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Abstract: Recently, deep models have been very popular because they achieve excellent performance
with many classification problems. Deep networks have high computational complexities and
require specific hardware. To overcome this problem (without decreasing classification ability),
a hand-modeled feature selection method is proposed in this paper. A new shape-based local
feature extractor is presented which uses the geometric shape of the frustum. By using a frustum
pattern, textural features are generated. Moreover, statistical features have been extracted in this
model. Textures and statistics features are fused, and a hybrid feature extraction phase is obtained;
these features are low-level. To generate high level features, tunable Q factor wavelet transform
(TQWT) is used. The presented hybrid feature generator creates 154 feature vectors; hence, it is
named Frustum154. In the multilevel feature creation phase, this model can select the appropriate
feature vectors automatically and create the final feature vector by merging the appropriate feature
vectors. Iterative neighborhood component analysis (INCA) chooses the best feature vector, and
shallow classifiers are then used. Frustum154 has been tested on three basic hand-movement sEMG
datasets. Hand-movement sEMG datasets are commonly used in biomedical engineering, but there
are some problems in this area. The presented models generally required one dataset to achieve high
classification ability. In this work, three sEMG datasets have been used to test the performance of
Frustum154. The presented model is self-organized and selects the most informative subbands and
features automatically. It achieved 98.89%, 94.94%, and 95.30% classification accuracies using shallow
classifiers, indicating that Frustum154 can improve classification accuracy.

Keywords: frustum pattern; Frustum154; sEMG signal classification; grasp detection

1. Introduction

Electromyography (EMG) is a diagnostic procedure to assess the health of muscles
and the nerve cells that control them (motor neurons). There are two types of EMG:
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intramuscular and surface [1–3]. Intramuscular EMG is recorded with the help of invasive
electrodes. With surface EMG, on the other hand, noninvasive electrodes are used to detect
the electrical signals of the muscle. Surface EMG is widely preferred to detect muscle
activation time and density [4]. Electromyography (EMG) signals can be used to diagnose
neuromuscular diseases through muscles and nerve cells that control muscles [5,6]. These
nerve cells, known as motor neurons, transmit electrical signals that cause the muscle to
contract and relax. These electrical signals may be recorded using different techniques,
e.g., EMG signals obtained with the help of electrodes connected to surface, such as the
hands and arms, or needles/wires connected to muscle tissue [7].

EMG signals are used in clinical applications to assist in the creation of devices
such as prosthetic hands/arms [8–10]. Prosthetic hands/arms have been developed for
amputees, disabled people, and patients with movement loss [11,12]. These devices can
improve patient quality of life; however, they are also very costly. Current control systems
and applied methodologies have improved over the years in terms of increasing the
mobility of these devices. Many studies on the development of artificial intelligence-
assisted myoelectric control-based smart devices have been presented [13]. Systems with a
myoelectric interface can interact with devices and individuals. Thus, devices developed
with systems involving myoelectric interfaces provide more efficient interactions [14]. The
primary purpose of these devices is to provide patients with realistic and highly efficiency
movement. In this respect, EMG signals must be interpreted and processed correctly.
Many machine learning techniques have been developed for the automatic and effective
processing of such signals. These methods are varied to ensure that the devices operate
with high efficiency, and that the signal is interpreted correctly [15–18].

