
Applied Energy 353 (2024) 122059

A
0
n

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Two-step deep learning framework with error compensation technique for
short-term, half-hourly electricity price forecasting
Sujan Ghimire a, Ravinesh C. Deo a,b, David Casillas-Pérez c,∗, Sancho Salcedo-Sanz d,a

a School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
b Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, QLD, 4500, Australia
c Department of Signal Processing and Communications, Universidad Rey Juan Carlos, Fuenlabrada, 28942, Madrid, Spain
d Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Madrid, Spain

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Dataset link: https://www.aemo.com.au/

Keywords:
Electricity price prediction
Deep learning
Error compensations
Variational mode decomposition
Hybrid model

A B S T R A C T

Prediction of electricity price is crucial for national electricity markets supporting sale prices, bidding
strategies, electricity dispatch, control and market volatility management. High volatility, non-stationarity
and multi-seasonality of electricity prices make it significantly challenging to estimate its future trend,
especially over near real-time forecast horizons. An error compensation strategy that integrates Long Short-
Term Memory (LSTM) network, Convolution Neural Network (CNN) and the Variational Mode Decomposition
(VMD) algorithm is proposed to predict the half-hourly step electricity prices. A prediction model incorporating
VMD and CLSTM is first used to obtain an initial prediction. To improve its predictive accuracy, a novel error
compensation framework, which is built using the VMD and a Random Forest Regression (RF) algorithm, is
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also used. The proposed VMD-CLSTM-VMD-ERCRF model is evaluated using electricity prices from Queensland,
Australia. The results reveal highly accurate predictive performance for all datasets considered, including the
winter, autumn, spring, summer, and yearly predictions. As compared with a predictive model without error
compensation (i.e., the VMD-CLSTM model), the proposed VMD-CLSTM-VMD-ERCRF model outperforms the
benchmark models. For winter, autumn, spring, summer, and yearly predictions, the average Legates and
McCabe Index is seen to increase by 15.97%, 16.31%, 20.23%, 10.24%, and 14.03%, respectively, relative to
the benchmark models. According to the tests performed on independent datasets, the proposed VMD-CLSTM-
VMD-ERCRF model can be a practical stratagem useful for short-term, half-hourly electricity price forecasting.
Therefore the research outcomes demonstrate that the proposed error compensation framework is an effective
decision-support tool for improving the predictive accuracy of electricity price. It could be of practical value
to energy companies, energy policymakers and national electricity market operators to develop their insight
analysis, electricity distribution and market optimization strategies.
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1. Introduction

Renewable energy sources such as solar and wind are becoming
prevalent in power systems supporting national electricity markets,
making it more difficult to balance electricity supply and demand,
costs and affordability. This calls for electricity demand response strate-
gies that can analyse consumer demand patterns. Many countries are
already employing dynamic pricing, which includes periodically ad-
justing electricity prices (EP). Consumers, especially prosumers who
produce their own electricity, must accurately predict changes in EP.
Credible EP predictions enable prosumers to optimize their energy use,
receive incentives on electricity bills, and contribute to the stability of
the regional and national energy grid [1]. As such, in a highly competi-
tive and rapidly evolving national electricity market, it is imperative for
market participants to anticipate EP shifts and dynamic market-driven
movements accurately.

Predicting electricity prices is a complex task due to the unique
characteristics of EP, especially over short periods. The most challeng-
ing features of EP include seasonality recorded at many frequencies,
jumps in both directions (positive and negative) and high volatility on
a daily or hourly basis. This challenging behaviour of EP has attracted
the attention of many research scholars [2].

Statistical, computational and hybrid models are the three main
branches for the development of EP. Traditional statistical such as
Regression Model, Transfer Function, Exponential Smoothing, Autore-
gressive Moving Average, Autoregressive Integrated Moving Average,
Autoregressive Fractionally Integrated Moving Average and General-
ized Autoregressive Conditional Heteroskedasticity with their improved
versions such as Autoregressive Moving Average Exogenous, are uti-
lized for EP prediction. These simple methods take into account time-
based relationship of data, making them appropriate for predicting
the EP series with minor fluctuations and with low-frequency changes
(relying on the high stability of data patterns) [3]. However, electricity
demand and price data that have a high degree of randomness and
intermittent patterns due to consumer’s purchase and use of electricity
with the EP time series data generally comprising of complex features
e.g., high and low frequencies, volatility, variable means and vari-
ances, and a high proportion of unusual prices [4,5]. Consequently,
conventional methods are limited in their accuracy in predicting EP.

Computational intelligence models, facilitated by Artificial Intelli-
gence (AI) techniques, are capable of extracting complex nonlinear
features in electricity price datasets. These methods do not require
meeting specific statistical assumptions, and have a higher accuracy for
predicting nonlinear time series data [6]. Common models used for EP
prediction are presented in Table 1. Broadly categorized into Machine
Learning (ML) and Deep Learning (DL) models, these methods have a
better prediction result compared to traditional methods due to their
robustness and nonlinear mapping capabilities. However, they still fall
short in exploring the internal time dynamics of time-series data [7].

DL methods specifically designed for sequence-based models include
Recurrent Neural Networks (RNN) [8] and their variations includ-
ing Long Short-Term Memory (LSTM) [9–11], Deep Belief Network
2
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(DBN) [12], Auto-Encoder (AE) [13,14], Convolution Neural Network
(CNN) [15,16] and Gated Recurrent Unit (GRU) [17]. These are par-
ticularly effective in handling continuous sequences, making them
highly applicable for EP prediction. Lago et al. [18] compared several
DL models like DNN, GRU, and LSTM, and ML models like RF and
RBFNN as well as the ARIMA statistical model to predict spot EP using
uropean power exchange (EPEX) Belgium datasets. They found that
L models were more accurate in terms of Symmetric Mean absolute
ercentage Error. Specifically, for daily EP prediction, this error was
2.34%, 13.04%, and 13.06% for DNN, GRU, and LSTM, respectively,
hile it was 14.77%, 15.39%, and 19.32% for RBFNN, RF, and ARIMA,

espectively.
Gokgoz and Filiz [19] compared ANN with DNN models for EP

rediction to show that the DNN model, utilizing data from 10–50
ays prior, performed better than ANN with a Mean Absolute Error
MAE ;USD/MWh) of 0.346. Wang et al. [20] suggested a DL model
or short-term hourly prediction of EP using a Stacked Denoising Auto
ncoder model (SDA). Their SDA model generated a MAPE of 4.45%,
ower than that of other models like ANN, Multivariate Adaptive Re-
ression Splines (MARS), SVM, and Least Absolute Shrinkage and Selec-
ion Operator (LASSO), which generated MAPE values of 5.52%, 5.79%,
.22%, and 7.56%, respectively.

In spite of the success of AI models, the complexity of EP makes
t difficult to achieve optimal prediction using a single model [21],
nd especially when the hyperparameters are not well-tuned [22].
ybrid models have therefore become a prevailing method for EP
redictions [23] as they integrate several AI-based models with model’s
nput data decomposition for improved performance. For example, a
ybrid model may consists of two variants: the first as a statistical
odel and anther as a ML model such as ARFIMA-ANN [24], ARMA-
LM [25], and ARMAX-LSSVM [26]. However, this type of architecture
as known limitations such as greater model complexity, computational
osts and reduced model interpretability.

Many researchers are now moving towards integrating several ML
odels for superior accuracy and flexibility through methods like ELM-
NN [57] and LSTM-ANN [58] approaches. The combination of DL
odels like CNN-LSTM [59], has demonstrated the most promising re-

ult. In hybrid CNN-LSTM model, the CNN layer is capable of extracting
eatures among several variables that influence EP [60]. Kuo et al. [61]
ntroduced a short-term EP prediction model utilizing a CNN-LSTM
ybrid neural network that takes into account the real-time EP. The
ybrid CNN-LSTM model outperformed other models such as SVM, RF,
LP, CNN, and LSTM in terms of MAE. Specifically, the MAE for CNN-

STM was 8.84, which is lower than LSTM (9.82), CNN (9.80), MLP
9.86), RF (9.20), and SVM (28.98). Similarly, Heidarpanah et al. [62]
mployed a CNN-LSTM model to predict EP in Iran’s electricity market.
he CNN-LSTM model was compared to Multivariate Linear Regression
MLR), SVM, ANN, ANFIS, and ANN-Genetic Algorithm models. In
ran’s electricity market, the hybrid CNN-LSTM model was found to
e the most robust. In addition, the ANN, ANN-GA, and ANFIS models
howed acceptable results. However, MLR and SVM models failed to
ccount for EP time-series’ sinusoidal and fluctuating nature.
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Table 1
Selected research on electricity price forecasting based on machine learning algorithms.

Reference Year Machine learning
algorithm

Country Model inputs

[27] 2023 Stacked AEs PJM, USA Historical time-series of EP
[28] 2023 ELM PJM,USA; AEM, Australia and OEM, Canada Historical time-series of EP
[29] 2023 ARIFMA, GARCH Italy; Belgium Historical time-series of EP, Load, Solar and wind generation,

hydro, biomass and waste generation
[30] 2023 ANN Russia Historical time-series of EP
[31] 2023 CNN-BiLSTM-AR Nord Pool energy market, EU Historical time-series of EP
[32] 2023 STL-TCN-NBEATS Spain Historical time-series of EP, electricity consumption, power

generation, and weather data
[33] 2023 SSA-NBEATS Shanxi, China Historical time-series of EP
[34] 2023 LR-CatBoost Nord Pool energy market, EU Historical time-series of EP
[35] 2022 SSA-DELM Denmark Historical time-series of EP, Load, Solar and wind generation
[36] 2022 GPR, ANN UK, Germany, Denmark and Sweden Historical time-series of EP, Load, Solar and wind generation,

hydro, biomass, geothermal and waste generation, Fossil fuel
prices and policy instruments

