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Abstract 

 The present investigation evaluates three satellite precipitation products (SPPs), namely, Multi-Source 1 

Weighted-Ensemble Precipitation (MSWEP), Global Precipitation Climatology Centre (GPCC), Climate Hazard 2 

Infrared Precipitation with Station Data (CHIRPS) and two reanalysis datasets, namely, the ERA5 atmosphere 3 

reanalysis dataset (ERA5) and Indian Monsoon Data Assimilation and Analysis (IMDAA), against the good quality 4 

gridded reference dataset (1991-2022) developed by the India Meteorological Department (IMD). The evaluation was 5 

carried out in terms of the rainfall detection ability and estimation accuracy of the products using metrics such as the 6 

false alarm ratio (FAR), probability of detection (POD), misses, root mean square error (RMSE), and percent bias 7 

(PBIAS). Among all the rainfall products, ERA5 had the best ability to capture rainfall events with a higher POD, 8 

followed by MSWEP. Both MSWEP and ERA5 had PODs of 70-100% in more than 90% of the grids and less than 9 

35% of missing rainfall events in the entire Tamil Nadu. In the case of the rainfall estimation accuracy evaluation, the 10 

MSWEP exhibited superior performance, with lower RMSEs and biases ranging from -25 to 25% at the annual and 11 

seasonal scales. In NEM, CHIRPS demonstrated a comparable performance to that of MSWEP in terms of the RMSE 12 

and PBIAS. These findings will help product users select the best reliable rainfall dataset for improved research, 13 

diversified applications in various sectors and policy-making decisions. 14 

Keywords: Tamil Nadu, satellite precipitation products, MSWEP, GPCC, CHIRPS, ERA5, IMDAA 15 

Introduction 16 

 The global food insecurity crisis is a significant problem exacerbated by the detrimental impacts of climate 17 

variability and change. Extreme weather events such as floods, droughts, heatwaves, and cold waves are causing 18 

extensive agricultural and socioeconomic losses. The frequency and intensity of these extreme weather events are 19 

increasing and projected to increase further in the future (Kalyan et al., 2021; Fowler et al., 2021). The 20 

Intergovernmental Panel on Climate Change (IPCC) has highlighted the major impacts experienced by vulnerable 21 

regions such as South Asia, including India, due to their geography and rising temperatures. In Tamil Nadu, the 22 

availability of water for crop cultivation is uncertain due to erratic and rainfall. This uncertainty is a significant concern 23 

because agriculture is the primary livelihood for many people in the region. 24 

 Investigating the spatial-temporal dynamics of hydrometeorological variables in the context of climate 25 

change, particularly in countries with rainfed agriculture, is important for assessing climate-driven variability and 26 

suggesting adaptation strategies (Asfaw et al., 2018). Reliable climate data are crucial in multiple sectors, especially 27 

agriculture, where climate strongly impacts crop growth. Precipitation and temperature are the most significant 28 

meteorological variables for studying regional climate variability, extreme weather events, and their influence on crop 29 

yield and food security (Yuvaraj et al., 2016). Geethalakshmi et al. (2008) reported that changes in these variables 30 

significantly affect crop production, food availability, and food prices. Precipitation data are also essential for flood 31 

prediction, water balance determination, and other practical applications. Spatiotemporal precipitation data has been 32 

extensively used in many pivotal spheres including agriculture, natural disaster assessment, water resources 33 

assessment and management (Collier, 2007; Behrangi et al., 2011; Zeng et al., 2012; Shah & Mishra, 2016; Peng et 34 

al., 2020). 35 



 Water usage has increased globally in the last century (Kummu et al., 2016), and the current climate crisis is 36 

expected to further increase the water requirements for crops and irrigation while reducing water availability due to 37 

global warming (Rockström et al., 2012). High-resolution precipitation data can help stakeholders devise effective 38 

water management strategies, improve intervention capacities for water conservation, and reduce water usage. 39 

Spatially detailed rainfall measurements can enhance the performance and accuracy of hydrological models 40 

(Silberstein, 2006; Merlin et al., 2008; Ragettli et al., 2014). High-quality precipitation data are crucial for crop 41 

insurance companies to develop appropriate index-based crop insurance products, mitigating the financial loss faced 42 

by farmers in the event of destructive weather events (Black et al., 2016; Enenkel et al., 2019). 43 

Precipitation is one of the key climate variables that needs to be thoroughly analysed in terms of spatial and 44 

temporal distribution, variability, trends and precipitation extremes with a high degree of precision to assess its risks 45 

related to crop production and designing mitigation and evolving potential adaptation strategies. Despite the huge 46 

requirement for high-resolution rainfall data insufficient and unequally distributed raingauge networks make data too 47 

scanty to describe rainfall characteristics and pattern capturing the high spatial variability mainly in developing 48 

countries (Dinku, 2019). Although ground-based observations are important in understanding meteorological 49 

parameters, they can be limited in geographic scope due to factors like high altitude and complicated topography 50 

(Tapiador et al., 2012; Dinku et al., 2018). To conduct regional and global meteorological research, it is necessary to 51 

have a high-resolution database capable of capturing spatial-temporal changes in climate (Malvern & Maurice 2018; 52 

Gleixner et al., 2020). Mohan Kumar et al. (2022) highlighted that a dense network of stations is essential to provide 53 

comprehensive and accurate climate information across regions. In addition to ground-based observations, satellite 54 

retrievals and reanalysis products are valuable tools for climate monitoring.  55 

 In areas with limited rain gauges, satellite-based precipitation products (SPPs) offer a useful alternative due 56 

to their worldwide availability and high spatiotemporal resolution, providing more detailed weather information 57 

(Alijanian et al., 2019). The accuracy of SPPs varies depending on the region and precipitation type (Alijanian et al., 58 

2019). Satellites equipped with remote sensing instruments can collect data over large geographic areas, offering a 59 

broader perspective on climate patterns. Reanalysis datasets combine global and regional weather models with 60 

observations to provide reliable historical data at different spatiotemporal resolutions. However, complex terrain and 61 

limited observations can introduce biases (Luo et al., 2019). 62 

High-resolution precipitation and temperature products, such as the fifth-generation ECMWF global 63 

reanalysis (ERA-5) (Hersbach et al., 2020), Indian Monsoon Data Assimilation and Analysis (IMDAA) reanalysis 64 

dataset (Rani et al., 2021), Multisource Weighted Ensemble Precipitation (MSWEP) and Multi Source Weather 65 

(MSWX) (Beck et al., 2017; 2019), Climate Hazards Group (CHG) InfraRed Precipitation with Stations data 66 

(CHIRPS) (Funk et al., 2015), and Global Precipitation Climatology Project (GPCP) (Huffman et al., 1997; 2001), 67 

have become available. These products merge satellite data, reanalysis products, and in situ measurements. These 68 

products can be used to identify climatic trends and patterns, help researchers and policymakers understand the impact 69 

of climate variability on food security and develop mitigation strategies. 70 

In India, ERA-5 performed better at estimating daily rainfall than did CHIRPS across various climatic basins 71 