Many studies are present in the literature on the analysis of EMG signals to reduce
expert dependence and minimize human error [19–21]. Menon et al. [22] developed a
classification technique for forearm prosthetic devices. The technique uses EMG data
describing seven hand gestures. The data were collected from 9 healthy individuals
and 13 amputees. The study emphasized that the classification technique was of great
importance for myoelectric prosthesis. The authors constructed five cases using EMG
signals with lengths of 50 ms, 150 ms, 250 ms, 350 ms, and 450 ms. Moreover, they
used a linear discriminant analysis (LDA) classifier, and their maximum classification
accuracy was 95.44% using EMG signals with a length of 450 ms. Mukhopadhyaya and
Samui [11] proposed a method to efficiently control prosthetic devices. The approach used
the Deep Neural Network method to process the EMG signal. Khushaba [23] utilized a
dataset containing eight hand gestures to test the performance of the method. In their
model, they used an EMG dataset collected from five participants. A deep classifier (DNN
(deep neural network)) yielded 98.88% classification accuracy. Waris et al. [24] evaluated
the classification performance of EMG signals obtained from healthy individuals using
upper limb prostheses. Seven-day data of the individuals was evaluated in the study.
The EMG signal dataset was collected from eight transradial amputees and ten healthy
participants. The authors used classifiers such as artificial neural network (ANN), tree,
and LDA classifiers. Their presented machine learning model achieved over 90% accuracy
using ANN. Chada et al. [25] proposed a method to provide robotic control using surface
EMG signals. In their method, subbands of the signal were obtained by using Tunable-Q
factor wavelet transform. The dataset was collected from five subjects. Various properties
were obtained from each subband; these features were then classified using a radial basis
function support vector machine (SVM), with an accuracy of 97.74%. Wang et al. [26]
proposed an approach that could be used in rehabilitation devices for individuals with
disabilities in their upper-limbs. They used a deep model to achieve high classification rates,
reaching 92% accuracy using their recurrent deep model for six class classification. Their
dataset contained EMG signals from 10 healthy subjects. Arteaga et al. [27] proposed an
EMG signal-based approach for the modeling and analysis of hand movements of healthy
individuals. The proposed approach used machine learning methods to evaluate EMG
signals. In this study, six hand movements were selected, and data from 20 individuals were
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used. The classification results showed that the most successful results in the analysis of the
data were obtained by k nearest neighbor (kNN). The accuracy rate was calculated as 98%
for kNN. Pancholi and Joshi [28] presented a system for evaluating EMG signals which aims
to recognize the structure of arm movements from EMG signals received from amputees. In
the study, six different movements from four individuals were collected and evaluated. The
highest accuracy rate was 97.75%, which was achieved using LDA classifier with hold-out
validation. Jia et al. [29] proposed a method for classifying EMG signals using convolutional
neural networks. The windowing method was used to improve the performance of the
proposed method. In the utilized dataset, sEMG signals from eight participants were used;
the accuracy rate was 99.38%. Tuncer et al. [4] proposed an approach to ensure proper
hand movement with EMG signals, and data from nine transradial amputee patients were
used. Discrete wavelet transform and ternary pattern were selected as feature extractors in
theit study. The evaluation results were presented according to the following parameters:
accuracy (99.14%), geometric mean (99.13%), precision (99.14%), and F1-score (99.14%),
employing kNN classifier with 10-fold cross-validation. Simãoa et al. [30] developed a
model for the classification of EMG signals obtained from forearm muscles. In the model,
feature extraction was provided by recurrent neural networks. In addition, the study was
compared with long short-term memory networks and gated recurrent unit methods. Time
and accuracy rates were presented using DualMyo [31] and NinaPro DB5 [32] datasets.
Their model achieved about 95% accuracy using DualMyo datasets [31], and 91% using
NinaPro DB5 [32] EMG datasets.

sEMG signal classification is an important research topic for machine learning and
biomedical engineering. In this work, we propose a hand-modeled learning method
for sEMG signal classification with high performance. To achieve our goal, three sEMG
datasets were used for testing. A new effective learning method was also applied to
achieve high classification ability with linear time complexity with sEMG signals; this
learning model was named Frustum154. The main aim of the Frustum154 model is to
select the most valuable subbands to generate features. Frustum154 comprises three main
phases: (i) feature extraction using the presented frustum pattern, statistical features, and
multiple parameter-based, tunable Q actor wavelet transform (TQWT) [33] decomposition,
(ii) iterative neighborhood component analysis (INCA) [34] selector, and (iii) classification
using a support vector machine (SVM) [35,36] or kNN [37]. Frustum154 allows us to
propose a systematic hand-crafted method. It can also choose the most appropriate model
for signal classification problems.

The key novelties and contributions of this model are given below:
Novelties:

• Shapes can be used to propose new local textural feature generators. Therefore, the
frustum shape is used to present a new textural feature creation function, named the
“frustum pattern”. By using the frustum pattern, a shape-related, graph-based local
feature extraction methodology is investigated in this work.

• A new learning network called Frustum154 is presented in this paper. Frustum154 is
a self-organized learning feature extraction method which uses two types of feature
selection. In the feature generation/creation phase, the best features are chosen using
a loss function. By using this function, Frustum154 automatically selects the best
subbands for the problem.

Main contributions:

• sEMG signal classification is an important signal processing topic for machine learning;
deep learning models have been widely used to classify sEMG signals, achieving
excellent accuracy. However, deep models are highly complex. Frustum154 is a hand-
crafted, feature-based learning method which can choose the most appropriate model
for signal classification problems.

