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A B S T R A C T

The worldwide prevalence of thyroid disease is on the rise, representing a chronic condition that
significantly impacts global mortality rates. Machine learning (ML) approaches have demon-
strated potential superiority in mitigating the occurrence of this disease by facilitating early
detection and treatment. However, there is a growing demand among stakeholders and patients
for reliable and credible explanations of the generated predictions in sensitive medical domains.
Hence, we propose an interpretable thyroid classification model to illustrate outcome explana-
tions and investigate the contribution of predictive features by utilizing explainable AI. Two real-
time thyroid datasets underwent various preprocessing approaches, addressing data imbalance
issues using the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbors
(SMOTE-ENN). Subsequently, two hybrid classifiers, namely RDKVT and RDKST, were introduced
to train the processed and selected features from Univariate and Information Gain feature se-
lection techniques. Following the training phase, the Shapley Additive Explanation (SHAP) was
applied to identify the influential characteristics and corresponding values contributing to the
outcomes. The conducted experiments ultimately concluded that the presented RDKST classifier
achieved the highest performance, demonstrating an accuracy of 98.98 % when trained on

* Corresponding author. Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N
5A9, Canada.
** Corresponding author.

E-mail addresses: anandasutradhar819@gmail.com (A. Sutradhar), sharmin.happy.25@gmail.com (S. Akter), javedmehedicom@gmail.com
(F.M.J.M. Shamrat), pghosh1@lakeheadu.ca (P. Ghosh), xujuan.zhou@usq.edu.au (X. Zhou), yamani@um.edu.my (M.Y.I.B. Idris), k.ahmed@
usask.ca, kawsar.ict@mbstu.ac.bd, k.ahmed.bd@ieee.org (K. Ahmed), m.moni@uq.edu.au (M.A. Moni).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e36556
Received 22 January 2024; Received in revised form 14 August 2024; Accepted 19 August 2024

Heliyon 10 (2024) e36556 

Available online 20 August 2024 
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license 
( http://creativecommons.org/licenses/by-nc/4.0/ ). 

mailto:anandasutradhar819@gmail.com
mailto:sharmin.happy.25@gmail.com
mailto:javedmehedicom@gmail.com
mailto:pghosh1@lakeheadu.ca
mailto:xujuan.zhou@usq.edu.au
mailto:yamani@um.edu.my
mailto:k.ahmed@usask.ca
mailto:k.ahmed@usask.ca
mailto:kawsar.ict@mbstu.ac.bd
mailto:k.ahmed.bd@ieee.org
mailto:m.moni@uq.edu.au
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e36556
https://doi.org/10.1016/j.heliyon.2024.e36556
https://doi.org/10.1016/j.heliyon.2024.e36556
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2024.e36556&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


Information Gain selected features. Notably, the features T3 (triiodothyronine), TT4 (total
thyroxine), TSH (thyroid-stimulating hormone), FTI (free thyroxine index), and T3_measured
significantly influenced the generated outcomes. By balancing classification accuracy and
outcome explanation ability, this study aims to enhance the clinical decision-making process and
improve patient care.

1. Introduction

The rising prevalence and high-cost implications of thyroid disorders make it a pressing global public health issue [1]. Insufficient
production of thyroid hormones by the thyroid gland leads to abnormal growth and disease development. The disruptions in its
functioning can lead to various symptoms, including weight loss, hair loss, irregular heartbeat, hypertension, reduced metabolic rate,
weight gain, and a decreased pulse rate [2]. Over time, untreated thyroid disease can lead to various health complications, including
joint pain, infertility, obesity, and heart disease. According to data from Ref. [3], there were 43,800 newly reported cases of thyroid
disease in the United States in 2022. Of these, 31,940 cases were observed in females, while males accounted for 11,860. In the
following year, the American Cancer Society reported 2120 new deaths in the USA due to thyroid cell abnormalities.

The most effective strategy to prevent the serious effects is to detect or anticipate it as early as possible during diagnosis. However,
identifying this disorder via a traditional laboratory test is extremely difficult and necessitates a high level of expertise. Additionally,
the manual approach might lead to erroneous results and is time-consuming. Machine learning (ML) is the widely accepted method to
address these issues and prevent severe consequences by providing early warning of the disease [4,5]. However, the limited ability to
explain ML hinders its widespread adoption in healthcare applications, especially when decision-makers need a clear understanding of
the underlying rationale [6]. Without explainability, the potential risk of incorrect decisions outweighs the benefits of ML’s accuracy
and decision-making advantages. Implementing explainable learning methods empowers healthcare professionals to make informed,
data-driven decisions and reliable treatments.

Problem Statement and Motivation: Researchers have extensively employed ML approaches to investigate thyroid disease at
early stages. These studies encounter notable challenges that necessitate the adoption of state-of-the-art methods. For instance, Gupta
[7] and Ahmed [8] have endeavored to propose thyroid classification models using imbalanced datasets, which obstruct the proper
capture of underlying patterns and pose difficulties in accurately classifying the minority class. They also faced challenges related to
biased learning, poor generalization, and overfitting [9]. To address these concerns, Alyas [10] and Aversano [11] have employed a
well-established oversampling method known as the Synthetic Minority Over-sampling Technique (SMOTE). However, it is
acknowledged that using SMOTE may introduce noisy and uninformative samples [12,13]. Subsequently, Sonuc [14] and Srivastava
[15] have proposed a thyroid classification model retaining the original dimensionality of features, leading to high computation costs
and decreased generalization ability.

Chaubey [16] has utilized a single random sampling approach to train and validate the model, which lacks an accurate repre-
sentation of the sample distribution across classes in the underlying population. Additionally, Savci [17] and Olatunji [18] have
employed multiple standalone ML classifiers for training the dataset, limited effectiveness in handling complex and diverse datasets.
Recognizing the limitations of individual classifiers, Dharmakar [19] and Yadav [20] have introduced Voting-based hybrid models,
combining two baseline classifiers. However, it is important to note that this ensemble method performs best when integrating
multiple classifiers as base estimators [21]. Moreover, the black-box behavior of the studies, as mentioned earlier, provided a lack of
trust among patients and clinicians. Failure to incorporate interpretable methods while developing ML models may lead to
non-compliance with regulatory requirements. Many healthcare regulations mandate transparency and accountability in
decision-making.

Novelty and Contribution: Motivated by these concerns, we aim to propose an efficient thyroid classification model. Unlike
existing studies, our approach incorporates SMOTE with Edited Nearest Neighbors (ENN) to deal with the imbalanced dataset, where
ENN plays a crucial role in eliminating noisy samples generated by SMOTE [22]. Additionally, we have employed two effective feature
selection methods to rectify most potential features and reduce the dimensionality of the dataset. To assess the effectiveness of our
study, we divided the processed dataset into three distinct subsets (e.g., 70 %, 80 %, and 90 % for training, and 30 %, 20 %, and 10 %
for testing), then evaluated the average results for analysis. Then, introduced two hybrid classifiers by integrating three base classifiers,
namely Random Forest (RF), Decision Tree (DT), and K-nearest Neighbors (KNN), as popular in the related task [7,10,11,14]. Finally,
explainable AI has attracted a lot of attention recently, and explainability has grown to be a heavily researched topic in ML [23]. This is
a crucial aspect, especially in the healthcare domain, where incorrect decisions can have severe consequences on patient outcomes.
Shapley Additive Explanation (SHAP) is a vital explainable AI tool that assists in clarifying the intricate linkages between multivariate
data and computer model predictions. Hence, by integrating SHAP with our proposed model, we ensure the trust and transparency of
the system to stakeholders and patients, enabling them to understand the decisions. It also empowers patients with information about
the factors influencing their diagnosis, fostering a more patient-centric approach to care. However, the key contributions are as
follows.