[37] 2022 IDPSO-VMD-XGB Greece Historical time-series of EP, Temperature and Humidity
[38] 2022 ERC–DNN Nord Pool energy market, EU Historical time-series of EP, Solar and wind generation
[39] 2022 NARMAX Irish Integrated Single Electricity Market, Ireland Historical time-series of EP, Load, Temperature, C02 emission

e.t.c
[40] 2022 ILRCN Texas, USA Historical time-series of EP and Load,
[41] 2021 LSTM Nord Pool Historical time-series of EP
[42] 2021 GRU PJM, USA Historical time-series of EP
[43] 2019 CNN Ireland Historical time-series of EP
[44] 2019 BDL Italy; Belgium Historical time-series of EP
[45] 2018 RNN Turkey Historical time-series of EP
[46] 2016 DBN Macedonia Historical time-series of EP
[47] 2015 GRNN Spain Historical time-series of EP and load
[48] 2015 RF German Historical time-series of EP
[49] 2014 LSSVM Nord Pool energy market, EU Historical time-series of EP
[50] 2010 RBFNN PJM, USA Historical time-series of EP
[51] 2010 PNN PJM, USA; QLD, Australia Historical time-series of EP
[52] 2010 ANFIS Spain Historical time-series of EP
[53] 2010 SVM California, USA Historical time-series of EP
[54] 2008 WNN Spain; PJM, USA Historical time-series of EP
[55] 2004 ANN California, USA Historical time-series of EP and load
[56] 1999 BPNN Victoria, Australia Historical time-series of EP
The present study develops a two-step framework with error com-
ensation strategy for short-term, half-hourly electricity price forecast-
ng using data decomposition algorithms. In general, the EP time-series

datasets are relatively complex with intertwined features, short-term
cyclic changes in price, long-term trends, and erratic spikes reflecting
varying degree of consumption and productions. Attaining accurate
EP predictions using a simple hybrid model is challenging without
first decomposing and revealing the data features. One new approach
that this paper presents, involves a data decomposition pre-processing
technique to alleviate the impact of chaotic features. Different de-
composition methods have so far been integrated into hybrid models
for EP prediction, which commonly transform the original EP time-
series sequences into sub-series that exhibit more stable variance and
fewer outliers. These sub-series can be combined with DL algorithms to
create hybrid models to attain accurate prediction results. Examples of
include Wavelet Transform (WT) [63], Empirical Mode Decomposition
(EMD) [10,64], Variational Mode Decomposition (VMD) [65], Singular
Spectrum Analysis (SSA) [66], Ensemble Empirical Mode Decomposi-
tion (EEMD) [67], Complete Ensemble Empirical Mode Decomposition
(CEEMD) [68], and Improved Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (ICEEMDAN) [69,70]. Qiao et al. [71]
used WT, SAE, and LSTM models to generate price predictions for
United State electricity markets. Although SAE-LSTM was found to have
better prediction accuracy, the WT-SAE-LSTM model was deemed to
have more practical value. Conejo et al. [72] proposed a hybrid model
based on WT and the ARIMA model to predict EP in Spain’s market.
Meanwhile, Hannah Jessie Rani and Aruldoss Albert Victoire [65]
predicted multi-step EP in a power system through an improved VMD
method and ANN. Huang et al. [73] focused on short-term EP and used
a hybrid model incorporating VMD, CNN and GRU. Wang et al. [74]
3

analysed EP in the Australian and French markets, constructing a
hybrid model based on fast EEMD, VMD, and a back propagation NN
optimized using the Firefly Algorithm (FA).

Chang et al. [75] developed a hybrid model that combined WT and
LSTM and evaluated its performance using datasets from New South
Wales, Australia, and France. As in previous studies, WT was used to
decompose the data. The EP time-series was initially broken down into
several component series with minor variances. The decomposed time-
series were then separately trained and predicted using LSTM, and the
predicted values were summed to generate the final prediction. With
WT, the variance of the time-series data became more stable, allowing
LSTM to capture fluctuations in EP more accurately and considerably
improve the prediction accuracy compared to a model that combined
ARIMA and ANN models [76,77].

In accordance with literature, we note that data decomposition
models show that, while wavelet transform (WT) is unable to adapt to
different scenarios and extract detailed information [78], EMD and its
variants (EEMD, CEEMD) are relatively susceptible to noise and sam-
pling errors. Conversely, the VMD method is a superior technique that
effectively overcomes the limitations of other models. Also, although
CNN-LSTM have been widely used, there is insufficient coverage of
the impact of error compensation on state-of-the-art CNN-LSTM. While
many studies use hyperparameter optimization and feature selection to
fine-tune models and achieve lower error metrics, few have employed
decomposition techniques to refine and improve predictions. Conse-
quently, the potential use of pre-processing of EP time-series and an
error estimation module for benchmarks utilizing the CNN-LSTM model
as an additional tuning tool remains an open question.

The main contribution and scientific novelty of this paper is to
propose for the first time a hybrid predictive modelling approach that
involves a two-stage decomposition-based Error Compensation (ERC)

model. The proposed VMD-CLSTM-VMD-ERCRF model incorporates a
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number of model input data processing stages that can enhance its
accuracy relative to a standalone model. First, the original EP series are
decomposed into sub-series and a residual series using VMD algorithm.
An CLSTM network is applied to predict each sub-series. Next, an
error series is constructed by comparing the predicted sub-series with
the original observation value. This error series is further decomposed
using VMD to obtain sub-series, which are predicted using an Ran-
dom Forest (RF) network. The predicted error series is then used to
compensate the prediction result of the original series, resulting in the
final predicted half-hourlyEP series. The proposed VMD-CLSTM-VMD-
ERCRF model can therefore consider the relatively complex, antecedent
EP time series to predict the future value.

As a commitment to demonstrate significant improvements in EP
prediction, this study aims to make primary contributions to accurate
electricity price forecasting. To accomplish this, we investigate the
stability of predicted sequences after the ERC stage and provide further
insight into the suitability of Error Compensation modules for future
integration with modern benchmark models. Baseline VMD-CLSTM,
LSTM, DNN, XGB, and RF model were optimized using the Bayesian
hyperparameter optimization method, and resulting error metrics were
compared to the proposed approach on the EP time-series dataset
of Queensland, Australia. This framework, as shown later in Fig. 6,
has an error compensation stage which is activated after the CLSTM
model’s initial prediction, while the error compensation stage adopts
a residual error series prediction step with an RF method to improve
the final outcome of the VMD-CLSTM-VMD-ERCRF model. The hybrid
VMD-CLSTM-VMD-ERCRF model therefore presented accurately cap-
tures nonlinear characteristics of EP, resulting in accurate prediction,
providing a new perspective on EP prediction.

2. Materials and method

2.1. Description of electricity price datasets

To ascertain the effectiveness and efficiency of the proposed VMD-
CLSTM-VMD-ERCRF model for half-hourly electricity price predictions,
rigorous tests on the Australian National Electricity Market (ANEM)
datasets, which encompasses five different regional market jurisdic-
tions, namely Queensland, New South Wales, Victoria, South Australia,
and Tasmania, were performed.

The Australian Energy Market Operator (AEMO) (https://www.
aemo.com.au/) manages the entire power system. In the ANEM space,
electricity trading is conducted through half-hourly trading intervals.
Therefore the power generators are required to submit their price
offers, which are dispatched with corresponding dispatch prices every
five minutes. The market clearing price is determined by averaging the
six consecutive 5-min dispatch prices for each half-hour interval, based
on the bids and offers of scheduled generators and consumers. This
process results in a separate spot price being determined for each of
the five regions within AEMO.

This study has employed half-hourly electricity price sequences
obtained from the AEMO for the Queensland region to evaluate the
predictive performance of the proposed VMD-CLSTM-VMD-ERCRF hy-
brid model. The historical electricity price dataset used in this study
consists of 153,793 half-hourly electricity prices recorded over a period
of 3286 days from January 1, 2014 to October 10, 2022. To ensure
the accuracy of the prediction model, it is necessary to limit the elec-
tricity prices within a certain range to account for potential electricity
price spikes caused by factors such as power failures, transmission
line maintenance, and extreme weather conditions [79]. The range set
for this study was [0, 1000] with AUD 1000∕MWh (where AUD rep-
resents the Australian Dollar) assigned to electricity prices exceeding
AUD 1000∕MWh and AUD 0∕MWh assigned to electricity prices below
AUD 0∕MWh (negative electricity prices are allowed in the Australian
4

Electricity Market). a
Out of the total dataset, there were 581 instances of electricity
prices exceeding AUD 1000∕MWh and 2343 instances of electricity
prices below AUD 0∕MWh during this period, which represented only
1.90% of the total data and had a limited impact on the prediction
model [80]. Taking into account the distinctive seasonal variations
observed within the EP time series derived from AEM, it becomes
crucial to evaluate how different seasons influence the accuracy and
stability of the proposed model. In response to this consideration,
theEP dataset is partitioned into five segments, as outlined in Ta-
ble 2. Moreover, Table 2 furnishes statistical insights for these diverse
datasets, encompassing mean values, maximum (𝑀𝑎𝑥) values, mini-
mum (𝑀𝑖𝑛) values, standard deviations (𝑆𝑡𝑑), skewness (𝑆𝑘𝑒𝑤), and
urtosis (𝐾𝑢𝑟𝑡). This comprehensive set of statistics facilitates an in-
epth analysis of the data. Notably, all five datasets (𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3,
𝑆4, and 𝐷𝑆5) exhibit kurtosis values surpassing 3, indicating that the

lectricity price distribution exhibits fat tails, signifying an increased
ikelihood of extreme values. Additionally, the EP series demonstrates a
kewness exceeding 1, suggesting a significant skew in the distribution.
urthermore, for each dataset, a 20% portion of the training data is
llocated for validation purposes. As an example, for 𝐷𝑆1, the total
ata-points amount to 149,158, with 116,013 designated for training,
nd 29,033 and 4142 allocated for validation and testing, respectively
Table 2).

Fig. 1 displays hourly variations in electricity prices across four
easons in QLD (Summer, Autumn, Winter, Spring) demonstrating that
he electricity prices are lower during Summer and Spring compared to
he Winter and Autumn seasons. During all seasons, from 3:00 PM to
:00 PM, electricity prices are higher than other times of the day.

To predict half-hourly EP, the proposed VMD-CLSTM-VMD-ERCRF
ybrid model combines VMD-based frequency decomposition tech-
ique with a hybrid Deep Learning method (CNN-LSTM). In order to
xplain the proposed methods, this paper first presents the theoretical
ackground of the VMD, followed by a discussion of the details of
he proposed hybrid model. To keep this section concise, we will not
rovide a detailed explanation of the theoretical foundations of CNN,
STM, XGB, RF, and DNN, as there are already numerous resources [9,
0,17,81,81–83] available on these models.

.2. Variational mode decomposition

To develop the proposed VMD-CLSTM-VMD-ERCRF model, we
dopt the quasi-orthogonal decomposition technique (Variational Mode
ecomposition, VMD) proposed by [84]. See Appendix B.1 for related

heory of this method.
This was an adaptive method that uses a mathematically struc-

ured approach. VMD decomposes input signals into narrow-band
nd stationary signals (IMFs), while also allowing the possibility of
econstructing the original input signal. The VMD method employs
iener Filtering (WF), Hilbert Transform and Heterodyne Demodula-

ion (HHT), along with an Alternate Direction Multiplication Method
ADMM), to obtain decomposition modes. Decomposed modes are
oncentrated around specific central frequencies.

To create the bandwidth of a decomposed mode, different ap-
roaches can be utilized: (i) the Hilbert Transform is used to estimate
he one-sided frequency spectrum of real signals using analytic rep-
esentations, (ii) the base-band frequency spectrum is shifted to the
stimated base-band frequency using modulation properties, and (iii)
he Gaussian smoothness is used to estimate the bandwidth of the
emodulated signal.

Before applying VMD, the parameters 𝐾, 𝛼, 𝜏 and 𝜖 (see Ap-
endix B) are defined where the number of mode components (𝐾)
s considered most important parameter. A large K can result in in-
ermittent decomposition results without clear patterns and reduce
omputational efficiency, while a small value of K can lead to insuf-
icient decomposition accuracy, with multiple frequency components

ppearing simultaneously in the same mode component.

https://www.aemo.com.au/
https://www.aemo.com.au/
https://www.aemo.com.au/
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Table 2
Description of electricity price data in five experimental cases. Note Max, min and std refers to the Maximum, Minimum and Standard Deviation value of EP in AUD/MWh
respectively. Skew refers to the Skewness, Kurt refers to the Kurtosis. N refers to the dataset size. Validation datasize was set as 0.2 i.e. 20% of data is used for validation.

