 26.49503 27.22021 28.59313 31.80464 33.48944 36.61126 39.04828 40.34471 42.48868 46.02994
31× 31 26.47991 27.20798 28.57514 31.78472 33.46705 36.56876 39.00632 40.29224 42.40401 45.66516
41× 41 26.46953 27.19921 28.56523 31.77200 33.45333 36.53881 38.99009 40.27630 42.38337 45.62292
51× 51 26.46298 27.19314 28.55838 31.76329 33.44396 36.51618 38.97686 40.26089 42.37057 45.60680

2D IRBFN a 26.4445 27.1773 28.5535 31.7511 33.4538 36.5424 38.996 40.3044 42.4595 45.7402
GFE b 26.4193 27.0911 28.4433 31.6984 33.4039 36.5392 38.933 40.1544 42.1112 45.0734
FCC c 26.4484 27.1791 28.5536 31.7484 33.4488 36.5264 38.9607 40.2446 42.3479 45.5828

a 2D-Integated Radial basis function network (Mai-Duy and Tanner, 2006)
b Galerkin finite element method (Pilitsis and Beris, 1992)
c Fourier-Chebyshev Collocation (Pilitsis and Beris, 1992)
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a) Geometry

b) Reduced domain and discretisation

Figure 5.8: Problem 3: problem definition
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ψ

Figure 5.9: Problem 3, Newtonian fluid, ε = 0.5, N = 0.5, grid size of 41× 41:
Streamlines for Re = 0. Iso-values used are (0, 0.02, 0.06, 0.1, 0.14, 0.15, 0.159).
For 0.159157 ≤ ψ ≤ 0.15933, an increment of 5.767×10−5 is used to resolve the
recirculation region, which are the same as those in (Pilitsis and Beris, 1991).
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Re = 0
ψ ω

Re = 132
ψ ω

Re = 397.2
ψ ω

Re = 783
ψ ω

Figure 5.10: Problem 3, Newtonian fluid, ε = 0.3, N = 0.16, grid size of 41×41:
Contour plots of the streamfunction and vorticity for a wide range of Re.
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Figure 5.11: Problem 3, Oldroyd-B fluid, ε = 0.1, N = 0.5: Contour plots for
ur at We = 2 using several grids. The maximum and minimum values of ur
and their locations are also displayed.
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Figure 5.12: Problem 3, Oldroyd-B fluid, ε = 0.1, N = 0.5: Contour plots for
Trz at four values of We using a grid of 41× 41. The maximum and minimum
values of Trz and their locations are also displayed.
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Figure 5.13: Problem 3, Oldroyd-B fluid, ε = 0.1, N = 0.5: Contour plots for
Tzz at We = 6 using grids of 31×31 and 41×41. The maximum and minimum
values of Tzz and their locations are also displayed.
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a) ε = 0.1, N = 0.5
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b) ε = 0.1, N = 0.16
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Figure 5.14: Problem 3, Oldroyd-B fluid: The variation of the flow resistance
with respect to the Weissenberg number for two geometrical configurations.
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5.5 Concluding remarks

In this chapter, viscoelastic flows in rectangular ducts and in straight and

corrugated tubes are simulated with 1D-IRBFN-based Galerkin/Collocation

techniques. Instead of using low-order polynomials, the trial functions in the

Galerkin and point-collocation formulations are presently implemented with

1D-IRBFNs. Boundary treatments especially for those on the centreline using

1D-IRBFNs are discussed in detail. The 1D-IRBFN results, which are obtained

for a wide range of the Weissenberg number, are in good agreement with the

exact/numerical solutions available in the literature.



Chapter 6

Conclusions

This thesis reports attempts to develop numerical methods based on 1D-IRBFNs

for the simulation of Newtonian and non-Newtonian fluid flows. Main features

of the methods include (i) the field variables are represented by high-order ap-

proximators in one dimension (i.e. 1D-IRBFNs); (ii) the governing equations

are discretised by means of Galerkin and point-collocation formulations; and

(iii) double and Neumann boundary conditions are imposed with the help of

the integration constants. It was found numerically from function interpolation

that (i) equally-spaced grids can be used with 1D-IRBFNs without suffering

from Runge’s phenomenon; and (ii) the constants of integration arising from

the construction of 1D-IRBFNs provide an effective means to utilise all available

information in certain cases, for example, where both function and derivative

values are given at a point. These properties of 1D-IRBFNs were then ex-

ploited successfully for the solution of PDEs by (i) generating the trial and test

functions on uniform spaces for the Galerkin formulation; (ii) imposing double

boundary conditions for the streamfunction formulation; and (iii) deriving a

computational boundary condition for the vorticity.

