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A B S T R A C T   

Identifying the biophysical factors that affect the performance of irrigated crops in semi-arid conditions is pivotal 
to the success of profitable and sustainable agriculture under variable climate conditions. In this study, soil 
physical and chemical variables and plots characteristics were used through linear mixed and random forest- 
based modeling to evaluate the determinants of actual evapotranspiration (ETa) and crop water productivity 
(CWP) in rice in the Kou Valley irrigated scheme in Burkina Faso. Multi-temporal Landsat images were used 
within the Python module for the Surface Energy Balance Algorithm for Land model to calculate rice ETa and 
CWP during the dry seasons of 2013 and 2014. Results showed noticeable spatial variations in PySEBAL-derived 
ETa and CWP in farmers’ fields during the study period. The distance between plot and irrigation scheme inlet 
(DPSI), plot elevation, sand and silt contents, soil total nitrogen, soil extractable potassium and zinc were the main 
factors affecting variabilities in ETa and CWP in the farmers’ fields, with DPSI being the top explanatory variable. 
There was generally a positive association, up to a given threshold, between ETa and DPSI, sand and silt contents 
and soil extractable zinc. For CWP the association patterns for the top six predictors were all non-monotonic; that 
is a mix of increasing and decreasing associations of a given predictor to either an increase or a decrease in CWP. 
Our results indicate that improving irrigated rice performance in the Kou Valley irrigation scheme would require 
growing more rice at lower altitudes (e.g. < 300 m above sea level) and closer to the scheme inlet, in conjunction 
with a good management of nutrients such as nitrogen and potassium through fertilization.   

1. Introduction 

Worldwide, more than 70% of the global freshwater resources are 
used for agricultural production (UNDESAPD, 2014; UN-Water, 2018). 
In 2018, over 338.7 million ha of agricultural land areas were equipped 
with irrigation infrastructures in the world, and 15.9 million ha in Africa 
(FAO, 2020). In most of the countries in Sub-Sahara Africa (SSA), 
especially those located in the Sahelian zone, the increasing year-to-year 
rainfall variability (Lebel and Ali, 2009; Paturel et al., 2010), coupled 
with rapid socioeconomic growth and increasing demand of water for 
non-agricultural purposes (e.g. urbanization, industrialization), has put 
substantial pressure on available water for irrigation, thereby worsening 
water scarcity-related issues in those regions. In countries where 

agricultural production is predominantly rainfed and farmers are typi-
cally subsistence farmers, the recourse to irrigation is crucial to face the 
adverse effects of rainfall variability and maintain satisfactory yield 
levels over years to ensure farm profitability and improve farmers’ 
livelihoods. Furthermore, increasing water use efficiency through 
improved crop water productivity has gained attention over the past 
years, as emphasized by the United Nations Sustainable Development 
Goals (SDGs) SGD2.3 and SGD6.4 which refer to the substantial increase 
in agricultural productivity and water use efficiency by 2030 (Anon, 
2015; https://sdgs.un.org/goals). Thus, besides the good knowledge of 
water available for irrigation over time and of the proportion of irrigated 
land areas, implementing relevant policies to improve agricultural irri-
gation water management and achieve the sustainable management of 
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irrigated land areas requires a good diagnostic of irrigation performance 
of these areas and a clear characterization of the environmental factors 
affecting the performance of irrigated schemes (Bastiaanssen and Bos, 
1999; Bos et al., 2005). 

Various approaches including field campaigns and surveys, remote 
sensing (RS)-based methods, are being applied to characterize the per-
formance of irrigated areas temporally and spatially, from field to na-
tional scales. Field campaigns and surveys are typically costly, labor- 
intensive, and time-consuming when dealing with large land areas. On 
the other hand, RS-based methods can be cost-effective and less time- 
consuming as remotely sensed data used for assessing the irrigation 
performance of irrigation schemes are most often readily available and 
provide continual spatial coverage at frequent time intervals across 
varying spatial scales (Bastiaanssen and Bos, 1999; Blatchford et al., 
2019). Using remotely sensed data also enables the integration of such 
information with other sources of spatial data (Sheffield and 
Morse-McNabb, 2015). RS-based approaches have been successfully 
applied to benchmarking irrigation systems and evaluating various 
irrigation performance indicators (e.g. equity, adequacy, reliability, 
productivity) under a variety of climatic conditions and locations 
worldwide (e.g. Zwart and Bastiaanssen, 2007; Ahmad et al., 2009; 
Zwart and Leclert, 2010; Kharrou et al., 2013; Sawadogo et al., 2020b). 
For example, Zwart and Bastiaanssen (2007) quantified the spatial 
variation of evapotranspiration (ETa), crop yield, and crop water pro-
ductivity (CWP) in irrigated wheat systems in different countries 
including Pakistan, China, Egypt, India, the Netherlands, Mexico, and 
the U.S.A., using the Surface Energy Balance Algorithm for Land (SEBAL; 
Bastiaanssen and Ali, 2003; Bastiaanssen et al., 2005) and satellite im-
ages from the National Oceanic and Atmospheric 
Administration-Advanced Very High Resolution Radiometer 
(NOAA-AVHRR) and Landsat satellite sensors. Kharrou et al. (2013) 
investigated the variability in irrigation performance of an irrigated 
scheme in central Morocco, consisting mainly of wheat fields and olive 
orchards, using RS satellite-derived indicators (i.e. relative irrigation 
supply, depleted fraction, relative evapotranspiration, and the coeffi-
cient of variation of crop evapotranspiration). Recently, Sawadogo et al. 
(2020b) investigated the irrigation performance of the Kou Valley irri-
gation scheme (KVIS), Burkina Faso, using the python module for SEBAL 
(PySEBAL) and Landsat-7 ETM+ and Landsat-8 Operational Land 
Imager (OLI) / Thermal Infrared Sensor (TIRS) satellite images. The 
KVIS is a 1200-ha irrigation scheme characterized by a diversity of 
crops, including cereals, tubers, and vegetables (DRASA-Ouest, 2014). 
The authors found a gradient of spatially varying relative evapotrans-
piration across the KVIS, resulting in four main crop areas according to 
the degree of water stress and associated variable crop water produc-
tivity for rice, sweet potato and maize (Sawadogo et al., 2020b). The 
authors suggested that such variability can be explained by various 
factors including the number of upstream water users and soil types and 
properties (Sawadogo et al., 2020b). 