Data set Training samples Validation samples Testing samples

Winter season
prediction
(DS1)

1 January 2014 to 31 May 2022 1 June 2022 to 31 August 2022

Max Min Std Skew Kurt N N Max Min Std Skew Kurt N

1000.00 0.00 51.46 4.44 38.72 116,013 29,003 999.55 0.00 166.59 0.67 0.58 4142

Autumn season
prediction
(DS2)

1 January 2014 to 28 February 2022 1 March 2022 to 31 May 2022

Max Min Std Skew Kurt N N Max Min Std Skew Kurt N

1000.00 0.00 42.16 4.73 56.50 112,530 28,132 1000.00 0.00 119.44 1.14 3.08 4353

Spring season
prediction
(DS3)

1 January 2014 to 31 August 2021 1 September 2021 to 31 November 2021

Max Min Std Skew Kurt N N Max Min Std Skew Kurt N

973.32 0.00 39.71 4.09 40.84 106,082 26,520 1000.00 0.00 63.11 6.14 68.93 3805

Summer season
prediction (DS4)

1 January 2014 to 30 November 2021 1 December 2021 to 28 February 2022

Max Min Std Skew Kurt N N Max Min Std Skew Kurt N

1000.00 0.00 40.61 4.40 48.40 109,126 27,281 1000.00 0.00 67.75 6.09 66.89 4255

Year 2022
prediction
(DS5)

1 January 2014 to 31 December 2021 1 January 2022 to 10 October 2022

Max Min Std Skew Kurt N N Max Min Std Skew Kurt N

1000.00 0.00 41.15 4.62 53.86 111,011 27,752 1000.00 0.00 138.21 1.37 2.78 13,005
Fig. 1. The seasonal hourly distribution of EP in 2022. Continuous line at the centre represents the median.
In this study, VMD decomposition is performed with values of 𝐾
ranging from 1 to 40, and the optimal value of K is chosen based
on the Central Frequency Ratio (CFR), with the optimal value being
determined when CFR tends to be stable. For the remaining input
parameters, the quadratic penalty term is set to 𝛼 = 2000, the noise
tolerance is set to 𝜏 = 0, and the convergence criterion is set to 𝜖 = 10−7.

2.3. Hybrid convolutional and long short-term memory model

To predict EP using CNN-LSTM, a CNN and LSTM model has been
connected in a series as a deep learning hybrid method to extract
5

complex features from EP time-series and storing, complex irregular
trends. The CNN layer comprises a convolution and pooling layer, from
which the spatial characteristics of an EP time- series variable are
extracted and transmitted to the LSTM layer. The LSTM layer models
irregular time information using the transmitted spatial features. The
general model design for predicting EP through CNN-LSTM model is
provided in Fig. B.15 in Appendix B.3.

The LSTM, a lower layer of CNN-LSTM, stores time information
regarding critical EP characteristics that have been extracted through
CNN. The LSTM model provides a solution by retaining long-term
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Fig. 2. The proposed VMD-CLSTM-VMD-ERCRF hybrid model, which comprises of a double decomposition method to split the electricity price data features, the CNN-LSTM
network and the Random Forest models for prediction error compensations.
memory via memory units that can update the previous hidden state,
thus enabling the comprehension of temporal relationships in long-term
sequences. Output values from the previous CNN layer are transmitted
to the gate units. The LSTM network is well-suited for EP prediction, as
it addresses issues such as explosive and vanishing gradient problems
that can arise when learning traditional RNN. The gate units are a
mechanism for determining the state of each individual memory cell
through multiplication operations, consisting of input, output, and
forget gate units, depending on the function. For all related theory on
LSTM, see Appendix B.2.

The final layer of CNN-LSTM model comprises fully connected
layers that can be utilized to predict the electricity prices for a given
time period (see Fig. B.15). The LSTM unit’s output is flattened to a
feature vector ℎ𝑙 =

{

ℎ1, ℎ2, … ℎ𝑙
}

, where 𝑙 is the number of units in
LSTM. The output of the LSTM is used as input to the fully connected
layer, see Eq. (1):

𝑑𝑙𝑖 =
∑

𝑗
𝑤𝑙−1

𝑗𝑖 (𝜎
(

ℎ𝑙−1𝑖
)

+ 𝑏𝑙−1𝑖 ), (1)

where 𝜎 is a non-linear activation function, 𝑤 is the weight of the 𝑖th
node for layer 𝑙 − 1 and the 𝑗th node for layer 𝑙, and 𝑏𝑙−1𝑖 represents a
bias.

2.4. Proposed structure of VMD-CLSTM-VMD-ERCRF model for electricity
price prediction

The primary focus of this study was to create a hybrid predictive
model that can utilize a combination of double decomposition and deep
learning i.e., CNN-LSTM methods, along with an error compensation
module that can refine the final predictions to an higher degree of
accuracy in electricity price predictions.

Fig. 2 shows a schematic of the proposed VMD-CLSTM-VMD-ERCRF
model, which also outlines our methodological contributions made
in respect to the error corrections for improved electricity price pre-
dictions. Firstly, the time-series data were split into the training and
6

testing sets, and VMD techniques were applied to decompose each set
of variables into VMF components and residuals (RES). This stage was
very important considering the highly stochastic nature of electricity
price datasets. The splitting of these data ensured that the trends,
periodicity, jumps, and other rapid fluctuations were clarified visually
in order to build a robust model. Secondly, the CNN-LSTM model was
used to train each of the VMF and RES component separately and
obtain their prediction results. Thirdly, the residual prediction error
for each half-hourly sequence was calculated from the training set and
decomposed using VMD again to obtain 𝑒𝑉𝑀𝐹 and 𝑒𝑅𝐸𝑆 components.
The use of residual prediction errors into VMD-CLSTM-VMD-ERCRF
model is a major contribution of this study.

Using historical errors for each sub-sequence, the Random Forest
(RF) model was used to estimate the error values of the next half-hour
electricity price. The final price prediction was derived by adding the
estimated error and the price prediction of the CNN-LSTM. The study
employing the proposed VMD-CLSTM-VMD-ERCRF model therefore
featured several experiments performed on different training scenarios
for the interpretation and further analysis of the error compensation
processes to optimize it capability to predict EP.

2.5. Development of VMD-CLSTM-VMD-ERCRF model

2.5.1. Variational mode decomposition
This study has utilized Keras as an open-source Python library [85]

on Intel Core i7-6700k CPU with a clock speed of 4.00 GHz and
32 GB memory. The EP data were divided into training and testing
sets as per Table 2. The training and testing sets were decomposed
into 𝐾 Variational Mode Functions (VMFs) using Variational Mode
Decomposition (VMD) algorithm. To determine the appropriate number
of VMFs (𝐾), the Central Frequency Ratio (CFR) method was utilized,
which monitors the pattern of the highest centre frequencies. As the
number of mode components increases, the maximum centre frequency
of each component gradually increases until reaching a steady state,
at which point 𝐾 can be calculated. The VMD algorithm’s three other
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Fig. 3. Centre Frequency Ratio (CFR) corresponding to different mode number, K.
parameters, namely 𝛼 (the quadratic penalty term), 𝜏 (the noise toler-
ance), and 𝜀 (the convergence criterion), were set to 2000, 0, and 10−7,
respectively.

Fig. 3 displays the centre frequency ratio for four different training
datasets, and the value of 𝐾 was selected as 18 for the DS1 dataset
(Spring season training dataset). Similarly, 𝐾 was determined to be
18, 17, 19 and 19 for the DS2, DS3, DS4 and DS5 training datasets,
respectively, using the CFR method. Fig. 4 shows the trends in VMF
components obtained after applying the VMD to EP (DS5). Fig. 4 also
displays the residual component (RES), calculated by subtracting the
sum of each VMF component from original EP time-series. Note that
for clarity, only first 500 data points for shown.

2.5.2. Pre-processing electricity price data and model variable selection
When dealing with the decomposed electricity price data, the re-

sulting VMF signals may have a different range of values, making
a comparison among them relatively challenging. To address this is-
sue, we adopted normalization methods to ensure that the standard-
ized data values are comparable as model inputs to prevent an ill-
conditioned model and ensure a stable convergence of the weights and
hyperparameters. A min–max scaling method was adopted as follows:

𝑉𝑀𝐹𝑛,𝑛𝑜𝑟𝑚 =
𝑉𝑀𝐹𝑛 − 𝑉𝑀𝐹𝑛,𝑚𝑖𝑛

𝑉𝑀𝐹𝑛,𝑚𝑎𝑥 − 𝑉𝑀𝐹𝑛,𝑚𝑖𝑛
. (2)

Here, 𝑉𝑀𝐹𝑛,𝑛𝑜𝑟𝑚 = normalized values, 𝑉𝑀𝐹𝑛 = initial value of VMF,
𝑉𝑀𝐹𝑛,𝑚𝑎𝑥 represents the maximum of the whole VMF and 𝑉𝑀𝐹𝑛,𝑚𝑖𝑛 is
its minimum value.

For best accuracy of the predictive model, input variable selection is
crucial. In this study, Partial Autocorrelation Function (PACF) was used
7

to identify best inputs, utilizing two criteria for this purpose: selecting
the input variable at lag 𝑡 if its PACF value fell outside the nominal
confidence interval of 95% and choosing previous value as an input if
all PACF values were within a specified confidence interval.

Fig. 5 illustrates the PACF of the VMD-based sub-series of data
for DS5 (i.e., the training set for 2022 EP prediction). Based on this
analysis, Eqs. (3) to (7) show the input variables for DS1, DS2, DS3,
DS4, and DS5, respectively, where 𝑥𝑡 = target (or output) variable and
𝑥𝑡−𝑝 = 𝑝 antecedent variables of the target. It is worth mentioning that
for all datasets (DS1, DS2, DS3, DS4, and DS5), the PACF of the RES sub-
series fell within the confidence interval so this study has selected the
previous electricity price value as an input variable for the designated
models.