In Chapters 3 and 4, we have presented a 1D-IRBFN-based Galerkin method for

the simulation of flows of a Newtonian fluid. For the streamfunction-vorticity-
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temperature formulation (Chapter 3), a new way to derive a computational

boundary condition for the vorticity was proposed. This boundary vorticity

scheme is global and has a strong influence on the overall accuracy of the ap-

proximate solution. For the streamfunction formulation (Chapter 4), two well-

known issues, which numerical methods have to confront, were addressed. The

first lies in the representation of high-order derivatives. Integration rather than

differentiation is employed here to construct the approximations, which helps

avoid the reduction in convergence rate caused by differentiation. The second

lies in the imposition of double boundary conditions. Derivative boundary con-

ditions are implemented in an exact manner through the process of converting

the RBF space into the physical space. As a result, there is no need to introduce

fictitious points or to reduce the number of nodes used for collocating the PDE.

Results obtained showed that the 1D-IRBFN-based Galerkin method achieves a

high rate of convergence with respect to the number of RBFs for linear problems

and produces accurate solutions using relatively-low data densities for highly

nonlinear flows. It is noted that the work presented in Section 3.4.2 appears

to be one of the earliest RBF reports which have successfully simulated the

thermally-driven flow in a square slot at the Rayleigh number of 108.

In Chapter 5, we have presented Galerkin/collocation methods for the sim-

ulation of viscoelastic flows. The trial functions in the Galerkin and point-

collocation formulations were implemented with 1D-IRBFNs. Stress boundary

conditions on the centreline are computed by directly employing 1D-IRBFNs.

Viscoelastic flows in straight tubes with non-circular and circular cross-sections

were considered. For the former, flows of CEF fluids in rectangular ducts were

simulated, demonstrating the capability of the method to capture secondary

circulations of relatively low strength. In the latter, flows of Oldroyd-B fluids

in corrugated tubes were simulated, showing the capability of the method to

handle fluids modelled by hyperbolic PDEs.

These achievements indicate that 1D-IRBFN-based Galerkin and point-collocation
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methods are useful tools in CFD. In the future, the following works are sug-

gested for improvement and enhancement of the methods

• Extension of the 1D-IRBFN-based Galerkin method to flows in irregular

geometries

Tensor products are presently employed to construct the approximations

over the whole domain from 1D-IRBFNs defined on grid lines. It is pos-

sible to implement hybrid 1D-IRBFN schemes, where point-collocation

formulation is used for subregions containing irregular geometries and

Galerkin formulation is employed for the remaining subregions of the

problem domain. It is noted that the 1D-IRBFN-based point-collocation

method is applicable to flows in irregular geometries.

• Validation of the methods with other constitutive models

The present methods are presently validated with Newtonian, CEF and

Oldroyld-B models. It is possible to replace these models with other non-

ideal fluids occurring in industries for further applications.

• Implementation of the constitutive equations at higher values of the Weis-

senberg number in their matrix logarithm forms

It has been recently discovered that the transformation of the constitu-

tive equations into matrix logarithm forms is capable of resolving the

well-known high Weissenberg number problem (Fattal and Kupferman,

2004, 2005). This breakthrough is made, owing to the facts that (i) the

corresponding stress tensor is now guaranteed to be positive definite; and

(ii) steep boundary layers where the variations of stresses grow exponen-

tially can be captured more accurately. It is possible to incorporate such

logarithm forms into the present methods to produce a converged solution

at higher values of the Weissenberg number.



Appendix A

Antiderivatives of multiquadric

function in one dimension

This appendix provides analytical expressions for antiderivatives of the multi-

quadric (MQ) function in one dimension. Let η, c, a be the coordinate, the MQ’s

centre and the MQ’s width/shape-parameter, respectively. The MQ function is

defined as

g (η) =

√
(η − c)2 + a2. (A.1)

Antiderivatives of (A.1), which are employed in this thesis, are given below.

∫
g (η)dη =

1

2
(η − c)

√
(η − c)2 + a2 +

1

2
a2 ln

(
(η − c) +

√
(η − c)2 + a2

)
,

(A.2)
∫∫

g (η)dη =

(
1

6
(η − c)2 − 1

3
a2
)√

(η − c)2 + a2

+
1

2
a2
√

(η − c)2 + a2 ln

(
(η − c) +

√
(η − c)2 + a2

)
, (A.3)
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∫∫∫
g (η)dη =

(
1

24
(η − c)2 − 13

48
(η − c) a2

)√
(η − c)2 + a2

− 1

16
a4n

(
(η − c) +

√
(η − c)2 + a2

)

+
1

4
a2 (η − c)2 ln

(
(η − c) +

√
(η − c)2 + a2

)
, (A.4)

∫∫∫∫
g (η)dη =

(
1

120
(η − c)4 − 83

720
(η − c)2 a2 +

1

45
a4
)√

(η − c)2 + a2

+
1

48
a2 (η − c)2

(
4 (η − c)2 − 3a2

)
ln

(
(η − c) +

√
(η − c)2 + a2

)
.

(A.5)



Appendix B

Iterative methods for nonlinear

equations

This appendix gives a brief review of iterative methods for solving a set of

nonlinear equations in the form of

K(u)u = F(u), (B.1)

and

Mu̇+K(u)u = F(u), (B.2)

where M andK are matrices; u̇, u and F vectors; u is the unknown vector to be

found; and a superposed dot on u denotes a derivative with time (u̇ = ∂u/∂t).