• In order to demonstrate the universal classification ability of the suggested model,
three sEMG signal datasets were used; the proposed model achieved over 94% classifi-
cation for these datasets.
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2. Material
2.1. Material

In this study, an sEMG for basic hand movement dataset from the UC Irvine Machine
Learning Repository was used. This dataset contains two subdatasets, from which a third
dataset was obtained by fusing the two. More details of these databases are given below.
The main purposed of this dataset is to detect six basic hand-movements; (a) Cylindrical
(C), (b) Tip (T), (c) Palmar (P), (d) Hook (H), (e) Spherical (S), (f) Lateral (L). Images of these
gestures are presented in Figure 1 [38,39].
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2.1.1. First sEMG Dataset

The first dataset, named DB1, consisted of data from three healthy female and two
healthy male subjects. The ages of subjects range from 20–22 years. These subjects per-
formed six movements. Each subject was asked to perform each of movement for 6 seconds,
and movements were repeated 30 times. Thus, 180 pieces of six-seconds, two-channel EMG
signals were recorded. This dataset included a total of 900 sEMG signals. The sampling
rate of the EMG signal was 500 Hz.

2.1.2. Second sEMG Dataset

The second dataset (DB2) included three days of data from a healthy, male, 22-year-old
subject. This subject performed 100 movements for three days. The length of the used
sEMG segments was five seconds. This dataset included a total of 1800 sEMG signals. The
sampling frequency was 500 Hz, as in the first dataset.

2.1.3. Third sEMG Dataset

DB3 is the fused dataset. It was created by merging DB1 and DB2. It is a homogeneous
dataset, with each class containing 450 sEMG signals. Therefore, DB3 contains 2700 sEMG
signals in total. In this version, we created a new, large dataset by using both the first and
second datasets together.
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3. Frustum Pattern

Graph-based learning models are very popular in machine learning applications as
they can solve difficult problems with a high level of accuracy. Therefore, the effects of
such methods should be analyzed. We proposed a hand-modeled learning method using
a graph-based feature extractor. This extractor is a graph-based function; the primary
objective of this research is to investigate the feature extraction ability of the frustum
shape [40] in order to create a new local textural feature generator. The proposed feature
extractor was applied to three sEMG datasets to test the feature extraction ability. The main
aim of the proposed frustum pattern is to extract hidden patterns from sEMG signals. The
vertex and edges of the frustum [40] shape were used to create a new graph, which was
utilized as the pattern for the extractor.

This shape was modeled as a feature extraction function. The frustum shape consists
of two hexagons. The big hexagon is the bottom of the frustum and the small one is the top.
There are six connection edges between the top and the bottom of the hexagons. Therefore,
we used two matrices to model this shape as a graph-based pattern. The created bottom
and top matrices and the matrices-based patterns are shown in Figure 2.
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Figure 2 shows that the proposed frustum pattern uses 7 × 7-sized matrices, as well
as two types of edges to generate binary features, i.e., bottom, top, and connection edges.
Moreover, the ternary function was utilized as a kernel to generate features. The equations
of the ternary bit extractors are given in Equations (1)–(3).

t1(a, s) =
{

0, a− s ≤ d
1, a− s > d

(1)

t2(a, s) =
{

0, a− s ≥ −d
1, a− s < −d

(2)
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d =
std(S)

2
(3)

where t1(., .) is the upper ternary function, t2(., .) is the lower ternary function, a, s denote
input parameters, d is the threshold, std(.) defines standard deviation function and S
defines the utilized input signal.

The steps of the proposed frustum pattern are:
1: Divide the signal into overlapping blocks with a length of 49.

obl(j) = S(i + j− 1), i ∈ {1, 2, . . . , Len− 48}, j ∈ {1, 2, . . . , 49} (4)

where obl represents the overlapping block and i, j are indices.
2: Create a matrix with a size of 7 × 7 using obl.

mat(k, l) = obl(c), c ∈ {1, 2, . . . , 49}, k ∈ {1, 2, . . . , 7}, l ∈ {1, 2, . . . , 7} (5)

where mat is 7 × 7 sized matrix to apply frustum pattern.
3: Generate bits by applying the frustum pattern and ternary bit extractors.∣∣∣∣∣∣∣∣∣∣∣∣∣

bitb
k(1)

bitb
k(2)

bitb
k(3)

bitb
k(4)

bitb
k(5)

bitb
k(6)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= tk



mat(1, 2), mat(1, 6)
mat(1, 6), mat(4, 7)
mat(4, 7), mat(7, 6)
mat(7, 6), mat(7, 2)
mat(7, 2), mat(4, 1)
mat(4, 1), mat(1, 2)

