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ABSTRACT
Low-lying coastal cities are widely acknowledged as the most densely
populated places of urban settlement; they are also more vulnerable to
risks resulting from intensive land use and land cover change, human
activities, global climate change, and the rising sea levels. This study
aims to predict how urban growth is affected by sea level rise (SLR) in
the Australian context. We develop an urban cellular automata model
incorporating urban planning policies as potential drivers or constraints
of urban growth under different SLR scenarios and adaption strategies.
Drawing on data capturing the socioeconomic and environmental
factors in South East Queensland, Australia, our model is positioned to
address one core research question: how does SLR affect future urban
growth and human resettlement? Results show that urban growth in
coastal regions varies depending on the extent to which the sea level
rises and is affected by a combination of factors relating to urban
planning and human adaptation strategies. Our study demonstrates the
complexity of urban growth in coastal regions and the nuanced
outcomes under different adaptation strategies in the context of rising
sea levels.
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1. Introduction

Climate change has been acknowledged as one of the most significant phenomena in the twenty-
first century; it also has a profound impact on all aspects of human societies and the natural
environment (Hay et al. 2017; Dangendorf, Hay, and Calafat 2019). Globally, many of the world’s
large cities are developed in coastal regions with dense population and intensive economic activities
(Becerra, Pimentel, and De Souza 2020). The majority of these coastal cities are low-lying, suscep-
tible to the ravage of climate change and climate disasters such as tsunami, hurricane, storm surge,
submergence, flooding and coastal erosion (Kulp and Strauss, 2019). The impact of climate change
on the low-lying coastal cities has been increasing throughout the twenty-first century and beyond
(Church, Clark, and Cazenave 2013). It is estimated that between 145 and 565 million people living
in coastal regions will face potential inundation from rising sea levels by 2100 (Watts, Amann, and
Arnell 2020, 130). Considering the total population living in the low-lying coastal regions around
the world exceeding one billion by this century (Neumann, Vafeidis, and Zimmermann 2015;
Hauer, Fussell, and Mueller 2020), the concentration of economic activities and the high value of
coastal lands, there are urgent needs for developing adaptation strategies and policy intervention

© 2021 Informa UK Limited, trading as Taylor & Francis Group. The International Journal of Digital Earth is an Official Journal of the International
Society for Digital Earth

CONTACT Yan Liu yan.liu@uq.edu.au; Yongjiu Feng yjfeng@tongji.edu.cn

INTERNATIONAL JOURNAL OF DIGITAL EARTH
2021, VOL. 14, NO. 9, 1213–1235
https://doi.org/10.1080/17538947.2021.1946178

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2021.1946178&domain=pdf&date_stamp=2021-07-27
http://orcid.org/0000-0002-1809-7088
http://orcid.org/0000-0002-1612-779X
http://orcid.org/0000-0001-8772-7218
mailto:yan.liu@uq.edu.au
mailto:yjfeng@tongji.edu.cn
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com


to ensure the long-term sustainability of the region (Neumann, Vafeidis, and Zimmermann 2015;
Mills, Leon, and Saunders 2016; Storch and Downes 2011).

Methodologically, there exists a large number of studies on modelling and predicting urban
growth using cellular automata (CA) and CA-derived models (e.g. the LSUM model by Stimson,
Bell, and Corcoran 2012; the UrbanSim by Waddell 2002; the CLUE model by Verburg, Soep-
boer, and Veldkamp 2002; the SUSTAIN model by Love, Medin, and Gureckis 2004; and the
SLEUTH model by Mahiny and Clarke 2012). Most of these models focus on urban expansion,
and overlooking the impact of SLR and the responding adaptation strategies. Existing urban
modelling research is also limited in considering the impact of urban planning policies on future
urban growth, especially when the Markov Chain or similar methods are used in the estimation
of land demand for growth which may lead to unrealistic outcomes. As such, there is a pressing
need to model and predict urban growth in coastal regions that are affected by the collective
effect of SLR, different adaptation strategies, as well as urban planning policies.

This study aims to address the research question on how SLR affects future urban growth and
human resettlement by taking into consideration urban planning policy as well as different climate
change adaptation strategies. Using South East Queensland (SEQ), Australia as a case study region,
we first drew on the population and planning data and a digital elevation model to identify areas
that are potentially being affected by SLR, and estimated the size of population living in these
areas. We then constructed and calibrated an urban CA model to simulate urban growth from
1991 to 2016, and used the model to predict the spatial patterns of future urban growth from
2016 to 2041 under current planning policy as well as different SLR scenarios and adaptation strat-
egies. Our study contributes to predicting how climate change will reshape future urban growth and
human resettlement; it also offers tools to assist local government to plan for areas to accommodate
residents who may be affected by climate hazards in future.

The rest of this paper is organised as follows. A description of the study background relating to
SLR and its adaptation strategies, and urban modelling is presented in the next section. Then, the
study context, data and modelling methods are introduced, followed by the results showing areas
and size of population potentially being affected under different SLR scenarios, and predicted
urban growth to 2041. The policy implications, study limitations and future research are then dis-
cussed, followed by a concluding remark at the end.