(Kolluru et al., 2020). The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 72 



(TMPA-3B42) measured rainfall closely matched ground-truth rainfall observations (Prakash, 2014). Several 73 

multisatellite high-resolution precipitation products (HRPPs), including Climate Prediction Center Morphing 74 

(CMORPH) version 1.0, TMPA-3B42, Naval Research Laboratory (NRL)–blended, and Precipitation Estimation 75 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), demonstrated high POD 76 

(probability of detection) and low FAR (false alarm rate) in most regions of India. However, these four HRPPs 77 

struggled to detect rainfall events in the rain shadow region of southeast peninsular India (where Tamil Nadu is 78 

located), semiarid parts of northwest India, and hilly parts of northern India (Prakash, 2014). CMORPH, PERSIANN, 79 

TMPA-3B42, and the Global Precipitation Climatology Project (GPCP) were found to be better at capturing rainfall 80 

events with high POD and fewer missing values (Sunilkumar et al., 2015). Comparatively, TRMM showed a better 81 

ability than CHIRPS for rainfall estimates in the catchment of the Gurupura River in India (Sharannya et al., 2020).  82 

Despite significant developments in satellite-based precipitation data, which are more accurate and reliable 83 

(Michaelides et al., 2009; Levizzani et al., 2019), several studies have shown that the performance of satellite-based 84 

precipitation data can vary from one region to another (Gebremichael et al., 2014; Bharti & Singh, 2015). Therefore, 85 

it is necessary to comprehensively evaluate satellite products in various geographic regions to enhance the usability 86 

of satellite-based weather products. The performance of satellite-based weather products also varies depending on the 87 

climatic area. Kolluru et al. (2020) observed a greater accuracy of satellite precipitation products (SPPs) in tropical 88 

and humid regions than in arid and semiarid regions in India. Conducting evaluations of SPPs in specific areas of 89 

interest is crucial to consider the local topography and climatic conditions that could impact the accuracy of SPP 90 

estimation (Bitew & Gebremichael, 2011). Therefore, rigorous evaluation and site-specific validation of SPPs are 91 

necessary before utilizing them for various applications (Belay et al., 2019). 92 

 Tamil Nadu has diverse topography, ranging from coastlines to high-elevation hilly regions. The terrain 93 

features, including the elevated western Ghats and coastal areas along the Bay of Bengal, experience rainfall variability 94 

and extreme rainfall patterns that significantly impact the agricultural sector. To overcome the limited availability of 95 

gauge-based rainfall observations in these areas, remote sensing measurements of meteorological variables are 96 

desirable. Such measurements can provide rainfall data at high spatial and temporal resolutions. Therefore, it is 97 

important to evaluate different SPPs to understand their performance in Tamil Nadu. This evaluation will help describe 98 

long-term rainfall variability and analyse climate change-induced changes in rainfall characteristics. Reliable rainfall 99 

information derived from the best SPP can enable informed decision-making in sectors dependent on rainfall. 100 

However, there have been limited studies evaluating multiple satellite products for Tamil Nadu, and no studies have 101 

focused on the grid wise comprehensive evaluation and comparison of MSWEP, GPCC, CHIRPS, ERA5, and IMDAA 102 

products at different temporal scales. This present research is intended to provide a deep and inclusive understanding 103 

of SPPs as reliable sources of rainfall data for various applications in regions with limited data availability. This study 104 

aimed to investigate the ability of SPPs (MSWEP, GPCC, CHIRPS, ERA5, and IMDAA) to detect and estimate 105 

rainfall and identify the most suitable SPPs to enhance future research in climate system, effective water resource 106 

management, weather and water smart agricultural planning, designing weather-based crop insurance products, 107 

improved weather forecasting and developing climate change adaptation strategies.  108 

Materials and methods 109 



Description of the study area 110 

 Tamil Nadu is a state in southern India located on the southeastern coast. It covers an area of 130,058 km2, 111 

with latitudes ranging from 8°25' to 13°5' N and longitudes ranging from 76°5' to 80°25' E. The state is divided into 112 

38 districts, which are classified into seven agroclimatic zones: the western zone (WZ), southern zone (SZ), north-113 

western zone (NWZ), north-eastern zone (NEZ), high rainfall zone (HRZ), high altitude and hilly zone (HAHZ), and 114 

Cauvery delta zone (CDZ), as shown in Figure 1. Tamil Nadu has a tropical climate influenced by the Bay of Bengal, 115 

Western Ghats, Northeast, and Southwest monsoons. The average annual rainfall is 945 mm, with the majority 116 

occurring during the Northeast monsoon (48 percent) and the Southwest monsoon (36 percent). The temperature 117 

ranges from 23.4°C to 33.8°C, with mean minimum and maximum temperatures, respectively (Prajesh et al., 2019). 118 

The state experiences distinct wet and dry seasons, with monsoonal rains bringing relief from extreme heat. The 119 

monsoon greatly impacts agriculture, affecting the onset and cessation of monsoons, prolonged droughts, quantity and 120 

distribution of rainfall, duration and frequency of dry and wet spells, and extreme rainfall events. Agriculture in Tamil 121 

Nadu is mainly rainfed, making monsoonal rainfall a crucial factor for crop cultivation. Rice cultivation is common 122 

in coastal areas, while cotton, pulses, and oilseeds are grown in dryland regions. Hilly areas are suitable for tea, coffee, 123 

and spices. In summary, Tamil Nadu has diverse geographical features and a unique tropical climate that significantly 124 

influences its agricultural sector. 125 

 126 

Fig. 1 The study region map in the left panel depicts the location and agroclimatic zones of the study area, and the 127 

map in the right panel shows the grids at a 25 km spatial resolution with the elevation range and distribution of ground 128 

station observation points in Tamil Nadu. 129 

Satellite and reanalysis precipitation data 130 

 SPPs developed at global and regional scale are available in different file formats and at different grid 131 

resolution that do not overlap with station- or gauge-based gridded data (IMD gridded data). To eliminate the 132 



complexities in data extraction and for obtaining data for the same grid as the IMD, regridding was employed in the 133 

current study. All the downloaded satellite precipitation products are regridded to 0.25° spatial resolution to make it 134 

consistent and comparable with IMD. The Climate Data Operator (CDO) was used to regrid the data and commonly 135 

used tool to manipulate and analyse gridded data (Schulzweida, 2019). The nearest-neighbor method is frequently 136 

employed in precipitation analysis (Booth et al., 2018). This approach entails selecting the grid that is closest to the 137 

target grid, resulting in a mere shifting of the grid to align with the corresponding precipitation time series. The 138 

extracted satellite datasets are compared with IMD gridded data using various statistical metrics to test the accuracies 139 

and performances of these SPPs at daily, seasonal and annual timescales covering 18 x 22 grid points in different 140 

climatic zones of Tamil Nadu. The list of satellite precipitation products and their details are given in Table 1. 141 