The variation of irrigation performance across a given irrigation 
scheme can be attributed to several factors including rainfall variability, 
soil physical properties, soil fertility, topography, and crop management 
practices (Bastiaanssen and Steduto, 2017; Foley et al., 2020). This study 
builds upon Sawadogo et al. (2020b) and aims at investigating plot 
characteristics and soil physicochemical properties affecting irrigation 
performance in rice cropping across the KVIS, using RS-derived data and 
irrigation performance indicators. In countries like Burkina Faso where 
reliable and readily available long-term observed data of soil properties 
are limited, such RS-derived data hold the potential for addressing such 
research questions. The use of satellite RS data to obtain spatial and 
multitemporal soil properties data has been extensively documented in 
the literature (e.g. Chang and Islam, 2000; Ge et al., 2011; Forkuor et al., 
2017; Fontanet et al., 2018; Yuzugullu et al., 2020). Satellite-derived 
soil data have been used within traditional (e.g. generalized linear and 
logistic models) and machine learning (e.g. artificial neural networks, 
random forest (RF), boosted regression tree-based models) modeling 

frameworks for various purposes in agriculture including land use 
suitability (e.g. Laborte et al., 2012; Akpoti et al., 2020; Akpoti et al., 
2022), assessment of irrigation status according to crop type (e.g. 
Mohamed et al., 2019), and the assessment of drought predictors in 
inland valley rice-based production systems (e.g. Dossou-Yovo et al., 
2019). In this study, linear mixed and RF-based models were employed 
to assess the main soil physical and chemical variables and plot char-
acteristics (i.e. distance to the inlet scheme and elevation) that explain 
the variabilities in ETa and CWP in rice (Oryza glaberrima) cultivation 
across the KVIS during the dry season production periods in 2013 and 
2014. This research contributes to improved management of irrigation 
water as supported by satellite remote sensing. It aims at identifying the 
main soil physical and chemical properties and plot attributes affecting 
the spatial variation of irrigation performance across the KVIS. Such 
identification could serve as basis for implementing strategies for a 
better management of the spatial constraints of crop production in 
irrigation schemes in Burkina Faso and regions with similar environ-
mental conditions. 

2. Materials and methods 

2.1. Study area 

The Kou Valley irrigation scheme is a river-diversion irrigation 
scheme divided into eight blocks (Fig. 1), which is located in the Kou 
watershed, a relatively water-rich watershed in southwest Burkina Faso 
(Wellens et al., 2013). With alternate rainy (June to September) and dry 
(October to May) seasons, the Kou watershed is characterized by a 
sub-humid climate (Wellens et al., 2004; Traoré, 2012), with annual 
rainfall varying between 900 mm and 1100 mm and potential evapo-
transpiration up to 2000 mm on average (Dembélé et al., 2012; Traoré, 
2012). The monthly minimum and maximum temperatures are on 
average 18 ◦C and 37 ◦C, respectively; and the relative humidity ranges 
from 20% to 80% annually (Traoré, 2012). The KVIS diverts water from 
the Kou river into its irrigation canals at an average flow rate of 3.5 m3 

s-1 and 1.4 m3 s-1 during the rainy and dry seasons, respectively (Wellens 
et al., 2013). 

Six dominant soil types are found across the KVIS: clay, clay loam, 
sandy clay, sandy clay loam, loam, and sandy loam (Dembélé et al., 
2012). Plot size in the KVIS varies between 0.2 ha and 1.5 ha. Irrigation 
water is typically supplied through the basin system, with the critical 
period of irrigation spanning from January to April. Rice nursery most 
often starts in December followed by transplantation in January. The 
growth cycle varies between 90 and 120 days, with harvest occurring in 
May. During the study period (2013 and 2014) New Rice for Africa 
(NERICA) cultivars were sown across the KVIS by farmers, with the areas 
sown being 452 ha and 317 ha in 2013 and 2014, respectively (Nitcheu 
et al., 2014). Potential paddy yields for rice cultivars sown during the 
study period ranged from 5.0 to 7.0 t ha-1 (Nitcheu et al., 2014). 