2. Background

SLR is generally considered as the most critical consequence of global climate change, causing
coastal inundation and erosion, and other coastal hazards (Stive, Ranasinghe, and Cowell
2010; Spencer, Schuerch, and Nicholls 2016). These hazards, together with the growing number
of population living in coastal regions, would affect hundreds of millions of people by the end of
twenty-first century (Geisler and Currens 2017; Neumann, Vafeidis, and Zimmermann 2015;
Hauer, Fussell, and Mueller 2020). Consequently, various coastal hazard adaptation strategies
have been proposed in response to climate change hazards and to ensure long-term sustainability
of coastal cities (Biagini, Bierbaum, and Stults 2014). There are many different approaches for
coastal hazard adaptations, which can be grouped into three broad categories: (1) protection/
defence, (2) accommodation/management; and (3) retreat/migration (Black, Bennett, and Tho-
mas 2011; Hauer, Fussell, and Mueller 2020). The first and second categoriesᅳprotection/
defence and accommodation/ managementᅳboth refer to hard engineering approaches to pro-
tect human settlement by installing hard armouring like seawalls, groyne, and boulder barriers to
keep waters at the bay, elevating buildings and road networks, or strengthening sewage and
stormwater drainage in areas endangered by SLR to direct water flow (Torabi, Dedekorkut-
Howes, and Howes 2018). Thus, urban development would continue under these strategies,
and residents would remain in areas that may be subject to risk of coastal hazards (Sutton-
Grier, Gittman, and Arkema 2018). The challenges of these strategies include the high
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construction costs of defence structures as well as the associated negative impact on the environ-
ment (Hauer, Fussell, and Mueller 2020). The third categoryᅳretreat/migrationᅳis an approach
that aims to regulate new development and relocate people to areas away from the coast or in
higher elevation hinterland (Dyckman, John, and London 2014). This type of adaptation strategy
is especially advocated by environmentalists as an optimal solution given the opportunity to pro-
tect the coastal ecosystems, release coastal squeeze and limit the cost of building hard armouring
structures (Krolik-Root, Stansbury, and Burnside 2015). However, the implementation of retreat/
migration strategy can be challenging and usually involves the negotiation among multiple sta-
keholders, including politicians, urban planners, property developers and local residents to
ensure that all stakeholders’ interests are compensated in the relocation process (Rulleau and
Rey-Valette 2017). In this study, we re-group the three adaptation strategies into two typesᅳ
stay strategy which includes both protection/defence and accommodation/management where
people stay in areas potentially being affected by SLR, and move strategy which includes
retreat/migration that relocate people from coastal to inland areasᅳto set up scenarios for mod-
elling future urban growth in coastal regions.

A common approach to simulate and predict urban growth is cellular automata (CA) model-
ling (Liu 2008). This modelling approach enables researchers to predict where land use and land
cover changes are likely to occur and how such changes might be distinct in different locations
or under different conditions. CA modelling is a bottom-up approach where land is represented
on a lattice of cells with each cell indicating the predominant land use (Wu 2002). The evolution
of land use is modelled at individual cell scale as a response to the state of the cell itself and the
states of nearby land cells under a series of driving factors which function in complex ways and
their effects on urban growth are non-linear in nature (Batty 2007). However, several limitations
are observed in the existing CA models. First, most research focus on modelling urban expan-
sions and use Markov Chain or similar methods to calculate land demand for future urban
growth; such methods can lead to unrealistic outcomes without considering the impact of
urban planning policies. In reality, strategic urban and regional planning policies may be
implemented by the state and local governments to legislate the growth of urban footprint
and/or to promote high-density land development, resulting in urban densification and the
reduction of land demand for future urban growth. Second, most CA modelling work consider
land use, socioeconomic and built environment factors to define land transition rules, whereas
limited studies consider the impact of climatic events on urban growth, such as tropical cyclones,
storm surges and SLR. The exceptions include Hauer (2017) who modelled the spatial distri-
bution of population in the United States that might be induced by sea level rise, and Mills,
Leon, and Saunders (2016) who developed four models including a CA-based urban model to
explore the impact of SLR on the Moreton Bay region in Australia under different adaptation
strategies. A more recent work by Lu et al. (2019) used a fuzzy CA-based Markov Chain
model to simulate the impact of climate change on urban growth in New York City, but also
overlooked the impact of planning policy in the model prediction.

There is also a pressing need to develop models to enhance our understanding of the impact of
climate change on urban growth in the Global South such as Australia (Hansen 2007, 2010; Barredo
and Delgado 2008). According to the projection of SLR by Australian Government Bureau of
Meteorology (2016), it was estimated that Australia would be exposed to SLR of 0.28–0.61 m for
low emissions of greenhouse gas or 0.52–0.98 m for high emissions of greenhouse gas by 2100.
Given that over 85% of Australians live within 50 km of the coastlines and all except for
one capital cities of the Australian States/Territories are located along the coasts (Australian Bureau
of Statistics 2016a), the risk of unprecedented SLR poses severe threat to the human settlement and
urban development in this continent. As such, our study aims to simulate and predict urban growth
in the coast region in South East Queensland under the impact of SLR and different adaptation
strategies to address such pressing needs.
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3. Study context, data and methods

3.1. Study context

We choose the SEQ coastal region as the case study as it is one of the fastest growing coastal regions
in Australia, and it also has a long history of being affected by various coastal hazards, including
flood, tropical cyclone, and land slide (Bureau of Meteorology 2016). SEQ inhabits over 3.6 million
people (which accounts for 71% of the total population, 5.1 million in the State), and contains
Queensland’s three largest cities: Brisbane as the state capital city, and Gold Coast and Sunshine
Coast that are world-class tourist destinations (Queensland Government 2016). SEQ covers
22,420 square kilometres of land extending 240 kilometres from Noosa in the north to Gold
Coast in the south, and 140 kilometres west to Toowoomba (Queensland Government 2017).
This region has experienced significant population growth since the early 1990, and is predicted
to have 5.3 million people by 2041 (Australian Bureau of Statistics 2016a). There are 12 local gov-
ernment areas (LGAs) in this region (including part of Toowoomba); six of them, including (from
north to south) Noosa, Sunshine Coast, Moreton Bay, Brisbane, Redland, and Gold Coast, are
located along the coast. Our study area consists of these six coastal LGAs together with two
LGAs off the coastᅳLogan and Ipswichᅳgiven that these two LGAs are closely connected with
the state capital city of Brisbane and are part of the Brisbane Metropolitan Area. The total size
of our study area is 10,430 km2 (Figure 1).

