
Exploring the Design Space of Metadata-Focused File
Management Systems

Richard Watson
University of Southern

Queensland
Toowoomba, Australia

rwatson@usq.edu.au

Stijn Dekeyser
University of Southern

Queensland
Toowoomba, Australia

dekeyser@usq.edu.au

Nehad Albadri
University of Southern

Queensland
Toowoomba, Australia

u1023136@usq.edu.au

ABSTRACT
Operating systems both old and new are reliant on the venerable
hierarchical file system. For some time now, however, attempts
have been made to either define new file systems or to bolt on ap-
plications that offer much improved functionality to attach and use
metadata. This is because researchers have shown that traditional
file systems are not able to meet users’ needs in terms of organ-
ising large numbers of files effectively, and to support expeditious
retrieval of those files when they are needed at a later time.

Numerous proposals for post-hierarchical file management sys-
tems have been described in the literature; researchers focus on dif-
ferent dimensions of such systems in order to solve or reduce iden-
tified limitations. In some cases this leads to significantly different
file system architectures, while in other cases new functionality is
added on top of a traditional system through special purpose user-
space applications. Orthogonally, some proposals focus on tags
while others favour named attribute-value pairs. Still other choices
are, seemingly, made in an ad hoc and often implicit manner.

This paper investigates the different dimensions and associated
choices that participate in the proposal of new approaches and that
affect their ability to improve on current systems. The Cartesian
product of those dimensions and options forms a large design space;
we map some of the existing literature onto that design space and
discuss approaches to evaluate new proposals.

Keywords
File systems, metadata, classification, tags, attributes.

1. INTRODUCTION
Users’ computers systems, mobile and cloud-based as well as desktop-
oriented, contain more files than ever before. Regardless of whether
those files store scientific data generated by increasingly sophisti-
cated instruments and computer models, work-related documents,
or more personal collections of media and artefacts of our digital
life [14, 21], the effect of this growth is that it is becoming pro-
gressively more difficult for users to manage their files. Informally
the key problem can be stated thus: “How can I store file X so that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSW ’17, January 31-February 03, 2017, Geelong, Australia
c© 2017 ACM. ISBN 978-1-4503-4768-6/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3014812.3014833

Use and manage

User Interface

Physical Interface

API

Applications

File systemFiles

Figure 1: Interface relationships

some time in the future I (or someone else) can easily find it?”
The technique of locating files or other text-based objects by

searching for keywords that have been extracted from file content
has become widespread and may even be a dominant access mode
for some users. However it has many problems such as computa-
tional cost, efficacy (ability to actually find the required file), inabil-
ity to handle binary files, and (typically) dependence on relatively
unsophisticated queries.

For these reasons we believe that the task of locating a required
file should be be conducted in terms of file system level metadata
associated with files rather than the file content. We assume that
this file level metadata is deliberately assigned by the file creator
and so will be potentially more useful than the keywords typically
extracted by file indexing systems. (We note that user supplied file
system level metadata may be augmented by metadata extracted
automatically from file content; this would give access to some of
the benefits of file content indexing while retaining especially the
power, speed and universality of file system based metadata inspec-
tion operations.) The structure of file management system meta-
data, and the services provided to manipulate and use that meta-
data, becomes a key contributing factor to the efficacy of any file
locating process.

We use the term “file management system” as a grouping of
both specialised file systems as well as special-purpose applica-
tions, designed to improve on the metadata-related deficiencies of
traditional hierarchical file systems. One such problem is the fun-
damental disconnect between a user’s needs in managing and using
their files and the decisions that file system designers face in devel-
oping a set of file system services. This disconnect arises because
users interact with application programs which in turn rely on file
system services—that is, there is an indirect relationship between
user requirements and file system design. Figure 1 depicts this re-
lationship.

The challenge for designers of systems that manage collections
of files , which this paper addresses, is to determine a set of core ser-

Generic/Standard

File Management

Applications

Special Purpose

File Management

Applications

Stacked(Fuse)

File system

P’ P’ EP’P P

database

db maint

Native extended file system

Native hierarchical file system

Figure 2: Implementation options for File Management Systems

vices, together with associated key physical design elements, that
support users’ requirements by enabling the creation of novel user
interface applications that will advanced file management function-
ality. While user level applications are key to meeting user require-
ments, we do not address their design in detail, though do consider
generic functionality at the user level.

We are mainly interested in services that support user generated
metadata, as distinct from the system metadata such as file size and
timestamps, and auto-generated metadata such as that provided by
content indexing systems or by physical devices. This is based on
the assumption that users will organise metadata to support their
personal view of the files they manipulate rather than use either a
generic file classification system, or one generated by an algorithm.
Metadata that is not directly created or manipulated by users should
naturally still be captured and utilised to support system function-
ality as well as user processes.

The motivation for this paper is built on the problems associated
with traditional hierarchical file systems in terms of satisfactorily
addressing file management and the task of locating a previously
saved file. These are summarised in section 3, after first defining
in section 2 what we mean by a ‘file management system’, and sur-
veying some implementation and performance related issues. The
main contributions of the paper lie in the exploration and evalua-
tion of the design space for metadata structure and services within
alternative file management system designs (sections 4 and 5). In
section 6 we also map the numerous proposed alternatives, none of
which have to date succeeded in supplanting the well-entrenched
HFS model, to the identified design space. We conclude with a
discussion in section 7.

2. IMPLEMENTING FILE MANAGEMENT
SYSTEMS

Users manage files using application that in turn rely on a file
system. We refer to this ecosystem as a file management system
(FMS). Note that file management systems include and possibly
extend the standard file system concept.