2.2. Data 

2.2.1. Biophysical predictors data 
Various soil physicochemical variables, sourced from the Africa Soil 

Information Service (AfSIS; Hengl et al., 2015) and the Africa Soil Pro-
files database compiled for AfSIS (ISRIC, 2014), were used as potential 
explanatory variables in this study. There were: depth to bedrock (DtB), 
bulk density (BLD), clay content (CL), silt content (SL), sand content 
(SN), soil organic carbon (SOC), available water capacity (AWC), po-
tential of hydrogen (pH), cation exchange capacity (CEC), total nitrogen 
(N), and extractable calcium (Ca), iron (Fe), magnesium (Mg), phos-
phorus (P), potassium (K), and zinc (Zn). Except for the depth to the 
bedrock, soil physicochemical properties were extracted for the topsoil 
layer of 30 cm due to the shallow rooting depth of rice plants. Soil 
physicochemical variables from the AfSIS and the Africa Soil Profiles 
database compiled for AfSIS represent an average status of soil 
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properties at 250-m spatial resolution, encompassing the 1960–2016 
period (Hengl et al., 2015, 2017). Such soil properties data have proven 
effective in understanding the sources of variation in several crop fields, 
including rice, in SSA (Djagba et al., 2018; Dossou-Yovo et al., 2019; 
Akpoti et al., 2020). Further information on the methodology of soil data 
compilation and assessment of soil nutrient maps in the AfSIS can be 
found in Leenaars et al. (2014), Hengl et al. (2015, 2017). 

Two additional variables related to each of the rice plots were 
included in the analysis: the plot’s elevation and the distance between 
the plot and the scheme inlet (DPSI). Plot elevations were extracted from 
the 30-m spatial resolution digital elevation model, sourced from the U. 
S. National Aeronautics and Space Administration (NASA)’s Shuttle 
Radar Topography Mission (Farr et al., 2007). DPSI was determined as 
the sum of distances between the centroid of each rice plot and the 
nearest secondary canal inlet, and between that secondary canal inlet 
and the main scheme inlet of the KVIS, using the near distance tool from 
the ArcGIS software. 

2.2.2. PySEBAL-derived actual evapotranspiration and crop water 
productivity 

Multi-temporal clear-sky satellite images from Landsat-7 ETM+ and 
Landsat-8 OLI/TIRS, retrieved from the website https://earthexplorer. 
usgs.gov/, and spanning the study period were used within PySEBAL to 
estimate ETa and CWP for rice at a 30-m spatial resolution. Additional 
input data in PySEBAL included hourly and daily weather data (average 
air temperature, wind speed, relative humidity, and solar radiation) and 
digital elevation model data. ETa values were derived as residuals of the 
surface energy balance. CWP was determined as the ratio between yield 
and ETa, both estimated using PySEBAL. Rice yield was estimated as 
follows: 

Yield =
Biomass × HI

1 − Moist
(1)  

where Biomass is the crop biomass estimated using PySEBAL (kg ha-1); 
HI refers to the harvest index (0.45 in this study); and Moist is the 
moisture content of the grain at harvest (17% in this study). 

Biomass values in PySEBAL are estimated as a function of the fraction 
of absorbed photosynthetically active radiation, and light use efficiency 
(Bastiaanssen and Ali, 2003). The value for HI in this study was selected 
based on reported values in the literature (Steduto et al., 2012); Moist 
value was from the average moisture contents observed at the KVIS 
(Nitcheu et al., 2014). A full description of the calculation methods of 
ETa and CWP using PySEBAL, as well as performance results of PySEBAL 
in estimating ETa across the KVIS can be found in Sawadogo et al. 
(2020a) and Sawadogo et al. (2020b). Comparisons between the FAO 
Water Productivity through Open access of Remotely sensed derived 
data (FAO-WaPOR) and PySEBAL-derived ETa values indicated that 
PySEBAL satisfactorily estimated ETa values across the KVIS, with R2 

and root mean square error (RMSE) values ranging from 0.74 to 0.80 
and 3.6–11.0 mm, respectively, for the dekadal estimates, while for the 
seasonal estimates of ETa the corresponding values were 0.60–0.70 and 
from 64 mm to 150 mm, respectively (Sawadogo et al., 2020b). 

In this study, pixel values from the AfSIS and the Africa Soil Profiles 
database compiled for AfSIS (both at 250-m spatial resolution) were 
extracted for each of the rice plots using QGIS (version 2.18.27; https:// 
qgis.org/). For a rice plot overlapping two pixels, the average value of 
pixels was considered. All maps were plotted using ArcGIS (version 10.4; 
ESRI, 2016). 