Table 1. Description of the precipitation products used in the study 142 

Dataset Reference Spatial resolution Institute 

IMD Pai et al., 2014 0.25° x 0.25° India Meteorological Department 

ERA5 Hersbach et al., 2020 0.1° x 0.1° European Center for Medium Range Weather 

Forecasting 

IMDAA Ashrit et al., 2020 0.12° x 0.12° National Center for Medium Range Weather 

Forecasting 

MSWEP Beck et al., 2017 0.1° x 0.1° GLoH2O 

CHIRPS Funk et al., 2015 0.05° x 0.05° Climate Hazard Center 

GPCC Huffman et al., 2001 1° x 1° Deutscher Wetterdienst 

 143 

Ground-based rainfall observations 144 

The ground-based observation data from 1991 to 2022 were collected from nine research stations across 145 

Tamil Nadu, covering Coimbatore, Cuddalore, Madurai, Ramnad, Thanjavur (Aduthurai), Tiruvallur (Tirur), Trichy, 146 

and Tuticorin (Killikulam and Kovilpatti) districts, which were used for comparison with the satellite, reanalysis 147 

datasets and IMD gridded datasets. 148 

Satellite and reanalysis precipitation dataset evaluation using statistical metrics 149 

 Detection metrics (categorical statistics) and accuracy metrics (continuous statistics) that describe the 150 

detection capabilities and error characteristics of SPPs as well as reanalysis products are applied in the present 151 

investigation to perform statistical analysis between various precipitation products (MSWEP, GPCC, CHIRPS, ERA5, 152 

IMDAA) and reference datasets (IMD gridded dataset and gauge-based observation). 153 

Detection metrics 154 

 Several detection metrics can be used to evaluate the rain detection capabilities of satellite products, namely, 155 

the false alarm ratio (FAR), probability of detection (POD) and misses. FAR indicates the satellite estimated rainfall 156 

where there is no ground observation. POD measures correctly detected rainfall in both the satellite and ground 157 



estimates. Misses determine rainfall not recorded by satellites but present in ground observations (Gosset et al., 2013, 158 

Sunilkumar et al., 2015).  159 

FAR (%) =
Number of days {(Si ≥ 0.5)} & Number of days {(Ri < 0.5)}

Number of days {(Ri < 0.5)}
X100 160 

POD (%) =
Number of days {(Si ≥ 0.5)} & Number of days {(Ri ≥ 0.5)}

Number of days {(Ri ≥ 0.5)}
X100 161 

Misses (%) =
Number of days {(Si < 0.5)} & Number of days {(Ri ≥ 0.5)}

Number of days {(Ri ≥ 0.5)}
X100 162 

where Si and Ri are the satellite- and rain gauge-based rainfall estimates, respectively, with a chosen threshold of 0.5 163 

mm/day. A threshold of 0.5 mm d−1 was maintained for daily rainfall to eliminate the lower rainfall values that resulted 164 

from the interpolation of rainfall during the gridding process. 165 

Accuracy metrics 166 

 Accuracy metrics, which include the percent bias (PBIAS), root mean square error (RMSE), index of 167 

agreement (d), coefficient of determination (R2) and correlation coefficient (r), to determine the performance accuracy 168 

of the satellite products in estimating the precipitation amount and its variability from the reference or observed data. 169 

The RMSE has been used as a standard statistical metric to measure model performance in meteorology and climate 170 

research studies (Hodson et al., 2022). The data accuracy or the average error magnitude between the gauge and 171 

satellite products is indexed by the RMSE. It is a measure derived from the whole square root of the sum of squares 172 

of the differences between satellite and observed data divided by the number of total observations. Range: 0 to infinity, 173 

and perfect score: 0. 174 

RMSE =  √
∑(Si   −  Ri)

2 

N
  175 

 PBIAS measures the average tendency of the satellite rainfall estimation values to be higher or lower than 176 

the observed rainfall. PBIAS values with a lesser magnitude are desired. A positive PBIAS indicates overestimation 177 

of satellite rainfall, while a negative PBIAS indicates underestimation of satellite rainfall products (Gupta and Nagar, 178 

1999). 179 

BIAS (%) =
∑(Si   −  Ri)

∑ Ri

 X 100 180 

 The correlation coefficient (CC) denoted by r is used to measure the strength of the linear relationship 181 

between two variables (observed and predicted). Its value ranges from -1 to +1, where – 1 indicates a perfect negative 182 

relationship, +1 indicates a perfect positive relationship and 0 indicates no linear relationship (Ratner et al., 2009). 183 

𝐫 =
n ∑ xy − (∑ x)(∑ y)

√(n ∑ x2 − (∑ x)2)(n ∑ y2 − (∑ y)2))
 184 

 The coefficient of determination (R2) can be interpreted as the proportion of the variance in the dependent 185 

variable that is predictable from the independent variables. It ranges from −∞ to 1, indicating +1 as the best value. 186 

𝑅2 = 1 −
∑(𝑋 − 𝑌)2

∑(�̅� − 𝑌)2
 187 



 A value of 1 for the index of agreement (d) indicates good agreement between the simulated and observed 188 

data, while values closer to 1 indicate better predictions. A “d” value of zero indicates no predictability. 189 

d = 1 −
∑ (Si−Ri)

2n
i=1

∑ (|Si−R̅|n
i=1 + |Ri−R̅|)2

 190 

where R̅ is the rain gauge observed mean value, Si is the satellite estimated value, and R is the rain gauge observed 191 

value. 192 

Results and discussion 193 

Spatial distribution of rainfall by satellite and reanalysis products at annual and monsoonal scales 194 

Spatial annual rainfall pattern 195 

 The spatial patterns of annual and predominant monsoons, viz., southwest (June-September) and northeast 196 

(October-December) rainfall, were evaluated by performing gridded analysis and visual observations. The results 197 

revealed that approximately 988 mm of average annual rainfall was recorded by the IMD over Tamil Nadu; on the 198 

other hand, the SPPs, viz., MSWEP, GPCC, and CHIRPS, estimated the annual rainfall to be approximately 1059, 199 

1038, and 1186 mm, respectively. The reanalysis dataset ERA5 showed an annual rainfall of 1113 mm, and it was 200 

1241 mm with the IMDAA. The IMDAA estimated the maximum annual average rainfall compared to the other 201 

products and showed greater deviation from the IMD than other satellite and reanalysis precipitation products. 202 

 The spatial distributions of the mean annual rainfall estimated from the MSWEP, GPCC, CHIRPS, ERA5, 203 

IMDAA and IMD datasets are presented in Fig. 2. According to the IMD, the average annual rainfall varies from 500 204 

to 2250 mm in Tamil Nadu. Fig. 1 shows that the northeastern and Cauvery delta regions, which are situated near the 205 

east coastline of Tamil Nadu, receive high amounts of rainfall ranging from 1000 to 1500 mm. The hilly areas adjacent 206 

to the Western Ghats also exhibit high rainfall ranging from 1250 to 2000 mm, except for very few pockets with 207 

rainfall above 2000 mm. The spatial distributions of the annual mean rainfall derived from ERA5, MSWEP, and 208 