Applications fall into two broad categories. There are a set of
well established generic file and directory management tools such
as the ls, mv, and rm Unix command line tools or the equivalent
GUI file manager and browser applications (OSX Finder, Win-
dows Explorer). The ubiquitous file browser windows that pop
up within domain specific applications like word processors and
spreadsheets whenever an ‘open’ or ‘save’ operation is required
also fall into this category. These venerable tools have been aug-
mented more recently by special purpose applications, often related

to file searching, such as OSX Spotlight or the simple but powerful
Unix locate system. Typical of this group, both these applications
make use of an application-specific database rather than file system
data structures.

Adding new metadata-based functionality to a FMS can be achieved
in a number of ways as illustrated in Figure 2. The diagram shows
user applications of the two kinds just described communicating
via an API with the underlying file system. The API annotations
are described below. Current FMSs are shown in the diagram as in-
teracting directly with a HFS using a standard (most likely POSIX-
based [1]) API, denoted by the P annotation.

The following implementation strategies are identified.

1. Use the established strategy of adding new special purpose
applications to address shortcomings of tradition FMSs.

2. Extend the HFS using a stacked implementation. Fuse [11]
is a very common framework for this. Such a system must
use the same (virtual) file system API, which means that
all the standard generic applications are available ‘for free’.
However the semantics of the file system operations may be
significantly different from the HFS-based POSIX standard.
For instance an opendir() path specification could denote a
query in some extended file system. For this reason we label
the API as P’.

New special purpose applications may still be needed in cases
where the generic UI applications are unable to support the
enhanced semantics of the extended file system.

3. A new native file system may be implemented as an alterna-
tive to a stacked file system. This would achieve some mod-
est performance gains, but at the significant cost of having to
provide the physical bit management and IO services that the
HFS already provides in the stacked implementation. Such a
system could provide a truly extended API (labeled E in fig-
ure 2) though it would only be available to special purpose
applications that are targeted at that file system.

The stacked file system seems to be an ideal option for exploring
and exploiting novel file organisation and management. This ap-
proach has modest development cost and performance penalty [22]
and the ability to employ existing applications without any modifi-
cation (if the operating system supports virtual file systems).

Although user space file systems have been shown to perform
well compared to native in-kernel systems under heavy I/O loads
they do suffer correspondingly higher overheads in the presence of

a high volume of metadata operations [22]. This would suggest that
a native file system implementation, while more expensive to im-
plement that a stacked file system, would be a clearly advantageous
option following prototyping, evaluation and eventual acceptance
of an advanced alternative design.

Writing special applications is a poor long term solution. Users
are unable to take advantage of new features via their usual tools,
and the applications are often OS-specific. This lack of universal
applicability slows adoption and development of new standards.

The design considerations presented in this paper are indepen-
dent of a particular implementation. It would be expected that per-
formance would be better in a monolithic kernel-based system but
we contend that performance of metadata operations is not the ma-
jor issue here. Of much greater importance is providing a uniform
(meta)data model and consistent user interfaces that encourage and
empower users to organise their files in natural and useful ways to
facilitate later retrieval.

3. HFS PROBLEMS
Though not the first authors nor the last ones to do so, Seltzer and
Murphy in their aptly titled USENIX paper [26] have argued that
“hierarchical file systems are dead”. Supporting their assertion,
our wider research project focusses on the limitations HFSs have in
terms of capturing and utilising metadata.

Traditional file systems employ a model where files reside in a
tree of directories. As such, HFSs support the creation of a user-
defined classification system. Classification is a natural human ac-
tivity that seeks to manage and understand complexity by recur-
sively grouping classes of entities (e.g. files or plants that share
common properties) into subclasses. As the classification tree is
descended, associated entities have more inherited properties, and
the number of members of the subclass decreases.

In the file system instance, the searcher iteratively descends the
directory (classification) tree, at each step choosing one directory
from the children of the current directory node based on its name
(which should reflect its categorical relationship with its parent and
siblings). Each step reduces the search space until a relatively small
selection of files is presented for selection.

The basic support provided by HFSs to organise files in directo-
ries and facilitating iterative, navigational search is one reason for
their longevity. However, while simple hierarchical directories may
have been sufficient in the past, ever-growing collections of files
mean that HFSs are not able to meet modern users’ needs in terms
of organising and retrieving information. In previous work [2] we
detailed HFS problems in this context. The following is a summary
of these issues.

1. Artificial hierarchies

Generally, the properties of files do not shape a natural sub-
class relationship, resulting in artificially constructed hier-
archies. Consider files associated with university courses
that have properties ‘course code’ and ‘year of offer’. Ei-
ther of the hierarchies shown in Figure 3, year-of-offer and
then course-code within year or vice versa, could justifiably
be used to group course files.

2. Single Classification

In a hierarchy, items can often belong to more than one sub-
tree. Assume that the hypothetical course files introduced
above are organised by year then course. Now imagine that
a file should be included in both courses: in which directory
should this file be placed? We can either select one directory
to place the file (Figure 4 (a) and (b)), keep duplicated copies

courses

2014

CS100

CS200

2015

CS100

CS200

courses

CS100

2014

2014

CS200

2014

2015

Figure 3: Alternative classification hierarchies

(Figure 4 (c)), or keep one copy and place a hard or soft link
to it in the sibling course directory. None of these solutions
are practical and efficient (more details can be found in [2]).