𝐷𝑆1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉𝑀𝐹1, 18 (𝑥𝑡−1, 𝑥𝑡−2)
𝑉𝑀𝐹2 − 5, 16, 17 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3)
𝑉𝑀𝐹6 − 15 (𝑥𝑡−2, 𝑥𝑡−4)
𝑅𝐸𝑆(𝑥𝑡−1)

(3)

𝐷𝑆2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑉𝑀𝐹1, 17, 18 (𝑥𝑡−1, 𝑥𝑡−2)
𝑉𝑀𝐹2 − 4, 16 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3)
𝑉𝑀𝐹5 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3, 𝑥𝑡−4)
𝑉𝑀𝐹6 − 15 (𝑥𝑡−2, 𝑥𝑡−4)
𝑅𝐸𝑆(𝑥𝑡−1)

(4)

𝐷𝑆3 =

⎧

⎪

⎪

⎨

⎪

⎪

𝑉𝑀𝐹1, 5, 15, 17 (𝑥𝑡−1, 𝑥𝑡−2)
𝑉𝑀𝐹2 − 4, 16 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3)
𝑉𝑀𝐹6 − 14 (𝑥𝑡−2, 𝑥𝑡−4)

(5)
⎩

𝑅𝐸𝑆(𝑥𝑡−1)
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Fig. 4. The decomposition of EP using the VMD algorithm for DS5 (training dataset for year 2022 EP prediction).
𝐷𝑆4 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉𝑀𝐹1, 16, 17, 18, & 19 (𝑥𝑡−1, 𝑥𝑡−2)
𝑉𝑀𝐹2 − 5 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3)
𝑉𝑀𝐹6 − 15 (𝑥𝑡−2, 𝑥𝑡−4)
𝑅𝐸𝑆(𝑥𝑡−1)

(6)

𝐷𝑆5 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑉𝑀𝐹1, 5, 15 and 17 (𝑥𝑡−1, 𝑥𝑡−2)
𝑉𝑀𝐹2, 3, 4 and 16 (𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3)
𝑉𝑀𝐹6 − 13 (𝑥𝑡−2, 𝑥𝑡−4)
𝑉𝑀𝐹14 (𝑥𝑡−2)
𝑅𝐸𝑆(𝑥𝑡−1)

(7)

2.5.3. Preliminary prediction using VMD-CLSTM-VMD-ERCRF model
The VMD-CLSTM-VMD-ERCRF model was designed with a two-

stage data decomposition system with an error compensation procedure
(Fig. 6) with an overall predictive framework as follows:

The first stage was a preliminary prediction step using VMD-CLSTM-
VMD-ERCRF, and the second stage was the error compensation tech-
nique. In respect to the first stage, the sub-series of VMD-based decom-
position of EP series are denoted as 𝑉𝑀𝐹1, 𝑉𝑀𝐹2, 𝑉𝑀𝐹3, and so on,
up to 𝑉𝑀𝐹𝑛. Similarly, the second decomposition sub-series of residual
errors (𝐸𝑡) after the CLSTM model-based predictions are represented
by 𝑒𝑉𝑀𝐹1, 𝑒𝑉𝑀𝐹2, 𝑒𝑉𝑀𝐹3, and so on, up to 𝑒𝑉𝑀𝐹𝑛, with 𝑒𝑅𝐸𝑆
representing the residual component. The CLSTM model is utilized to
make the initial prediction for each of the VMF-based data series.

In essence, CLSTM model takes in lagged normalized values of
decomposed EP series as input with its output layer extracting the
features for LSTM model. As input data consists of multivariate time
series (a lagged matrix of decomposed EP, i.e. (𝑋𝑡−1), (𝑋𝑡−2), . . . ...,
(𝑋𝑡−𝑛)), we define them as tensors with a shape of (𝑁,𝑄,𝑀) where 𝑁
= number of samples, 𝑄 = maximum number of time steps across all
variables and 𝑀 = variables processed per time step. The numbers 𝑀1
and 𝑀2 denote the filters in the CNN layers, while 𝑄1 and 𝑄2 indicate
the output dimensions of the LSTM layers. The output from LSTM layer
goes through a flatten and a dense layer with a single neuron and linear
activation function to predict the final outcome (𝑋𝑡).

The accuracy of the proposed VMD-CLSTM-VMD-ERCRF model was
improved by adopting the Bayesian optimization method [86] with the
8

Gaussian process surrogate model to estimate the objective function
based on prior experiments and an acquisition function to indicate the
next input value to be evaluated. We determined parameter search
range specified (Table B.12) to avoid over-fitting and under-fitting
using ‘‘ReduceLROnPlateau’’ method while monitoring the loss based
on 𝑀𝐴𝐸 determined on a validation dataset. This followed the notion
that when a loss variation of less than 5 × 10−3 in 5 consecutive epochs
was noted, the learning rate was reduced by half until the minimum
value of 10 × 10−6 was attained (see Fig. B.16.)

2.5.4. Error compensation technique
For the second stage, Fig. 5 shows the proposed error compensation

technique purposely built to enhance the practicality of the proposed
VMD-CLSTM-VMD-ERCRF model. The first step involves acquiring the
error series of the training dataset from the original EP data subsequent
to training the CLSTM network as per Eq. (8):

𝐸(𝑡) = 𝐸𝑃𝐶𝐿𝑆𝑇𝑀 (𝑡) − 𝐸𝑃𝑎𝑐𝑡(𝑡), (8)

where 𝐸𝑃𝐶𝐿𝑆𝑇𝑀 is the EP prediction during the training of the CLSTM
network and 𝐸𝑃𝑎𝑐𝑡 is the actual EP.

Fig. 7 shows the training, validation and testing error series ob-
tained by CLSTM for DS5. Similar to the previous method of predicting
𝑉𝑀𝐹 with CLSTM, we used the VMD algorithm to decompose residual
error series 𝐸(𝑡) and used a Random Forest (RF) model to predict each
decomposed 𝑒𝑉𝑀𝐹 component.

In respect to the choice of the algorithm for error compensation
stage, it is noteworthy that the choice of an RF model for error predic-
tions was made carefully by considering the strength of this method. In
an RF model, the prediction speed is significantly faster than the train-
ing speed because we can save generated forests for future uses, which
is actually a saving of computation cost on error calculations. The RF
model is also able to handle the outliers (i.e. errors) by essentially
binning them so it is indifferent to the non-linear features [87]. The
RF model also has methods for balancing the errors in class population
unbalanced data sets, as well as reduces over-fitting in decision trees
to help to improve the accuracy. Furthermore, the averaging capability
of an RF model makes it better than a single Decision Tree, or other
models, and hence improves its accuracy and reduces over-fitting. In
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Fig. 5. PACF of VMFs and RES sub-series forDS5 (training dataset for 2022 EP prediction).
our study, RF-based error predictions has led to significant performance
improvement of the proposed VMD-CLSTM-VMD-ERCRF models.

The next task was to combine the prediction results of each 𝑒𝑉𝑀𝐹
to obtain the final error prediction series. Once the RF model has
predicted the error series, the final predicted half-hourly EP for the
𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4 and 𝐷𝑆5 can be obtained by Eq. (9):

𝐸𝑃𝑓𝑖𝑛(𝑡) = 𝐸𝑃𝐶𝐿𝑆𝑇𝑀 (𝑡) + 𝐸𝑅𝐹 (𝑡), (9)

where 𝐸𝑃𝐶𝐿𝑆𝑇𝑀 (𝑡) is the CLSTM model prediction on testing dataset for
half-hourly EP series and 𝐸𝑅𝐹 (𝑡) is the RF model’s testing set prediction
for the residual error series (𝐸(𝑡)) from Eq. (8)).
9

To carry out VMD decomposition of residual error series, we set
the parameters: 𝛼 (quadratic penalty term), 𝜏 (noise tolerance), and 𝜀
(convergence criterion), to 2000, 0, and 10−7, respectively. The number
of sub-series (𝑘) for VMD was determined using the CFR method
(𝐾 = 14, 15, 14, 17, 𝑎𝑛𝑑 14 for 𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4 and 𝐷𝑆5,
𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦).

As an illustrated example we show for DS5, Fig. 8 displays the
decomposed 𝑒𝑉𝑀𝐹𝑠 of residual error using VMD. The RF model’s
hyperparameters are fine-tuned using Bayesian optimization, with a
primary focus on optimizing three parameters. These parameters in-
clude the number of trees in the forest (n _ estimators), the maximum
depth of the tree (max _ depth), the number of features considered
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Fig. 6. The overall framework of the proposed VMD-CLSTM-VMD-ERCRF model.
Fig. 7. Residual Error series obtained by CLSTM. ( Figure valid only for VMF1 training, Validation and testing of DS5).
when searching for the optimal split (max _ features), and minimum
number of samples to split an internal node (min _ samples _ split).

2.6. Benchmark models and performance evaluation criteria

To fully evaluate the proposed VMD-CLSTM-VMD-ERCRF model,
five different predictive models (i.e., XGB, LSTM, RF, DNN, VMD-
CLSTM) were adopted whose hyperparameters were optimized using
Bayesian methods. For the applicable search range for hyperparame-
ters, see Table B.12.

We adopted Mean Absolute Error (𝑀𝐴𝐸):

𝑀𝐴𝐸(AUD∕MWh) = 1
𝑁
∑

|𝐸𝑃 𝑝 − 𝐸𝑃 𝑎
| , (10)
10

𝑁 𝑖=1
Root Mean Square Error (𝑅𝑀𝑆𝐸):

𝑅𝑀𝑆𝐸(AUD∕MWh) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝐸𝑃 𝑝 − 𝐸𝑃 𝑎)2, (11)

Symmetric Mean Absolute Percentage Error (𝑠𝑀𝐴𝑃𝐸):

𝑠𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|𝐸𝑃 𝑎 − 𝐸𝑃 𝑝
|

(|𝐸𝑃 𝑎
| + |𝐸𝑃 𝑝

|) ∕2
, (12)

Legates and McCabe Index (𝐼𝐿𝑀 ):

𝐼𝐿𝑀 = 1 −
∑𝑁

𝑖=1 |𝐸𝑃 𝑝 − 𝐸𝑃 𝑎
|

∑𝑁 𝑎 𝑎
, (13)
𝑖=1 |𝐸𝑃 − ⟨𝐸𝑃 ⟩|
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Fig. 8. CLSTM Residual Error VMF (eVMF) obtained by VMD.(for DS5).
Nash–Sutcliffe Index (𝐼𝑁𝑆 ):

𝐼𝑁𝑆 = 1 −
∑𝑁

𝑖=1 (𝐸𝑃 𝑎 − 𝐸𝑃 𝑝)2
∑𝑁

𝑖=1 (𝐸𝑃 𝑎 − ⟨𝐸𝑃 𝑎
⟩)2

, (14)

Wilmott’s Index (𝐼𝑊 𝐼 ):

𝐼𝑊 𝐼 = 1 −
∑𝑁

𝑖=1 (𝐸𝑃 𝑎 − 𝐸𝑃 𝑝)2
∑𝑁

𝑖=1 (|𝐸𝑃 𝑝 − ⟨𝐸𝑃 𝑎
⟩| + |𝐸𝑃 𝑜 − ⟨𝐸𝑃 𝑝

⟩|)2
, (15)

Absolute Percentage Bias (𝐴𝑃𝐵):

APB(%) =
|

|

|

|

|

∑𝑛
𝑖=1 (𝐸𝑃 𝑎 − 𝐸𝑃 𝑝)
∑𝑛

𝑖=1 𝐸𝑃 𝑎

|

|

|

|

|

⋅ 100, (16)

Coefficient of Determination (𝑅2):

𝑅2 =

⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1 (𝐸𝑃 𝑎 − ⟨𝐸𝑃 𝑎

⟩) (𝐸𝑃 𝑝 − ⟨𝐸𝑃𝑝⟩)
√

∑𝑛
𝑖=1 (𝐸𝑃 𝑎 − ⟨𝐸𝑃 𝑜

⟩)2
√

∑𝑛
𝑖=1 (𝐸𝑃 𝑝 − ⟨𝐸𝑃𝑝⟩)2

⎞

⎟

⎟

⎟

⎠

2

, (17)

and Skill Score (𝑆𝑆) for model evaluations:

𝑆𝑆 = 1 −
𝑅𝑀𝑆𝐸(𝑝)
𝑅𝑀𝑆𝐸(𝑟)

. (18)

Notable, 𝐸𝑃 𝑎 and 𝐸𝑃 𝑝 represent actual and predicted half-hourly
EP while ⟨𝐸𝑃 𝑎

⟩ and ⟨𝐸𝑃 𝑝
⟩ represent actual and predicted mean EP, 𝑁

= number of tested data points, 𝑅𝑀𝑆𝐸(𝑝) and 𝑅𝑀𝑆𝐸(𝑟) is the RMSE
of prediction and reference models, respectively.
11
• The range of 𝑅2 is [0, 1] while the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 are
measured in absolute units of EP (AUD/MWh) between [0, +∞]
with 0 = perfect model and +∞ = poorly performing model. 𝑅2

assesses the covariance to find out how well the modelled data fits
actual data, whereas 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 measure the predictive
power in absolute error terms.