GPCC exhibited similar patterns to those of the IMD, with slight underestimations of rainfall over some portions of 209 

the Cauvery delta and eastern zones and overestimations over the hilly regions. IMDAA overestimated the rainfall 210 

compared to all products over the major area in Tamil Nadu. 211 



 212 

Fig. 2 Spatial distribution of annual mean rainfall in satellite and reanalysis products (a. ERA5, b. IMDAA, c. 213 

MSWEP, d. GPCC, e. CHIRPS, f. IMD) and heatmap showing the number of grids under each rainfall category 214 

 The heatmap shows (Fig. 3) that the total number of grid cells falls under each rainfall range with respect to 215 

each precipitation product. A lower range of 500–750 mm of rainfall is observed in minimum grids with IMD (13), 216 

MSWEP (5), and CHIRPS (1) in the western and southern parts of Tamil Nadu. The remaining products showed this 217 

low rainfall range in none of the grids. More than 80% of the grids cover average annual rainfall ranging from 750 to 218 

1250 mm with GPCC (159 grids), MSWEP (152 grids), ERA5 (151 grids) and IMD (143 grids). IMDAA (123 grids) 219 

and CHIRPS (119 grids) also estimated similar rainfall quantity ranges in a significant number of grids distributed in 220 

70% of the grids. Although the IMDAA (51) and CHIRPS (42) datasets exhibited 1250-1500 mm of precipitation over 221 

approximately 25% of the grids, the other four datasets, viz., the MSWEP (8), GPCC (8), ERA5 (10), and IMD (18) 222 

datasets, showed this rainfall in a very minimum area on the order of 10% of the grids. More than 1500 mm was 223 

detected in a very small number of grids comprising hilly and high-rainfall zones. 224 

 In Tamil Nadu, the average annual rainfall is observed to be the highest in the western and eastern regions, 225 

and less rainfall occurs in the central region, northwestern and southern areas. The higher rainfall pattern concentrated 226 

over the western and eastern regions of Tamil Nadu could be attributed to the orographic effect of the western Ghats 227 

Mountains near the western region and east coastline in the eastern part of Tamil Nadu, which is influenced by 228 



monsoonal winds and cyclonic activities (Phadtare, 2023). MSWEP, ERA5 and GPCC performed well in capturing 229 

the spatial rainfall variability of average annual rainfall with a close similarity to that of the IMD, whereas IMDAA 230 

overestimated the annual rainfall over a larger area. 231 

 232 

Fig. 3 Heatmap represents the number of grids in each rainfall category under various precipitation products 233 

Spatial seasonal rainfall pattern 234 

 During the southwest monsoon, rainfall tends to increase from the southeast to the northern regions, while 235 

the hilly region in the western parts and the high-rainfall zone at the southern tip of Tamil Nadu receive more rainfall 236 

in the SWM across all the products (Fig. SI1). In the southeastern and central parts, less than 350 mm of rainfall 237 

occurs, whereas in the northern parts, the SWM rainfall ranges from 350 to 650 mm. In the hilly zone, rainfall reaches 238 

1500 mm with the IMD. The rainfall ranging from 50 to 350 mm was observed in approximately 50% of the grids 239 

with CHRIPS and GPCC and approximately 40% of the grids with MSWEP. According to the ERA (122 grids) and 240 

IMDAA (110 grids) SWM recorded rainfall varying from 350 to 650 mm in 60 to 70% of the grids, followed by the 241 

MSWEP (98 grids: 55%) and CHIRPS (79 grids: 47%). Higher rainfall of more than 950 mm was observed in less 242 

than 10 grids in all products except for the IMDAA (12 grids) (Fig. SI2a). 243 

 The NEM, which is the chief rainfall season, receives rainfall ranging from 350 to 950 mm (Fig. SI3) in the 244 

majority of the regions. The spatial pattern of the NEM rainfall pattern manifests more rainfall over the northeast and 245 

cauvery delta regions, ranging from 650 to 950 mm for the IMD, whereas other products show rainfall ranging between 246 

350 mm and 650 mm in the northeastern parts, except for a few patches. The NEM rainfall shows an increasing pattern 247 

from the western and southern regions towards the northeast side. More than 100 grid points in ERA5, IMDAA, 248 

MSWEP, GPCC, and CHIRPS showed rainfall amounts ranging from 350 to 650 mm, while fewer grid points in IMD 249 

(13) and MSWEP (2) predicted more than 950 mm of rainfall in the coastal regions of Tamil Nadu (Fig. SI2b). 250 



During SWM, the spatial rainfall pattern exhibited less than 350 mm in the southeastern, southern and central 251 

regions, while 350 to 650 mm of rainfall occurred in the northwestern and northeastern zones. Higher rainfall is 252 

observed in hilly and high-rainfall zones (Fig. SI1). In NEM, as per the IMD, most of the grids have average rainfall 253 

of 350 to 950 mm covering the entire Tamil Nadu region, excluding a few coastal regions where NEM rainfall exceeds 254 

950 mm. On the other hand, all other models showed 350 to 650 mm of rainfall in the greater portion of the area with 255 

higher rainfall of 650 to 950 mm in the coastal regions (Fig. SI3). The higher rainfall estimated by the majority of the 256 

products in coastal regions might be due to the strong influence of monsoonal behaviour in association with frequent 257 

exposure to rainfall extremes and cyclones. 258 

 All the products exhibited relatively consistent spatial SWM rainfall patterns with varying magnitudes of 259 

rainfall. MSWEP estimates of SWM rainfall ranging from 50 to 650 mm in 92% of the grids showed the best match 260 

with the SWM rainfall spatial pattern of the IMD, which exhibited a similar range in 95% of the grids. The present 261 

findings are in line with Reddy et al. (2022), who reported that MSWEP outperformed in estimating the precipitation 262 

across the Godavari River basin in India among the other precipitation products, viz., CHIRPS, TRMM, CPC, 263 

CMORPH, and PERSIANN-CDR evaluated against the IMD.   264 

MSWEP, GPCC, CHIRPS, and IMD better captured the influence of NEM over the coastal regions of Tamil 265 

Nadu and estimated the higher rainfall over those regions compared to other regions during NEM. ERA5 and IMDAA 266 

failed to estimate higher rainfall over the coastal regions, and IMDAA exhibited a rainfall range of 350 to 650 mm in 267 

almost the entire (90% of the grids) Tamil Nadu region. The seasonal rainfall distribution shows that the study region 268 

receives the majority of the rainfall during the SWM and NEM seasons, with NEM contributing more to the rainfall 269 

in the northeastern regions and SWM contributing more to the rainfall in the western regions. This could be due to the 270 

seasonal wind swings during the monsoon period and the orography that exists due to the presence of the Western 271 

Ghats (Jegankumar et al., 2012). 272 

Evaluation of the rain detection capabilities of satellite and reanalysis products 273 

False Alarm Ratio 274 

 Detection metrics such as the FAR, POD and percentage of missing rainfall events were computed using 275 

daily rainfall data to understand the abilities of satellite and reanalysis products to detect daily rainfall events precisely. 276 