• We have conducted a series of preprocessing stages encompassing feature dropping, data encoding, imputation missing values, and
addressing imbalance issues.

• Introduced two hybrid ML classifiers, namely RDKVT and RDKST, with meticulously optimized parameter configurations.
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• The performance of the proposed classifiers was then validated using two thyroid-based datasets with different feature sets. A
comprehensive comparison was ensured by evaluating various performance metrics, including two predictive rates, computation
time, log loss, and statistical significance test.

• Experimental analysis demonstrates the superiority of the proposed RDKST classifier with a robust accuracy of 98.98 % for the
Kaggle dataset, surpassing the performance of existing models.

• Furthermore, incorporating SHAP with the RDKST classifier, we identify that the characteristics T3, TT4, TSH, FTI, and
T3_measured exert the most significant influence on the outcome, as their respective values contribute substantially to the
prediction.

2. Related studies

Recently, researchers have increasingly focused on developing efficient thyroid classification systems using ML methods. Their
efforts have primarily revolved around model comparison, disease detection, and the development of diagnostic models. For example,
Naman Gupta et al. [7] employed multiple ML classifiers and applied a modified ant lion optimization algorithm. Their results showed
accuracy rates of 95.94 %, 95.66 %, and 92.51 % achieved by RF, DT, and KNN classifiers, respectively. Ahmad et al. [8] proposed a
hybrid decision support system based on linear discriminant analysis (LDA), KNN, and adaptive neuro-fuzzy inference (ANFIS). Their
LDA-KNN-ANFIS approach demonstrated a remarkable accuracy of 98.5 %. However, it is essential to note that they developed their
system using an imbalanced dataset, which introduces several challenges, including biased learning, poor generalization, and over-
fitting [9].

Tahir et al. [10] compared four ML classifiers by evaluating their performance on both sampled and unsampled datasets. The
findings revealed that RF achieved the highest accuracy of 94.8 %. Similarly, with the AOU Federico II Naples hospital dataset, Lerina
et al. [11] compared the performance of ten ML classifiers. Before feeding the training model, a range of preprocessing techniques,
including SMOTE, were applied to the dataset. Based on the experimental outcome, the Extra Tree (ET) classifier achieved the highest
accuracy of 84 %. However, it is necessary to note that utilizing SMOTE in these studies may introduce noisy and irrelevant samples
into the dataset [12,13].

Sonuc et al. [14] aimed to classify thyroid disorders utilizing 1250 distinct Iraqi individual samples and achieved a higher accuracy
rate of 98.93 % using the RF classifier. Srivastava et al. [15] addressed the data imbalance issues with the BL_SMOTE technique and
yielded 98.88 % accuracy by combining RF and DT using a Voting method. Chaubey et al. [16] conducted a classification of thyroid
disease using DT, KNN, and logistic regression (LG), where KNN obtained a robust accuracy rate of 96.875 %. Dignata et al. [24]
presented a comparison of various ML models, where RF obtained robust accuracy compared to others. Additionally, Awad et al. [25]
utilized the Kaggle thyroid dataset and, by training with the SMV classifier, achieved 84.72 % accuracy. However, these studies have
limited dimensionality reduction, which can result in high computation costs and decrease the generalizability of the models.

Savci et al. [17] have found that ANN achieved a higher accuracy of 98 % from the five classification algorithms. Olatunji et al. [18]
developed an ML-based tool using the Saudi Arabian dataset and observed that RF obtained the highest accuracy of 90.91 %. Azrin
et al. [26] also introduced a thyroid-based predictive system using an RF classifier. However, relying solely on ML classifiers may have
limitations in handling complex and diverse datasets. Thereby, Dharmakar et al. [19] proposed a hybrid classifier called CCTML by
integrating C4.5 and RF classifiers using the Voting ensemble approach, which showed an accuracy of 96 %. Moreover, the study [27]
presented two hybrid models named Three Stage Hybrid Classifier (3SHC) and Three Stage Hybrid Artificial Neural Network
(3SHANN) to forecast the disease. Yadav et al. [20] also presented a hybrid classifier using the Stacking approach, combining DT, and
neural networks (NN), and achieved an AUC score of 98.80 %. However, it is worth noting that the Voting ensemble method is
considered more suitable for integrating multiple classifiers as base estimators [21]. Finally, Table 1 presents a summarized overview
of these studies.

Table 1
A summary of recent machine learning-based studies on thyroid disease diagnosis.

Year and reference Data collection Number of instances Output classes Balancing
Technique

Best Performing classifier

2020 [7] UCI 7200 3 (− ) RF
2018 [8] UCI 3163 2 (− ) LDA-KNN-ANFIS
2022 [10] UCI 3163 2 SMOTE RF
2021 [11] Naples’s hospital 2784 3 SMOTE ET
2021 [14] Hospitals and Labs 1250 3 (− ) RF
2021 [15] UCI 2800 2 BL_SMOTE Voting (RF, DT)
2020 [16] UCI 215 3 (− ) KNN
2022 [17] UCI 7200 3 SMOTE ANN
2021 [18] Saudi Arabian 218 2 (− ) RF
2020 [19] UCI 7547 2 (− ) CCTML
2019 [20] Pathologies 27000 3 (− ) Stacking (DT, NN)
2023 [24] UCI 3772 2 (− ) RF
2023 [25] Kaggle 3371 2 (− ) SVM
2023 [26] UCI 2800 2 SMOTE RF
2023 [27] Kaggle 3773 2 SMOTE 3SHC
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3. Material and methods

In this section, we have provided a comprehensive discussion of the methods and working procedures employed in the study. The
working methodology is divided into six main parts: data collection, data preprocessing, feature selection with data splitting, ML
classifiers, performance evaluation matrices, and explainable AI. Fig. 1 shows the overview of the entire working process.

3.1. Data collection

For this study, we utilized two thyroid-based datasets from well-known data repositories (e.g., Kaggle [28] and UCI [29]). The
employed datasets contain different data types, including integers, binaries, categories, and floats. The Kaggle dataset contains a total
of 30 features with 3772 different cases. These features included various clinical and laboratory characteristics with a target feature,
namely age, sex, on thyroxine (On-T), query on thyroxine (QOT), on antithyroid medication (OAM), sick, pregnant, Thyroid surgery
(TS), I131 treatment (I131-T), query hypothyroid (QU-HO), query hyperthyroid (QU-HE), lithium, goiter, tumor, hypopituitary, psych,
TSHmeasured (TSH-M), TSH, T3measured (T3-M), TT4measured (TT4-M), TT4, T4Umeasured (T4U-M), T4U, FTI measured (FTI-M),
FTI, TBG, TBG measured (TBG-M), T3, referral source (RS), and class. Upon analyzing the test reports, we found that 3541 patients
were unaffected by disease, while only 231 cases were affected. On the other hand, the UCI dataset included 25 clinical and laboratory
features and one target feature. The included clinical and laboratory attributes are age, sex, On-T, QOT, OAM, TS, QU-HO, QU-HE,
pregnant, sick, tumor, lithium, goiter, TSH-M, TSH, T3-M, T3, TT4-M, TT4, T4U-M, T4U, FTI-M, FTI, TBG-M, and TBG. The dataset
comprises a total of 3163 different cases, with 3012 classified as negative and 151 classified as positive cases.