, k ∈ {1, 2} (6)

∣∣∣∣∣∣∣∣∣∣∣∣

bitt
k(1)

bitt
k(2)

bitt
k(3)

bitt
k(4)

bitt
k(5)

bitt
k(6)

∣∣∣∣∣∣∣∣∣∣∣∣
= tk



mat(2, 3), mat(2, 5)
mat(2, 5), mat(4, 6)
mat(4, 6), mat(6, 5)
mat(6, 5), mat(6, 3)
mat(6, 3), mat(4, 2)
mat(4, 2), mat(2, 3)

 (7)

∣∣∣∣∣∣∣∣∣∣∣∣

bitc
k(1)

bitc
k(2)

bitc
k(3)

bitc
k(4)

bitc
k(5)

bitc
k(6)

∣∣∣∣∣∣∣∣∣∣∣∣
= tk



mat(1, 2), mat(2, 3)
mat(1, 6), mat(2, 5)
mat(4, 7), mat(4, 6)
mat(7, 6), mat(6, 5)
mat(7, 2), mat(6, 3)
mat(4, 1), mat(4, 2)

 (8)

where bitb
k, bitt

k and bitc
k are the kth bottom, top, and connection bits.

4: Calculate map signal by transforming bits to decimal numbers.

mapb
k(i) =

6

∑
j=1

bitb
k(j)× 2j−1 (9)

mapt
k(i) =

6

∑
j=1

bitt
k(j)× 2j−1 (10)

mapc
k(i) =

6

∑
j=1

bitc
k(j)× 2j−1 (11)

5: Extract histograms of the six map signals. Each histogram has 64 elements.
6: Merge the extracted histograms to create a feature vector with a length of 384.

f v( f + 64× (h− 1)) = Hh( f ), f ∈ {1, 2, . . . , 64}, h ∈ {1, 2, . . . , 6} (12)
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where f v is the features extracted by using the frustum pattern.

4. The Proposed Learning Model: Frustum154

The main objective of the proposed model is to achieve excellent classification ability
with biomedical signals for classification problems. The model comprises a feed-forward
network and a hand-modeled architecture. The used architecture has feature extraction,
feature selection, and classification phases. A machine learning model is proposed for fea-
ture extraction, comprising a multilevel method. Effective wavelet decomposition (TQWT)
is utilized as a decomposition method. By using TQWT, 153 subbands are generated. Two
feature extraction functions are used to generate fused features, i.e., a statistical generator
and frustum pattern. Using these functions, 154 feature vectors (a raw sEMG signal and
153 subbands) are generated. Misclassification rates of these vectors are calculated using
kNN and SVM classifiers (herein, kNN and SVM are utilized as loss functions) and a
loss array is created. The top 20 feature vectors are selected using loss values, which are
merged to create the final feature vector. INCA is applied to automatically choose the most
discriminative features. In the classification phase, kNN or SVM are used to demonstrate
the excellent classification ability of the created features. A graphical summary of the
proposed model is shown in Figure 3.
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is applied to a sEMG signal and 153 subbands (SBs) are calculated. Then, 154 feature vectors
(153 subbands + sEMG) are created by applying the proposed frustum pattern and statistical feature
extractor. The Frustum pattern generates 384 features, while 30 features are created using statistics.
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these are classified using kNN or SVM with 10-fold cross-validation.
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Figure 3 describes the proposed model. Pseudocode of the presented model is shown
in Algorithm 1, and the transition table of this learning model is given in Table 1.

Algorithm 1: Pseudocode of the introduced Frustum154.

Input: sEMG dataset
Output: Results.

00: Read each sEMG signal from datasets.
01: Merge the channels
02: Apply for TQWT decomposition to calculate 153 subbands.
03: Extract statistical and texture features from sEMG signal and subbands.
04: Obtain a 154-feature vector with a length of 414 (=384 + 30).
05: Calculate the misclassification rate of each feature vector.
06: Choose the best 20 feature vectors using the calculated misclassification rates.
07: Merge the 20 feature vectors selected to create final feature vector.
08: Choose the most informative feature by applying INCA.
09: Classify the chosen features using kNN or SVM with 10-fold cross-validation.

Table 1. Transition table of the presented Frustum154.