3. Problematic Pruning

This problem is a consequence of the single classification
problem where orienteering through an imperfect classifica-
tion hierarchy leads to users not finding files they are looking
for. So if a user branches the ‘wrong’ way while navigating
through the directory tree they will never find the file.

4. Metadata management

In HFSs, bulk updates of metadata are inefficient. For exam-
ple, if a user wishes to add or remove metadata, usually be-
cause the classification needs to be modified to better reflect
reality, it often requires a sequence of non- trivial directory
create, delete, and rename operations which must be carried
out in the correct order.

5. Native query support

The traditional file system API (e.g. POSIX) has very lim-
ited query ability: either to find a single file given a path (e.g.
stat, open) or to open and read the contents of a single direc-
tory (opendir, readdir, scandir). This limited query capability
supports an orienteering style of search, but does not support
file system wide queries of the kind that are provided by the
special-purpose applications that are layered on top of the file
system.
We argue that a generic, powerful query mechanism will as-
sist users in understanding the existing organisation of their
file system instance and help identify (and hence help rectify)
occurrences of incorrect classification.

6. Unconstrained directory membership

A consistent classification scheme is needed to ensure that
the process of locating a file by orienteering through a file
system directory tree will succeed. Inconsistently classified
files will never be found. While HFSs provide a mechanism
to build classification organisations for files using hierarchi-
cal directories, to ensure a consistent classification scheme
all of the files in each directory must have a common sub-
set of properties that is disjoint from the properties of files in
sibling directories. These propertes are usually indicated or
implied by the appropriate choice of directory name. (The
directory name CS100 indicates all files in that tree are asso-
ciated with the course CS100.) However the HFS has no
means of formally defining directory semantics–properties
that all resident files should posess–much less a mechanism
that requires that all files added to a directory have such prop-
erties.

2015

CS100

git.pdf

...

CS200

...

(a)

2015

CS100

...

CS200

git.pdf

...

(b)

2015

CS100

git.pdf

...

CS200

git.pdf

...

(c)

Figure 4: Multiple classification choices

4. REQUIREMENTS FOR METADATA FILE
SERVICES

Imagine we are designing a new file management system—we have
a completely blank slate—what file system services, exposed by
the API, best support users’ needs in storing and re-finding files?
In this section we venture to identify a minimal but essential set
of generic or abstract services that either create, update, or use file
system metadata. These services are independent of specific meta-
data structures or implementation constraints; implementors must
make design choices that provide this key functionality.

A few metadata services seem to be axiomatic. They allow a user
to create, access, and manage a single file. Operations maintain the
property that every file has a unique set of metadata, so it is always
possible to lookup a file.

Two further groups of services can be identified: query-style read
operations that return a group of files, and advanced metadata ma-
nipulation operations. The need for both of these groups is justified
by the need to classify files in order to effectively manage file meta-
data and to later retrieve files.

Classifying things into categories that share common properties
is a fundamental human activity [27, 13] that supports us in under-
standing the complex world in which we live. Highly refined clas-
sification systems exist in many domains such as the taxonomies of
the biological sciences and the cataloguing systems of library and
information science. These systems are usually hierarchical where
a class of entities is recursively subdivided into disjoint sub-classes
based on the values of attributes.

Organising files (or books or birds) into classes is incredibly use-
ful. When adding a file to a class-aware file system instance, the
class structure can provide a guide to what metadata to assign to
that file. Specifically, an operation that adds a file to a class will
automatically assign all metadata that is common to members of
the class–the user only needs to identify the class and then add a
small amount of unique metadata to distinguish the file from other
class members. When searching for an individual file, class char-
acteristics (i.e. class metadata) can guide the search process.

Traditional taxonomies are single-classification systems1; if an
entity belongs to two distinct classes c1 and c2 then either c1 ⊂ c2

or c2 ⊂ c1. This property is handy when building a library classi-
fication system for physical books as a book can only reside at a
single shelf location, but is limiting because in general many en-

1We note that faceted library classifications systems have been de-
veloped that do support multi-classifaction. Ranganathan’s colon
classifaction system [23] is widely used in Indian libraries.

tities, especially files, have properties that violate this constraint;
they may belong in two classes that are not in the ancestor rela-
tion. The problems that arise from single classification file systems
are explored in detail in [2] together with the solutions offered by
multi-classification systems.

We assume that the file search process will support observed
user patterns, particularly but not exclusively the orienteering ap-
proach [28]. Orienteering as applied to existing file systems is an
incremental approach where the user navigates through class-like
directories at each step reducing (if step is downward) or redefin-
ing (if step is sideways) the set of candidate files. The traditional
directory is not a class because traditional file services expose only
the contents of a directory not the results of recursively traversing
subdirectories.

Required Services.
From the above discussion we posit that a metadata-focused file
management system must support the following services:

1. Create a file together with associated metadata.

2. Identifying files

(a) Lookup a single file using a unique combination of meta-
data values. This is usually not exposed directly, but
used by any service that needs to access an existing file
(say to access or update metadata, or to delete the file).

(b) Query the file system to return a group of files that meet
class membership conditions. The query language must
support relatively complex conditions such as union and
intersection of classes.

3. Modifying files’ metadata

(a) Update an item of metadata for a single file, for in-
stance to change a name or a tag.

(b) Reorganise a selected group of files by systematically
applying possibly complex changes to those files’ meta-
data, thereby potentially reclassifying the files.

A query is closely related to the virtual directory concept [12].
There are many issues and design choices associated with virtual
directories, which we defer to the following section as we consider
them to be outside the ‘minimal’ set of file system services.