The spatial variation in the FAR of all five precipitation products was obtained by comparing the reference data (IMD) 277 

and is illustrated in Fig. 4. The results indicate that the FAR for the majority of the products followed a decreasing 278 

pattern from the lower portion of Tamil Nadu towards the upper regions, i.e., the satellite and reanalysis products 279 

exhibited good performance in detecting rainfall events while moving from the southern to the northern direction in 280 

Tamil Nadu. However, the spatial distribution of the FAR exhibited only two distinct patterns, indicating a lower FAR 281 

in the upper regions and a high FAR in the lower portions and not showing much variation within each portion. At the 282 

same time, CHIRPS had almost the same magnitude of FAR over Tamil Nadu. Rainfall events detected by CHIRPS 283 

matched well with the rainfall events of the IMD across Tamil Nadu, with a FAR of 10-30%. ERA5 and IMDAA 284 

attained a lower FAR over the northwestern areas, GPCC and CHIRPS achieved a lower FAR in the coastal areas, 285 

while MSWEP had an almost similar FAR over these regions. CHRIPS performed better, with a lower FAR ranging 286 



from 10-20% FAR in 13% of the grids and 20-30% FAR in 87% of the grids (154), while GPCC obtained FAR values 287 

ranging from 10 to 20% in 32% of the grids (58) and 20-30% in 47% of the grids (84). The MSWEP showed FAR 288 

values ranging between 20 and 30% for the maximum number of grids (60% of grids) and between 30 and 40% for 289 

28% of the grids. ERA5 exhibited a lower FAR (20-30%) in fewer grids (18), a 30-40% FAR in 60% of the grids 290 

(107), and more than 40% FAR in the remaining grids. In the case of the IMDAA, all the grids displayed a FAR 291 

greater than 40% (Fig. SI4a). 292 

 293 

Fig. 4. Spatial distribution of the false alarm ratio (FAR) in the satellite and reanalysis products (a. ERA5, b. IMDAA, 294 

c. MSWEP, d. GPCC, e. CHIRPS). 295 

 296 

Probability of detection (POD) 297 

 The spatial pattern of the probability of detection and heatmap showing the number of grid points under each 298 

specified POD range are given in Fig. 5. The spatial pattern of POD indicated the best detectability of ERA5 and 299 

MSWEP, with more than 70% POD covering 90% of Tamil Nadu; however, not much heterogeneity was found in 300 

POD between the regions. CHIRPS also displayed almost evenly distributed spatial POD values within the range of 301 

50 to 60% in a larger area (76% grids). Similarly, a uniform distribution of PODs ranging from 70 to 80% was observed 302 

with the IMDAA in 74% of the grids, and the rest of the area had 60 to 70% PODs. The GPCC achieved 60 to 70% 303 

POD in 79 of the 177 grids (Fig. SI4b). The majority of the products performed better in identifying rainfall events in 304 

hilly rainfall zones than in identifying rainfall events in other zones. 305 



 306 

Fig. 5. Spatial distribution of the Probability of detection (POD) in the satellite and reanalysis products (a. ERA5, b. 307 

IMDAA, c. MSWEP, d. GPCC, e. CHIRPS) 308 

Misses (%) 309 

 The spatial pattern of misses is depicted in Figure 6. ERA-5 exhibited good performance, with a miss 310 

percentage below 25% over Tamil Nadu, followed by the MSWEP, with a lower miss rate of 15 to 25% in the majority 311 

of the areas, and it reached 35% in some regions, including the Cauvery delta and parts of the southern zone. The 312 

number of missed rainfall events was greater in the CHIRPS, with 45 to 55% of events occurring in the lower half of 313 

Tamil Nadu from the central region, while in the upper half, the number of missed events decreased to 35%. The 314 

results showed that the spatial variation in the percentage of misses ranged from 5 to 55% in all the products, with a 315 

lower miss percentage of 5 to 15 in ERA5 over 38 grids in the western and southwestern regions of Tamil Nadu. Both 316 

ERA5 and MSWEP had percentage of misses within 35% of the range. The percentages of missing in GPCC were 25 317 

to 35% and 35-45%, respectively, in an equal number of grids (68). The miss percentage shows a decreasing trend 318 

towards the western side, excluding CHIRPS, which had miss percentages of 35–45% in 88 grids and 45–55% in 89 319 

grids over the Tamil Nadu region (Fig. SI4c). 320 



 321 

Fig. 6. Spatial distribution of the misses in the satellite and reanalysis products (a. ERA5, b. IMDAA, c. MSWEP, d. 322 

GPCC, e. CHIRPS) 323 

The results of the detection metrics indicated that the POD was greater in ERA5 and MSWEP, revealing 324 

better agreement with the reference dataset, whereas the POD was lower in CHIRPS, indicating poor detection 325 

capacity. The percentage of missing rainfall events was lower in the ERA5 and MSWEP datasets and higher in the 326 

CHIRPS dataset. ERA5 and MSWEP exhibited the best performance in detecting rainfall events as a result of their 327 

high POD and low number of missing rainfall events. It is evident from the results that the products with fewer missing 328 

rainfall events had a higher POD. The CHIRPS, GPCC and MSWEP products had FAR values less than 40% at more 329 

than 90% of the grid points under study and performed better than the other products. An evaluation study of SPPs 330 

conducted by Reddy and Saravanan (2023) in India also reported that MSWEP and CHIRPS had lower false ratios 331 

than the other precipitation products. Additionally, it is important to note that high spatial resolutions allow satellites 332 

to identify atmospheric processes more precisely, which would improve rainfall estimation (Alfieri et al., 2022). The 333 

spatial distribution of the probability of detection (POD) indicated that both MSWEP and ERA5 had PODs of detecting 334 

70-100% of the rainfall at more than 90% of the grid points. Kolluru et al. (2020) reported that ERA-5 had a high 335 

POD and poor performance of CHIRPS in five diverse Indian climatic zones. Similar results could be observed from 336 

the study conducted by Taye et al. (2023) which showed the lowest detection capacity of CHIRPSv2. The variation in 337 

the performance of different products could be linked to several factors, such as the input data used and assimilation 338 

methods applied for developing reanalysis datasets, sensor type and accuracy, data retrieval algorithms used for 339 



satellite-based products, different schemes adopted and the structure of the numerical models (Mulungu & Mukama, 340 

2023). 341 

Evaluation of the rain estimation capabilities of satellite and reanalysis products 342 

Root mean square error (RMSE) 343 

 The spatial map of the RMSE for daily rainfall, along with the heatmap showing the number of grids of the 344 

RMSE presented in Fig. 7, indicates that all products had higher RMSEs in the areas receiving more rainfall, i.e., in 345 

the mountainous and coastal regions and high-rainfall zone. The results revealed a lower RMSE ranging from 7 to 11 346 

mm in the entire middle portion, covering the region from north to south of Tamil Nadu, while in the mountainous 347 

and coastal regions and high-rainfall zone, the RMSE ranged from 11 to 17 mm across the products. ERA5 and 348 