• The range of 𝐼𝑊 𝐼 is [0, 1], which is an improvement over 𝑅𝑀𝑆𝐸
and 𝑀𝐴𝐸 metrics. 𝐼𝑊 𝐼 identifies both additive and proportional
differences between observed and simulated means and variances.

• The range of 𝐼𝑁𝑆 is [−∞, 1] to assess the relative magnitude of
residual variance compared to measured variance with a score of
−∞ = worst fit and 1 indicating a perfectly fitted model.

• The range of 𝐼𝐿𝑀 is [0, 1]. This is a more robust metric compared
to 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 , designed to overcome their limitations.

• The model with the lowest Symmetric Mean Absolute Percentage
Error (𝑠𝑀𝐴𝑃𝐸) is considered the best. 𝑠𝑀𝐴𝑃𝐸 is a symmetrical
measure that avoids the problem of division by zero. In contrast,
the conventional Mean Absolute Percentage Error(𝑀𝐴𝑃𝐸) metric
tends to become overinflated when the true value is close to zero,
but 𝑠𝑀𝐴𝑃𝐸 does not have this issue.

• The Absolute Percentage Bias (𝐴𝑃𝐵) expresses the error of pre-
dicted values as a percentage relative to the observed values. A
lower 𝐴𝑃𝐵 value, closer to zero, indicates good accuracy of the
model. The optimal value for 𝐴𝑃𝐵 is zero.

• If the Skill Score (𝑆𝑆) is negative, the prediction is not better than
the reference model. Conversely, if 𝑆𝑆 is positive, the prediction
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Table 3
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predictions. 𝑅2 = Coefficient of Determination,
𝑅𝑀𝑆𝐸 ∶ 𝐴𝑈𝐷∕𝑀𝑊ℎ = Root Mean Square Error; 𝑀𝐴𝐸:AUD/MWh = Mean Absolute Error.
Dataset Predictive models 𝑅2 RMSE MAE

VMD-CLSTM-VMD-ERCRF 0.999 5.191 3.057
VMD-CLSTM 0.874 11.352 6.770
LSTM 0.882 45.171 22.781
DNN 0.858 48.574 25.486
XGB 0.883 44.846 22.902

DS1 (Winter)

RF 0.882 44.983 23.050

VMD-CLSTM-VMD-ERCRF 0.998 13.190 8.250
VMD-CLSTM 0.916 19.412 13.124
LSTM 0.911 59.306 34.654
DNN 0.929 60.199 36.105
XGB 0.897 61.038 36.375

DS2 (Autumn)

RF 0.930 60.123 35.595

VMD-CLSTM-VMD-ERCRF 0.998 6.247 3.388
VMD-CLSTM 0.902 12.333 7.062
LSTM 0.776 50.652 24.178
DNN 0.779 50.510 24.704
XGB 0.770 50.944 23.827

DS3 (Spring)

RF 0.770 50.957 23.530

VMD-CLSTM-VMD-ERCRF 0.999 4.748 2.507
VMD-CLSTM 0.891 11.367 5.900
LSTM 0.832 48.753 20.855
DNN 0.817 50.921 21.467
XGB 0.839 47.923 20.223

DS4 (Summer)

RF 0.837 48.168 19.497

VMD-CLSTM-VMD-ERCRF 0.999 10.220 5.154
VMD-CLSTM 0.914 21.855 13.178
LSTM 0.906 61.125 34.886
DNN 0.872 63.370 37.680
XGB 0.926 61.584 35.690

DS5 (Yearly 2022 predictions)

RF 0.896 61.651 35.692
is an improvement over reference model. The degree of improve-
ment is directly proportional to 𝑆𝑆, meaning that higher scores
imply greater enhancement.

odel selection using on single statistical metric is challenging, as
ach model has its own merits and constraints. We therefore adopted
lobal Performance Index (𝐺𝑃𝐼) combining multiple metrics for a
omprehensive evaluation where a higher 𝐺𝑃𝐼 = greater accuracy.
ather than analysing individual metrics, the 𝐺𝑃𝐼 , over a scaling of
0, 1], assigns equal weights to several statistical metrics [88]:

𝑃𝐼𝑖 =
𝑛
∑

𝑗=1
𝜉𝑗
(

𝐼𝑖 − 𝐼𝑖𝑗
)

, (19)

here 𝜉𝑗 = −1 for Pearson’s Correlation Coefficient and 𝜉𝑗 = 1 for all
he other indicators. 𝐼𝑖 is the median of scaled values of indicator 𝑗 and
𝑖𝑗 is the scaled value of indicator for model.

The interpretation of 𝐺𝑃𝐼 is such that if a statistical metric is below
edian, a larger difference between that value and the median value of

ll other models indicates that the model is more accurate than other
odels. Similarly, if a statistical indicator’s value is above the median,
greater deviation from the median indicates that the model is less

ccurate than other models.
This study also uses the promoting percentages (𝜆) of 𝐼𝑊 𝐼 (𝜆𝐼𝑊 𝐼

),
𝑁𝑆 (𝜆𝐼𝑁𝑆

), 𝐼𝐿𝑀 (𝜆𝐼𝐿𝑀 ), and 𝑅2 (𝜆𝑅2 ), defined as follows:

𝐼𝑊 𝐼
=

|𝐼𝑊 𝐼(1) − 𝐼𝑊 𝐼(2)|

𝐼𝑊 𝐼(1)
, (20)

𝐼𝑁𝑆
=

|𝐼𝑁𝑆(1) − 𝐼𝑁𝑆(2)|

𝐼𝑁𝑆(1)
, (21)

𝐼𝐿𝑀 =
|𝐼𝐿𝑀(1) − 𝐼𝐿𝑀(2)|

𝐼𝐿𝑀(1)
, (22)

𝜆𝑅2 =
|𝐼𝑅2(1) − 𝐼𝑅2(2)| . (23)
12

𝐼𝑅2(1)
The statistical corroboration between the actual and predicted half-
hourly EP in the model’s testing phase was investigated using the
Diebold–Mariano (𝐷𝑀) statistic test. The 𝐷𝑀 statistic is defined as
follows:

𝑆𝐷𝑀 =
𝑔̄

√

(⌢𝑉 𝑔∕𝑁
)

, (24)

where

𝑔̄ =

( 𝑁
∑

𝑡=1
𝑔𝑡

)

∕𝑁, 𝑔𝑡 =
(

𝑥𝑡 − 𝑥̂𝑡𝑒,𝑡
)2 −

(

𝑥𝑡 − 𝑥̂𝑟𝑒,𝑡
)2, (25)

and

⌢𝑉 𝑔 = 𝛾0 + 2
∞
∑

𝑡=1
𝛾𝑡 ,

(

𝛾𝑡 = cov
(

𝑔𝑡+1, 𝑔𝑡
))

, (26)

where 𝛾0 is the variance of 𝑔𝑡, 𝑥̂𝑡𝑒,𝑡 and 𝑥̂𝑟𝑒,𝑡 represent the predicted
values of 𝑥𝑡 calculated using the tested method 𝑡𝑒 and reference method
𝑟𝑒, respectively, in period 𝑡. 𝑁 is the number of observations in testing
dataset.

Note that 𝐷𝑀 statistic aims to assess the significance of different
models [89], to ascertain whether the expected forecast accuracy is
equal across various models. This task uses 𝑅𝑀𝑆𝐸 as a loss function
with a null hypothesis that the 𝑅𝑀𝑆𝐸 of the tested model (𝑡𝑒) is not
less than that of the reference model (𝑟𝑒).

3. Result and discussion

This section presents the results of the proposed VMD-CLSTM-VMD-
ERCRF and five benchmark models, for half-hourly electricity price
predictions for Queensland, Australia evaluated for DS1 (winter), DS2
(Autumn), DS3 (Spring), DS4 (Summer), and DS5 (Yearly, 2022 predic-
tion) periods, which refer to the Winter, Autumn, Spring and Summer
seasons, and the Year 2022 dataset, respectively.

Table 3 demonstrates that the proposed VMD-CLSTM-VMD-ERCRF
2
models outperforms all the other models with the highest 𝑅 , the
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Fig. 9. Actual vs. model generated EP for the case of DS1 (for conciseness, only 500 tested data points are shown.).
lowest 𝑀𝐴𝐸 (2.5 to 8.25 AUD∕MWh) and 𝑅𝑀𝑆𝐸 (5.191 to 13.19
AUD∕MWh) for all dataset. Note that here, the objective model is
benchmarked against the VMD-CLSTM, XGB, RF, DNN and the LSTM
models for four different seasons and the yearly (i.e., 2022) prediction
dataset with the best model indicated in blue. For three datasets (𝐷𝑆2,
𝐷𝑆4, and 𝐷𝑆5), the 𝑅2 measure indicated similar performance between
the proposed model and benchmark models. However, the 𝑅𝑀𝑆𝐸 and
𝑀𝐴𝐸 values were lower for the proposed model at these sites when
compared to the other benchmark models.

As an example, when predicting for the Autumn season (𝐷𝑆2), the
𝑅2 values obtained were ≈ 0.998, ≈ 0.916, ≈ 0.911, ≈ 0.929, ≈ 0.897,
and ≈ 0.930 for VMD-CLSTM-VMD-ERCRF, VMD-CLSTM, LSTM, DNN,
XGB, and RF models, respectively. In contrast, the 𝑅𝑀𝑆𝐸 values were
≈ 13.190, ≈ 19.412, ≈ 59.603, ≈ 60.199, ≈ 61.038, and ≈ 60.123, and
the 𝑀𝐴𝐸 values were ≈ 8.250, ≈ 13.124, ≈ 34.654, ≈ 36.105, ≈ 36.375,
and ≈ 35.595 for VMD-CLSTM-VMD-ERCRF, VMD-CLSTM, LSTM, DNN,
XGB, and RF models, respectively.

In addition, the models that utilized both CLSTM and data decom-
position (VMD-CLSTM-VMD-ERCRF and VMD-CLSTM) demonstrated
superior prediction performance compared to single models (LSTM,
DNN, XGB, and RF). This indicates that using data decomposition is
a useful method to improve the accuracy of predictions. However, it
13
is important to acknowledge that the 𝑅2 metric is not affected by
scale and offset, which could result in higher values for sub-optimal
models. Additionally, the 𝑅𝑀𝑆𝐸 measure may have a bias towards
high predicted values due to the squaring of residuals. In contrast, the
𝑀𝐴𝐸 measure does not provide information on whether the model
overestimates or underestimates since it only considers the absolute
value, thus making these three measures potentially unreliable when
comparing models with similar underlying structures. Therefore, to
overcome the limitations of 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 in accurately eval-
uating models with similar structures, normalized error measures such
as 𝐼𝑊 𝐼 , 𝐼𝑁𝑆 , and 𝐼𝐿𝑀 were used in this study.