2.3. Data analysis 

2.3.1. Linear mixed model (LMM) 
The formula for the linear mixed model (LMM) used in the study is as 

follows (Laird and Ware, 1982; Peng and Lu, 2012): 

Y = Xβ+ Zu+ ε (2) 

Fig. 1. Rice plots during the dry season in 2013 (A) and 2014 (B), and distri-
bution of irrigation canals and blocks (C), at the Kou Valley irrigation scheme in 
Burkina Faso. The scheme inlet is represented by a red dot in (C). 
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where Y is a N × 1 column vector of the outcome variable (ETa or CWP 
in this study). N = 770; X is a N × p matrix of the predictors; β is a p × 1 
column vector of the fixed-effect regression coefficients; Z is a N × qJ 
design matrix for the q random effects and J groups; u is a qJ × 1 vector 
of q random effects (the random complement of the fixed β) for J groups; 
and ε is a N × 1 column vector of the residuals. β is distributed as a 
random normal variable with mean μ and standard deviation σ; that is in 
equation form β ∼ N(μ, σ). 

In the LMM, the response variables were ETa or CWP (both obtained 
with PySEBAL); KVIS blocks were used as random effect factors; and soil 
physicochemical characteristics and plot attributes were considered as 
fixed effect factors. The original dataset was randomly divided into 70% 
and 30% for training and testing, respectively. The training dataset was 
used for testing the significance of the fixed effects (significance level 
α = 0.05). The goodness-of-model-fit was assessed using the testing 
dataset. To avoid multi-collinearity, explanatory variables with corre-
lation coefficient ≥ 0.75 were removed beforehand. Only one of the 
strongly correlated variables was kept for the subsequent analyses. 
Additionally, all data were standardized [mean(x)/2 ×sd(x)] to allow 
for direct comparison of effect sizes (Gelman and Hill, 2007). The 
relative importance of each predictor was assessed through the general 
dominance analysis (Azen and Budescu, 2003; Luo and Azen, 2013), 
using the package ‘dominanceanalysis’ (Bustos-Navarrete and Filipa, 
2020). The Nakagawa’s marginal R2 (Nakagawa and Schielzeth, 2013) 
was used as statistical indicator for comparing the relative importance of 
predictor in the dominance analysis. All LMM calculations were carried 
out using the packages ‘nlme’ (Pinheiro et al., 2020) and ‘lme4‘ (Bates 
et al., 2015) in R (version 4.0.0; R Core Team, 2020). 

2.3.2. Random forest-based (RF) model 
Random forests are based on a learning algorithm relying on the 

concept of model aggregation (Breiman, 2001; Prasad et al., 2006). They 
combine binary decision trees built with bootstrapped samples from the 
learning sample where a subset of predictors has been chosen randomly 
at each node (Prasad et al., 2006; Kouadio et al., 2018). RF was used to 
estimate the importance of the potential predictors (or explanatory 
variables) of ETa or CWP in rice plots across the KVIS. 

The same randomly divided datasets used for training and testing in 
the LMM approach were used. The number of decision trees (Ntree) was 
set to 500. The optimal minimum number of observations per tree leaf 
(mtry) was selected automatically during the execution of the RF algo-
rithm, using the ‘caret’ package (Kuhn et al., 2020). Variable impor-
tance, partial dependence plot and model prediction were used as tools 
for evaluating the performance of the RF-based models. The training 
dataset was used for both variable importance and partial dependence 
plot analyses, whereas the testing dataset was used for analyzing model 
prediction. The mean decrease accuracy was used as a measure of var-
iable importance, which was based on the regression prediction error of 
the out-of-bag (OOB) data (Breiman, 2001; Liaw and Wiener, 2002). 
Mean decrease accuracy was calculated as the normalized difference 
between the OOB accuracy of original observations and that of randomly 
permuted variables (Cutler et al., 2007; Mellor et al., 2013). The partial 
dependence plot analysis shows the isolated effect of the chosen predi-
cator variable on the response variable (Friedman, 2001). Only the top 
six important explanatory variables were used for the partial depen-
dence plot analysis in this study. Model prediction analysis was carried 
out using the ‘predict’ method for RF objects from the ‘randomForest’ 
package (Liaw and Wiener, 2018) in R (version 4.0.0; R Core Team, 
2020). 

2.3.3. Model evaluation 
The coefficient of determination (R2), the Nash–Sutcliffe efficiency 

index (NSE; Krause et al., 2005), and the root mean square error (RMSE) 
were used to assess the goodness-of-fit of the LMM and RF models and 
compare their performance. The formulas for R2, NSE, and RMSE are as 

follows: 

R2 =

∑n
i=1(Oi − O).(Pi − P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O)
2
.
∑n

i=1(Pi − P)2
√ (3)  

NSE = 1 −
∑n

i=1(Oi− Pi)
2

∑n
i=1(Oi− O)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

(5)  

where Pi and Oi refer to the predicted and PySEBAL-derived values of 
ETa or CWP, respectively; P and O are the average predicted and 
PySEBAL-derived values of ETa or CWP, respectively; and n is the testing 
sample number. 

Lower RMSE values and R2 or NSE values close to 1 are indicative of 
good model performance. 