Operation Parameter Output

Channel merging Two channels

The used datasets comprise
two-channeled sEMG signals.

These channels are concatenated to
use both channels.

TQWT
Q = 1, 2, 3, 4
r = 2, 4, 6, 8

J = 6, 24, 46, 73
153 subbands

Frustum pattern

Forty-nine overlapping blocks are
used. The kernel function is ternary
and the threshold value is chosen as

half of the standard deviation of
the signal

154 feature vectors
with a length of 384

Statistical
feature extraction

We applied well-known
statistical moments

154 feature vectors
with a length of 30

Feature merging 154 feature vectors
with a length of 414

Normalization Min-max normalization 154 feature vectors are normalized

Loss value
generation

Cubic SVM and kNN (1NN with
L1-norm) with 10-fold

cross-validation. Herein, greedy
model has been used. For DB1 (first
database), kNN is the best classifier.
For others (DB2 and DB3), the best
loss value generator is Cubic SVM.

154 loss values

Top 20 feature
vectors selection Loss array 20 feature vectors

Feature merging Concatenation function Final feature vector
with a length of 8280
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Table 1. Cont.

Operation Parameter Output

INCA selector
Iteration range: [100, 512]

Classifier: SVM or kNN (greedy
search-based)

Length of the chosen feature vectors
DB1: 279
DB2: 277
DB3: 295

Classification

kNN: k is 1, distance is Manhattan
and voting is none. Validation is

10-fold CV.
SVM: Kernel scale is auto, kernel is
3rd degree polynomial, C value is 1

and coding is one-vs-one.
Validation is 10-fold CV.

Predicted values

More explanations of the FrustumNet41 are given in subsections.

4.1. Feature Generation

The most complex and first phase of the Frustum154 is feature extraction. In this paper,
a machine learning method is proposed as a feature extraction method, since this phase
uses feature creation and classification methods together to generate the most appropriate
features. The concatenated sEMG signal (channels 1 and 2 were merged to obtain the
sEMG signal) and TQWT subbands (153 subbands were generated) were utilized for
feature generation. By deploying this feature extractor (Frustum Pattern and Statistics),
textural and statistical features were generated from the 154 signals (raw sEMG signal and
153 TQWT subbands). Therefore,154 feature vectors were created, which were then merged
to create the final feature vector. To better explain the presented feature generation method,
the steps of this process are given in below.

Step 0: Read sEMG signals and concatenate channels to obtain the input sEMG signal.

sEMG = conc(Ch1, Ch2) (13)

Herein, the concatenated sEMG describes the sEMG signal, Ch1 and Ch2 are the first
and second channels of the sEMG signal and conc(.) is the concatenation function.

Step 1: Decompose sEMG using the TQWT decomposition model. We used multiple
parameters TQWT.

SB1 = TQWT(sEMG, 1, 2, 6) (14)

SB2 = TQWT(sEMG, 2, 4, 24) (15)

SB3 = TQWT(sEMG, 3, 6, 46) (16)

SB4 = TQWT(sEMG, 4, 8, 73) (17)

SB = [SB1, SB2, SB3, SB4] (18)

where SB1, SB2, SB3, SB4 are generated wavelet coefficients (subbands) by applying TQWT
with four variable parameters. By applying these parameters-based TQWT (TQWT(.)),
7, 25, 47, and 74 subbands are created. These subbands are collected in a structure (SB)
which contains 153 subbands. This step is parametric. Variable parameters can be used in
this phase.

Step 2: Extract features by deploying the proposed Frustum pattern and statistical features.

f ev1 = conc(FP(sEMG), SE(sEMG)) (19)

f evj+1 = conc
(

FP(SBj), SE(SBj)
)

, j ∈ {1, 2, . . . , 153} (20)

where f ev are feature vectors and this model creates 154 feature vectors, FP(.) is frustum
pattern and SE(.) is the statistical extractor. We used 15 statistical moments in the used
statistical feature extractor; the used moments are tabulated in Table 2.
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Table 2. The used statistics for feature extraction.

No. Statistics No. Statistics No. Statistics

1 Mean 6 Maximum 11 Kurtosis

2 Median 7 Minimum 12 Skewness

3 Variance 8 Standard deviation 13 Higuchi

4 Shannon entropy 9 Range 14 Energy

5 Log entropy 10 Sure entropy 15 Root mean square error

These statistical moments (see Table 2) were applied to the raw signal and absolute
values of the signal.