3.2. Data preprocessing

Data preprocessing is essential for an ML model to turn raw data into a useful format. Our datasets have issues with missing values
in different features (e.g., age, gender, TSH, T3, TT4, T4U, FTI, TBG), which could impact the model. We solved this issue by elimi-
nating attributes with missing values greater than 50 %, which removed the TBG attribute [30]. The remaining gaps in the Kaggle (29
features) and UCI (24 features) datasets were filled using mean interpolation, thereby maximizing data utilization and maintaining
integrity. Non-numeric categorical data gave an additional barrier since classifiers could misinterpret them. We utilized the
level-encoder approach to transform these variables into numerical representations while retaining ordinal correlations and not
increasing the dataset’s dimensionality.

Afterward, it is worth noting that the dataset exhibits a significant class imbalance, with 3541 and 3012 instances belonging to the
negative class and only 231 and 151 cases classified as the positive class for Kaggle and UCI datasets, respectively. This class imbalance
poses challenges in accurately predicting the minority class. To address this issue, the authors [10,11,17,26,27] have utilized the most
popular data balancing technique, SMOTE. However, SMOTE tends to generate synthetic samples that are too close to the original
ones, which can introduce noise and potentially lead to overfitting [12,13]. Also, it does not consider the potential overlapping regions
between different classes, which can result in the misclassification of samples. Hence, we have introduced an advanced technique
named SMOTE-ENN to address the disadvantages of SMOTE. SMOTE-ENN first applies SMOTE to generate the synthetic samples, and
then ENN serves to remove the noisy and misclassified samples. By incorporating SMOTE and ENN, we have reduced the chances of
overfitting and enhanced the quality of synthetic instances. Initially, SMOTE chose the nearest neighbor in synthesizing new instances

Fig. 1. The proposed workflow for our study, consisting of the general components.

A. Sutradhar et al. Heliyon 10 (2024) e36556 

4 



Xn from raw samples X; then, the unknown instance is built according to Eq. (1).

Xnew =X+ rand(0,1) ∗ (Xn − X) (1)

To enhance the quality of new instances, ENN is a powerful technique for eliminating noisy and uninformative samples from the
dataset [22]. It examines the samples and compares the corresponding class levels with the majority class neighbors. This combined
method is specifically beneficial when the class imbalance rate is severe. Applying the SMOTE-ENN approach resulted in a nearly
balanced distribution for both datasets. Specifically, the Kaggle dataset consisted of 2655 cases belonging to the negative class and
3256 instances belonging to the positive class. In the case of the UCI dataset, there were 2879 negative cases and 2973 positive cases
reconstructed after the process. These results demonstrate that the approximate balance ratio is 0.82 for the Kaggle dataset and 0.97 for
the UCI dataset. The working procedure of SMOTE-ENN is depicted in Fig. 2, illustrating how synthetic instances are generated for the
minority class using SMOTE and how ENN is refining the dataset by removing noisy samples.

3.3. Feature selection and data splitting

The feature selection method is crucial in reducing the model dimension and developing a predictive model. It is an essential
concept in ML that significantly influences the model’s performance and execution time. There are three main categories of feature
selection methods: filter, wrapper, and embedded. Among these, filter methods are more scalable and effectively deal with high-
dimensional datasets. Several feature selection techniques exist in this type of feature selection method. In our study, we incorpo-
rated two widely recognized filter-based feature selection approaches (i.e., Univariate selection (UVS) and Information Gain Selection
(IGS)). Numerous thyroid studies have witnessed efforts to utilize the mentioned feature selection techniques and achieved gener-
alizable results [31–34]. These consistent findings and outcomes have motivated us to apply these feature selection techniques in our
study.

3.3.1. Univariate feature selection (UVS)
The UVS technique selects features according to their correlation with the goal variable. Here, we used the chi-square test, a

univariate statistical method. It measured the dependency between the features based on the target variable. The higher chi-squared
value of a feature indicates that the feature is more likely to be relevant to the target feature. Mathematically, the chi-square statistic is
calculated using the formula expressed in Eq. (2). Where Oij is the summation of the classes, Eij is the number of considered feature
possible values.

X2 =
∑

ij

((
Oij − Eij

)2
/
Eij

)
; where Eij =(total row× total column)

/

sample size (2)

3.3.2. Information gain feature selection (IGS)
IGS utilizes information theory to determine the interdependency between features and the target variable, thereby effectively

identifying the most informative attributes. This selection technique commonly uses the tree-based algorithm working procedures. It
measures the reduction of entropy in the target variable achieved by splitting the dataset based on the value of a particular feature.
Mathematically, entropy is defined as in Eq. (3), where E(Y) is the entropy of target variable Y, c is the number of classes, and Pi is the
probability of class i occurring in Y.

E(Y)= −
∑c

i=1
Pi log2(Pi) (3)

When a dataset is split based on a feature X, the information gain IG(X) is calculated as the difference between the entropy and a target
variable before and after the split, stated in Eq. (4). Where E(Y|X) is the conditional entropy, calculated in Eq. (5), wherein v refers the
number of unique values of feature X, P(Xi) indicates the probability of occurrence of value Xi in feature X, and finally, E(Y|Xi) is the
entropy of Y given that feature X takes the value Xi. Features with higher IG are considered more relevant for predicting the target
variable and selected for the study.

Fig. 2. Working diagram of SMOTE-ENN to produce synthetic instances and eliminate the noisy samples.
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IG(X)= E(Y) − E(Y|X) (4)

E(Y|X) =
∑v

i=1
P(Xi) × E(Y|Xi) (5)

As shown in Table 2, we identified the 12 most essential characteristics using both methods from the initial feature sets [35]. By
exploiting these significant characteristics, we hope to simplify the model’s input variables, improve its predictive performance, and
maximize the model’s overall effectiveness. Therefore, we explore the predictive power of these features in the experimental section.

3.3.3. Data splitting
To effectively evaluate the performance of our model, we partitioned the processed dataset and the reduced feature sets into

different subsets: 70 %, 80 %, and 90 % for training, and correspondingly, 30 %, 20 %, and 10 % for testing. Table 3 shows the
representativeness of the sample size after applying these different train-test ratios. By employing multiple training and testing splits,
we aim to capture the variability in the data and obtain a more comprehensive understanding of the model’s performance across
different scenarios. To ensure the reliability of our evaluation, we adopt the practice of averaging the obtained results from multiple
testing splits. This approach enables us to get a more accurate and representative measure of the model’s performance by mitigating
the potential bias introduced by a single train-test split.

3.4. Machine learning baseline and proposed classifiers

We initially employ three traditional Machine Learning classifiers—Random Forest (RF), Decision Tree (DT), and K-nearest
Neighbor (KNN). During the training of the dataset, the GridSearchCV is utilized to explore the fine-tuned parameters. Subsequently,
we present two hybrid classifiers, RDKVT and RDKST, by combining these baseline classifiers with the help of the Voting and Stacking
ensemble approaches.