It is noted that (B.1)/(B.2) is written in a general form to which any nonlinear

system can be transformed by appropriately defining M, K and F.
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B.1 Picard methods

Picard methods are used for solving (B.1) which arises from Chapters 4 and 5.

The Picard algorithm can be simply described as

K(u(n))u(n+1) = F(u(n)), (B.3)

where the superscript (.) indicates the iteration number. To obtain a converged

solution, u(n+1) usually needs be relaxed according to the following relation

u(n+1) = γu(n) + (1− γ)u(n+1), (B.4)

where 0 < γ < 1.

B.2 Newton-based methods

Newton-based methods are used for solving (B.1) which arises from Chapter 5.

Equation (B.1) can be rewritten as

R(u) = K(u)u− F(u) = 0. (B.5)

Instead of finding a solution to (B.1), Newton-based methods try to find the

roots of the function R(u). Expanding R(u) in a Taylor series and then dis-

carding high-order terms, one obtains

R
(
u(n)

)
= −∂R

∂u

∣∣∣∣
u(n)

(
u(n+1) − u(n)

)
≡ −J

(
u(n)

) (
u(n+1) − u(n)

)
, (B.6)

where J is the Jacobian matrix. Solving (B.6) for u(n+1), we have

u(n+1) = u(n) − J −1R
(
u(n)

)
. (B.7)
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To avoid computing the inverse of J , one can apply trust region techniques

u(n+1) = u(n) + d(n), (B.8)

where d(n) is computed at every iteration through the following optimisation

subproblem

min
d

∥∥R
(
u(n)

)
+ J

(
u(n)

)
d(n)

∥∥2 , such that
∥∥d(n)

∥∥ ≤ ∆(n), (B.9)

where ∆(n) > 0 is the trust region radius. To decide whether the trial d(n) is

acceptable, the techniques use the following parameter

r(n) =

∥∥R
(
u(n)

)∥∥2 −
∥∥R
(
u(n) + d(n)

)∥∥2

‖R (u(n))‖2 − ‖R (u(n)) + J (u(n))d(n)‖2
. (B.10)

• if r(n) ≥ c0 with 0 ≤ c0 < 1, set u(n+1) = u(n) + d(n).

• otherwise, set u(n+1) = u(n), reduce the trust region radius ∆(n), and

resolve (B.9).

B.3 Time-marching methods

Time-marching methods are used for solving (B.2) which arises from Chapter

3. The forward Euler (or semi-implicit) scheme is applied in this thesis. Its

algorithm can be described as

Mu(n+1) = Mu(n) +△t
(
F(u(n))−K(u(n))u(n+1)

)
, (B.11)

where △t = t(n+1) − t(n) is the time step.

Equation (B.11) can be rewritten in the form which is more suitable for com-

putation,

(
1

△tM+K(u(n))

)
u(n+1) =

1

△tMu(n) + F(u(n)). (B.12)
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Šarler, B. (2005). A Radial Basis Function Collocation Approach in Com-

putational Fluid Dynamics, CMES: Computer Modeling in Engineering &

Sciences 7 (2): 185–193.
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Vertnik, R., Založnik, M. and Šarler, B. (2006). Solution of transient direct-chill

aluminium billet casting problem with simultaneous material and interphase

moving boundaries by a meshless method, Engineering Analysis with Bound-

ary Elements 30 (10): 847–855.

Wan, D. C., Patnail, B. S. V. and Wei, G. W. (2001). A new benchmark qual-

ity solution for the buoyancy-driven cavity by discrete singular convolution,

Numerical Heat Transfer, Part B 40: 199–228.

Weinan, E. and Liu, J.-G. (1996). Vorticity boundary condition and related is-

sues for finite difference schemes, Journal of Computational Physics 124: 368–

382.



REFERENCES 163

Wendland, H. (1995). Piecewise polynomial, positive definite and compactly

supported radial functions of minimal degree, Advances in Computational

Mathematics 4 (1): 389–396.

Wendland, H. (1999). Meshless Galerkin methods using radial basis functions,

Mathematics of Computation 68: 1521–1531.

Wright, G. and Fornberg, B. (2006). Scattered node compact finite difference-

type formulas generated from radial basis functions, Journal of Computa-

tional Physics 212: 99–123.

Wu, Y. L. and Liu, G. R. (2003). A meshfree formulation of local radial point

interpolation method (LRPIM) for incompressible flow simulation, Compu-

tational Mechanics 30: 355–365.

Wu, Z. (1995). Compactly supported positive definite radial functions, Advances

in Computational Mathematics 4: 283–292.

Xue, S. C., Phan-Thien, N. and Tanner, R. I. (1995). Numerical study of

secondary flows of viscoelastic fluid in strait pipes by an implicit finite volume

method, Journal of Non-Newtonian Fluid Mechanic 59: 191–213.
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