The reorganise service is required because of the dynamic nature
of file system classification structures. Unlike scientific taxonomies
and library classification systems that are standardised and rela-
tively static, file system classifications are defined by individuals
or groups of users and are typically unique to the user or domain,
and are constantly evolving to suit organisational needs. As log-
ical classifications change, potentially large groups of files are to
‘move’ between classes, necessitating the existence of operations
that do so efficiently. It is possible that some updates requested by
this service may fail to meet the metadata uniqueness constraint.
Hence the reorganise service is a transaction—either all updates
succeed or none do.

5. DESIGN SPACE DIMENSIONS
Suppose a developer wants to create a new, metadata-focused file
management system that meets the service requirements defined in
the previous section. Such a developer will need to make a number
of key decisions based on overall goals to be met. For the moment
we discount other important considerations such as performance
and efficiency.

In this section we list and briefly discuss a range of dimensions
and associated choices that our developer will need to consider.
While some of these we have diligently derived (as they are not
always explicitly stated) from existing research proposals as well
as proof of concept implementations, others are newly identified
and hence constitute one of this paper’s contributions together with
the careful enumeration and analysis of them all in one place.

Note that we consider only metadata that is managed by the file
system, as opposed to metadata that is present within files (e.g. exif
embedded in jpg images).

5.1 File Metadata

• Kind of metadata

Two possible kinds of metadata exist: tags and name-value
pairs. Tags are untyped and may be represented as atomic,
unlimited length strings. They can be seen as a generalisa-
tion of the file (and directory) names in current HFS imple-
mentations. Attributes, on the other hand, have names that
convey meaning, and values that may be typed. For exam-
ple, duration would expect values of type time.

• Cardinality

For both tags and attribute systems, the cardinality of values
could be either single or multi-valued. Normally a tagging
system will allow multiple tags, lest it defaults to current file
(and directory) names. In contrast, for simplicity attributed
systems may choose to impose single values for each at-
tribute. Note that a multi-valued attribute system can trivially
subsume a tagging system by providing a single multi-valued
“tags” attribute.

• Names and values

Are the values for metadata and the names of attributes man-
aged by the file system? For instance should a tag or attribute
name be defined before it can be used, and should the file sys-
tem support a set of builtin types such as integers and dates
that can be associated with an attribute? Requiring prede-
fined values can reduce incorrect categorisation, and is rel-
atively straightforward to implement, but adds a potentially
significant burden to users.

• Relationships

Does the file system support the many-to-many association
of files to other files or objects in the system? Does it allow
any pair thus associated to additionally have properties? For
example, can we link movie files with music files, and record
at what time point in the movie the music starts? Such func-
tionality is distinct from ordinary group containment (see be-
low) because of the many-to-many requirement.

5.2 Grouping Files

• Existence of Groups

Should the file system implement file container objects, sim-
ilar to the familiar directory? If not, then files live in a flat
structure and can be distinguished only by their own meta-
data values. If files themselves have a sufficiently rich col-
lection of associated metadata (rather than metadata asso-
ciated with groups) then classifying using views (§5.3) and
orienteering-style searching using iteratively refined queries
is feasible, and hence groups may not be needed.

• Group Structure

If groups can be created, can they be nested? This can sup-
port the classical hierarchical directory concept. Alterna-
tively, groups could be organised in a directed acyclic graph
which supports nicely the multi-classification file organisa-
tion.

We observe that file system designers have in the past es-
chewed graphs but provided a symbolic link to simulate a
graph structure. The unidirectional link is problematic to
maintain; we believe that it should be possible to implement
safe and efficient true graph structures.

Support for groups admits the possibility of creating a generic,
predefined hierarchy of groups that may be invaluable to al-
low a number of users to share a classification system.

• Group Metadata

Groups themselves have identifying metadata; some of the
same considerations as with files will be relevant here: are
they tags or attributes, and single or multi-valued? To pro-
vide end-users with consistency, it is likely that the choices
made for files will be duplicated for groups; however, that is
not a necessity.

Importantly, does the metadata associated with groups also
apply to their members files? In other words, do files ex-
plicitly or implicitly inherit properties from the group they
belong to? This question becomes more complex when con-
sidering recursive membership.

• Membership

Do files belong to exactly one group, or potentially to many?
On one level, the question here is whether a file in a direc-
tory is a member of its direct parent group only, or whether
the system also considers it to be a member of that group’s
ancestor groups. In other words, if a user wants to see all file
members for a group, is that membership calculated recur-
sively, or not? The point is important given the requirement
of supporting classification; in traditional (e.g. biological)
classes, membership is recursive. In contrast, that concept
does not carry over well to existing HFS implementations.

On a second level, the question refers to whether or not mem-
bership of groups anywhere in the hierarchy (or in the di-
rected acyclic graph) is disjoint or potentially overlapping.
Seen from the perspective of an individual file, the question
is whether that file can be a member of more than one, non-
hierarchically related group.

Plurality of membership is but one way to provide multi-
classification in a file system; a combination of specific choices
for some of the previous (and following) dimensions may
also provide that desirable functionality.

5.3 Views

• Existence

In section 4 we have argued that querying is essential for a
metadata-focused file system. However, is such querying to
be performed on a purely ad hoc basis, or can queries be
“saved” to essentially become views? Do stored views have
names, or only a query definition?