3.4.1. Random Forest
Random Forest (RF) is a pliable supervised ML algorithm widely used in healthcare to analyze patients’ medical histories and

diagnose diseases. RF creates numerous decision trees and blends them to generate a more accurate and reliable prediction. It uses the
Gini Index as a selection criterion for attributes, which assesses an attribute’s impurity concerning classes. RFs are robust against
overfitting, effectively handle high-dimensional data, and provide feature importance measures.

3.4.2. Decision tree
A decision tree (DT) functions by segmenting the input data into subsets iteratively based on the value of one of its properties. The

goal of DT is to build a training model that can forecast the value of the target variable by mastering basic decision rules. The algorithm
selects the best feature to split the data at each node, aiming to maximize information gain or minimize impurity. This process con-
tinues until a stopping criterion is met, producing leaf nodes representing the final predictions. There are several variants of DT
available, and in this study, we used the C4.5 algorithm due to its ease of implementation and interpretability.

3.4.3. K-nearest neighbors
The K-Nearest Neighbor (KNN) algorithm attempts to determine the optimal class for the test data by calculating the distance

between the test data and the training points. KNN can be modified in a variety of ways, giving a boost to several KNN types or
modifications. This algorithm is robust to training data with such a large amount of noise and will be sufficient if the training data is
substantial. KNN primarily operates by determining the Euclidean distance between each raw set of training data and the test data.

Table 2
A list of selected features with rank values using two feature selection techniques for both Kaggle and UCI datasets.

Kaggle dataset UCI dataset

UVS selected features IGS selected features UVS selected features IGS selected features

Name Score Name Score Name Score Name Score

T3 6184.89 T3 0.5406 TT4 8290.95 FTI 0.6328
age 1474.32 age 0.4562 FTI 6005.52 TT4 0.4353
TT4 626.66 TT4 0.4285 TSH 2165.33 TSH 0.4314
T3-M 563.17 FTI 0.4218 T3 1958.23 T3 0.4311
On-T 381.73 TSH 0.3418 TSH-M 393.49 T4U 0.4134
TSH-M 232.64 sex 0.1779 On-T 342.71 age 0.3173
TT4-M 232.31 T3-M 0.0542 T4U 278.40 sex 0.1427
QU-HE 204.56 TT4-M 0.0375 T4U-M 254.39 T4U-M 0.0310
psych 148.23 On-T 0.0373 TT4-M 253.87 TSH-M 0.0304
T4U 128.78 psych 0.0202 FTI-M 253.11 On-T 0.0301
T4U-M 92.59 TSH-M 0.0157 TBG-M 252.91 TT4-M 0.0254
sex 92.41 pregnant 0.0148 QU-HE 211.89 QU-HE 0.0186
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3.4.4. Proposed hybrid RDKVT classifier
Lately, there has been a growing emphasis among researchers on developing hybrid classifiers to tackle the challenges associated

with using single classifiers. A single traditional classifier may exhibit sensitivity to specific data types, have limited capacity to capture
diverse aspects of the dataset, and potentially be biased towards certain scenarios. By leveraging the collective power of multiple
classifiers simultaneously, each classifier can capture distinct facets of the data from different viewpoints. The individual strengths of
each classifier make the final hybrid classifier achieve more robust and generalized outcomes. Hence, we are motivated to combine the
RF, DT, and KNN classifiers using the Voting (VT) ensemble method. Which makes the final prediction based on the highest probability
of the chosen class, aiming to enhance the prediction accuracy and robustness of themodel. Two different voting schemes, namely hard
and soft VT, are available in this approach. In this study, we employ soft Voting, which is compatible with all classifiers and calculates
the average probability score for all classes to generate the final prediction. By using soft voting, the developed classifier operates
according to Eqs. (6)–(8), where Xtr and Xte represent the training and testing data.

RDKVTtrain ={RF(Xtr),DT(Xtr),KNN(Xtr)} (6)

RDKVTtest ={RF(Xte),DT(Xte),KNN(Xte)} (7)

RDKVTpred = argmax {(pred1), (Pred2), (Pred3)} (8)

After training and evaluating the individual ML classifiers RF, DT, and KNN, the obtained predictions are derived as Pred1, Pred2,
and Pred3, respectively. The final prediction generates the most significant sum of weighted probabilities. The procedure of the RDKVT
classifier is shown in Fig. 3. In this ensemble approach, RF brings the benefit of reducing overfitting and handling high-dimensional
data by constructing multiple decision trees with random feature selection and bootstrap sampling. Subsequently, DT provides
interpretability and the ability to capture complex decision boundaries, and KNN handles non-linear relationships. By combining these
models through the VT ensemble method, we can exploit the strengths of each model while mitigating their weaknesses. Thus, it can
capture a broader range of patterns and relationships, improving overall prediction performance. Detailed steps of this hybrid model
are illustrated in Algorithm 1. This algorithm provides all precious steps, including data processing, data splitting, individual training,
evaluating these sets using three baseline classifiers and aggregating their predictions, and finally executing the result for a new sample
based on the proposed classifier. The aggregation of different models specialized in handling specific data types can be integrated to
create a more versatile classifier. Therefore, it has the greater ability to dynamically adapt to changing conditions or drift in data

Table 3
The representativeness size of samples used in the experiment from different train-test ratios for both Kaggle and UCI datasets.

Train-test ratio Kaggle dataset UCI dataset

Training Testing All Training Testing All

70:30 % 4137 1774 5911 4096 1756 5852
80:20 % 4728 1183 5911 4681 1171 5852
90:10 % 5319 592 5911 5266 586 5852

Fig. 3. Outlining the procedures (including processed training set, fitting base classifiers, and functional stages of soft Voting) of the proposed
RDKVT classifier (TD refers to Thyroid).
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patterns.

Algorithm 1
Showcasing the Major Working Steps of RDKVT.
1: Inputs: Dataset, D =

∑M
i=1(Xi,Yi)

2: Outputs: Classify whether the thyroid is affected or not
3: D(a) � D.drop ([T BG], axis = columns)
4: D(b) � MedianImpute {D(a)}
5: D(c) � LabelEncoder {D(b)}
6: D(d) � SMOTEENN {D(c)}
7: Xi,Yi � input {D(d) (N × M matrix)}, output (N × 1 vector)
8: Xtr7,Ytr7,Xte3,Yte3 � TrainTestSplit (Xi,Yi,0.3)
9: Xtr8,Ytr8,Xte2,Yte2 � TrainTestSplit (Xi,Yi,0.2)
10: Xtr9,Ytr9,Xte1,Yte1 � TrainTestSplit (Xi,Yi,0.1)
11: while (execute − different − TrainTestSets) do
12: BC(1) � RandomForest (Xtri,Ytri,Ytei)
13: BC(2) � DecisionTree (Xtri,Ytri,Ytei)
14: BC(3) � KNearestNeighbors (Xtri,Ytri,Ytei)
15: end while
16: procedure RDKVT (Xtri,Ytri,Ytei)
17: RDKVT � argmax (BC1,BC2 ,and BC3)
18: while (fitting – different − TrainTestSets)
19: RDKVT � RDKVT.fit (Xtri,Ytri)
20: end while
21: Result � RDKVT. predict (New− sample)
22: Return Result

3.4.5. Proposed hybrid RDKST classifier
We have introduced another hybrid classifier to identify the strengths of different ensemble methods and provide flexibility in

model deployment. In the proposed RDKST classifier, we again combined the RF, DT, and KNN classifiers using the Stacking (ST)
ensemble method. By incorporating the ST ensemble method, we aim to further explore and leverage the advantages of ensemble
modeling for our specific problem. The ST ensemble method is a powerful technique that combines multiple models to achieve
improved accuracy and robustness. In the RDKST classifier, we train a meta-model on the predictions made by the base classifiers. The
base classifiers (RF, DT, and KNN) generate predictions on the input data, and these predictions are subsequently used as inputs for the
meta-model. Here we used Logistic Regression (LG) as a meta-model to train the base predictions from the base estimators. The
working functions of our proposed RDKST classifier are stated in Eqs. (9)–(11).

