

National Centre for Engineering in Agriculture

Camera-based horticulture crop growth monitoring

Alison McCarthy¹ , Carolyn Hedley² and Ahmed El-Naggar²

¹ National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba QLD 4350, <u>mccarthy@usq.edu.au</u>

² Landcare Research New Zealand, Palmerston North 4442, New Zealand

Overview

Research National Centre for Engineering in Agriculture

Background:

- Need for measurement of infield growth and maturity variability
- Data collection is labour-intensive
- Development of automated machine vision system for peas and carrots
 - Parameters selected based model calibration and decision
- Evaluation at sites in Queensland and NZ
- Cost benefit analysis of site-specific irrigation

Growth and maturity variability

Research National Centre for Engineering in Agriculture

- Can lead to suboptimal yield, and water and fertiliser use
- Monitoring can be inform management, e.g. sitespecific irrigation or fertiliser application
- But this monitoring is labour-intensive

Variability in horticulture field:

Machine vision system

Research National Centre for Engineering in Agriculture

- Smartphone camera
- App on phone capture images
- Image processing on server
- Which parameters to monitor?

Trial site with cameras along span:

System components:

Camera on pivot:

Measurement selection

- Link data with crop models for optimisation
- Cover and fruiting for calibrating APSIM model:
 - Carrots
 - Root depth: 54.9 cm to 2.7 cm
 - Root mass: 13.8 g to 10.7 g

Peas

- Cover: 8.1% to 2.8%
- Height: 11.4 cm to 3.5 cm
- Nodes: 8.1 nodes to 2.8 nodes

Machine vision system · software

Research National Centre for Engineering in Agriculture

- Automated cover and flower counts for peas
- Automated cover for carrots

Pea crop image analysis:

Canopy cover image analysis:

Machine vision system evaluation

- 1. Select field sites
- 2. Collect imagery and ground truthing data
- 3. Image analysis
- 4. Develop crop maps
- 5. Cost benefit analysis for use in irrigation optimisation

1. Field site selection

Research National Centre for Engineering in Agriculture

Two field sites selected for soil, plant growth and fruiting data collection

Location	Crop	Season	Cameras along machine (m)	Data collection days
Kalbar	Carrots	30 May 2015 - 26 Oct 2015	80, 106, 125, 165, 180, 210, 225	7/7, 20/7, 7/8, 14/8, 22/8, 5/9, 26/9, 2/10, 10/10
Palmerston North	Peas (Ashton, Massey)	18 Oct 2016 - 9 Jan 2017	52, 56	16/11, 23/11, 30/11, 7/12, 17/12, 21/12, 26/12, 4/1

2. Imagery and data collection

Research National Centre for Engineering in Agriculture

- Weekly ground truthing data
- Weekly dry pivot runs for image collection

Kalbar camera positions:

NZ camera positions:

3. Image analysis

- Flower count error = 0.6 flower/plant
- Carrot canopy cover error = 3.7%
 - Higher pea cover error because of flowers

4. Crop mapping

Research National Centre for Engineering in Agriculture

- Convert all data layers to spatial grid
- Kriging to assign value to each cell within field

Interpolated variability maps:

5. Cost benefit analysis:

5. Cost benefit analysis:

Variable-rate irrigation hardware:

Control strategy comparisons:

Season	Treatment	Yield	Irrigation
		(t/ha)	applied (ML/ha)
Peas	Grower's treatment	3.5	0.0
2016/17	Soil-water deficit	3.6	0.6
	Model-based control	3.6	0.3
Peas	Soil-water deficit	2.0	0.8
2015/16	Model-based control	2.1	0.7
Carrots	Grower's treatment	31.2	0.6
2016	Soil-water deficit	33.4	0.6
	Model-based control	34.3	0.6

Weather station:

Soil moisture sensors:

5. Cost benefit analysis

National Centre for Engineering in Agriculture

Research

Payback 4 years:

- Yield increase 9% (\$263/ha)
- Water reduction 0.7 ML/ha and water price \$90/ML
- Weekly labour reduction 0.5 days
- VRI largest expense, \$1500/year increases payback to 8.8 years
- Largest savings from labour reduction

	Cost for variable- rate irrigation (\$/ha)
Capital cost	
VRI hardware	500
Electrical conductivity mapping	27
Soil moisture monitoring	184
Plant monitoring	40
Total capital cost per hectare	751
Variable costs	
Data communication	14
Equipment maintenance	50
Total annual operating cost per hectare	64
Return	
Yield improvement	24
Water saving	<mark>6</mark> 7
Labour reduction	177
Annual gain	268
Payback period (years)	3.7

Conclusions

- Machine vision system developed for carrot and pea crop monitoring
- Image analysis estimate flowers to 0.6 flower/plant
- Carrot canopy error was 3.7%
- Potential for use in variable-rate irrigation or fertigation control system
- VRI payback period 4 years
- Further work evaluation of the control strategies

Acknowledgements

- Queensland Government Department of Science, Information Technology and Innovation, and USQ for funding the Accelerate Fellowship
- Landcare Research New Zealand and NCEA staff for data collection
- Ed Windley for the carrot site