SEQ coastal region has a long history of being affected by various types of coastal hazards. It was esti-
mated that about 328,158 ha of land in SEQwas subject to potential inundation induced by SLR, storm
surge and other extreme climatic events, affecting approximately 15,200 and 5400 residential buildings
located within 110 and 55metres of soft erodible coastlines (Department of Climate Change 2011). His-
torically, Cyclone Mahina occurred in Cape York Peninsula, Queensland in March, 1899 as the largest
storm surge on record, generating a 13m-high surge. The most recent severe storm surge was Cyclone
Yasi, occurred in 2011, generating a 7m-high surge along the coast (Bureau of Meteorology 2016).

According to the Intergovernmental Panel on Climate Change (IPCC), the global mean sea level
will rise between 0.43 and 0.84 m (0.29–1.10 m likely range) by 2100 (Oppenheimer, Glavovic, and
Hinkel 2019, 324). Building on this estimate and considering the historical record of coastal hazards
in the region, we hypothesised three SLR scenarios, that is, SLR of 0.8, 3.5 and 7 m, with 0.8 m being
a baseline scenario for modelling future urban growth. We adopted 7 m as a maximum extreme
considering the historical storm surge caused by Cyclone Yasi in 2011 (Bureau of Meteorology
2016). The 3.5 m SLR was adopted based on the understanding that the flood level in the hours
after a storm’s passage was estimated to be half of the highest storm surge (Frazier, Wood, and Yar-
nal 2010; Möller, Kudella, and Rupprecht 2014). Under these three SLR scenarios, two SLR adap-
tation strategies were considered: the move strategy that residents would move to areas away from
the risk of SLR, compared to the stay strategy that residents would stay in the coast areas where hard
engineering approaches would be in place to protect the rising sea level; this stay strategy is there-
fore considered as SLR 0 m in our model. Nevertheless, we acknowledge that the decisions people
make to stay or move in response to SLR are more complex (McMichael, Dasgupta, and Ayeb-
Karlsson 2020), but this is beyond the scope of the current study.

For the modelling timeframe, we selected a 25-year window from 1991 to 2016 to construct and
calibrate our urban CA model. This timeframe was considered suitable in the Australian context
given that Australia has entered into a more mature phase of urbanisation with a relatively slow-
pace urban development compared to other more rapidly developing countries such as China,
and the 25-year interval would enable our model to capture the subtle land use change over the
period. We then used the model to predict future urban growth from 2016 to 2041; this projection
timeframe is also in alignment with the gazetted regional plan by Queensland Government – Sha-
pingSEQ: South East Queensland Regional Plan 2017 (henceforth referred to as ShapingSEQ)
(Queensland Government 2017).
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3.2. Data

We utilised a series of socio-spatial data and environmental data frommultiple data sources to build
the CA model. Population data in 2016 were retrieved from the Census of Population and Housing
through the TableBuilder, an online data portal provided by the Australian Bureau of Statistics
(ABS 2016b); land use maps in 1991 and 2016 were collected from the digital cadastral database
provided by the Queensland Government (2019a); digital elevation models (DEM) in 1990 and
2016 at 100 m spatial and 0.25 m vertical resolutions were retrieved from the LiDAR remote sensing

Figure 1. South East Queensland and our study area is shown in dark grey colour.
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imageries hosted by the Queensland Government (2019b); the spatial data of major transportation
network, city centres, townships, green space, waterbodies (including lakes and rivers, excluding
seasonal creeks) and protected areas for biodiversity in 1990 and 2016 were retrieved from the
Queensland Spatial Data CatalogueᅳQSpatialᅳan online spatial data portal created by Queens-
land Government (2019c); the proposed urban footprint by 2041 was extracted from the Shaping-
SEQ (Queensland Government 2017); a coastal hazard map which delineates the areas of land along
the coast that are subject to coastal erosion under 0.8 m SLR and associated storm impacts was also
retrieved from QSpatial (Queensland Government 2019c). All spatial datasets were converted to
100 m grids in GeoTiff format as input for model construction. Considering the large size of the
study area over 10 thousand square kilometres, the 100 m spatial resolution was considered
sufficient to compromise amongst data availability, computational complexity, and the ability of
the model to capture the land use transition in this region.

3.3. Method

3.3.1. CA urban model incorporating SLR scenarios
We constructed a CA urban model that incorporates the SLR scenarios for modelling of future
urban growth (henceforth referred to as a SLR-CA model). A critical component of the SLR-CA
model is its transition rules, which decide how the state of a cell changes in the next time step as
a consequence of being affected by the current state of the cell itself and its neighbouring cells
under a set of driving factors and constraints. Conceptually, the transition rules of the SLR-CA
model can be expressed as (Feng and Tong 2018):

Statei, t+1 = F[Statei, t , Drii, NeiEffi,t , Coni,t , CN]t (1)

where F is the overall land use transition function which decides the change of a cell i from the state
(Statei, t) at time t to the state (Statei, t+1) at time t + 1; Drii represents the impact of the driving
factors on land use transition; NeiEffi,t is the neighbourhood effect of cells around the central cell
i on the transition of the state of cell i; Coni,t represents the constraints on land development;
and CN is the total number of sampling cells used in the model in order to reduce the compu-
tational load.