Basepred ={RF(Xtr),DT(Xtr),KNN(Xtr)} (9)

InputLG =Basepred(xi) (10)

Fig. 4. Outlining the procedures (includes processed training set, fitting base classifiers, and functional stages of Stacking) of the proposed
RDKST classifier.
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RDKST=1
/
1+ exp

{
−
(
∂0 + ∂1(InputLG1)+ ∂2(InputLG2)+…+ ∂n(InputLGn)

)}
(11)

where, Basepred refers to the predictions from base classifiers, which are further used in Eq. (10) to classify the training in-
stances xi, these classified training instances are used as inputs for a meta classifier, namely LG. Finally, Eq. (11) states the
procedure of the meta classifier, ∂0 is the intercept, and ∂1 to ∂n is the coefficient of the generated input features InputLG1 to
InputLGn. By combining the RF, DT, and KNN classifiers using the ST ensemblemethod, the RDKST classifier takes advantage of
the complementary strengths of each classifier. Where RF is known for its robustness and ability to handle high-dimensional
data, DT is adept at capturing complex decision boundaries, and KNN excels in identifying local patterns and similarities.
Through the ST ensemble approach, the RDKST classifiers aim to improve the overall predictive performance by leveraging
the collective knowledge and expertise of the base classifiers. Fig. 4 represents the working process of the RDKST classifier.
Furthermore, to address diverse learning preferences, we have shown an inclusive strategy of this method in Algorithm 2.
Compared to the RDKDT, the step employed in this model is identical for data processing, splitting, and execution processes.
The main difference is instead of evaluating the outcome based on first-level prediction (Basepred), it used the first-level
prediction as a new training set for LG. LG is trained on the outputs of Basepred, allowing it to capture complex relation-
ships and dependencies. The potential superiority of RVKST lies in its ability to adaptively learn and optimize the combi-
nation of diverse base models based on the characteristics of the data.

Algorithm 2
Showcasing the Major Working Steps of RDKST.

1: Inputs: Dataset, D =
∑M

i=1(Xi,Yi), Meta classifiers = LG
2: Outputs: Classify whether the thyroid is affected or not
3: D(a) � D.drop ([TBG], axis = columns)
4: D(b) � MedianImpute {D(a)}
5: D(c) � LabelEncoder {D(b)}
6: D(d) � SMOTEENN {D(c)}
7: Xi,Yi � input{D(d) (N × M matrix)}, output (N × 1 vector)
8: Xtr7,Ytr7,Xte3,Yte3 � TrainTestSplit (Xi,Yi,0.3)
9: Xtr8,Ytr8,Xte2,Yte2 � TrainTestSplit (Xi,Yi,0.2)
10: Xtr9,Ytr9,Xte1,Yte1 � TrainTestSplit (Xi,Yi,0.1)
11: while (execute − different − TrainTestSets) do
12: BC(1) � RandomForest (Xtri,Ytri,Ytei)
13: BC(2) � DecisionTree (Xtri,Ytri,Ytei)
14: BC(3) � KNearestNeighbors (Xtri,Ytri,Ytei)
15: end while
16: Basepred � concatenate (BC1,BC2,and BC3)
17: for i = 1; i < M; i++ do
18: Apply Basepred to classify training instances Xi

19: Xi � Basepred (Xi)
20: InputLG � (Xδ

i , Yi), where Xδ
i � (X1i,….XMi)

21: end for
22: RDKST � LG {InputLG}
23: Result � RDKST. predict (New− sample)
24: Return Result

3.5. Prevention overfitting from the proposed classifiers

In this study, we proposed two hybrid ML classifiers for effective thyroid disease classification. However, atypical data conditions
can affect their generalizability, possibly leading to overfitting during classification. To address this, we used several preprocessing
techniques to clean the dataset, removing missing values and minimizing noise. We also tackled class imbalance for balanced dis-
tribution and selected relevant features to improve model performance. These steps aim to lower overfitting risk and enhance classifier
generalizability. Then, we developed the proposed classifiers by integrating multiple baseline classifiers using ensemble methods to
reduce individual biases and capture diverse perspectives, thereby mitigating overfitting. Furthermore, the integrated baseline clas-
sifiers were trained with a fine-tuned set of parameters to control the learning process. In this regard, we used the GridSearchCV, which
automates the hyperparameter tuning process by systematically exploring the hyperparameter space and identifying the optimal
configuration for the model. Table 4 illustrates the best parameter of our employed traditional classifiers for different feature sets. By
utilizing these aforementioned methodologies, we can hypothesize that our proposed classifiers are less susceptible to overfitting and
capable of producing more generalized results.

3.6. Performance evaluation metrics

To validate the effectiveness of our proposed classifiers, we conducted a comprehensive evaluation using various performance
evaluation scores such as accuracy (ACC), precision (PRE), recall (REC), f1-score (F1S), the area under the curve (AUC), and cohen
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Table 4
Utilized the set of fine-tuned parameters for employed baseline classifiers in different feature sets by using GridsearchCV.

Feature set RF DT KNN

ALL
Features

n_estimator = 10, random_state = 10, max_depth = 7, max_features = ‘sqrt’ max_depth = 5, random_state = 5, n_neighbors = 10, leaf_size = 25,
criterion = ‘entropy’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘brute’

UVS
Features

n_estimator = 8, random_state = 15, max_depth = 5, max_features = ‘sqrt’ max_depth = 8, random_state = 15, n_neighbors = 15, leaf_size = 30,
criterion = ‘gini’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘auto’

IGS
Features

n_estimator = 7, random_state = 10, max_depth = 10, max_features = ‘sqrt’ max_depth = 5, random_state = 20, n_neighbors = 5, leaf_size = 30,
criterion = ‘gini’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘auto’

A
.Sutradhar

etal.
Heliyon 10 (2024) e36556 

10 



kappa score (CKS). The ACC calculates the ratio of correctly identified samples to the total number of instances. PRE quantifies the
model’s ability to identify positive cases accurately. REC assesses the model’s ability to capture all positive samples. F1S compre-
hensively evaluates the model’s prediction ability by combining PRE and REC. The AUC evaluates a model’s ability to differentiate
between positive and negative classes, and CKS assesses inter-rater reliability for qualitative items.