• Structure

Can users organise stored views in a structured form, or is a
hierarchy of views derived automatically based on the files

that it contains? If the latter, the expense for a system to au-
tomatically derive and maintain such a hierarchy will depend
strongly on the power of the query language; in some cases
it will be sufficient to check only the query definition, in oth-
ers a large part of the file system instance may need to be
checked periodically.

To what extent can the file system treat views as groups (re-
ferred to as virtual directories in some systems)? Group-like
behaviour supports user level applications that enable search
by orienteering, but has significant consequences if views are
to be updatable (see below).

• Dynamic vs Materialised

Are views run dynamically when a user accesses them, or
is the file membership of views materialised? The latter can
provide substantial efficiencies at query time, but will incur
a ‘view maintenance’ cost when files are added, removed or
updated in the underlying file system.

• Updatability

A critical service required for metadata-focused file systems
is reorganising an existing classification. A highly power-
ful approach is to allow views to be updatable: a set of files
“moved” to a view automatically obtain the metadata neces-
sary for the files to be in the result of the view’s query [10].
Such functionality, while exceedingly powerful, will be nec-
essarily limited in scope, as there will be cases where the
view is theoretically not updatable, and there will be other
cases where the view may be updatable, but the files moved
into it cannot obtain the required metadata (e.g. when that
requires a change in value of a system-defined attribute such
as file type).

5.4 Behaviour (Event Handling)
In addition to structural issues, some researchers [10, 12] have

proposed active components; the file system may run code when
an event is fired (e.g. file creation or update). In other words, be-
haviour is associated with files and or groups.

• File Transducers

A transducer is a program that extracts metadata from files
when they are created or modified. A keyword indexer is one
example. A key question is whether or not transducers are
associated with file types, or with files in general.

• Group Transducers

Does the file system allow users to place files in any group
they choose, or are there membership conditions? For exam-
ple, in a tagging system that has a group tagged as “Movies”:
can a user drop a text file in it? One could take the posi-
tion that a tag is not a strict property and the user should
be allowed to perform the operation. In that view, the tag
“Movies” has different semantics than an attribute file-type
with value “avi”. In general, a group transducer can enforce
constraints on the files that are members of the group.

• View Transducers

This is similar to a group transducer and manages the view
updatability process described above.

• Relationship Transducers

Analogous to the other transducers, such a program would
for example be able to set properties of the relationship, or
enforce conditions on its members.

• Object Oriented Classes

The discussion of behaviour linked with file types, groups,
and relationships, leads to the question of whether the file
system should become an object store [24], and the objects
are instantiations of object-oriented classes while transducers
are class methods. Even discounting behaviour, a combina-
tion of choices for the other dimensions described above may
imply that a given file system architecture may be more ac-
curately described as an object store. Groups and Views can
then be modelled as classes.

5.5 Other dimensions
While some are only tangentially related to metadata issues, there

are other considerations in terms of design choices that are still dis-
tinct from important objective requirements such as efficiency.

• Add-on vs API integration

Some of the services identified in section 4 are implemented
in some solutions as add-ons above a traditional HFS. As ar-
gued in section 2, this has substantial advantages (e.g. cost,
file I/O and storage efficiency) but also important drawbacks.
Most importantly, add-ons do not make the new functionality
uniformly and consistently available to other user-space ap-
plications. This means that the effort of managing metadata
and creating classifications may not deliver the expected pay-
back, thus reducing the time users may choose to invest in the
add-on.

• Backward Compatibility

POSIX-type file systems are so entrenched in computing that
users may only be willing to take on new systems that are
backward compatible. Systems that are very different and
perhaps much more powerful will not necessarily be adopted
if they require users to undergo a paradigm shift.

• Interoperability

Any new system will need to coexist with traditional HFS
implementations. This requires an ability to import and ex-
port files, while maintaining as much metadata as possible.
That may mean that a tool is needed to semantically map
concepts from one model to another; such tools could for
instance make use of RDF [18].

• Access Control

The presence of richer metadata structures and even exe-
cutable objects as part of a file system raises questions of
access control [15]. For instance, who can edit file system
metadata values? Is there a distinction between (a) system-
controlled, (b) automated/indexed, and (c) user-defined meta-
data? How should file content permissions relate to file meta-
data permissions? Can users install their own event handlers
to customise system behaviour? Can users define attribute
names and value types?

Prohibiting users from modifying file metadata need not vi-
olate the requirement of allowing user-created classification;
this could be accomplished by supporting suitably expressive
groups or views.

5.6 Examples
At this point we note that the number of dimensions listed above,
with the number of choices for each of them, creates a multidimen-
sional design space that can accommodate a multitude of possible
file system architectures.

Structure

Attributes

Membership1 (anonymous) N (named)
Values Values

1 (name) N (tags) 1 N

Flat Folksonomy[29] 1 (disjoint)

Tree
HFS1 TreeTags[2], TagTree[30] 1 (disjoint)
HFS2 FindFS[9] SFS[12] LiFS[4], SemFS[16] N

Graph MDFS[10] 1 (disjoint)
HFS3 TagFS[25] Truenames[20], HFS4 QMDS[5], ROARS[8] N

Kinds of Hierarchical File System
1 without file or directory links 3 with file links and directory links
2 with file links 4 with file links, directory links and extended attributes

Table 1: Design space populated with existing systems and proposals.