Mathematically, the transition rule of the model is transformed to a land transition probability
measured at each cell location i, defined as (Feng and Liu 2013):

Pi = (LProi × ProScale + NeiEffi × NeiEffScale)× Con(Si, Sland, SSLR)/2 (2)

where Pi represents the model’s overall transition probability; LProi is a local land transition prob-
ability of cell i, which is detailed in Equation (3); ProScale is a time parameter ranging from 0.0 to 0.1
to scale the land transition probability; NeiEffi is the neighbourhood effect on land transition which
is explained in Equation (4); NeiEffScale is a local parameter ranging from 0.5 to 1.0 to scale the
neighbourhood effect NeiEffi; Con (Si, Sland, SSLR) represents three sets of constraints: Con(Si)
denotes the constraints of urban development (e.g. waterbodies and conservation land);
Con(SSLR) denotes the constraints related to the risk of SLR (e.g., inundated areas at a certain
level of SLR); Con(Sland) denotes the constraints of available land for construction within the
urban footprint.

LProi is a local land transition probability of cell i, written as (Feng and Liu 2013):

LProi =
exp a0 +

∑N
k=1 akDk,envi +

∑N
h=1 ahDh,urban + lWi + 1

( )

1+ exp a0 +
∑N

k=1 akDk,envi +
∑N

h=1 ahDh,urban + lWi + 1
( ) (3)

where a0 is a constant; Dk,envi (k = 1, 2, . . . , l) represents a series of driving factors of future
urban growth related to the natural environment and topography (e.g. slope and elevation);
Dh,urban (h = 1, 2, . . . , l) represents a series of driving factors of future urban growth related to
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urban infrastructures and facilities (e.g. distances to urban centres and railway stations); N is the
number of driving factors;Wi is a 5× 5 spatial adjacency weights matrix to reflect the relationships
among neighbouring cells to cell i, with 1 for adjacent cells and 0 for diagonal cells; l is the coeffi-
cient of the spatial adjacency weights; 1 is the regression residual; ak (k = 1, 2, . . . , l) and
ah (h = 1, 2, . . . , l) are the coefficients for each of the driving factors, indicating the extent
each driving factor affects the land transition. These coefficients were calculated using a spatial-
lag regression, given the advantage of this method that can minimise the spatial autocorrelation
among the driving factors and improve the simulation accuracies (Bihamta, Soffianian, and
Fakheran 2015).

NeiEffi represents the effect of existing urban cells around a non-urban cell i within the neigh-
bourhood on the state of the cell i towards urban state, which can be written as (Dahal and Chow
2015):

NeiEffi =
∑

m×m [Celli(S = Urban)− Celli(S = SLR)]
m×m− 1

(4)

where m = 5, representing a 5× 5 neighbourhood size.
Finally, with Pi being measured as land transition probability of a cell i at a current time, its next

status at a subsequent time t + 1 can be determined by comparing the overall probability with a
threshold value Pu ranging from 0 to 1 (Feng and Liu 2013). The value of Pu was defined by adjust-
ing the parameter settings of the model to achieve an optimal configuration of the model’s tran-
sition rules; it was calibrated by comparing the disagreements between the simulated land-use
pattern generated by the model and the actual land-use pattern derived from remotely sensed ima-
geries (Feng and Liu 2013). If the overall probability (Pi) is larger than Pu, the state of cell i will be
converted from non-urban to urban at time t + 1; otherwise, its state remains unchanged.

3.3.2. Defining the driving factors
Similar to existing work on urban CA modelling (e.g. Sakieh, Amiri, and Danekar 2015; Wu, Ren,
and Che 2015, 2019; Babak and Abbas 2017), we defined the driving factors in the SLR-CA model
based on past land use changes as well as the socio-economic and environmental conditions of the
area, including elevation, land slope, road density, and distances to coastlines, roads, railway lines
and stations, green space, city centres and waterbodies (Table 1 and Figure 2). Among these driving
factors, elevation and distances to coastlines and waterbodies are factors reflecting the impact of
SLR.

3.3.3. Estimating land quantities needed for future urban growth
To predict future urban growth, we took on board the estimated land demand from the SEQ
regional plan, ShapingSEQ (Queensland Government 2017). According to this plan, future urban
growth to the year 2041 can be achieved through two main processes: urban consolidation (or

Table 1. Driving factors used in the SLR-CA model

Driving factor Definition Measurement

Distance to coastlines Euclidean distance to coastlines Measured from the coastline layer
Distance to water bodies Euclidean distance to waterbodies Measured from the land use data layer
Distance to city centres Euclidean distance to urban centres Measured from the urban centre data layer
Distance to roads Euclidean distance to road network Measured from the transport network data layer
Distance to green parks Euclidean distance to conservation and parks Measured from the land use data layer
Distance to railway lines Euclidean distance to railway lines Measured from the transport network data layer
Distance to railway stations Euclidean distance to railway stations Measured from the transport network data layer
Road density Road areas over the total area in a cell Measured from the transport network data layer
Neighbouring urban areas Number of the neighbouring urban areas Measured from the land use data layer
Elevation Land elevation Extracted from the DEM
Slope Land slope Extracted from the DEM
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infill development) and urban expansion (or greenfield development). Urban consolidation is
defined as development that occurs on land within existing urban footprint, which can occur in
the form of high- or medium-density development in areas with good access to public transport,
employment and public services. On the other hand, urban expansion is development that occurs
on land outside the existing urban footprint, and is characterised by low-density residential hous-
ing, single-use zoning, and increased reliance on private automobile for transportation, and usually
occurs in regional and remote inland areas.