Additionally, we analyzed two predictive rates: false positive rate (FPR) and false negative rate (FNR). The FPRmeasures the rate at
which the classifier incorrectly predicts the positive class, while the FNR measures the rate at which the classifier fails to classify
positive cases accurately. Subsequently, to assess the computational efficiency of the classifiers, we analyzed the required computation
time for accessing individual predictions, which aids in determining the practical applicability of our proposed classifiers. We also
evaluated the performance of the classifiers using the log loss metric, which measures the logarithmic loss between the predicted
probabilities and the actual labels.

Moreover, the Mann-Whitney U statistic is a non-parametric test employed to determine whether there is a significant difference
between two independent groups in terms of variable distribution. It assesses whether two independent samples come from the same
population or have similar distributions. Mathematically illustrated in Eq. (12), the statistical value U can be calculated using the
following formula, where R1 and R2 are the sum of ranks; n1 and n2 are the sizes of the first and second samples, respectively. The total
number of possible pairs n1 × n2 is used to calculate the maximum possible value of U. After that, it can be compared to the critical
value from the Mann-Whitney U distribution or used to calculate the P-value to decide on the null hypothesis.

U1 = n1n2 +
n1(n1 + 1)

2
− R1 ; U2 = n1n2 +

n2(n2 + 1)
2

− R2 (12)

Furthermore, we used another non-parametric statistical test named Mood’s Median Test to determine whether the medians of the
two groups are significantly different. It extends the median test for two independent samples to multiple groups. The test counts the
number of observations in each group that are both above and below the total group median of the aggregated data. The working
formula of this test is stated in Eq. (13). Where OiAM and OiBM are the observed frequencies of ith samples above and below the median,
respectively; EiAM and EiBM are the expected frequencies of ith samples above and below the median, respectively.

α=
∑

i=1

(OiAM − EiAM)
2

EiAM
+
∑

i=1

(OiBM − EiBM)
2

EiBM
(13)

3.7. Explainable AI

In ML, explainability refers to elucidating a model’s inner workings, specifically understanding the relationship between its input
and output and the underlying reasons for such connections. This concept aims to address the black box problem by enhancing the
interpretability of models, allowing users to gain insights into their decision-making processes. There are multiple popular method-
ologies used for model interpretability, such as Local Interpretable Model-agnostic Explanation (LIME), Shapley Additive Explanation
(SHAP), Permutation Feature Importance (PFI), and Anchor. However, the LIME and Anchor-based techniques can be sensitive,
leading to potential inconsistencies for similar samples [36,37]. These techniques are primarily designed to explain local behaviors
[38,39], meaning they provide insights into individual instances without considering the interaction at the global scale. Moreover, PFI
values can vary between different runs of the permutation process, leading to instability in feature rankings and interpretations [40]. In
contrast, SHAP provides consistency and stable explanations, ensuring the reliability of local behaviors and offers both local and global
explanations [41]. Originating from the concepts of cooperative game theory, SHAP values offer a comprehensive way to evaluate the
relative relevance of distinct characteristics in prediction models. This is achieved by evaluating each feature’s influence on

Table 5
The performed accuracy (ACC), precision (PRE), recall (REC), f1-score (F1S), the area under the curve (AUC), and Cohen’s Kappa score (CKS) for the
Kaggle dataset.

Feature sets Classifiers ACC PRE REC F1S AUC CKS

All features RF 0.9561 0.9649 0.9390 0.9517 0.9866 0.9115
DT 0.9465 0.9323 0.9477 0.9399 0.9704 0.8917
KNN 0.9375 0.9047 0.9537 0.9286 0.9834 0.8713
RDKVT 0.9618 0.9348 0.9790 0.9564 0.9952 0.9223
RDKST 0.9774 0.9624 0.9896 0.9758 0.9957 0.9566

UVS features RF 0.9662 0.9292 0.9946 0.9611 0.9940 0.9313
DT 0.9622 0.9523 0.9632 0.9577 0.9867 0.9237
KNN 0.8947 0.8797 0.8776 0.8836 0.8986 0.7875
RDKVT 0.9741 0.9436 0.9986 0.9703 0.9958 0.9474
RDKST 0.9774 0.9719 0.9749 0.9765 0.9979 0.9545

IGS features RF 0.9746 0.9761 0.9677 0.9719 0.9939 0.9761
DT 0.9718 0.9423 0.9947 0.9678 0.9889 0.9428
KNN 0.9634 0.9260 0.9919 0.9578 0.9936 0.9256
RDKVT 0.9831 0.9674 0.9948 0.9809 0.9990 0.9657
RDKST 0.9898 0.9799 0.9974 0.9886 0.9995 0.9794
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predictions while considering all potential feature combinations and their contributions. By using a feature importance plot that in-
corporates SHAP values to rank the input features according to their impacts, the prediction outcomes of the model are evaluated. The
contribution of each input characteristic to the final estimate for the data instance is quantified by Eq. (14). Where f refers to a feature,
x is a data instance, SHAPx(f) is the calculated SHAP value, F indicates the subset of f, |F| refers the size of F, xF is the outcome of
predicted model for x with F, and xF \ f refers to the outcome of predicted model for x with F excluding f.

SHAPx(f)=
∑

F:f∈F

(

|F| × f
|F|

)− 1

(xF − xF \ f) (14)

Although SHAP has numerous advantages over other interpretable techniques, it has some drawbacks. Specifically, it can be
computationally expensive and may not always provide intuitive explanations in all cases. Additionally, interpreting the influential
characteristics and their corresponding values can be challenging. We employed carefully optimized parameters to address such
limitations while developing our proposed classifiers. This optimization aimed to reduce the computational complexity of our models
calculating SHAP values. Regarding the other limitations, we provided additional context and domain-specific knowledge in the
subsection dedicated to developing an interpretable model. By incorporating relevant information and explanations, we aimed to
bridge the gap between the SHAP explanations and their practical understanding. Also, we employed interactive plots that effectively
represent the SHAP values and highlight the influential characteristics. Through this visualization, we aimed to make complex in-
formation more accessible and facilitate user interpretation. Furthermore, we provided comparative visualizations of two different
examples, which contribute to a better understanding of the model’s behavior and provide valuable insights into the factors driving the
model’s predictions.

4. Experiment and results

This section has conducted a comprehensive comparative analysis to evaluate the models that were used using various performance
indicators across three distinct feature sets. This analysis aims to identify the classifier with the feature set that yields the highest
performance. Subsequently, an interpretable thyroid classification model was developed by incorporating SHAP and the highest-
performing classifier with the feature set.

4.1. Experimental Setup

Modeling experiments were performed on computer hardware featuring an Intel Core i3 processor, 10th generation, running at 3.3
GHz with 4 GB of RAM to evaluate the performance of both the proposed and baseline classifiers. Colab Notebook, a cloud-based
Jupyter Notebook environment, provided the framework for creating and testing the approaches. The availability of several librar-
ies—such as Scikit-learn, Matplotlib, Pandas, and NumPy—that are necessary for machine learning models made this decision easier.