MSWEP were more effective at estimating the daily rainfall than the other products, with 7-11 mm in more than 70% 349 

of the grids. The RMSEs of GPCC (80 grids) and CHIRPS (78 grids) were 9-11 mm for the maximum number of 350 

grids. All the products had errors in the RMSE range of 9–11 mm for more than 50 grid points, and the IMDAA 351 

showed this RMSE range for the highest number of grids (102). 352 

 353 

Fig. 7 Spatial distribution of the RMSE of daily rainfall in the satellite and reanalysis products (a. ERA5, b. IMDAA, 354 

c. MSWEP, d. GPCC, e. CHIRPS) and heatmap showing the number of grids in each RMSE category 355 

 The spatial pattern of the RMSE of the annual rainfall (Fig. 8) revealed that the western Ghats and the hills 356 

that received a good amount of rainfall from the SWM had higher RMSEs compared to other regions that received 357 

less rainfall. The RMSEs in the northwestern and northeastern parts of Tamil Nadu were low, and the RMSEs in the 358 

southern parts increased. The spatial RMSE distribution for the SWM was also consistent with the RMSE pattern of 359 

the annual rainfall (Fig. SI5). On the other hand, in NEM, the spatial RMSE distribution pattern showed a different 360 



pattern, exhibiting high RMSEs over the northeast and delta zones, which have close proximity to the coastline and 361 

receive more rainfall during NEM (Fig. SI6). However, in the remaining region, the RMSE did not vary much 362 

spatially, with the exception of a smaller area over the central part of Tamil Nadu during NEM. The lowest RMSE 363 

range of 180–380 was found to be the maximum in the MSWEP (110), followed by the GPCC (103) and ERA (82), 364 

while the IMDAA showed the highest RMSE range of 380–580 mm at the maximum grid points, and further the 365 

IMDAA obtained a high RMSE value ranging from 980 to 1180 mm across the six grids, accounting for 3.4% of the 366 

total grids in the western and southwestern regions. 367 

 368 

Fig. 8 Spatial distributions of the RMSEs of annual rainfall in satellite and reanalysis products (a. ERA5, b. IMDAA, 369 

c. MSWEP, d. GPCC, e. CHIRPS) and heatmaps showing the number of grids in each RMSE category 370 

During SWM rainfall, the RMSE of the MSWEP, ERA5, and GPCC models exhibited similar patterns at the 371 

spatial scale, with lower values ranging from 100–200 mm on the northwestern northeastern side and higher RMSE 372 

values ranging from 700–800 mm in the western and southwestern areas (Fig. SI5). The maximum (more than 600 373 

mm) error in rainfall was noted over the western part with all satellite products. The number of grid points with a 374 

lower RMSE range of 100–200 mm is observed in MSWEP (94), followed by ERA5 (85), GPCC (83) and CHIRPS 375 

(61) out of 177 grid points (Fig. 9a). The IMDAA had an error of 200–300 mm in the maximum number of (103 grid) 376 

points, followed by CHIRPS in 71 grid points. In NEM, MSWEP, CHRIPS and GPCC exhibited minimum RMSEs 377 

between 100 and 200 mm in 48, 66 and 52 grids, respectively, demonstrating around 30% of the grids, while these 378 

products had RMSEs of 200-300 mm in about 55% of the grids. All products had RMSEs of 200-300 mm for the 379 

maximum number of grids during NEM (Fig. 9b). 380 



 381 

Fig. 9 Heatmap represents the number of grids in each RMSE category under various precipitation products (a. 382 

SWM and b. NEM) 383 

 The root mean square error (RMSE) serves as a straightforward metric to assess the average magnitude of 384 

errors in predictions, irrespective of their direction. In general, high values of root mean square error (RMSE) indicate 385 

inadequate predictive ability of models or satellite products. It is important to address these issues to enhance the 386 

quality of prediction in satellite products. 387 

 RMSEs in the range of 11 to 17 mm for daily rainfall were observed over the hilly and coastal regions, 388 

whereas inland regions exhibited RMSEs ranging between 7 and 11 mm across the products. The RMSE is generally 389 

larger for all products at all daily, annual and seasonal scales across the contiguous hilly regions of Western Ghats and 390 

coastal regions of Tamil Nadu. In particular, the results clearly manifested the higher RMSE values in the hilly regions 391 

adjacent to the western Ghats during the SWM while in the coastal regions during the NEM. The study of Willmott 392 

and Matsuura (2006) revealed that the RMSE is affected by geographic region, time period, and outliers in the data. 393 

Among the products, ERA5 performs better, with a lower RMSE in the daily time step, followed by MSWEP. 394 

However, the MSWEP could estimate rainfall better than the ERA at annual and seasonal time scales. The continuous 395 

statistical results confirmed that ERA-5 is a good dataset for daily time steps but is not effective at the monthly scale 396 

(Kolluru et al., 2020). 397 

Percent Bias 398 

 The spatial patterns of the bias percentages of the annual and seasonal rainfall for all satellite products are 399 

shown in Fig. 10. The results revealed that the SPPs and reanalysis products underestimated the annual rainfall in the 400 

northeast region, especially in the coastal regions, with a bias percentage of 0 to -25%, while the annual rainfall was 401 

overestimated (>50% bias) in certain areas in the western and southwestern regions of the Western Ghats side of Tamil 402 

Nadu. In SWM, PBIAS showed an analogous spatial pattern to annual rainfall in the hilly regions of the western and 403 

southwestern parts of Tamil Nadu (Fig. SI7), and during NEM, the products underestimated the rainfall in the entire 404 



Tamil Nadu region except for a few southern pockets. The products estimated that NEM rainfall exhibited a larger 405 

negative deviation from the IMD over some parts of the northwestern and northeastern regions (Fig. SI8). 406 

 407 

Fig. 10 Spatial distribution of the percent bias of annual rainfall in satellite and reanalysis products (a. ERA5, b. 408 

IMDAA, c. MSWEP, d. GPCC, e. CHIRPS) and heatmap showing the number of grids in each PBIAS category 409 

 For annual rainfall, a lower bias percentage of 0 to 25 was noted at the maximum grid points of MSWEP 410 

(118), followed by GPCC (92), ERA5 (84) and CHIRPS (72 grid points) (Fig. 10). Among the products, MSWEP had 411 

a lower bias (-25 to +25%) over the maximum grids of 150, covering 84.7% of the region. In the SWM, the MSWEP 412 

performed better, with a percent minimum bias (0 to 25%) in 98 grids, followed by the ERA5 (77) and GPCC (71 grid 413 

points). Both IMDAA and CHIRPS had biases of more than 25 percent in the maximum number of grid points 414 

compared to the other products (Fig 11a). In NEM, a smaller underestimated bias by CHRIPS demonstrated a better 415 

performance with a lower bias range of 0 to 20 PBIAS in 126 grids, covering 71.2% of the region, and a parallel 416 

performance was observed in MSWEP (111). GPCC showed a negative bias within the lower PBIAS range from 0 to 417 