To achieve the overall sustainable development goal of the region, the official planning docu-
ment specifies an overall consolidation-to-expansion ratio of 60:40 for future urban development.
Given the difference in population size, land demand, current land use status as well as the different
future development goals of each LGA, this consolidation-to-expansion ratio was specified differ-
ently for each LGA. Table 2 presents the current (2016) and projected (2041) population of each
LGAs together with the expected population and dwelling growth according to the consolida-
tion-to-expansion ratio of each LGA.

3.3.4. Defining constraints
To simulate urban growth from 1991 to 2016, we defined a number of constraints to urban growth,
including large waterbodies and biodiversity-protected areas (Figure 3). To predict future urban
growth from 2016 to 2041, we added other constraints which include the areas outside the planned
urban footprint as defined in ShapingSEQ (Figure 4) and areas that are subject to potential impact
under different SLR scenarios (Figure 5). Using the planned urban footprint data, we estimated the
total amount of urban space needed to support urban development and human and economic
activities. While in principle urban growth should be confined within the planned urban footprint
boundaries, this is not always the case in reality; development can go beyond the confined bound-
aries, as is the case in some of the existing urban areas in the 2016 land use map. To control for the

Figure 2. Driving factors to urban land use change.
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Table 2. Estimated population and dwelling growth from 2016 to 2041

Population in
2016

Projected Population in
2041

Population growth from 2016–
2041

Expected dwelling growth Persons per
dwelling

Consolidation-to-expansion
ratioConsolidation Expansion Total

LGAs included in our urban model
Brisbane 1,184,200 1,571,000 386,800 176,800 11,400 188,200 2.06 94/6
Gold Coast 576,900 928,000 351,100 127,900 31,000 158,900 2.21 80/20
Moreton Bay 438,300 656,000 217,700 48,200 40,100 88,300 2.47 55/45
Sunshine
Coast

303,400 495,000 191,600 53,700 33,300 87,000 2.20 62/38

Logan 313,800 586,000 272,200 19,900 70,000 89,900 3.03 22/78
Ipswich 200,100 520,000 319,900 27,900 83,800 111,700 2.86 25/75
Redland 152,000 188,000 36,000 12,500 4,700 17,200 2.09 73/27
Noosa 54,000 63,000 9,000 4,800 1,600 6,400 1.41 75/25
Other LGAs in SEQ (not included in our model)
Scenic Rim 41,000 62,000 21,000 0 10,000 10,000 2.10 0/100
Somerset 25,200 38,000 12,800 0 6,200 6,200 2.06 0/100
Lockyer Valley 39,500 61,000 21,500 0 9,600 9,600 2.24 0/100
Toowoomba 134,000 180,000 46,000 3,200 17,100 20,300 2.27 16/84
SEQ 3,462,400 5,349,000 1,886,600 474,900 318,800 793,700 2.38 60/40
Expected urban land growth in all LGAs in SEQ (ha) 45,543
Expected urban land growth in LGAs covered in our urban model (ha) 40,843

Data source: ShapingSEQ: South East Queensland Regional Plan 2017 (Queensland Government 2017)
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future growth of existing urban land in areas beyond the planned urban footprint, we assigned these
areas with a low probability of 10% to be developed to urban in the model prediction. The 10%
probability was set based on multiple experiments and the overall distribution of land transition
probability, as well as a certain degree of randomness to be tolerated in the model.

Figure 3. Constraints used in the simulation of urban growth from 1991 to 2016.
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3.3.5. Model calibration
Model calibration was conducted by overlaying the simulated land use map in 2016 with the
observed land use map in 2016 for a cell-by-cell comparison. Rather than using the commonly
applied error matrix approach to assess the simulation accuracy of the whole study area, we con-
ducted the accuracy assessment focusing on areas with land use change occurred in the model
by using seven key indices proposed by Pontius, Peethambaram, and Castella (2011): Initial

Figure 4. Planned urban footprint in 2041 adopted from ShapingSEQ (Queensland Government 2017).
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urban, Hits, Misses, False alarms, Correct rejection, and Figure of Merit (FOM). Specifically, Initial
urban were the observed urban areas at the initial time of modelling; Hits were the observed urban
growth areas being correctly captured by the model; Misses were the observed urban growth being
incorrectly simulated as non-urban; False alarms were the observed non-urban areas being simu-
lated as urban growth; and Correct rejection were the observed non-urban areas being correctly
simulated as non-urban (Feng, Yang, and Tong 2019). Accordingly, FOM was calculated as:

FOM = Hits
Hits + Misses + False alarms

(5)

3.3.6. Modelling process
Utilising the UrbanCA software developed by Feng and Tong (2018), we constructed the SRL-CA
model following the workflow illustrated in Figure 6. The simulation process consists of three parts:
model construction, calibration and prediction. For model construction, we selected a total of
10,000 sampling cells from the 1991 land use map, and the corresponding cells in the 2016 land
use map and the driving factor maps. We used systematic sampling to ensure that all cells sampled
were evenly distributed in the entire study region; this sampling approach has been applied in other
studies to reduce the computational load (e.g. Feng, Yang, and Tong 2019; Wu 2002; Feng and Liu
2013), and the samples were then used to retrieve the CA parameters and build the CA model. The
calibration process of the modelling commences by using input data from 1991, with each iteration
representing one year, and stops after 25 iterations to 2016. Through extensive computational
experiment, calibration and simulation accuracy assessment, the model generates an output map
illustrating the land transition probability of each cell in the region from non-urban to urban
land over the simulation period. This probability map was then used to predict land use change
from 2016 to 2041. For model prediction, we used the 2016 land use map as input to define the
initial state of the cells, and we took on board the land use change probability map as well as the
projected land demand for future growth and SLR scenarios as constraints to generate future
urban growth patterns to the year 2041.