4.2. Analysis of the various performance scores

Several classification scores were measured, including ACC, PRE, REC, F1S, AUC, and CKS to compare the different feature sets.
Table 5 presents a comparative representation of these performed scores for the Kaggle dataset. This table demonstrates both RDKVT
and RDKST are able to obtain high and generalized scores. Specifically, the RDKST achieved the highest ACC of 0.9898 when utilizing
the IGS-selected features. Similarly, the RDKST achieved a robust PRE score of 0.9799 with the IGS-selected features, closely followed
by the RF classifier with a score of 0.9761. The RDKVT attained the highest REC score of 0.9986 when utilizing the UVS features.

Table 6
The performed accuracy (ACC), precision (PRE), recall (REC), f1-score (F1S), the area under the curve (AUC), and Cohen’s Kappa score (CKS) for the
UCI dataset.

Feature sets Classifiers ACC PRE REC F1S AUC CKS

All features RF 0.9406 0.9523 0.9317 0.9443 0.9802 0.9074
DT 0.9358 0.9357 0.9334 0.9341 0.9732 0.9005
KNN 0.9467 0.9494 0.9447 0.9479 0.9870 0.9131
RDKVT 0.9594 0.9618 0.9510 0.9588 0.9936 0.9192
RDKST 0.9656 0.9624 0.9695 0.9674 0.9910 0.9526

UVS features RF 0.9620 0.9704 0.9611 0.9658 0.9883 0.9293
DT 0.9612 0.9573 0.9661 0.9633 0.9878 0.9210
KNN 0.9646 0.9707 0.9611 0.9679 0.9886 0.9263
RDKVT 0.9715 0.9823 0.9696 0.9777 0.9905 0.9394
RDKST 0.9742 0.9749 0.9725 0.9765 0.9938 0.9486

IGS features RF 0.9703 0.9781 0.9691 0.9710 0.9920 0.9526
DT 0.9667 0.9614 0.9717 0.9686 0.9893 0.9488
KNN 0.9711 0.9635 0.9820 0.9743 0.9911 0.9542
RDKVT 0.9807 0.9888 0.9776 0.9839 0.9968 0.9610
RDKST 0.9861 0.9839 0.9894 0.9843 0.9980 0.9732
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Considering the F1S, the KNN obtained the lowest score of 0.8836 with the UVS features. In contrast, the RDKST achieved the highest
F1S of 0.9886 with the IGS features. Regarding the AUC score, both hybrid classifiers, RDKVT and RDKST, demonstrated high and
generalized scores. Specifically, for the IGS-selected features, the RDKVT classifier achieved an AUC score of 0.9990, while the RDKST
achieved an even higher score of 0.9995. On the contrary, the UVS-based features have obtained 0.9958 and 0.9978 AUC scores from
RDKVT and RDKST, respectively. Furthermore, when evaluating the CKS, the proposed RDKST outperformed other classifiers with a
score of 0.9794 for IGS-selected features, indicating excellent agreement between the model predictions and the actual class values.

Afterward, Table 6 represents a comparative overview of these performance indicators for the UCI dataset. Regarding ACC, the
RDKST again obtained robust scores of 0.9861 with IGS-selected features. The attained rate is nearly comparable to the highest-
performing outcome recorded in the Kaggle dataset. Regarding PRE, another proposed RDKVT yields remarkable scores of 0.9888
when employing the same feature set. When concentrating on the REC and F1S scores, it is visible that the RDKST significantly has
0.9894 and 0.9843 scores, respectively. Regarding the AUC score, most of the performing classifiers have demonstrated high and
generalized scores with IGS-based selected features. Specifically, the RDKVT and RDKST classifiers achieved 0.9968 and 0.9980 AUC
scores, respectively. Furthermore, the proposed RDKST outperformed with a 0.9732 CKS score for IGS-selected features, indicating
excellent agreement between the model predictions and the actual class values. These results demonstrate the effectiveness of the
RDKST using the IGS features, as indicated by its high ACC, PRE, REC, F1S, AUC, and CKS. The outcomes from different performance

Fig. 5. Performed false positive rate (FPR (a)) and false negative rate (FNR (b)) rates for used classifiers on both Kaggle (K) and UCI (U) datasets.

Table 7
Analysis of the computation time (in ms) and log loss (%) for Kaggle and UCI datasets over various feature sets.

Per-formed
classifiers

Kaggle dataset UCI dataset

Compilation time Log loss Compilation time Log loss

ALL UVS IGS ALL UVS IGS ALL UVS IGS ALL UVS IGS

RF 36.7 32.7 26.3 1.51 1.16 0.87 33.6 29.3 24.9 1.72 1.32 0.94
DT 24 20.9 21.5 1.84 1.30 0.97 30 21.7 22.3 1.97 1.39 1.09
KNN 508 217 224 2.15 3.63 1.26 445 198 202 1.63 1.22 0.88
RDKVT 520 282 277 1.32 0.89 0.58 478 267 221 1.47 0.91 0.67
RDKST 470 243 257 0.73 0.77 0.34 504 232 249 1.25 0.83 0.48

Table 8
Evaluate the statistical significance between two independent groups (thyroid and non-thyroid) by using the Mann-Whitney U Statistical Test.

Kaggle Dataset

Employed classifiers ALL features (α = 0.05) UVS features (α = 0.05) IGS features (α = 0.05)

P-Value U Test SGNF P-Value U Test SGNF P-Value U Test SGNF

RF 0.0747 246124 (⨯) 0.0416 278421 (✓) 0.0461 318499 (✓)
DT 0.7638 167246 (⨯) 0.0718 229867 (⨯) 0.0519 263345 (⨯)
KNN 1.3413 135678 (⨯) 0.2461 197781 (⨯) 0.0524 226578 (⨯)
RDKVT 0.0057 195278 (✓) 0.0403 308754 (✓) 0.0497 325142 (✓)
RDKST 0.0023 225982 (✓) 0.0021 293454 (✓) 0.0015 326459 (✓)

UCI Dataset

RF 0.0675 184151 (⨯) 0.1156 198713 (⨯) 0.0413 245638 (✓)
DT 1.3413 107031 (⨯) 1.1835 184907 (⨯) 0.0575 175645 (⨯)
KNN 1.5678 118109 (⨯) 0.8961 179337 (⨯) 1.5876 176324 (⨯)
RDKVT 0.0945 173192 (⨯) 0.0509 215095 (⨯) 0.0477 246144 (✓)
RDKST 0.0021 167523 (✓) 0.0016 227552 (✓) 0.0025 275559 (✓)
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metrics suggest that the IGS-based features possess significantly more potential than the UVS-based features.

4.3. Analysis of misclassified false predictive rates

Fig. 5(a) and (b) provide a comparative representation of the FPR and FNR for all performing classifiers. In the case of FPR, KNN
exhibits the highest FPR value of 0.0909 with UVS features for the Kaggle dataset. On the other hand, RDKST achieves the lowest FPR
value of 0.016. with IGS features. Notably, the RDKST classifier demonstrates effective FPR rates for the UCI dataset, precisely 0.0187
with IGS features. Meanwhile, the DT classifier yields the highest FPR values for all feature sets. Regarding the FNR, RDKVT, and
RDKST classifiers attain remarkable values for the Kaggle dataset, 0.0071 and 0.0058, respectively, for the IGS features set. With an
identical set of features, these proposed classifiers achieve an admirable FNR rate of 0.0082 and 0.0068 for the UCI dataset.
Conversely, the KNN and DT classifiers exhibit the highest FNR rates compared to others.