20% in 107 grids (Fig 11b). 418 



 419 

Fig. 11 Heatmap represents the number of grids in each percent bias category under various precipitation products 420 

(a. SWM and b. NEM) 421 

 The rainfall estimation accuracy metrics (continuous metrics) exhibited variations in the seasonal 422 

performances of the products, indicating better estimates of CHRIPS in NEM than in SWM. The SPPs and reanalysis 423 

data exhibited weak performance with an overestimation of rainfall over hilly and highly elevated regions of the 424 

Western Ghats. The rainfall detection and estimation ability of infrared and microwave sensors and retrieval 425 

algorithms employed in SPPs might have impacted the accuracy of SPPs in mountainous regions. Many studies have 426 

shown that SPPs do not perform efficiently in high-elevation regions (Yin et al., 2008, Ngo-Duc et al., 2013, Toté et 427 

al., 2015, Hobouchian et al. 2017). Reanalysis datasets blend global and regional weather models with observations 428 

to create reliable historical datasets at various spatiotemporal resolutions. A larger bias in the reanalysis rainfall 429 

datasets over mountainous terrain than over other regions might be associated with sparse rain gauge observations and 430 

complicated terrain. Although reanalysis data combine rain gauge-based observations with weather models to generate 431 

reanalysis data with increased accuracy, factors such as high elevation, complex topography and insufficient ground 432 

observations can lead to potential errors and limit the production of high-quality rainfall datasets. These findings are 433 

in conformity with Luo et al. (2019), who indicated that complex topography and inadequate observations can tend to 434 

increase the biases in rainfall estimation. 435 

Validation of the precipitation products with ground station observations 436 

 Continuous statistical metrics such as the correlation coefficient (r), coefficient of determination (R2), index 437 

of agreement (d), RMSE and PBIAS were employed to evaluate the performances of the satellite and reanalysis 438 

precipitation products against the nine ground-based observations made over Tamil Nadu. The precipitation products 439 

were evaluated for both the seasonal (i.e., SWM and NEM) and annual time scales. 440 



 The correlation analysis between the ground station observations and various precipitation products indicated 441 

a positive correlation for all the SPPs. Among the products, the MSWEP demonstrated a highly positive correlation 442 

followed by IMD at all annual and during the two monsoon periods (Table 2). The annual rainfall of the MSWEP at 443 

all rain gauge stations was strongly positively correlated (0.61 to 0.88) with the ground station observations, except 444 

for two-gauge stations (0.49 and 0.52) which had significantly weak positive correlation. Similarly, seven stations had 445 

significantly strong positive correlations (0.74 to 0.91) in NEM and SWM (0.53 to 0.87) for MSWEP. In the case of 446 

the IMD, one stations only showed a significantly strong positive correlation for annual rainfall (0.6) as well as in the 447 

SWM (0.7) and seven stations (0.61 to 0.87) in the NEM. Among all the products, the IMDAA was weakly correlated 448 

with the ground station observations. 449 

For MSWEP, the positive correlation with ground observations was significant at all locations annually and 450 

NEM whereas positive correlation was nonsignificant at two locations in SWM. IMD had a significantly positive 451 

correlation for all stations only in NEM, five stations at annual scale and four locations in SWM. The correlation 452 

between the MSWEP and gauge data was better than the correlation between the IMD and gauge data at all-time scales 453 

at all locations. Among all precipitation products MSWEP had a lower RMSE followed by IMD (Fig. 12) and PBIAS 454 

values was lower with IMD followed by MSWEP (Fig. 13). Comparing the seasons, the higher correlation coefficient, 455 

lower PBIAS and RMSE were higher with NEM than SWM. MSWEP had a good agreement with gauge data than 456 

IMD with gauge data at all the time scales in all locations.  457 

 458 

Table 2. Correlation statistics between precipitation products and ground observations (correlation significance was 459 

tested statistically only for the top performing precipitation product with higher r values (MSWEP) and IMD) 460 

Locations  IMD 

ERA

5 

IM

DA

A 

MSW

EP 

GPC

C 

CHIR

PS IMD 

ERA

5 

IMD

AA 

MSWE

P 

GPC

C 

CHIR

PS IMD 

ERA

5 

IMDA

A 

MSWE

P 

GPC

C 

CHIR

PS 

 

Annua

l      

SW

M       NEM      

Aduthurai 0.58** 0.78 0.48 0.78** 0.75 0.56 0.4* 0.64 0.46 0.69** 0.66 0.63 0.74** 0.72 0.68 0.76** 0.74 0.58 

Coimbatore 0.42* 0.59 0.39 0.82** 0.85 0.63 0.03 0.45 0.71 0.76** 0.67 0.63 0.81** 0.65 0.35 0.88** 0.85 0.7 

Cuddalore 0.6** 0.65 0.42 0.74** 0.74 0.72 0.4* 0.54 0.55 0.78** 0.7 0.69 0.54** 0.67 0.51 0.78** 0.74 0.73 

Killikulam 0.27 0.27 0.35 0.49** 0.74 0.46 -0.3 0.06 0.02 0.32 0.36 -0.01 0.61** 0.65 0.61 0.53** 0.54 0.65 

Kovilpatti 0.14 0.55 0.51 0.65** 0.79 0.58 -0.26 0.53 0.56 0.36 0.44 0.37 0.47* 0.45 0.41 0.46* 0.52 0.63 

Madurai 0.41* 0.49 0.39 0.73** 0.6 0.51 0.27 0.31 0.51 0.53** 0.34 0.32 0.87** 0.39 0.44 0.74** 0.77 0.69 

Ramnad 0.04 0.75 0.45 0.88** 0.79 0.62 0.03 0.58 0.41 0.87** 0.82 0.64 0.66** 0.76 0.61 0.89** 0.74 0.73 

Tirur 0.27 0.67 0.43 0.52** 0.56 0.36 0.7** 0.7 0.67 0.76** 0.71 0.52 0.82** 0.78 0.56 0.91** 0.91 0.82 

Trichy 0.46* 0.32 0.19 0.61** 0.46 0.3 0.41* 0.39 0.28 0.59** 0.43 0.33 0.81** 0.53 0.49 0.8** 0.78 0.61 

*. Correlation is significant at the 0.05 level (2-tailed), **. Correlation is significant at the 0.01 level (2-tailed) 461 

Categorisation of the strength and nature (positive/negative) of correlation:  .00-.19 “very weak”, .20-.39 “weak” • 462 

.40-.59 “moderate” • .60-.79 “strong” • .80-1.0 “very strong” as per Evans (1996). 463 



 464 

Fig. 12 Spatial (across nine-gauge stations) RMSE distribution of the annual rainfall, Southwest monsoon (SWM) and 465 

Northeast monsoon (NEM) for satellite and reanalysis products in comparison with the gauge rainfall data. In a box 466 

and whisker plot, the bottom of the box represents the 25th percentile (Q1) and top of the box represents the 75th 467 

percentile (Q3), the solid line within the box shows the median. The whiskers at the bottom and top indicate the 468 

minimum (Q1-1.5times interquartile range) and maximum (Q3+1.5times interquartile range) values respectively.  469 