3. Results 

3.1. Rice growing environment, actual evapotranspiration and water 
productivity 

A correlation matrix for each pair of the potential explanatory var-
iables is shown in Fig. S1. From the initial set of variables, only 12 were 
considered in the modeling. These were: DPSI, Elv, DtB, BLD, SL, SN, pH, 
N, Ca, Fe, K, and Zn. Noticeable variations in these soil properties were 
found across the KVIS (Table 1; Fig. S2). Compared to the other chemical 
elements, Ca was dominant in the 0–30 cm soil horizon: its proportion 
ranged from 581 to 1427 ppm, with an average of 885 ppm (Table 1). 
Values of pH varied between 5.9 and 6.4, indicating that rice was grown 
on acidic soils during the study period. The range of pH found for rice 
plots across the KVIS was within the correct balance of soil pH for rice 
(5.5 and 7.5; Yu, 1991; Nishikawa et al., 2014). The DtB was on average 
157 cm, with the maximum being 174 cm. Sand and silt proportions at 
15–30 cm depth varied between 38 and 49 w% and 23 and 31 w%, 
respectively; suggesting that at this depth the soils of rice plots were 
more sandy clay to sandy clay loam. Rice plots were located at 
295–310 m above sea level (masl) (Table 1), with the majority of plots 
(> 75%) being above 300 masl. The closest plot to the KVIS scheme inlet 
was at 815 m, and the farthest was at 11,289 m (Table 1). Large varia-
tions were found in the soil physico-chemical properties, plot elevation 
and distance to the inlet of the irrigation scheme in farmers’ fields 

Table 1 
Descriptive statistics of the physical characteristics of rice plots across the Kou 
valley irrigation scheme.  

Variablesa Units Mean CVb Min Max 

Plot characteristics 
Elv m 302 0.97 295 310 
DPSI m 4807 49.1 815 11,289 
Soil physico-chemical properties 
DtB cm 157 4.12 141 174 
BLD kg m-3 1355 3.31 1300 1650 
SL w% 26 5.06 23 31 
SN w% 42 4.64 38 49 
Ca ppm 885 19.4 581 1427 
Fe ppm 133 7.32 109 151 
K ppm 122.6 11.1 94 157 
N ppm 770 7.01 584 879 
pH – 6.2 1.44 5.9 6.4 
Zn pp100m 240 10.56 155 384  

a Elv: plot elevation; DPSI: distance between plot and irrigation scheme inlet; 
DtB: depth to bedrock; BLD: bulk density; SL: silt content; SN: sand content; Ca: 
soil extractable calcium; Fe: soil extractable iron; K: soil extractable potassium; 
N: soil total nitrogen; pH: potential of hydrogen; Zn: soil extractable zinc. 

b CV: Coefficient of Variation. 
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(Table 1). 
With regard to estimated rice ETa, relatively higher values were 

found in 2014 compared to those in 2013, with the averages being 
619 mm (range = 239–794 mm) and 554 mm (range = 178–750 mm), 
respectively (Fig. 2A). Estimated water productivity values were on 

average 0.53 kg m-3 (range = 0.15–1.09 kg m-3) and 0.59 kg m-3 (range 
= 0.31–1.30 kg m-3) in 2013 and 2014, respectively (Fig. 2B). 

Fig. 2. Spatial variation of (A) PySEBAL-derived seasonal actual evapotranspiration (ETa) and (B) PySEBAL-derived crop water productivity (CWP) in rice plots 
across the Kou Valley irrigation scheme during the dry season production periods in 2013 and 2014. Plots in brown are cropped with other crops. 
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3.2. Determinants of actual evapotranspiration and crop water 
productivity 

3.2.1. Assessment using linear mixed modeling approach 
Table 2 shows the estimates of each of the predictors, as well as their 

statistical significance. Overall, the distance between plot and irrigation 
scheme inlet (DPSI), depth to bedrock (DtB), bulk density (BLD), silt 
content (SL), sand content (SN), total soil nitrogen (N) and potassium 
(K), were the predictors explaining the variability in rice ETa (p < 0.05; 
Table 2). Factors such as DPSI, BLD, SL and SN were negatively related to 
ETa. Thus, the farther the rice plot was from the scheme inlet, the lower 
its ETa was. Likewise, the higher the soil content in silt or sand or the 
bulk density, the lower the ETa. Other statistically significant predictors, 
DtB, N and K, were positively related to ETa (Table 2). On the other 
hand, there were fewer predictors that affected significantly rice CWP 
during the study period. These predictors were plot elevation (Elv), DPSI, 
and N (Table 2). All these three predictors were negatively related to 
CWP, indicating that low CWP occurred either in rice plots located at 
higher altitudes, or in plots far from the inlet scheme, or in plots with 
soils having relatively higher N concentrations. 

The results of the general dominance analysis for ETa and CWP are 
presented in Fig. 3. For the variability in ETa, DPSI and N were the pre-
dictors with relatively higher marginal R2 values: 0.165 and 0.125, 
respectively (Fig. 3A). The marginal R2 for the other statistically sig-
nificant predictors (BLD, DtB, SL, SN, K; Table 2) varied between 0.010 
and 0.020 (Fig. 3A). For CWP, DPSI had the highest marginal R2 value 
(0.107; Fig. 3B). The remainder of the statistically significant predictors 
(Elv, N) had their marginal R2 ranging from 0.010 to 0.030 (Fig. 3B). 