4.4. Analysis of computation time and log loss

Table 7 provides insights into both datasets’ computation time and log loss. In the Kaggle dataset, the DT exhibits the lowest
computation time of 20.9 ms (ms) when using UVS features. On the other hand, the KNN and RDKVT require a significantly longer
time, 508 and 520 ms for ALL features. RDKST shows relatively similar ranges from 250 to 550 ms across the different feature sets.
Considering log loss, the KNN shows the highest loss of 3.63%. In contrast, the RDKST has the lowest losses for all different feature sets.
Regarding the UCI dataset, the RDKST demands the highest compilation time of 504 ms for ALL features, while DT takes relatively less
time. In the case of the log loss, the RDKST significantly produces only a 0.48 % loss with the IGS-selected features.

4.5. Analysis of the statistical significance

We have evaluated the Mann-Whitney U statistic to determine whether there is a difference between two independent groups. The
P-value is determined by comparing the computed test statistic with a critical value or an approximation derived from the normal
distribution. If the P-value falls below a pre-selected significance level (α), we reject the null hypothesis in favor of the alternative
hypothesis, suggesting a difference between the paired measurements. The U Test represents the sum of ranks for one of the groups in
the comparison. A larger U Test value indicates that the distribution of values for the first group is generally higher than the distri-
bution of values for the second group. Here, we set the α to 0.05 for all different feature subsets on both datasets. It represents the
probability of rejecting a true null hypothesis, also known as a Type I error. In other words, the significance level is the threshold used
to determine whether the observed results are statistically significant (SGNF). Table 8 represents the P-value, U Test, and SGNF for
three different types of features on both datasets. This table demonstrates the sum of ranks is very high for all different classifiers (e.g.,
the proposed RDKST given 326459 and 275559 for the IGS feature set on both Kaggle and UCI datasets, respectively. The higher the U
statistic, the more evidence there is that one group’s values tend to be larger than the other. The p-value is close to zero, indicating
strong evidence against the null hypothesis. The extremely small P-value (0.0015) suggests a highly significant result, indicating strong
evidence to reject the null hypothesis that there is no difference between the two groups. As the P-value is lower than the significance
level or α for all subsets with different classifiers, it indicates a significant difference between the two groups and is statistically
significant (✓).

Moreover, we performed another statistical test called the Mood’s Median Test to assess the difference between two paired groups.
Table 9 showcases the P-values of different sets of features for both the Kaggle and UCI datasets, where the first value in the P-value
column indicates the value for the Kaggle dataset and the last value is for the UCI dataset. In the following column, the significance
level is determined based on their corresponding P-values, whether the observed results are statistically significant (SGNF) or not. The
sign (✓) indicates the pair of models has statistically significant differences, and the sign (⨯) represents the mentioned pair with no
significant differences. This table illustrates the very small P-value for our proposed RDKVT and RDKST, indicating strong evidence
against the null hypothesis in both Kaggle and UCI datasets.

Upon examining the overall results, we can infer that the RDKST classifier demonstrates superior performance for the Kaggle
dataset when using IGS-selected features. Hence, our study suggests that the SMOTE-ENN, IGS, and RDKST approaches can be utilized
for efficient thyroid detection. Therefore, the proposed interpretable model has been developed using the Kaggle IGS features set and
RDKST classifier.

Table 9
Evaluate the statistical significance between two independent groups (thyroid and non-thyroid) by using the Mood’s Median Test.

(Kaggle Dataset, UCI Dataset)

Employed classifiers ALL features (α = 0.05) UVS features (α = 0.05) IGS features (α = 0.05)

P-Value SGNF P-Value SGNF P-Value SGNF

RF (0.0347, 1.5678) (✓, ⨯) (0.0716, 1.8182) (⨯, ⨯) (0.0377, 0.1001) (✓, ⨯)
DT (0.7638, 1.3413) (⨯, ⨯) (0.0418, 0.1231) (✓, ⨯) (0.0661, 1.4555) (⨯, ⨯)
KNN (1.4657, 0.9675) (⨯, ⨯) (0.2461, 0.3417) (⨯, ⨯) (0.0519, 0.0891) (⨯, ⨯)
RDKVT (0.0513, 0.0425) (⨯, ✓) (0.0403, 0.0345) (✓, ✓) (0.0204, 0.0321) (✓, ✓)
RDKST (0.0123, 0.0321) (✓, ✓) (0.0112, 0.0214) (✓, ✓) (0.0041, 0.0035) (✓, ✓)
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4.6. Developing an interpretable model

To develop an interpretable model, we have employed the SHAP in conjunction with the RDKST classifier trained in the Kaggle IGS-
based selected features. SHAP provides valuable insights into the reasoning behind individual predictions, allowing us to understand
why a particular instance is classified in a specific manner. To illustrate this, we have randomly selected two cases, one representing a
patient with thyroid disease and the other without it. Fig. 6 presents the most influential features with their values that affect the
model’s positive prediction. These features include T3, TSH, TT4, and sex, with their corresponding values of 0.8464, 1.077, 81.69,
and 0 (female), respectively.

In Fig. 7, the model determines that the patient does not have thyroid disease, influenced by specific feature values. These include a
T3 value of 1.95, a T3_measure of 0 (false), an FTI value of 120, and a TT4 value of 109. These feature values play a crucial role in the
model’s classification process, indicating that they contribute to predicting a negative outcome for thyroid disease. By providing
explanations for the model’s decisions and identifying the specific features that drive the predictions, we improve the transparency and
interpretability of our model. Thus, it strengthens the overall confidence in the model’s performance and increases the credibility of
our findings.

In addition, we utilize a summary plot, such as Fig. 8, to demonstrate the global impact of features on predictions. Higher
contributing features are positioned at the top of the plot, with the colors blue, purple, and red signifying low, moderate, and high
feature values, respectively. A clear pattern implies that red or purple dots (higher feature values) are related to a decreased risk of
thyroid disease, as seen by primarily negative SHAP values. Blue dots representing lower feature values generally indicate a higher

Fig. 6. Local Explanations generated by SHAP force plot, highlighting the most influential features for a random positive case.

Fig. 7. Local Explanations generated by SHAP force plot, highlighting the most influential features for a random negative case.

Fig. 8. Global Explanations generated by SHAP summary plot, highlighting the overall implications of used features in the diagnosis model.
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disease risk, as positive SHAP values demonstrate. As with local explanations, this figure shows that T3, T3_measured, sex, TT4, TSH,
and FTI features significantly impact the dataset’s global behaviors.

5. Conclusion

This study signifies a reliable machine-learning model for thyroid disease that will be useful in the medical and healthcare sectors.
Multiple preprocessing methods are used to clean the raw dataset and address the imbalance issues with SMOTE-ENN. The results
section showed that the proposed RDKST outperformed other classifiers in identifying the disease with the IGS-based selected features.
Additionally, different statistical tests were used to emphasize and strengthen overall outcomes. Moreover, we anticipated the local
and global factors behind the outcomes using an explainable AI, SHAP. This attempt improves the status of thyroid patient catego-
rization in terms of classification metrics and makes the model’s outputs easier for healthcare practitioners to comprehend and
interpret. Researchers should conduct further research to test other ensemble methods for classification and utilize different
explainable approaches to explore the hidden factors of the disease more thoroughly.
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