 470 

Fig. 13 Spatial (across nine-gauge stations) PBIAS distribution of the annual rainfall, Southwest monsoon (SWM) 471 

and Northeast monsoon (NEM) for satellite and reanalysis products in comparison with the gauge rainfall data. In a 472 

box and whisker plot, the bottom of the box represents the 25th percentile (Q1) and top of the box represents the 75th 473 

percentile (Q3), the solid line within the box shows the median. The whiskers at the bottom and top indicate the 474 

minimum (Q1-1.5times interquartile range) and maximum (Q3+1.5times interquartile range) values respectively. 475 

Black round points are outliers. 476 



From the comparative analysis of precipitation products with ground station data, it was found that the 477 

MSWEP performed better than other precipitation products with a strong correlation, lower PBIAS and RMSE. The 478 

efficacy of MSWEP and IMD in representing the ground station observations was also tested using two more statistical 479 

indices (the index of agreement and the coefficient of determination). Index of agreement (d) values were higher with 480 

MSWEP than IMD for all ground stations at both annual and SWM scales. Similarly, during NEM, the d values for 481 

MSWEP were higher in the majority of stations except three stations where IMD had slightly higher d values (0.02, 482 

0.04, 0.09) than MSWEP, which is also negligible (Table 3). The coefficient of determination (r2) also showed a 483 

similar pattern of index of agreement (d) in the comparison of precipitation products (IMD and MSWEP) with ground 484 

stations. 485 

Table 3. Comparison of IMD and MSWEP with ground station rainfall datasets using Index of agreement (d) and 486 

Coefficient of determination (r2) 487 

Stations 

Annual 
Southwest 

monsoon 

Northeast 

monsoon 
Annual 

Southwest 

monsoon 

Northeast 

monsoon 

Index of agreement (d) Coefficient of determination (r2) 

IMD 
MS

WEP 
IMD 

MS

WE

P 

IM

D 

MS

WEP 
IMD 

MSWE

P 
IMD 

MS

WEP 
IMD 

MS

WEP 

Aduthurai 0.71 0.87 0.54 0.82 0.82 0.86 0.34 0.61 0.16 0.48 0.55 0.58 

Coimbatore 0.59 0.69 0.21 0.66 0.85 0.85 0.18 0.67 0.00 0.58 0.66 0.78 

Cuddalore 0.68 0.82 0.57 0.86 0.68 0.83 0.35 0.54 0.16 0.61 0.29 0.61 

Killikulam 0.50 0.58 0.20 0.52 0.63 0.66 0.07 0.24 0.09 0.10 0.37 0.28 

Kovilpatti 0.37 0.67 0.14 0.55 0.65 0.63 0.02 0.42 0.07 0.13 0.22 0.22 

Madurai 0.61 0.78 0.47 0.68 0.93 0.84 0.17 0.54 0.07 0.28 0.75 0.55 

Ramnad 0.33 0.85 0.25 0.88 0.77 0.79 0.00 0.78 0.00 0.75 0.43 0.80 

Tirur 0.46 0.47 0.78 0.81 0.89 0.91 0.07 0.27 0.48 0.57 0.64 0.82 

Trichy 0.65 0.68 0.56 0.67 0.87 0.83 0.20 0.37 0.16 0.35 0.66 0.63 

 488 

Conclusion 489 

The study investigates the performance of high-resolution precipitation products (MSWEP, GPCC, CHIRPS, 490 

ERA5, IMDAA) to select the best precipitation products for Tamil Nadu by employing rainfall detection and 491 

estimation accuracy metrics at each grid. The results obtained from the spatial performance analysis of precipitation 492 

products against IMD indicated that ERA proved to be effective in detecting rainfall followed by MSWEP. Even 493 

though ERA is effective in detecting rainfall, False Alarm Ratio (FAR) is higher in ERA than MSWEP.  The Rain day 494 

detection capability of most of the products is greater in hilly regions compared to other regions.  495 

The accuracy metrics (continuous statistics) results exhibit a better performance of satellite precipitation 496 

products compared to reanalysis products. MSWEP demonstrates optimal performance in capturing rainfall events 497 



and achieving good rainfall estimates on both annual and seasonal scales. At the same time, CHIRPS is equally 498 

effective as MSWEP at estimating the rainfall during NEM. Among all precipitation products, the IMDAA shows 499 

poor performance in rainfall estimation.  500 

IMD precipitation dataset is predominately used as a high-quality reference dataset to compare satellite and 501 

reanalysis precipitation datasets for India. Considering the wider usage of the IMD precipitation dataset, this study 502 

attempted to verify the performance of IMD dataset along with the other satellite and reanalysis precipitation datasets 503 

by comparing with the observed ground station rainfall. Comparison of precipitation products with ground station 504 

rainfall reveals a higher efficiency of MSWEP in estimating the rainfall over the other precipitation products by having 505 

a strong and significant correlation with ground station rainfall and a lower RMSE. PBIAS of MSWEP is slightly 506 

higher than that of IMD. In view of correlation (r), Index of agreement (d), Coefficient of determination (r2), RMSE 507 

values, MSWEP outperformed the IMD at both annual and seasonal scales. Hence, high resolution MSWEP data could 508 

be suitable for operational applications in various sectors.  509 

All precipitation products, excluding IMDAA, present both an overestimation and an underestimation of 510 

rainfall across the ground stations. The results of grid analysis performed over Tamil Nadu show that the magnitude 511 

of overestimation and underestimation of rainfall by SPPs varied spatially and temporally. It clearly indicates that the 512 

accurate spatiotemporal estimation of rainfall by SPPs remains a challenge. This sort of inaccuracy and error may 513 

stem from bias correction of precipitation products with insufficient gauge distributions, limitations of remote sensing 514 

sensors used and uncertainty in SPPs estimation also attributed to the algorithm used by different SSPs to estimate 515 

rainfall. 516 

Overall, the comparison of precipitation products against IMD gridded rainfall indicates the better 517 

performance of MSWEP rainfall dataset over other datasets.   ERA5, CHIRPS and GPCC datasets can also be used 518 

for locations where gauge-based rainfall datasets are scarce and unavailable. The comparison study of IMD and 519 

MSWEP with ground station observations shows the suitability of high-resolution MSWEP rainfall datasets 520 

(0.1°×0.1°) alternative to IMD gridded (0.25°×0.25°) rainfall datasets. 521 

The best precipitation product identified through the robust evaluation would increase the confidence of 522 

researchers and practitioners to apply the data to bolster operational meteorological research, crop planning, enhanced 523 

weather forecasting, framing suitable water management plans, crop simulation and hydrological modelling and to 524 

provide consistent and precise rainfall information needed for policy-making decisions. The spatiotemporal evaluation 525 

results of precipitation products form the basis for enhancing the accuracy of precipitation products at the regional 526 

level and increasing their practical applications. 527 
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