Thirty statistical features were generated by applying these statistical moments. In
this respect, FP(.) generated 384 and SE(.) extracted 30 features from each subband/sEMG
signal. By merging these features, 414 (=384 + 30) features were generated from each input
(subband/sEMG).

Step 3: Normalize features using min–max normalization.

f evk =
f evk −min

(
f evk

)
max

(
f evk

)
−min

(
f evk

) , k ∈ {1, 2, . . . , 154} (21)

Step 4: Apply a loss generation function (kNN or SVM with 10-fold cross-validation)
to generate features and calculate the loss array. The main objective of this step is to select
the most significant subbands for feature extraction. In order to choose the most significant
subbands according to the proposed frustum pattern and statistical feature extraction (see
Table 2), loss values had to be calculated. Therefore, shallow classifiers were utilized as the
loss value generator.

Step 5: Choose the top 20 feature vectors and concatenate them to obtain features with
a length of 8280. This architecture is parametric and we selected the top 20 feature vectors
to create the final feature vector. A variable number of features or a threshold point can be
used to create the final feature vector.

After creating the final feature vector, the optimal number of features was chosen
using INCA selector; details are presented in Section 4.2.

4.2. Feature Selection

Herein, an iterative feature function, i.e., INCA, was used to select the best feature
combination. This is an iterative version of the NCA classifier; its primary purpose is to
solve automated optimal feature vector selection using NCA, since NCA cannot select the
best number of features without using the trial and error method. INCA was presented
by Tuncer et al. [34] in 2020, and is a very effective feature selector. The parameters of the
applied INCA are defined in Table 1. For cubic SVM and kNN (1NN with L1-norm) with
10-fold cross-validation were used. For DB1 (first database), kNN is the best classifier. For
others (DB2 and DB3), the best loss value generator is Cubic SVM. This generator chooses
413 features and selects the best combination according to misclassification rates. In this
work, three datasets were used for testing. INCA chose 279, 277, and 295 features for the
DB1, DB2, and DB3 datasets, respectively. The steps for the NCA are given below.

Step 6: Deploy INCA to select the most informative features.

4.3. Classification

kNN and SVM classifiers were used and results were obtained. Therefore, the most
appropriate classifier was selected to solve the problem. We used two classifiers and the
proposed Frustum154 chose the most effective one. The properties of the used classifiers
are tabulated in Table 1.
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Step 7: We then calculated the results using the kNN or SVM classifier. The hyperpa-
rameters of the used classifiers are as follows. For the kNN classifiers, k is 1, distance is
Manhattan and voting is none. The hyperparameters of the SVM classifier are as follows:
Kernel scale is auto, kernel is 3rd degree polynomial, C (box constraint) value is 1 and
coding is one-vs-one. Moreover, ten-fold CV was used to validate these classifiers.

5. Experimental Protocol
5.1. Experimental Setup

In this paper, three publicly-available sEMG signal datasets were used to evaluate
Frustum a pattern-based classification model. The presented model is self-organized. To
implement it, MATLAB 2021b was used. We programmed this model using the following
functions: main, TQWT, Frustum_Pattern, statistics, loss_calculator, feature_vector_selector,
INCA and classification. This model was implemented on a personal computer (PC) with a
simple configuration, as it is lightweight and there is no need to use any unusual hardware.

5.2. Validation

The presented model is a classification model. In the classification and loss value
generation phases, 10-fold cross-validation was used to obtain robust results. In this
validation technique (10-fold cross-validation), the observations were divided randomly
into 10 folds, and the average value of the results was calculated.

5.3. Results

To evaluate the presented Frustum154, three sEMG signals datasets were used for the
general classification results. We used recall, precision, F1-score, and accuracy performance
metrics to obtain measurements. The present model can select the best classifier according
to the problem. The results of the DB1 were calculated by utilizing the kNN classifier. SVM
was used for the other two datasets (DB2 and DB3). Furthermore, 10-fold cross-validation
was utilized as a validation model to obtain robust classification results. The calculated
confusion matrices are tabulated in Table 3.

Table 3. The confusion matrix of the DB1.

True Label
Predicted Label

C H L P S T

C 150 0 0 0 0 0

H 0 149 0 1 0 0

L 0 0 147 1 0 2

P 0 0 1 149 0 0

S 0 0 0 0 150 0

T 1 1 1 2 0 145

Recall (%) 100 99.33 98 99.33 100 96.67

Precision (%) 99.34 99.33 98.66 97.39 100 98.64

F1 (%) 99.67 99.33 98.33 98.35 100 97.64

Table 3 shows that the proposed Frustum154 achieved 100% class-wise accuracies
(recall) for cylindrical and spherical movements, as well as 100% F1-score for spherical
movement. The confusion matrix for DB2 is tabulated in Table 4.
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Table 4. The confusion matrix of the DB2.