The Nash–Sutcliffe Index (𝐼𝑁𝑆 ) is a widely used evaluation metric
that is a scaled version of 𝑀𝑆𝐸 and is dimensionless. However, it tends
to exaggerate the impact of larger outliers while ignoring smaller ones.
To address this issue, Willmott’s Index (𝐼𝑊 𝐼 ) was introduced, which
considers the ratio of 𝑀𝑆𝐸 instead of differences. The results of the
𝐼𝑁𝑆 and 𝐼𝑊 𝐼 metrics for predicting EP at a half-hourly interval for five
datasets (𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4, and 𝐷𝑆5) are presented in Table 4.

It is clear that the DL model integrated with the 2-stage decomposi-
tion with Error Compensation (VMD-CLSTM-VMD-ERCRF) exhibited a
significant enhancement, as both 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 values were higher than
those of the standalone models. As an example, when predicting for the
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Table 4
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predictions
using the normalized, non-dimensional model evaluation metrics: 𝐼𝑊 𝐼 = Wilmott’s
Index; 𝐼𝑁𝑆 = Nash–Sutcliffe Index; 𝐼𝐿𝑀 = Legates and McCabe Index for four different
seasons and the yearly (i.e., 2022) prediction dataset with the best model indicated in
blue.

Dataset Predictive models 𝐼𝑊 𝐼 𝐼𝑁𝑆 𝐼𝐿𝑀
VMD-CLSTM-VMD-ECRF 0.994 0.995 0.935
VMD_CLSTM 0.860 0.845 0.785
LSTM 0.644 0.602 0.514
DNN 0.548 0.539 0.456
XGB 0.625 0.607 0.511

DS1 (Winter)

RF 0.638 0.605 0.508

VMD-CLSTM-VMD-ECRF 0.992 0.988 0.916
VMD_CLSTM 0.882 0.873 0.767
LSTM 0.839 0.752 0.648
DNN 0.825 0.744 0.634
XGB 0.817 0.738 0.631

DS2 (Autumn)

RF 0.826 0.746 0.639

VMD-CLSTM-VMD-ECRF 0.983 0.990 0.897
VMD_CLSTM 0.832 0.862 0.716
LSTM 0.377 0.358 0.266
DNN 0.298 0.362 0.250
XGB 0.369 0.351 0.277

DS3 (Spring)

RF 0.364 0.350 0.286

VMD-CLSTM-VMD-ECRF 0.992 0.995 0.930
VMD_CLSTM 0.877 0.882 0.835
LSTM 0.513 0.477 0.415
DNN 0.489 0.429 0.398
XGB 0.512 0.494 0.433

DS4 (Summer)

RF 0.506 0.489 0.453

VMD-CLSTM-VMD-ECRF 0.996 0.994 0.953
VMD_CLSTM 0.858 0.877 0.819
LSTM 0.851 0.801 0.680
DNN 0.828 0.786 0.654
XGB 0.845 0.798 0.672

DS5 (Yearly 2022 predictions)

RF 0.844 0.798 0.672

Winter season (𝐷𝑆1), the 𝐼𝑊 𝐼 values obtained were ≈ 0.994, ≈ 0.860,
0.644, ≈ 0.548, ≈ 0.625, and ≈ 0.638 for VMD-CLSTM-VMD-ERCRF,

MD-CLSTM, LSTM, DNN, XGB, and RF models, respectively. Similarly,
he 𝐼𝑁𝑆 values were ≈ 0.995, ≈ 0.845, ≈ 0.602, ≈ 0.539, ≈ 0.607, and
0.605 for VMD-CLSTM-VMD-ERCRF, VMD-CLSTM, LSTM, DNN, XGB,

nd RF models, respectively.
The 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 results provide evidence that the DL model

ntegrated with the 2-stage decomposition with Error Compensation
VMD-CLSTM-VMD-ERCRF) model resulted in enhanced performance
f the standalone deep learning model (DNN and LSTM) for all Dataset.
t is important to note that the metrics 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 may over-
mphasize peak residual values and yield inflated scores due to the
quared residuals.

Conversely, Legates and McCabe Index (𝐼𝐿𝑀 ) is not biased towards
verestimating errors and discrepancies as it utilizes absolute values
nd appropriate weights. Hence, 𝐼𝐿𝑀 is regarded as a more dependable
easure than 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 . The model evaluation based on 𝐼𝐿𝑀

onsistently demonstrates that the VMD-CLSTM-VMD-ERCRF model
utperformed the other models across all five datasets. The proposed
odel achieved 𝐼𝐿𝑀 scores greater than 0.897 for all datasets, with

he highest score of 0.953 recorded for 𝐷𝑆5 (Year 2022 prediction)
ataset. Since 𝐼𝑁𝑆 , 𝐼𝑊 𝐼 and 𝐼𝐿𝑀 values are greater than 0.90 for six
atasets, the VMD-CLSTM-VMD-ERCRF model can be considered as a
ell performed model to estimate half-hourly EP.

To evaluate model bias, percentage error measures were utilized
n the study, namely, Absolute Percentage Bias (𝐴𝑃𝐵) and Symmet-
ic Mean Absolute Percentage Error (𝑠𝑀𝐴𝑃𝐸). Although 𝐴𝑃𝐵 is a
opular and easily understandable measure, it has limitations, such
s being highly influenced by a few outliers and having no upper
imit. To address these limitations, 𝑠𝑀𝐴𝑃𝐸 was developed, which
14

ses the average of the prediction and observed of comparison as the
Table 5
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predictions
using Absolute Percentage Bias 𝐴𝑃𝐵: % and Symmetric Mean Absolute Percentage Error
𝑠𝑀𝐴𝑃𝐸 ∶ % for four different seasons and the yearly (i.e., 2022) prediction dataset
with the best model indicated in blue.

Dataset Predictive models APB sMAPE

VMD-CLSTM-VMD-ERCRF 3.66% 5.83%
VMD-CLSTM 8.11% 11.14%
LSTM 27.31% 28.05%
DNN 30.55% 31.61%
XGB 27.45% 28.03%

DS1 (Winter)

RF 27.63% 27.96%

VMD-CLSTM-VMD-ERCRF 4.27% 4.08%
VMD-CLSTM 6.79% 7.40%
LSTM 17.93% 19.94%
DNN 18.68% 20.52%
XGB 18.82% 21.37%

DS2 (Autumn)

RF 18.41% 20.36%

VMD-CLSTM-VMD-ERCRF 4.55% 6.40%
VMD-CLSTM 9.49% 11.81%
LSTM 32.48% 30.79%
DNN 33.18% 31.09%
XGB 32.00% 29.34%

DS3 (Spring)

RF 31.61% 28.86%

VMD-CLSTM-VMD-ERCRF 2.55% 2.79%
VMD-CLSTM 6.00% 6.42%
LSTM 21.19% 19.21%
DNN 21.81% 19.28%
XGB 20.55% 18.14%

DS4 (Summer)

RF 19.81% 17.52%

VMD-CLSTM-VMD-ERCRF 2.61% 3.08%
VMD-CLSTM 6.67% 8.44%
LSTM 17.66% 20.14%
DNN 19.07% 21.61%
XGB 18.06% 20.22%

DS5 (Yearly 2022 predictions)

RF 18.06% 20.04%

Table 6
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predic-
ions using Diebold–Mariano (𝐷𝑀) test statistic with the best model indicated in

blue. DS1 (Winter); DS2 (Autumn); DS3 (Spring); DS4 (Summer); DS5 (Yearly 2022
predictions).

Models DS1 DS2 DS3 DS4 DS5

VMD-CLSTM-VMD-ERCRF 0.991 0.964 0.988 0.993 0.978
VMD-CLSTM 0.955 0.921 0.955 0.961 0.898
LSTM 0.290 0.262 0.234 0.281 0.202
DNN 0.296 0.242 0.224 0.298 0.188
XGB 0.300 0.219 0.225 0.306 0.190
RF 0.179 0.240 0.238 0.216 0.142

denominator, providing an upper limit of 200% and a well-defined
range to assess relative errors. Hence, 𝑠𝑀𝐴𝑃𝐸 is considered to have
several theoretical advantages over 𝐴𝑃𝐵, whose denominator is based
solely on the standard of comparison.

The proposed VMD-CLSTM-VMD-ERCRF model demonstrated the
lowest 𝐴𝑃𝐵 and 𝑠𝑀𝐴𝑃𝐸 values for all datasets in predicting half-
hourly EP, as shown in Table 5. For example, during the summer season
(𝐷𝑆4), the proposed model (VMD-CLSTM-VMD-ERCRF) generated an
𝐴𝑃𝐵 of ≈ 2.55% and 𝑠𝑀𝐴𝑃𝐸 of ≈ 2.79%, which were lower than
the values produced by VMD-CLSTM (≈ 6.67% and ≈ 8.44%), LSTM
(≈ 17.66% and ≈ 20.14%), DNN (≈ 19.07% and ≈ 21.61%), XGB (≈ 18.06%
and ≈ 20.22%), and RF (≈ 18.06% and ≈ 20.04%).

Table 5 demonstrate that the VMD-CLSTM-VMD-ERCRF model pro-
duces significantly improved prediction for the 𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, and
𝐷𝑆5 compared to other models such as VMD-CLSTM, LSTM, DNN, XGB,
and RF. These findings indicate that VMD-CLSTM-VMD-ERCRF can be
a reliable and effective tool for half-hourly EP prediction. Moreover,
since the variation of EP over short time periods (i.e., half-hourly) is
relatively consistent, the persistence model is usually used as a baseline

model for calculating the Skill Score (𝑆𝑆). This model assumes that the
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Fig. 10. (a) Actual vs. predicted half-hourly EP generated by the half-hourly VMD-CLSTM-VMD-ERCRF hybrid model in the testing phase, shown for 1-day dataset for the case of
𝐷𝑆1. Comparison models are: (b)VMD-CLSTM, (c) LSTM, (d) DNN, (e) XGB and (f) RF. The relative error encountered is indicated in the blue colour.
predicted value 𝐸𝑃 (𝑡+𝑇 ) at time 𝑇 ahead is equal to the current value
𝐸𝑃 (𝑡).

Table 6 shows the 𝑆𝑆 values for different prediction models, and as
expected, all of the models perform better than the persistence model.
The VMD-CLSTM-VMD-ERCRF model achieved the best results with an
𝑆𝑆 value of ≈ 0.991, ≈ 0.964, ≈ 0.988, ≈ 0.993, and ≈ 0.978 for 𝐷𝑆1,
𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4, and 𝐷𝑆5, respectively.