3.2.2. Assessment using random forest-based modeling approach 
Overall, the rank of each of the variables based on the RF models 

differed according to the response variables (Fig. 4). Exception included 
the variable DPSI, which was found to contribute the most in both rice 
ETa and CWP with 52% and 22% for the mean decrease in accuracy, 
respectively (Fig. 4). For rice ETa, besides DPSI, variables with contri-
bution > 20% included extractable zinc (Zn), potassium (K) and N 
(Fig. 4A). Silt and sand contents, and bulk density contributed to about 
11–16%, respectively. The top six contributors were DPSI, N, Zn, K, SN, 
and SL (Fig. 4A). For rice CWP, the majority of the remaining 11 
explanatory variables had their contribution to the RF-based model 
varying between 10% and 20%; DtB and BLD were the less-contributing 
predictors (≤ 7%) (Fig. 4B). The top six contributors, based on the RF 

approach, were DPSI, K, N, Elv, Ca, and SN (Fig. 4B). 
Figs. 5 and 6 show the partial dependence plots for the top six pre-

dictors explaining variabilities in rice ETa and CWP, respectively. They 
displayed the pattern of association (i.e. monotonic or non-monotonic, 
linear or non-linear) between the predictor and the response variable. 
Among the top six covariates, only the relationship between rice ETa and 
K or N was monotonic: an increase in K or N concentration was posi-
tively associated to an increase in rice ETa, with that of K being linear 
(Fig. 5). Non-monotonic associations were found between rice ETa and 
DPSI, Zn, SN and SL (Fig. 5). For those predictors, there was generally an 
increasing trend to rice ETa up to a given threshold, followed by a 
decreasing trend (Fig. 5). 

With regard to rice CWP, the association patterns for the top six 
predictors were all non-monotonic (Fig. 6). That is, there was a mixed of 
increasing and decreasing associations of a given predictor to either 
increasing or decreasing CWP, depending on predictor value. For 
example, for plot elevation and soil total nitrogen (N), there was a 
decreasing association to rice CWP up to a given threshold value of the 
predictor (i.e. 305 m for Elv, and 780 ppm for N), before an increasing 
association afterwards (Fig. 6). 

3.3. Comparison of LMM and RF-based models performance 

Both LMM and RF-based models achieved good performance in 
predicting ETa: RMSE were 39 mm and 38 mm, respectively; their cor-
responding R2 being 0.74 and 0.75 and NSE being 0.74 and 0.75 
(Fig. 7A). However, for CWP the performance of both models was fair: 
RMSE = 0.07 kg m-3 and 0.08 kg m-3 for RF-based model and LMM, 
respectively; corresponding R2 of 0.43 and 0.38, respectively (Fig. 7B). 
This suggests that additional observational data are needed for better 
assessing the variability of CWP in rice plots across the KVIS. 

4. Discussion 

Achieving the full potential of irrigated rice during the dry season 
through tailored soil and management practices is pivotal to the success 
of farming activities in the KVIS. In this study, soil physicochemical 
properties and plot characteristics affecting ETa and CWP in irrigated 
rice in the KVIS were investigated. The spatial variation of ETa and CWP 
(both obtained with PySEBAL) were predominantly linked to the dis-
tance between the plot and the irrigation scheme inlet, elevation, soil 
sand and silt contents, soil total nitrogen, and extractable potassium and 
zinc. Soil texture influences the movement of water in the soil, as well as 
its storage capacity and the amount of stored water that is available to 
the plants. The results from the linear mixed model showed negative 
relationships between ETa and DPSI, SL, SN, BLD, and positive relation-
ships between ETa and DtB, N and K contents. The negative relationships 
between ETa and the sand or silt contents could be attributed to reduced 
soil water availability with an increase in sand and silt contents, leading 
to water stress and subsequent reduction in the ETa by the rice plants 
(Haefele et al., 2006; Niang et al., 2018). The reduced ETa with an in-
crease in BLD could be related to reduced root growth due to higher soil 
compaction, which would limit the growth and development of the rice 
plants and result in reduced ETa (Huang et al., 2012). We also noticed 
that soil water holding capacity and BLD were negatively correlated in 
this study (Fig. S1), and therefore, higher BLD is associated with lower 
soil water holding capacity, and higher water stress and reduced ETa. 
Overall, soil texture and plot distance to the irrigation scheme inlet had 
great influences on the movement of water in the soil, as well as its 
storage capacity and the amount of stored water that is available to the 
plants. Therefore, practices that improved through for instance addition 
of organic matter have the potential to increase infiltration, water 
holding ability and actual evapotranspiration, and can be recommended 
to the farmers of the KVIS (Wilson et al., 2020). 

There was a statistically significant and positive effect of soil nitro-
gen and potassium on ETa in the KVIS during the study period. This can 

Table 2 
Estimates of fixed effects for PySEBAL-derived rice actual evapotranspiration 
(ETa) and crop water productivity (CWP). Numbers in bold are those statistically 
significant. * and * * indicate a statistical significance at α = 0.05 and α = 0.01, 
respectively. ns denotes no statistical significance at α = 0.05.   