Figure 5. Areas potentially being affected under different SLR scenarios, with three enlarged figures showing parts of the Sun-
shine Coast, Brisbane and Gold Coast areas.
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4. Results

4.1. Land conversion probability and model’s simulation accuracy

Table 3 shows that five driving factors (distance to green parks, distance to railway stations, distance
to roads, distance to coastlines and road density) were positively correlated with urban growth; the
remaining factors were negatively correlated with urban growth. Among these driving factors, the
coefficients of distances to green parks, distances to railway stations, and road density were larger
than other driving factors, indicating stronger influence (the absolute value of coefficients larger
than 0.1) of these three driving factors on urban growth. The probability map (Figure 7) shows
the likelihood of each cell being converted to urban land from 1991 to 2016 under the defined tran-
sition rules; this probability map was then used to predict future land use change from 2016 to 2041.
According to this map, higher land transition probabilities tend to appear in the inland areas of
Brisbane and Gold Coast, and appear along the coasts in the Sunshine Coast, Moreton Bay, and
Redlands LGAs.

Table 4 presents the accuracy of the SLR-CA model, with FOM being 41.15%. This indicates that
our model has correctly predicted 41.15% of the total land conversion; this level of accuracy is simi-
lar to other work in early literature (e.g. Feng, Yang, and Tong 2019). The areas of Hits, False
alarms, and Misses are illustrated in Figure 8.

Figure 6. The SLR-CA modelling process.

Table 3. Coefficients of the driving factors and its effect on urban growth

Driving factors Type ak
1 Strength of impact on urban growth2

DEM Surface −0.032 Moderate
Slope Surface −0.008 Weak
Distance to coastlines Distance 0.011 Weak
Distance to city centres Distance −0.024 Weak
Distance to road Distance 0.048 Moderate
Distance to green parks Distance −0.108 Strong
Distance to waterbodies Distance −0.066 Moderate
Distance to railway lines Distance −0.063 Moderate
Distance to railway stations Distance 0.150 Strong
Neighbouring urban Distance −0.167 Strong
Road density Density 0.648 Strong

Note:
1ak is the coefficient of each driving factor as shown in Equation (3) produced by the spatial-lag regression;
2This is defined based on the absolute value of ak of each driving factor: strong (|ak| . 0.1); moderate (0.05 , |ak| | , 0.1); weak
(|ak| , 0.05).
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4.2. Predicted areas potentially being affected by SLR

Table 5 shows the predicted quantity of areas that would potentially be affected by SLR under three
different scenarios in 2041. Under the 0.8m-SLR scenario, 0.85%, 0.39% and 0.3% of the land areas
in the Gold Coast, Noosa and Sunshine Coast LGAs would be affected, respectively. These areas
tend to be located along the coast in the Gold Coast but more towards the inland areas in Noosa
and the Sunshine Coast. Under the 3.5m-SLR scenario, more areas would be affected, including
Gold Coast (3.44%), Sunshine Coast (1.87%), Redland (1.3%), Brisbane (1.11%) Noosa (0.87%)
and Moreton Bay (0.62%). When the SLR increases to 7 m, more land areas in these six LGAs
would be affected, with the largest quantity of land on the Gold Coast being affected and the
areas being affected extend further towards inland along the cannels and rivers, and may affect
the highly valuable waterfront properties. The two inland LGAs of Ipswich and Logan would not
be affected directly by SLR under all three scenarios.

Figure 7. Probability of land being converted to urban from 1991 to 2016.

Table 4. The model’s simulation accuracy indicators (%)

Initial Urban 14.86 Miss 1.10
Correct Rejection 45.19 False Alarm 0.75
Hit 1.29 Excluded 36.81
FOM 41.15

1226 S. WANG ET AL.



4.3. Predicted urban expansion to 2041

Table 6 shows the predicted urban expansion from 2016 to 2041 under four different SLR scenarios
(0, 0.8, 3.5 and 7.0 m). We included the 0 m SLR scenario to indicate the stay strategy, that is, any
rise in sea levels would be protected through hard engineering approaches; therefore, no SLR
impact would be considered in predicting future urban growth. Under this scenario, our model pre-
dicted a total of 203,970 ha of urban areas for the whole region, an increase of 24.21% compared to

Figure 8. Model’s simulation accuracy outcome.

Table 5. Predicted areas potentially being affected under three SLR scenarios in 2041

LGA (ha) SLR=0.8 m (%)* SLR=3.5 m (%) SLR=7.0 m (%)

Brisbane 0 (0) 1488 (1.11) 2,373 (1.77)
Gold Coast 1,136 (0.85) 4589 (3.44) 8,275 (6.21)
Moreton Bay 0 (0) 1268 (0.62) 2,072 (1.02)
Sunshine Coast 679 (0.30) 4208 (1.87) 5,140 (2.28)
Logan 0 (0) 0 (0) 0 (0)
Ipswich 0 (0) 0 (0) 0 (0)
Redland 0 (0) 698 (1.30) 1,129 (2.10)
Noosa 338 (0.39) 756 (0.87) 1,123 (1.29)
Total 2,153 (0.21) 13,008 (1.25) 20,113 (1.93)