As one relatively extreme but nevertheless didactic example, con-
sider a file system that supports files having attribute-value paired,
multi-valued metadata that is either system-generated (e.g. times-
tamp, file type, user, . . .) or automatically obtained through an
indexing file transducer (e.g. keywords, document structure, . . .).
Suppose that it does not allow end users to provide other meta-
data for the files and also does not allow users to create groups.
In other words, the transducer is essentially sophisticated enough
to generate a set of name-replacing metadata that delivers unique
as well as meaningful file identifiability. The file system does al-
low creating materialised views, however, that are defined through
conjunctive queries. Those materialised views are stored as user-
defined queries (which supports user-initiated classification) and
may have a user-allocated name to provide an additional method
for finding files. The views form a hierarchy that is derived au-
tomatically through query containment checking (users are unable
to change the hierarchy of the views). Given the limited power of
the query language, the algorithm need only check the query defi-
nitions at the time the view is created, not the file system instance
which may change rapidly.

Clearly such a system is significantly different from existing sys-
tems, and it is also distinct from other research proposals that have
made alternate choices for the various dimensions. Its efficacy in
terms of usefulness, efficiency, easy of use, etc would need to be
determined; we will explore approaches for doing so in section 7.

6. MAPPING EXISTING WORK
An interesting exercise made possible by the identification of the
various design space dimensions and their possible values, is the
categorisation of existing systems and research proposals in the
multidimensional space created by these dimensions.

For example, the traditional hierarchical file system can be eas-
ily located in the design space. Proposals that have attempted to
replace hierarchical directory structures altogether [3, 5, 7, 10, 12,
17, 19, 24, 26], in favour of relying on rich collections of metadata,
can also be mapped in terms of their particular choices.

Similarly we can locate approaches that have built on existing
HFSs by either improving navigation to a directory [6], enhancing
use of symbolic links [9], or utilising tags while explicitly introduc-
ing a query language [2].

For clarity and to reduce the sparseness of the multidimensional
space when populated with citable systems, we focus on a subset
of dimensions, those that relate to file metadata and group struc-
ture, and project away the others. The result is Table 1. There are
four entries for HFS that reflect particularly the presence of linking
features. The presence of links between directories forms a graph

MDFS ROARS

TrueNames

HFS

TagTree

TagFS

FindFS

Folksonomies

3 4

QMDS

1

SFS
LiFS

SemFS

5

2

TreeTags

HFS

3,4

1,2

Groups: 1 Single classification
2 Multi-classification, no query support
3 Metadata managed by system
4 No ability for multi-file metadata updates
5 Non-traditional data management systems

Figure 5: Classifying systems

structure but the common symbolic link implementation (unlike the
hard link) is easily broken and such implementations do not reliably
support a graph structure.

The table shows group parameters vertically and file metadata
parameters horizontally. The group structure values can be flat,
tree, or graph, and the membership column lists the number of
groups to which a file may belong (which must be one in the case
of a flat, ungrouped structure). Attributes can be either tags (anony-
mous) or named attributes. Either can be single or multi-valued.

The table discounts, among others, the “relationships” dimen-
sion; however, several proposals (LIFS [3, 4], MDFS [10], and
QMDS [5]) are focused precisely on that dimension.

We place existing proposals in the cells of the table shown; some
cells contain more than one system—these systems are still quite
distinct even though they seemingly occupy the same spot in the
design space. This is an artefact of projecting only some dimen-
sions to improve clarity. For example, TreeTags [2] is functionally
distinct from TagTree [30] although their names indicate common
design choices.

It is clear that there has been significant attention paid to tagging
(table column two) and to graph-based variants (bottom right). The
upper right quadrant of the table, that combines structural simplic-
ity with attributed data, is interestingly empty; in the example given
in section 5.6 we have outlined a possible system to fill the gap.

It is instructive to review the systems shown in Table 1 with re-
spect to the problems identified (section 3) and required metadata

functionality (section 4). In Figure 5 we have grouped the systems
into intersecting sets according to some key requirements: mainly
their ability to form classification structures, and their metadata
management abilities.

Interestingly, the overwhelming majority (12/14) of systems sup-
port multi-classification, which confirms the relevance of this re-
quirement. However, about half of the multi-classification file sys-
tems lack an inbuilt query system that facilitates advanced use of
such classifications. Note that multi-classification systems with
query support appear on the diagram as systems not included in
sets one or two.

In some systems (group three) metadata is managed to some ex-
tent by the file system, compared to systems where metadata ma-
nipulation is under complete user control. The fourth group con-
tains systems that are only able to update information for one file at
a time; that is, all metadata update operations are file-based (rather
than updates at directory or collection level).

Most systems are based on a familiar underlying file system model.
A few, members of the fifth group, use novel non-traditional ap-
proaches; some of these may be more correctly seen as data or
information management systems. One system (TreTags) fits none
of these groupings as it is a multi-classification system that is based
on a HFS model but also supports queries and multi file update of
user managed metada.

There is no strong correspondance between the classification seen
in the data model design space (Table 1) and the functionality-based
classification of Figure 5. We do see that most of the tag-based
systems (second column of table) belong to the intersection of the
multi-classification set and the file-at-a-time metadata update set.
So while popular tagging systems have the power to support mul-
tiple classification schemes, they lack the metadata management
operations to facilitate easy re-classification. Not surprisingly, the
final ‘advanced’ group lives in the bottom right part of the design
space as these systems have the richest matadata structures.

7. DISCUSSION
Numerous design options were identified in section 5. Implemen-
tation of a new file management system design requires choice
between design alternatives, and selection of optional design ele-
ments. We propose some high level criteria that can be used to
guide these choices. We identify some key invariant properties that
a file management system must possess, as well as some desirable
criteria. The influence of these criteria on design choice is dis-
cussed.