True Label
Predicted Label

C H L P S T

C 297 1 0 0 2 0

H 3 291 0 2 0 4

L 1 1 273 18 0 7

P 0 2 19 273 0 6

S 1 0 0 0 299 0

T 0 1 11 12 0 276

Recall (%) 99 97 91 91 99.67 92

Precision (%) 98.34 98.31 90.10 89.51 99.34 94.20

F1 (%) 98.67 97.65 90.55 90.25 99.50 93.09

For DB2, the best class was spherical movement (S), for which Frustum154 achieved
99.67% recall. The worst categories were Palmar and Lateral, which reached 91% classifica-
tion accuracies.

The last signal dataset was DB3; this is a merged dataset. Table 5 shows the confusion
matrix for DB3.

Table 5. The confusion matrix of the DB3.

True Label
Predicted Label

C H L P S T

C 442 5 0 0 3 0

H 4 431 0 7 2 6

L 0 0 421 19 0 10

P 0 2 14 425 0 9

S 5 1 0 0 444 0

T 2 6 18 14 0 410

Recall (%) 98.22 95.78 93.56 94.44 98.67 91.11

Precision (%) 97.57 96.85 92.94 91.40 98.89 94.25

F1 (%) 97.90 96.31 93.24 92.90 98.78 92.66

Spherical movement was the best class for DB3, as was the case with DB1 and DB2.
The worst category was Tip, with Frustum154 achieving 91.11% recall.

Based on Tables 3–5, the overall results are tabulated in Table 6.

Table 6. Overall results (%) of the proposed Frustum154 for the used datasets.

Performance Metrics DB1 DB2 DB3

Accuracy 98.89 94.94 95.30

Precision 98.89 94.97 95.32

F1 98.89 94.95 95.30

Table 6 shows that Frustum154 achieved 98.89%, 94.94% and 95.30% classification
accuracies for DB1, DB2 and DB3, respectively.

Moreover, the differences among the used feature selection methods (we used two
feature selection approximations, i.e., loss value-based selection in the feature extraction
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and the INCA model) are explained below. To choose the most appropriate feature vectors,
loss values were calculated; these error rates are shown in Figure 4.
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As shown in Figure 4, the best accuracies of the individual feature vector for DB1,
DB2, and DB3 were calculated as 90.56%, 73.89%, and 77.30% respectively. Feature merging
(top 20 features concatenation) and INCA were applied to increase these classification
accuracies. The INCA feature selection process is shown in Figure 5.
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Figure 5. INCA feature selection process. Misclassification rates according to the number of features.
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The feature merging and INCA processes increased the accuracy rates from 90.56%,
73.89%, and 77.30% to 98.89%, 94.94%, and 95.30% for DB1, DB2, and DB3 respectively.

5.4. Time Complexity Analysis

A time complexity analysis was conducted. Big theta notation was used to present
the general results. By using this notation, the training and testing complexities of our
presented Frustum154 could be computed; see Table 7.

Table 7. Time complexity computation of the proposed Frustum154.

Phase Step Training Test

Feature
extraction

Feature vectors creation
using TQWT and
frustum pattern

θ(tndlognd) θ(tnlogn)

Feature vector selection
using loss values θ(td f k) θ(1)

Feature concatenation θ( f d) θ(1)

Feature
selection INCA θ( f dkm) θ(h)

Classification kNN/SVM θ( f dk) θ(k)

Total θ(tndlognd + td f k + f dkm) θ(tnlogn + h + k)

Here, variables were used to calculate asymptotic notation as follows. t is the number
of subbands, n defines the length of the sEMG signal, d is the number of observations, k
defines the time complexity coefficient of the parameter, f is the number of features and
m is the number of iterations in INCA. As shown in Table 7, the time complexity of this
model is linear.

6. Discussion

This research presents a new classification network to detect six basic hand movements
using sEMG signals. The proposed model, Frustum154, creates 154 feature vectors and
selects the 20 most appropriate feature ones to create final features. The results (see
Section 5) clearly demonstrate the success of the presented feature generation network
and a new attribute, i.e., shoelaces, was investigated. To better illustrate the success of the
model, a performance comparison was performed; the results are tabulated in Table 8.