Comparing the 𝑆𝑆 for other models, we observe significant im-
provements induced by the decomposition and error compensation
mechanism, ranging from an increase in skill score value from 𝑆𝑆 ≈
0.955 to 0.991 (𝐷𝑆1), 𝑆𝑆 ≈ 0.921 to 0.964 (𝐷𝑆2), 𝑆𝑆 ≈ 0.955 to 0.988
(𝐷𝑆3), 𝑆𝑆 ≈ 0.961 to 0.993 (𝐷𝑆4), and 𝑆𝑆 ≈ 0.898 to 0.978 (𝐷𝑆5)
when comparing the VMD-CLSTM model to the proposed VMD-CLSTM-
VMD-ERCRF model. Additionally, the standalone models (LSTM, DNN,
XGB, and RF) exhibit 𝑆𝑆 values in the range of 0.142 to 0.290. In
summary, the decomposition-based model can significantly improve
performance, especially when combined with error compensation.

To illustrate visually the degree of similarity between predicted and
actual electricity price, we used a line plot as shown in Fig. 9 as
well as Figs. C.18 to C.21 in Appendix C, to compare the prediction
results for half-hourly EP generated by the proposed VMD-CLSTM-
VMD-ERCRF versus VMD-CLSTM, LSTM,DNN, XGB and RF benchmark
models. The graph reveals that the predictions produced by VMD-
CLSTM-VMD-ERCRF model are more similar to the actual data com-
pared with the other models. This similarity is particularly evident for
extreme values, such as the 12nd, 151st, 223rd, 337th, 417th, 424th,
466th point of 𝐷𝑆1, 32nd, 84th, 132nd 270th, 278th, 367th, 411st,
463rd point of 𝐷𝑆2, 22nd, 70th, 160th, 283rd, 421st, 463rd, 496th
point of 𝐷𝑆3, 36th, 83rd, 252nd, 345th, 393rd, 437th, 489th point
of 𝐷𝑆4 and 37th, 83rd, 123rd, 224th, 271st, 321st, 363rd, 368th,
439th, 449th, 464th point of 𝐷𝑆5 case. These indicate that the VMD-
CLSTM-VMD-ERCRF model performs well even for high and fluctuating
electricity prices data.

Not surprisingly, while the benchmark models (VMD-CLSTM, LSTM,
DNN, XGB, RF) perform well in terms of predictability, they still
struggle to maintain accurate predictions for high EP values, which
is a disadvantage of these relatively inferior models. This is exempli-
fied in Fig. 10. In contrast, the proposed VMD-CLSTM-VMD-ERCRF
model demonstrates significantly superior performance in predicting
15
the peak electricity price data when compared with VMD-CLSTM,
LSTM, DNN, XGB and RF models. Specifically, the VMD-CLSTM-VMD-
ERCRF model only underestimates peak values by 2.12%, whereas
the VMD-CLSTM, LSTM, DNN, XGB and RF models underestimate
them by 13.07%, 86.53%, 94.72%, 75.2%, and 85.46% respectively
for the 𝐷𝑆1. These results further demonstrate the suitability of the
VMD-CLSTM-VMD-ERCRF model for half-hourly EP prediction.

Table 7 shows the promoting percentages (𝜆) based on the Coef-
ficient of Determination, Willmott’s Index, Nash–Sutcliffe and Legates
and McCabe Index computed from the predicted and actual electricity
price datasets in the testing phase. Here, the objective model is bench-
marked against the VMD-CLSTM, XGB, RF, DNN and the LSTM models
for four different seasons and the yearly (i.e., 2022) prediction dataset.
The table demonstrates the efficacy of the proposed VMD-CLSTM-VMD-
ERCRF model over benchmark models, calculated in respect to 𝑅2,
𝐼𝑊 𝐼 , 𝐼𝑁𝑆 , and 𝐼𝐿𝑀 metrics for half-hourly EP prediction. In fact, the
value of 𝜆𝑅2 , 𝜆𝐼𝑊 𝐼

, 𝜆𝐼𝑁𝑆
, and 𝜆𝐼𝐿𝑀 of the VMD-LSTM was 12.46%,

13.47%, 15.07%, and 15.97%, respectively, for the DS1 dataset, com-
pared with the proposed VMD-CLSTM-VMD-ERCRF model. Similarly,
the 𝜆𝑅2 , 𝜆𝐼𝑊 𝐼

, 𝜆𝐼𝑁𝑆
, and 𝜆𝐼𝐿𝑀 value of LSTM, DNN, XGB, and RF models

relative to the proposed VMD-CLSTM-VMD-ERCRF model shows that
the proposed model had a higher percentage of promotion, indicat-
ing that VMD-CLSTM-VMD-ERCRF outperformed the others in this EP
prediction problem.

Table 8 shows the results of the Diebold–Mariano (𝐷𝑀) statistical
test performed to compare the performance of the proposed VMD-
CLSTM-VMD-ERCRF model with the other models for each of the
datasets. Note that a positive 𝐷𝑀 value is expected to indicate sig-
nificantly better performance of the VMD-CLSTM-VMD-ERCRF model
compared to the other models in respect to EP predictions. There-
fore, both the 𝜆 and the 𝐷𝑀 tests provide complementary evidence
that the proposed VMD-CLSTM-VMD-ERCRF model outperformed all
benchmark models.

Diagnostic plots were created to examine the model’s prediction
errors (𝑃𝐸) whereby ideally, a 𝑃𝐸 value should be zero for the best
performing model and their distribution should be as close to zero as
possible. To make the results easy to interpret, we present the absolute
prediction error (|𝑃𝐸|) quantities. Fig. 11 illustrates the superior pre-
diction capability of the proposed VMD-CLSTM-VMD-ERCRF model for
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Fig. 11. Boxplots of errors computed between predicted and actual EP using the proposed VMD-CLSTM-VMD-ERCRF vs. VMD-CLSTM, LSTM, DNN, XGB and RF models in the
testing phase for for four different seasons (a-d) and the yearly (i.e., 2022) prediction dataset (e).
all seasons as it exhibited smaller 𝑃𝐸 divisions compared to the other
models. This concurs with the results in Tables 3–7.

Fig. 12 shows the Empirical Cumulative Distribution Function
(𝐸𝐶𝐷𝐹 ), which provides a clear view of the distribution of |𝑃𝐸|.
Importantly, the 𝐸𝐶𝐷𝐹 for VMD-CLSTM, LSTM, DNN, XGB and RF
showed very similar profiles but in contrast, that of VMD-CLSTM-
VMD-ERCRF model was notably narrow, confined within a smaller
range. Therefore, based on Fig. 10 and the 𝐸𝐶𝐷𝐹 plots in Fig. 11,
the proposed VMD-CLSTM-VMD-ERCRF model exhibited a superior
performance in predicting half-hourly EP.

We now show the Taylor diagram (Fig. 13), which graphically
depicts the relationship between the Standard Deviation (𝑆𝐷), Root
Mean Square Deviation (𝑅𝑀𝑆𝐷), and Correlation Coefficient (𝑟) of
the predicted and actual electricity price data to showcase the strength
of the proposed model. Accordingly, the proposed VMD-CLSTM-VMD-
ERCRF model appears the closest to the observed value (i.e., OBS),
indicating the best performance.

Although evaluation metrics and diagnostic plots were utilized to
compare the models, ranking a large number of models based on such
16
metrics, which have their own merits and constraints, can be challeng-
ing. To overcome this, a robust global performance indicator (𝐺𝑃𝐼)
was used. Fig. 14 displays the GPI, which shows that the proposed
VMD-CLSTM-VMD-ERCRF models outperformed VMD-CLSTM, LSTM,
DNN, XGB, and RF models in terms of performance (𝐺𝑃𝐼 ≈ 8.901
(𝐷𝑆1), 9.317 (𝐷𝑆2), 4.229 (𝐷𝑆3), 13.154 (𝐷𝑆4), and 8.417 (𝐷𝑆5)). In
general, the proposed VMD-CLSTM-VMD-ERCRF model had the highest
𝐺𝑃𝐼 and the best predictive performance, ranking as the top model for
all five datasets.

3.1. Comparison of model’s computational complexity

This study includes a comparison of the computational complexity
of the models as computation time is an essential factor to consider for
practical application of any model. Table 9 shows the time taken for hy-
perparameter optimization, model training, and testing for half-hourly
EP prediction for six different forecast models. The experiment was
conducted using a Dell Precision 7920 with Intel Core i7-6700k CPU,
and a parallel algorithm applied during the decomposition processes
and training and testing of the models.
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Fig. 12. Empirical cumulative distribution function (𝐸𝐶𝐷𝐹 ) of the Prediction Error (𝑃𝐸) generated by the proposed VMD-CLSTM-VMD-ERCRF vs. VMD-CLSTM, LSTM, DNN, XGB
and RF models for four different seasons (a-d) and the yearly (i.e., 2022) prediction dataset (e).
The results show that the average time taken for hyperparameter
optimization of the proposed VMD-CLSTM-VMD-ERCRF model was ≈
6.18 h, which is relatively long. However, once the optimal hyper-
parameters were identified, this model can be used for an extended
period. The testing data length varies for the five datasets, with 𝐷𝑆5
having the longest period (i.e., the Year 2022 predictions), which
affects the computation time. Nonetheless, the testing calculation time
is less than 20 s, indicating that the proposed model is applicable
to practical situations. Furthermore, the hyperparameter optimization
and training time for EP prediction can be significantly reduced with
advancements in hardware and software environments as well as code
optimization. This reduction in training time is highly beneficial for
practical applications.
17
4. Conclusions, limitations and recommendations for future re-
search

4.1. Conclusions

Electricity price prediction is a critical part of electricity market.
This research introduced a two-stage data decomposition and predictive
modelling strategy combining time series prediction with an error
compensation strategy. The proposed VMD-CLSTM-VMD-ERCRF hybrid
model was verified for half-hourly electricity price predictions using
real sub-station data for Queensland, Australia. The first phase of the
model architecture was an initial prediction method while second phase
was an error compensation stage. In the initial stage, the electricity
price data were decomposed using Variational Mode Decomposition



Applied Energy 353 (2024) 122059S. Ghimire et al.
Fig. 13. Taylor diagram depicting correlation coefficients of the proposed VMD-CLSTM-VMD-ERCRF vs. VMD-CLSTM, LSTM, DNN, XGB and RF models for four different seasons
(a-d) and the yearly (i.e., 2022) prediction dataset (e).
method, a sequential process to decompose input signal into a discrete
number of sub-signals known as modes where each mode had a lim-
ited bandwidth but represented distinct patterns, features, periodicity
trends and other stochastic or chaotic behaviours found in electricity
price data. To the develop proposed VMD-CLSTM-VMD-ERCRF hybrid
model, Partial Autocorrelation Functions were employed to extract the
significantly lagged features of each of the intrinsic mode functions
used later as an input for the proposed prediction model.

Firstly, the hybrid CNN-LSTM model was developed as a predictor
framework for initial electricity price prediction. In the second phase,
the error series of the initial predictions were collected with Variational
Mode Decomposition method applied to further decompose the error
series, leading to an enhancement in the overall capability of the
proposed VMD-CLSTM-VMD-ERCRF model. An RF model was applied
to this system to predict each of the VMD error series with the initial
18
prediction results and error prediction results combined to finalize the
electricity price prediction model. To fully ascertain the efficacy of
the method, the proposed VMD-CLSTM-VMD-ERCRF hybrid model was
verified over electricity price data split into five distinct sets: 𝐷𝑆1 for
Winter season prediction, 𝐷𝑆2 for Autumn season prediction, 𝐷𝑆3 for
Spring season prediction, 𝐷𝑆4 for Summer season prediction and 𝐷𝑆5
for the year 2022 prediction, as shown in Table 2.