The fundamental services identified in section 4 are justified by
users’ need to build a file management system instance that classi-
fies files to support later retrieval. We believe that multi-classification
support is an invariant property of any advanced file management
system. The second fundamental design criterion is simplicity: no
system should be more complex than needed to meet requirements.
This second criterion supports users, as well as system implemen-
tors, in building simple and clear mental models of the system.

Support for multi-classification, advanced query, and powerful
file metadata reorganisation requires the following design elements.
Structurally, either a graph of groups with a single name, or a hi-
erarchy of groups with multiple tags supports multiple classifica-
tion. An alternative is a flat groupless organisation where files have
multiple attributed metadata. (The simpler flat tag organisation or
single-named group hierarchy are insufficient). If the flat attributed
metadata model is adopted, then the system would have to sup-
port views so that classification structures can be described (using
a query) and used in API operations.

As already noted, there is no evidence of the application of a

purely flat model, although both MDFS [10] and WinFS [24] sub-
sume such a model. This is perhaps because of the complexity
of managing views/virtual directories that would be mandatory in
supporting file classification; the cited systems arguably suffered
from precisely that complexity. Enhanced HFS models that meet
the requirements defined in section 4 can deliver better file classi-
fication without the added complexity of views. However the flat
approach should not be discounted. Notwithstanding the imple-
mentation challenges, it offers one huge advantage: the file classi-
fication structure is defined as a set of queries that are much more
easily and cheaply updated than physical directory membership;
this facilitates large scale reorganisation.

We therefore put forward two conjectures: Firstly, a system where
most metadata is allocated to richly structured groups (not files) is
equivalent, in terms of classification ability, to a flat system where
files themselves are associated with multiple attributed metadata
and users can create views. Secondly, the latter system (while com-
plex to implement) is superior to the former in terms of reorganisa-
tion capability.

There are other desirable evaluation criteria, but their importance
is less universal and perhaps driven more by designers’ personal
views, experience and beliefs or by consideration of the character-
istics of the users and their file system usage patterns.

For instance, it may be argued that a user should be prohibited
from classifying a file incorrectly (equivalent to placing a file in
the incorrect directory by mistake–see section 3, problem 6). This
could be supported by suitable event handlers, though at a signifi-
cant increase in complexity both of implementation and configura-
tion. It probably also dictates file system management of metadata
names and values (see section 5.1).

Another possibly desirable criterion is the support for defining
classification data structures that are independent of the presence
of files. The traditional directory hierarchy is such an example. If
a flat non-grouped structure is adopted the classifications can be
defined using views, but this requires the existence of a file system
maintained dictionary of attribute names with which to construct
valid view definitions.

Integrating file system generated (e.g. timestamps), user assigned,
and third party (e.g. content indexes) metadata such that it can be
queried and managed uniformly is clearly desirable, but its impor-
tance relative to the complexity of the task is unclear.

Backward compatibility, the ability of existing code to execute
unchanged when using a new file system, is clearly an important
criterion, and most designs should be able to achieve this by seri-
alisation of the equivalent “file path” concept. However advanced
file system APIs will include new functionality such that applica-
tions written to use this capability will no longer be compatible
with (say) existing POSIX compliant file systems. This should not
be seen as a limitation.

Advanced file system metadata functionality is most likely to be
accessed through user applications (Figure 1) like file browsers and
file managers as users organise and search for files. The absence
of effective and sophisticated (especially graphical) applications
would severely hamper the use of file system (API) functionality.
Perhaps it behooves us as file system implementors to also cre-
ate portable prototype versions of common Open/Save File dialog
boxes that bring enhanced user interface functionality to all user
applications. These could be implemented in the major OS and
GUI toolkit combinations.

8. CONCLUSION AND FUTURE WORK
This paper examines design options for the implementation of meta-
data structures in post-hierarchical file systems. To place these

in context, and to aid in their evaluation, we have provided an
overview of implementation methods and described key limitations
of hierarchical file systems.

The main work in this paper is to detail the dimensions of the
design space and determine a set of core metadata file management
system services. In addition, we have mapped existing research
into the design space. Two overall themes have emerged in this
work. First and foremost is the vital importance of classification
schemes in every aspect of file system metadata definition and man-
agement. The other relates to the disconnect between file systems
UIs and APIs; enhanced functionality available from a beautifully
designed new file system is useless unless it can be exploited by
users. This is an implementation problem: how can advanced file
system functionality, exposed via its API, be exploited by users
who interact with higher level and possibly generic user interface
programs? Another theme additionally emerges, concerning the
extent to which a file system either restricts or aids user actions to
improve classification; managing attribute name spaces and event
handling fall into this class of functionality.

There are different directions that can complete and extend the
current work. For example, investigation of unexplored areas of the
design space could discover potentially useful designs. The pro-
posed flat attributed model with views, introduced in section 5.6, is
one such possibility.

Another direction for future work involves developing formal
criteria by which the utility of different metadata file system designs
can be evaluated. This could be used either directly to evaluate a
design, or practically to inform the creation of a “metadata bench-
mark” test suite that could be used to measure the performance of
file system prototypes on key metadata operations.

Finally the two conjectures mentioned in the section 7 could
be investigated; this would yield insight into the relative merits of
structured and unstructured metadata models.

9. REFERENCES
[1] IEEE standard for information technology - Portable

Operating System Interface (POSIX) base definitions. IEEE
Std 1003.1, 2004 Edition. The Open Group Technical
Standard Base Specifications, Issue 6., 2004.