Note: *: % in brackets indicates the percentage of the area potentially being affected by SLR over the total area in that LGA.
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the urban areas in 2016 (Table 6). Ipswich would have the highest percentage increase in urban
areas to the year 2041 by 59.05% under 0m-SLR scenario, given its geographical position off the
coast and its proximity to the state capital city of Brisbane; its urban areas would increase even
more under the other SLR scenarios (the move strategy), with a higher percentage increase when
SLR is higher in order to accommodate more urban population that might be relocating from
the coast. Similarly, Logan City LGA would also have a substantial increase in urban areas under
the move strategy, although its overall increase in urban areas would be smaller compared to Ips-
wich LGA. On the other hand, the LGAs with long coastlines, such as Gold Coast, Sunshine, Mor-
eton Bay, Redland, and Noosa, would have moderate urban growth by 23.74% to 28.63% under the
0m-SLR scenario; this percentage increase would reduce in various scales across under the move
strategy, with an exception for Moreton Bay due to its large hinterland to accommodate the
need for urban expansion. The capital city of Brisbane would have moderate urban expansion to
2041 by around 15%, and slightly smaller under the 7m-SLR scenario. This can possibly reflect
the tight urban planning policy where over 94% of its urban growth would be achieved through
consolidation and infill development rather than expansion (Brisbane City Council 2014; Gallagher,
Sigler, and Liu 2019). The larger quantity of urban areas overall under the move strategy compared
to the stay strategy may be due to an opportunity to occupy bigger house when relocating from the
higher density apartment living in the coastal areas to lower density inland areas (Table 6).

New urban growth was also predicted in areas outside the planned urban footprint, with Noosa
having over 10% of new urban growth in these areas under the 0 m SLR scenario, and this pro-
portion was substantially lower under the 0.8 m to 7 m SLR scenarios, with the 0.8 m SLR scenario
having the lowest proportion of urban growth outside the planned urban footprint across all LGAs,
and various across LGAs under the 3.5 and 7 m SLR scenarios.

Furthermore, we compared the predicted urban areas potentially being affected by SLR with the
predicted urban areas in 2041 under different SLR scenarios, both of which were quantified as a
proportion over the total area of each LGA (Figure 9). No potential impacts by SLR were projected
for Logan and Ipswich given their location off the coast. Redland, Noosa and Sunshine Coast sit on
the lower value side of the X-axis (representing the percentage of predicted urban areas in total area
of the LGA), with a lower proportion of urban areas, and a relatively lower proportion of urban
areas being affected by SLR (Y-axis). On the far east side of the X-axis sits Brisbane LGA given
its higher proportion of urban areas, and the proportion of urban areas potentially being affected
by SLR is relatively low (Y-axis). In between the two extremes sits Moreton Bay and Gold Coast
LGAs, with Gold Coast having a high proportion of urban areas being affected by SLR and the pro-
portion of urban areas in its total area also reduces under higher SLR scenarios (3.5 and 7 m).

The spatial distribution of the projected urban areas in 2041 is shown in Figure 10. The areas
being affected by SLR along the coast (Figure 10(A)) increase with the increase in sea levels from
0.8 m to 7 m; this is accompanied by the expansion of existing urban areas further inland (Figure
10(B)). While most new urban growth may occur along the fringe of existing urban areas in each
LGA, the patterns of such growth vary. For instance, substantial urban expansion would be
observed in Logan, Ipswich and Moreton Bay LGAs (Figures 10B-5, 7&8), however, this would
not be the case in Brisbane and Gold Coast given the impact of both SLR and the urban consolida-
tion policies (Figure 10B-6&11). In the Sunshine Coast and Moreton Bay LGAs urban growth
would occur along main transport routes such as the M1 Highway (Figure 10B-5&10). Such growth
patterns across different LGAs can be attributed to the collective effect of SLR, urban consolidation
or expansion policies as well as the adaptation strategies to SLR.

5. Discussion and conclusion

SLR has been regarded as one of the most costly and permanent future consequences of climate
change, exerting profound impact on urban development, and settlement trajectory of urban resi-
dents (Hauer 2017; Formetta and Feyen 2019; Hauer, Fussell, and Mueller 2020). Herein, our study
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Table 6. Project urban expansion to 2041 under different SLR scenarios.

Urban areas in
2016 (ha)

Projected percentage increase in urban areas in 2041 (%)

SLR=0 m SLR=0.8 m SLR=3.5 m SLR=7 m

Percentage
increase1

Outside urban
footprint2

Percentage
increase1

Outside urban
footprint2

Percentage
increase1

Outside urban
footprint2

Percentage
increase1

Outside urban
footprint2

Brisbane 56,192 15.38 4.19 15.45 0.73 15.33 2.02 14.31 0.56
Gold Coast 28,353 26.35 4.87 25.70 1.09 21.48 4.48 9.68 2.14
Moreton Bay 21,608 22.44 3.44 24.05 0.78 26.78 4.15 26.46 1.51
Sunshine Coast 16,454 28.63 6.91 24.28 - 10.22 4.71 8.96 3.88
Logan 15,319 16.12 5.39 18.85 1.61 30.77 5.36 39.63 4.25
Ipswich 15,228 59.05 3.13 64.78 1.18 88.32 4.63 103.78 3.88
Redland 7,468 23.74 6.29 25.43 1.87 20.43 3.21 16.78 1.86
Noosa 3,589 23.85 10.46 15.13 - 7.05 0.99 0.14 0.53
Total urban
areas (ha)

164,211 203,970 204,569 206,328 205,322

Note:
1Percentage increase: This is calculated as a percentage of the projected increase in urban areas in 2041 to the urban areas in 2016;
2Outside urban footprint: This is calculated as a percentage of the projected urban areas outside the planned urban footprint in total projected urban areas in 2041.
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provides a modelling approach to predict future urban growth under different SLR scenarios by
considering factors driving or constraining urban growth, SLR adaptation strategies, and urban
planning policies. Our results show that under the stay strategy where people remain in place
with the risks of rising sea levels being prevented through physical engineering approaches, a rela-
tively smaller size of urban expansion would be expected compared to the move strategy where
people at risk would be relocated from the coast to inland areas. This is possibly due to the oppor-
tunity for people to occupy bigger house when relocating from the higher density apartment living
along the coast to lower density inland areas, an opportunity to realise the ‘great Australian dream’
(Maginn 2016).