ETa CWP 

Intercept 660.1 * * 0.60 * * 
Elv 3.0 ns -3.3 10-2 * * 
DPSI -40.2 * * -2.6 10-2 * * 
DtB 5.5 * 5.1 10-3 ns 

SL -12.5 * * 4.3 10-3 ns 

SN -7.3 * 4.4 10-3 ns 

BLD -5.4 * -5.3 10-4 ns 

N 20.8 * * -1.5 10-2 * 
K 10.7 * * -1.0 10-2 ns 

pH 0.5 ns -8.8 10-3 ns 

Zn -5.1 ns -2.2 10-3 ns 

Ca 1.1 ns -4.5 10-3 ns 

Fe -0.4 ns 1.4 10-3 ns 

Abbreviations: Elv: plot elevation; DPSI: distance between plot and irrigation 
scheme inlet; DtB: depth to bedrock; Ca: soil extractable calcium; Fe: soil 
extractable iron; K: extractable potassium; N: soil total nitrogen; pH: potential of 
hydrogen; Zn: soil extractable zinc; BLD: bulk density; SL: silt content; SN: sand 
content. 
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be related to the role of both nutrients on photosynthesis and crop 
growth, which enhance the transpiration water loss, and result in higher 
ETa (Skinner, 2013; Santos et al., 2016). Such results indicate that a 
good management of these two nutrients through soil fertility man-
agement remains crucial for the overall performance of the KVIS 
(Donovan et al., 1999; Dembelé et al., 2005; Yameogo et al., 2013). 
Supporting farmers in acquiring fertilizer, increase their awareness for 
best fertilizer management practices and strengthening their capacity in 
implementing integrated soil fertility management practices would help 
farmers in the KVIS effectively address the ongoing crop nutrients 

management issues (Wopereis et al., 1999; Wopereis and Defoer, 2007; 
Lompo et al., 2018). 

The negative effect of the nitrogen on rice CWP, as shown in the LMM 
results, indicated that the proportional increase in ETa due to the posi-
tive effect of the nitrogen is greater than the proportional increase in 
yield. Various factors including crop management practices, soil 
fertility, cropping calendars can influence CWP through their effects on 
ETa and crop yield (Kijne and FAO, 2003; Nangia et al., 2008). Topog-
raphy is well known as affecting CWP in rice (Bastiaanssen and Steduto, 
2017; Foley et al., 2020; Dossou-Yovo et al., 2022). Our results indicate 

Fig. 3. Variable average contribution of each predictor in terms of the Nakagawa’s marginal R2 for rice actual evapotranspiration (A) and crop water productivity 
(B). Both rice actual evapotranspiration and crop water productivity were obtained using PySEBAL. Abbreviations: Elv: plot elevation; DPSI: distance between the plot 
and the irrigation scheme inlet; DtB: depth to bedrock; Ca: soil extractable calcium; Fe: soil extractable iron; K: soil extractable potassium; N: soil total nitrogen; pH: 
potential of hydrogen; Zn: soil extractable zinc; BLD: bulk density; SL: silt content; SN: sand content. 

Fig. 4. Variable importance contribution in terms of mean decrease accuracy for rice actual evapotranspiration (A) and crop water productivity (B). Both rice actual 
evapotranspiration and crop water productivity were obtained using PySEBAL. Abbreviations: Elv: plot elevation; DPSI: distance between the plot and the irrigation 
scheme inlet; DtB: depth to bedrock; Ca: soil extractable calcium; Fe: soil extractable iron; K: soil extractable potassium; N: soil total nitrogen; pH: potential of 
hydrogen; Zn: soil extractable zinc; BLD: bulk density; SL: silt content; SN: sand content. 
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that relatively lower CWP were found in irrigated plots located at higher 
altitudes in the KVIS, which can be related to soil erosion at these alti-
tudes and the subsequent loss in soil fertility (Seibert et al., 2007; Karaca 
et al., 2018), indicating the need to improve land and soil water con-
servation at higher altitudes in the KVIS as reported in a previous study 
(Sawadogo et al., 2020b). 

In basin irrigation systems, crop water productivity and actual 
evapotranspiration most often decrease as one moves away from the 
head of irrigation canals, given the reduced canal water supply (Van 
Dam et al., 2006; Latif, 2007). The distance between the plot and the 
scheme inlet (DPSI) acted as the most influential factor for ETa and CWP 
in our study for several reasons including the relatively high irrigation 
water consumption by head-enders compared to tail-enders in such 
irrigation schemes (Renault et al., 2013), and the poor water manage-
ment of the KVIS. Indeed, the irrigation water management across the 

KVIS was carried out by inexperienced members of the Water Users 
Association, and that would probably affect more the tail-end farmers 
(Traoré, 2012; Wellens et al., 2013). Several studies reported that tail 
end farmers face challenges in having access to irrigation water when 
needed leading to water stress and yield penalty compared to farmers’ 
fields located close to the water source (Sam-Amoah and Gowing, 2001; 
Zwart and Leclert, 2010). Training sessions and outputs from such 
studies are among the means used to improve the management of the 
KVIS. Growing crops with less water requirement in the tail of the 
scheme or using efficient irrigation systems such as drip irrigation sys-
tem for the other crops grown in the KVIS can help improve the overall 
irrigation performance of the scheme. 