[2] N. Albadri, R. Watson, and S. Dekeyser. TreeTags: bringing
tags to the hierarchical file system. In Proceedings of the
Australasian Computer Science Week Multiconference,
Canberra, Australia, February 2-5, page 21, 2016.

[3] A. Ames, N. Bobb, S. A. Brandt, A. Hiatt, C. Maltzahn, E. L.
Miller, A. Neeman, and D. Tuteja. Richer file system
metadata using links and attributes. In Proceedings of the
22nd IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 49–60. IEEE, 2005.

[4] S. Ames, N. Bobb, K. M. Greenan, O. S. Hofmann, M. W.
Storer, C. Maltzahn, E. L. Miller, and S. A. Brandt. LiFS: An
attribute-rich file system for storage class memories. In
Proceedings of the 23rd IEEE/14th NASA Goddard
Conference on Mass Storage Systems and Technologies,
2006.

[5] S. Ames, M. Gokhale, and C. Maltzahn. QMDS: a file
system metadata management service supporting a graph
data model-based query language. International Journal of
Parallel, Emergent and Distributed Systems, pages 159–183,
2013.

[6] J. Amoson and T. Lundqvist. A light-weight non-hierarchical
file system navigation extension. In Seventh International
Workshop on Plan 9, IWP9. November 14th–16th, Bell Labs
Ireland, pages 11–13, 2012.

[7] D. Barreau and B. A. Nardi. Finding and reminding: file
organization from the desktop. ACM SigChi Bulletin,
27(3):39–43, 1995.

[8] H. Bui, P. Bui, P. Flynn, and D. Thain. Roars: A scalable
repository for data intensive scientific computing. In
Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pages
766–775, New York, NY, USA, 2010. ACM.

[9] J. Chou. FindFS: adding tag-based views to a hierarchical
filesystem. Master’s thesis, University of British Columbia,
2015.

[10] S. Dekeyser, R. Watson, and L. Motrøn. A model, schema,
and interface for metadata file systems. In Proceedings of the
thirty-first Australasian conference on Computer
science-Volume 74, pages 17–26. Australian Computer
Society, Inc., 2008.

[11] fuse. http://fuse.sourceforge.net/, 2014. [Online; accessed
April-2014].

[12] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,
Jr. Semantic file systems. In Proceedings of the thirteenth
ACM symposium on Operating systems principles, SOSP
’91, pages 16–25, New York, NY, USA, 1991. ACM.

[13] R. J. Glushko, editor. The Discipline of Organising. MIT
Press, Cambridge, MA, 2013.

[14] P. Lyman. How much information? http://www. sims.
berkeley. edu/research/projects/how-much-info-2003/, 2003.

[15] S. A. Moffatt. Access control in semantic information
systems. Master’s thesis, University of Southern Queensland,
2010.

[16] P. Mohan, V. S. Raghuraman, and A. Siromoney. Semantic
file retrieval in file systems using virtual directories. In the
Poster Session of the 13th Annual IEEE International
Conference on High Performance Computing (HiPC),
Bangalore, India, 2006.

[17] B.-H. Ngo, C. Bac, and F. Silber-Chaussumier. Integrating
ontology into semantic file systems. In Huitièmes Journées
Doctorales en Informatique et Réseaux (JDIR’07), pages
139–142, 2007.

[18] L. Octalina. Interoperability of metadata in file systems.
Master’s thesis, University of Southern Queensland, 2008.

[19] Y. Padioleau, B. Sigonneau, and O. Ridoux. LISFS: A
logical information system as a file system. In Proceedings
of the 28th international conference on Software
Engineering, pages 803–806. ACM, 2006.

[20] A. Parker-Wood, D. D. E. Long, E. Miller, P. Rigaux, and
A. Isaacson. A file by any other name: Managing file names
with metadata. In Proceedings of International Conference
on Systems and Storage, SYSTOR 2014, pages 3:1–3:11,
New York, NY, USA, 2014. ACM.

[21] Z. P. Perišić. Too much information. Review of the National
Center for Digitization, pages 68–70, 2007.

[22] A. Rajgarhia and A. Gehani. Performance and extension of
user space file systems. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages
206–213, New York, NY, USA, 2010. ACM.

[23] S. R. Ranganathan. Colon Classification. Ess Ess
Publications, 6th. edition, 2006.

[24] T. Rizzo. WinFS 101: Introducing the new windows file
system. http://archive.today/ZfniG, 2004. [Online; accessed
February-2014].

[25] S. Schenk, O. Görlitz, and S. Staab. TagFS: Bringing

semantic metadata to the filesystem. In Proceedings of the
6th International Conference on Knowledge Management
(I-KNOW 06), 2006.

[26] M. Seltzer and N. Murphy. Hierarchical file systems are
dead. In Proceedings of the 12th conference on Hot topics in
operating systems. USENIX Association, 2009.

[27] A. G. Taylor and D. N. Joudrey. The organisation of
information. Libraries Unlimited, Westport, CT, 3rd. edition,
2009.

[28] J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The
perfect search engine is not enough: a study of orienteering
behavior in directed search. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM,
2004.

[29] C. Trattner, C. Körner, and D. Helic. Enhancing the
navigability of social tagging systems with tag taxonomies.
In Proceedings of the 11th International Conference on
Knowledge Management and Knowledge Technologies,
i-KNOW ’11, pages 18:1–18:8, New York, NY, USA, 2011.
ACM.

[30] K. Voit, K. Andrews, and W. Slany. TagTree: Storing and
re-finding files using tags. In Information Quality in
e-Health. Springer, 2011.