This study modelled urban growth by considering both SLR and urban planning strategies as
proposed by the Queensland Government (2017). On one hand, the implementation of different
planning controls in the form of urban consolidation or expansion affects the land demand for
future urban growth in different parts of the region. While the importance of urban planning
has been demonstrated in various studies (e.g. Ramm, Watson, and White 2018; Michell and Wad-
ley 2004; McCrea and Walters 2012), its impact on urban growth under different SLR conditions
has yet to be operationalised through the spatially explicit modelling as we demonstrated in this
study. On the other hand, the implementation of SLR adaptation strategies offers different oppor-
tunities for future urban growth. Such adaptation strategies can be diverse within the target region
to minimise the impact of SLR on urban growth. For example, the stay strategy may be more appli-
cable to highly-developed areas such as Brisbane with higher population density and intensive
urban infrastructure already in place; while the move strategy may work better for less populated
rural areas such as Moreton Bay coastal region given the large quantity of land available for
urban expansion in its hinterland. As such, it would be more beneficial to implement different
SLR adaptation strategies across the metropolitan, regional and rural areas.

Furthermore, it has been acknowledged that the impact of SLR is more than a coastal issue on
people living in the coastal region, as the migratory effects of SLR could ripple far inland (Hauer
2017; Hauer et al., 2020). While the coastal regions are likely to be affected directly by the rising
sea levels, the inland areas are also likely to be affected indirectly through the inflow of people
from the coasts or through the hydrological systems such as underground water and surface water-
bodies (i.e. rivers, lakes, cannels and creeks) to affect inland areas potentially available for urban
growth. By taking into account both the coastal region and the inland areas, our model

Figure 9. The proportion of areas potentially being affected by SLR versus the proportion of predicted urban areas of each LGA
under different SLR scenarios
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demonstrates the collective effect of SLR to the whole region; it reduces the potential bias of mod-
elling urban change in the small-scale coastal areas without considering the migrant effect in its hin-
terland, as the migrant effect would challenge the infrastructure and configuration of inland
municipalities if unprepared (Norman and Gurran 2017). Our study fills a critical gap in under-
standing the scale of population potentially being affected by SLR and possible locations of
where these population would likely to resettle which can offer guidance to urban planners and
local governments to reconcile urban growth and prevent climate change induced hazards
(Hauer 2017).

Nevertheless, our SLR-CA model has certain limitations. First, while some previous studies
acknowledged urban growth as a continuous process from non-urban to urban state (Wu, 2002;
Liu, 2008), our model was configured using binary states of non-urban and urban to consider
the land conversion process. We also did not consider the multiple land use functions that may
occur on the same piece of land when defining the cell state in the CA model (Li and Yeh 2002).
How to more accurately reflect the status (or multi-functional status) of land cells in CA modelling
is a challenging task, but is important for future research to capture the trajectory of urban growth

Figure 10. Projected urban land use patterns in SEQ in 2041. (A) Coastal region. (B) Inland region.
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under the impact of SLR given different types of land use are subject to distinct vulnerability and
resilience and thus response variously to SLR (Reece, Noss, and Oetting 2013; Martínez, Mendoza-
Gonzalez, and Silva-Casarín 2014). Second, our model predicting the future urban growth in
response to SLR is dependent on the assumption that the driving factors to urban growth and
the land transition probability would hold over the simulation process. However, some of these
driving factors may change over time. For example, the road network is subject to change and
become more complex in tandem with urban growth. While the UrbanCA model is capable of cap-
turing the dynamics of urban growth over time by updating the driving factors with new data when
it becomes available, the challenge remains on the uncertainty how such changes may occur,
especially in future term. Furthermore, we used Euclidean distance to quantify the driving factors
in the model; these measures can be improved by a road network-based distance or by time based
on real-time traffic systems, although this may be more computationally intensive and needs to be
supported by real-time traffic data. It is also possible to employ different approaches to measure
distances in the areas with complex geographic conditions.

Third, and most importantly, in the current model we regarded areas potentially being affected
under different SLR scenarios as hard constraints in predicting future urban growth from 2016 to
2041. However, the impact of SLR on these areas can be considered at a gradually changing scale
over time, although this may require more accurate data on SLR and intensive computation. Fur-
thermore, we also treated the impact of SLR to the coastal regions as permanent under the move
strategy, that is, no urban growth would occur in those areas possibly being affected by SLR. It is
possible that some of the areas under SLR impact may be temporary, and people living in such
high-risk areas may choose to leave only temporarily rather than permanently. As such, future
research would be needed to understand how people living in coastal regions may choose to stay
or move under the impact of SLR over different hazard periods (McMichael, Dasgupta, and
Ayeb-Karlsson 2020).

In sum, this study provides a useful approach to model and predict future urban growth in the
coastal region in SEQ under the impact of SLR. This modelling approach can be employed by urban
planners, governments and scholars to predict urban growth and human resettlement in the face of
SLR in different geographic contexts or in the face of different environmental stressors (e.g. urban
heat). It can be adapted to account for different climate change adaptation strategies and planning
policies in order to predict where and how many people will be affected and how human adaptation
strategies can alter the distribution of urban growth, and to assist with the long-term planning pro-
cess for human settlement, hazard prevention, and land use decisions.
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