Regarding the two modeling approaches used in the study, it has 
been shown that random forest-based models most often outperform 
multiple linear regression models (e.g. Breiman, 2001; Jeong et al., 

Fig. 5. Partial dependence plot of the six top predictors of PySEBAL-derived rice actual evapotranspiration (ETa) based on random forest modeling. DPSI: distance 
between the plot and the irrigation scheme inlet; N, Zn, K refer to soil total nitrogen, extractable zinc, and extractable potassium, respectively, and SN and SL soil 
contents in sand and silt, respectively. 
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2016). Our results were in line with such conclusions, at least for CWP 
(for ETa both models resulted in similar performance). Jeong et al. 
(2016) argued that the relatively higher performance of RF-based 
models is likely more evident when the response is a result of complex 
interactions between multiple predictors, as it is the case in crop and 
farming systems and evidenced by the partial dependence plots (Figs. 5 
and 6). Other factors such as vapor pressure deficit, water availability, 
crop variety, crop management practices, and socio-economic factors (e. 
g. water users association characteristics, proximity of farmers to the 
irrigation scheme, logistic challenges, etc.) can potentially impact on 
irrigation performance in irrigated perimeters and schemes (Zwart and 
Bastiaanssen, 2004; Dawe, 2005; Zhang et al., 2013). Including such 
potential variables would help improve our understanding of the key 
constraints of irrigation performance in the KVIS. 

There were no experiments carried out to investigate the effect of 

each of the potential explanatory variables on ETa and CWP in rice plots 
at the study site. Achieving this was beyond the scope of the study. 
Nevertheless, the effects of biophysical factors on crop evapotranspira-
tion have already been documented (e.g. Allen et al., 1998; Katerji and 
Mastrorilli, 2009; Garrigues et al., 2015; Garrigues et al., 2018; Leh-
mann et al., 2018). Carrying out such experiments in the future could 
provide additional insights into developing better strategies to improve 
irrigation water management at the KVIS. Another limitation of the 
study was the short data period (two years). Expanding the data period 
to include several years with different climate patterns, improve the 
record keeping of the crop yield databases every season, and collect 
additional socio-economic data would improve the outcomes of the 
study. This is considered as part of a future potential research in the 
study country. 

Fig. 6. Partial dependence plot of the six top predictors of PySEBAL-derived rice water productivity (CWP) based on random forest modeling. DPSI: distance between 
the rice plot and the scheme inlet; Elv: plot elevation; N, K, and Ca refer to soil total nitrogen, extractable potassium, and extractable calcium, respectively, and SN 
soil content in sand. 
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5. Conclusions 

We investigated the potential soil physical and chemical properties 
and plot characteristics affecting the variability of irrigation perfor-
mance in rice across the KVIS during the dry season production periods 
in 2013 and 2014 using two modeling approaches, random forest-based 
and linear mixed models. The main variables affecting rice ETa and CWP 
(both obtained with PySEBAL) were the distance between plot and 
irrigation scheme inlet (DPSI), plot elevation, soil content in sand and 
silt, soil total nitrogen, and soil extractable potassium and zinc. Various 
association patterns were found between ETa or CWP and the top six 
predictors: non-monotonic association for all top six predictors in case of 
CWP, and either monotonic or non-monotonic association in case of ETa 
depending on the predictor. Results also indicated that relatively good- 
performing rice plots in terms of CWP were those located close to the 
scheme perimeter and at relatively lower altitudes in the KVIS. The ef-
fects of soil nitrogen and potassium on ETa and CWP in rice across the 
irrigation scheme suggest that good soil fertility management would be 
beneficial to rice. Both LMM and RF-based models achieved good per-
formance in predicting ETa: The fair models’ performances for predict-
ing CWP (NSE for LMM and RF being 0.35 and 0.41, respectively; and 
corresponding RMSE of 0.08 kg m-3 and 0.07 kg m-3) indicate that 
additional observational data might be needed to improve our under-
standing of the key constraints of irrigation performance in the KVIS. 
Nonetheless, this study can serve as a basis for improving irrigation 
water management through helping the KVIS managers to strategically 
locate underperforming plots to better prioritize their operations. Future 
research to improve our understanding of the key constraints of irriga-
tion performance in the KVIS can include investigating potential factors 
influencing irrigation performance such as water availability, de-
mographics of irrigation water users, households’ characteristics, 
proximity of farmers to the irrigation scheme, logistic challenges, credit 
accessibility, and other crop management practices (e.g. weed, pests and 
diseases management, transplanting dates, and water management 
practices), in addition to remote sensing-derived information. 
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Nitcheu, M., Midékor, A., Sawadogo, B., 2014, Restitution des travaux de suivi de la 
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