Table 8. Results (%) of prior sEMG signal classification methods and those of Frustum154.

Study Method Dataset Accuracy (%)

Subasi and Qaisar
[41] Statistical feature extraction DB1 94.11

Nishad et al. [17] Statistical (entropy) feature extraction
with TQWT decomposition DB1 98.55

Iqbal et al. [42]
Singular value decomposition and

principal component analysis
(SVD+PCA) and kNN classifier

DB1 86.71

Sapsanis et al. [43] Statistics and emprical mode
decomposition (EMD) transformation DB1 86.64

Coskun et al. [19] One dimensional convulotional neural
network (1D-CNN) DB1 94.94

Tsinganos et al. [44] Convolutional neural network DB1 72.06
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Table 8. Cont.

Study Method Dataset Accuracy (%)

Rabin et al. [16]
method

Short time Fourier transform-based
feature generation and principle
component analysis/diffusion

map-based feature reduction + kNN

DB1 76.4

Frustum154

DB1 98.89

DB2 94.94

DB3 95.30

To the best of our knowledge, to date, no method has utilized DB2 and DB3. Therefore,
we cannot perform any comparisons of such cases. We obtained over 94% classification
accuracies for all datasets, indicating the high classification rates of our model. Comparisons
were made using DB1, since this is the simplest dataset. Subasi and Qaisar [41] presented
a statistical feature extraction-based model using DB1 which achieved 94.11% accuracy.
They showed the classification ability of the statistical features but their classification result
was not good. Nishad et al. [17] presented a TQWT and statistical feature extraction-based
model. They used DB1 to calculate the results. DB1 contains five subjects, and the authors
calculated the results for each. To calculate the overall performance, they used the average
values. They did not use all of the dataset to get general results; other models [42,43]
have used the same strategy. Coskun et al. [19] presented a one-dimensional, CNN-based
deep learning model and achieved 94.94% accuracy. Tsinganos et al. [44] introduced a
CNN-based deep learning model but did not achieve satisfactory classification results.
Deep learning models have high computational complexity, since many parameters need
to be optimized. A self-organized hybrid, hand-crafted feature-based model is presented
in this research. To show the classification ability of the presented Frustum pattern-based
model, three sEMG datasets for basic hand-movements were used; our model yielded
excellent classification results. It is worth noting that:

• The feature generation capabilities of the frustum pattern/graph were investigated
and the sEMG classification was found to be highly successful;

• To maximize the effectiveness of TQWT, multiple parameter-based TQWT was used
and 153 subbands were generated;

• An improved feature selector (INCA) was used;
• A novel hand-modeled learning method is proposed;
• The proposed Frustum154 achieved a higher classification rate than deep learning

models (see Table 8);
• The present model showed good general classification success.

The proposed model could also be applied to more complex and larger datasets; this
will be explored in future work.

7. Conclusions

The objective of a machine learning model is to achieve excellent classification with
low execution time; however, there is usually a tradeoff. To overcome this problem, a
self-organized model has been presented and three sEMG signal datasets have been used to
depict the general efficacy of the presented model. A novel, hand-modeled feature selection-
based, basic hand-movement classification network using a multilevel feature generation
method is presented. This approach was inspired by deep feature networks and it has low-
and high-level feature generation capabilities. The proposed Frustum154 method generates
154 features, selects the top 20 feature vectors, and chooses the most discriminative ones by
deploying the INCA selector. FrustumNet154 has been tested on three datasets, achieving
good performance with all three. The accuracies for these datasets were 98.89%, 94.94%
and 95.30%, respectively. In the literature (see Table 8), the first sEMG dataset was used
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to calculate the classification results. This model solved this problem and all of them
were used to test the performance of Frustum154. Most prior models calculate results for
each subject and then use the average to achieve good classification ability. In contrast,
Frustum154 calculates the results using all of the sEMG observations, allowing it to achieve
superior classification rates. This research used two channeled sEMG signals. Therefore,
this model could be employed with low-cost exoskeleton prosthetic hands (EPH) or smart
gloves. Based on our findings, the proposed approach is a successful classification model
for one-dimensional signals (sEMGs). Our approach motivates new low-cost and smart
EPHs and smart gloves which could be used in physiotherapy and orthopedics clinics.
New smart sEMG signal monitoring applications can be derived by applying our presented
model. Other one-dimensional signals can also be classified by applying this model.
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