Five competing comparison models fully ascertained the efficacy
of the proposed VMD-CLSTM-VMD-ERCRF hybrid model. One of these
(VMD-CLSTM) used the data decomposition method without an error
compensation stage while the other four (LSTM, DNN, XGB, RF) used
data decomposition and error compensation altogether, providing a
large pool of predictive models for a detailed evaluation of our ob-
jective model. The comprehensive analysis of results conclude that the
proposed VMD-CLSTM-VMD-ERCRF model had superior performance,
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Table 7
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predictions using Promoting percentages based
on Coefficient of Determination (𝜆𝑅2 ), Wilmott’s Index (𝜆𝐼𝑊 𝐼

), Nash–SutcliffeIndex (𝜆𝐼𝑁𝑆
) and Legates and McCabe Index

(𝜆𝐼𝐿𝑀 ).

Dataset Predictive models 𝜆𝑅2 𝜆𝐼𝑊 𝐼
𝜆𝐼𝑁𝑆

𝜆𝐼𝐿𝑀

DS1 (Winter)

VMD_CLSTM 12.46% 13.47% 15.07% 15.97%
XGB 11.60% 37.09% 38.93% 45.34%
RF 11.69% 35.83% 39.18% 45.68%
LSTM 11.70% 35.18% 39.52% 45.06%
DNN 14.08% 44.84% 45.78% 51.24%

DS2 (Autumn)

VMD_CLSTM 8.29% 11.07% 11.57% 16.31%
LSTM 8.71% 15.43% 23.89% 29.23%
RF 6.81% 16.72% 24.52% 30.27%
DNN 6.95% 16.82% 24.65% 30.83%
XGB 10.11% 17.67% 25.33% 31.13%

DS3 (Spring)

VMD_CLSTM 9.64% 15.30% 12.96% 20.23%
DNN 21.94% 69.66% 63.46% 72.10%
LSTM 22.26% 61.61% 63.83% 70.32%
XGB 22.79% 62.42% 64.57% 69.13%
RF 22.88% 62.93% 64.61% 68.13%

DS4 (Summer)

VMD_CLSTM 10.76% 11.65% 11.40% 10.24%
XGB 16.04% 48.39% 50.31% 53.45%
RF 16.21% 48.99% 50.84% 51.26%
LSTM 16.76% 48.30% 52.09% 55.35%
DNN 18.25% 50.75% 56.87% 57.20%

DS5 (Year 2022 predictions)

VMD_CLSTM 8.50% 13.83% 11.76% 14.03%
LSTM 9.25% 14.53% 19.45% 28.64%
XGB 7.29% 15.12% 19.73% 29.42%
RF 10.28% 15.20% 19.76% 29.42%
DNN 12.67% 16.86% 20.94% 31.33%
Table 8
Evaluation the VMD-CLSTM-VMD-ERCRF against benchmark models using Diebold–Mariano (𝐷𝑀) test statistic for half-hourly
EP predictions. The column of the table is compared with rows and if the result is positive, the model in the rows is superior
to the one in the column; otherwise, if it is negative, the one in the column is superior. Note: The top-performing model
is indicated in bold (blue) and the objective model is benchmarked against the VMD-CLSTM, XGB, RF, DNN and the LSTM
models for four different seasons and the yearly (i.e., 2022) prediction dataset.
Dataset Predictive models VMD-CLSTM LSTM DNN XGB RF

VMD-CLSTM
-VMD-ERCRF

5.60 5.49 5.58 5.41 5.53

VMD-CLSTM 5.47 5.57 5.38 5.51
LSTM 5.14 −1.58 −0.80
DNN −5.72 −5.14

DS1 (Winter)

XGB 0.71
VMD-CLSTM
-VMD-ERCRF

11.53 9.88 9.47 10.38 10.23

VMD-CLSTM 9.68 9.27 10.20 10.05
LSTM 1.83 6.27 2.90
DNN 1.59 −0.16

DS2 (Autumn)

XGB −3.67
VMD-CLSTM
-VMD-ERCRF

5.13 3.58 3.84 3.50 3.28

VMD-CLSTM 3.52 3.78 3.44 3.22
LSTM −0.17 0.91 0.39
DNN 0.43 0.30

DS3 (Spring)

XGB 0.02
VMD-CLSTM
-VMD-ERCRF

5.07 4.59 4.59 4.78 4.43

VMD-CLSTM 4.56 4.56 4.75 4.40
LSTM 2.88 −1.36 −0.76
DNN −2.91 −2.09

DS4 (Summer)

XGB 0.22
VMD-CLSTM
-VMD-ERCRF

12.57 14.77 14.01 14.82 14.84

VMD-CLSTM 14.64 13.84 14.69 14.72
LSTM 4.78 2.15 2.33
DNN −3.83 −3.78

DS5 (Year 2022 predictions)

XGB 0.37
achieving the highest 𝑅2 values and the lowest 𝑀𝐴𝐸 from 2.5–8.25
AUD∕MWh and 𝑅𝑀𝑆𝐸 from 5.191–13.19 AUD∕MWh across all tested
datasets, as per Table 3, made a substantial improvement compared to
benchmark models, evidenced by higher 𝐼𝑁𝑆 and 𝐼𝑊 𝐼 as per Table 4,
and showed the best performance in terms of the lowest 𝐴𝑃𝐵 and
𝑠𝑀𝐴𝑃𝐸, which is evidenced in Table 5.
19
The proposed VMD-CLSTM-VMD-ERCRF model also outperformed
all benchmark models for half-hourly EP prediction, as indicated by
higher 𝜆 values. For instance, for the 𝐷𝑆1 dataset, VMD-CLSTM had
𝜆 values of 12.46%, 13.47%, 15.07%, and 15.97% for 𝑅2, 𝐼𝑊 𝐼 , 𝐼𝑁𝑆 ,
and 𝐼𝐿𝑀 , respectively, compared to VMD-CLSTM-VMD-ERCRF. See
Table 7.
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Fig. 14. Model ranking using the Global Performance Index (GPI). (a) 𝐷𝑆1, (b) 𝐷𝑆2, (c) 𝐷𝑆3, (d) 𝐷𝑆4, and (e) 𝐷𝑆5.
Table 9
Average computation time of all models.

Dataset Designated model Hyperparameter
optimization (h)

Model construction time
(Model training validation)
(min)

Prediction time
(Testing) (s)

VMD-CLSTM-
VMD-ERCRF

6.180 37 18

VMD-CLSTM 5.230 33 14
LSTM 5.100 18 12
DNN 3.210 17 8
XGB 1.210 11 4

DS1, DS2, DS3,
and DS4

RF 1.520 11 4

VMD-CLSTM-
VMD-ERCRF

8.520 49 20

VMD-CLSTM 7.530 38 21
LSTM 6.240 21 15
DNN 4.250 21 10
XGB 1.560 14 6

DS5

RF 1.325 15 6
Regarding statistical testing, the 𝐷𝑀 test indicated that the per-
formance margin between the proposed VMD-CLSTM-VMD-ERCRF and
five benchmark models (VMD-CLSTM, LSTM, DNN, XGB, RF) was
statistically significant to further ascertain the robustness of the metrics
used to arrive at a superior performance outcome. See Table 8.

In accordance with the above findings, the insights based on visual
comparisons of predicted and actual electricity price and related model
metrics show that the proposed VMD-CLSTM-VMD-ERCRF model out-
performs all state-of-the-art deep learning models. As a result, elec-
tricity price data are captured in terms of high- and low-frequency
perturbations which are non-stationary and nonlinear. Compared with
20
previous studies that used wavelet transform (WT), EMD, or variants
of it (EEMD, CEEMD), the proposed method was less susceptible to
noise. As a result of hyperparameter optimization and feature selec-
tion, the final model was fine-tuned to achieve lower error metrics
and improved prediction performance by compensating for sampling
errors as part of the current VMD method. An important insight was
the importance of assessing model errors more closely. In order to
accomplish this, the original electricity price series was decomposed
into subseries and a residual series was calculated with the VMD
algorithm and LSTM network. By comparing the predicted subseries
with the original observation value, an error series was constructed.
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Using VMD to decompose the error series into sub-series, which were
then predicted using a Random Forest network to compensate for the
prediction results of the original series, the half-hourly electricity price
was highly accurate. To predict the future value of electricity prices,
the VMD-CLSTM-VMD-ERCRF model considered the relatively com-
plex antecedent electricity price time series. Following these insights
and contributions, we conclude that VMD-CLSTM-VMD-ERCRF, based
on error compensation strategies achieved through model input data
decomposition, can improve prediction accuracy.

4.2. Limitations, opportunities and recommendations for future research
work

In spite of the outstanding performance, the wider interpretability
of the VMD-CLSTM-VMD-ERCRF model for different electricity mar-
kets remains an important aspect and open problem of investigation
that requires further attention. The model was tested with datasets
aggregated together for a single State in Australia (i.e. Queensland)
without considering how it would behave in a geographically diverse
region. Thus, model testing should be conducted in different geograph-
ical regions with wider changes in electricity prices. By using more
diverse datasets, the VMD-CLSTM-VMD-ERCRF model can be tested for
different behaviours of electricity prices. As well as social, geopolitical,
and economic factors, a revised new modelling scheme should be tested
in terms of its interpretability for diverse input datasets.

The present VMD-CLSTM-VMD-ERCRF model was tested on a single
variable (i.e., investigating antecedent electricity price) to build a fore-
cast system. In future, one could develop a fully explainable (xAI) and
nterpretable model by using methods like Local Interpretable Model-
gnostic Explanations (LIME), Shapley additive explanations (SHAP),
nd permutation feature importance (PFI) or a Bayesian optimized
nsemble Neural Basis Expansion Analysis for Interpretable Time Series
B-E-NBEATS) method [90,91]. In addition to revealing relationships
etween model inputs and predictions, these methods provide a greater
hysical understanding of how the VMD-CLSTM-VMD-ERCRF model
ould arrive at a particular prediction. Thus, the causes and effects of
lectricity prices could be explained better through the consideration
f climatic, social, geopolitical, and economic factors. In addition, data
ecomposition and error correction strategies can improve the predic-
ive performance and physical understanding of these input variables,
heir fluctuations, as well as the impact on better versions of the
MD-CLSTM-VMD-ERCRF model.

For this study, we have built a VMD-CLSTM-VMD-ERCRF model
sing half-hourly electricity prices. However, Australia’s National Elec-
ricity Market (NEM) operated by the Australian Energy Market Op-
rator (AEMO) calculates the electricity price based on the 5–30 ar-
angement where five-minute dispatch prices are averaged to produce a
0-min Trading Price or ‘‘spot price’’ that is then used to settle purchase
nd sale transactions. As of October 1st, 2021, the NEM switched from
30-min settlement to a 5-min settlement so that users could better

djust their consumption in response to electricity price changes [92,
3]. This change made it easier to control appliances during a 5-min,
igh price period instead of a 30-min high price period for businesses
nd households. In addition to this, the 30-min settlement usage also
emonstrates limitations in metering and data handling technologies,
o a 5-min period would encourage lower electricity costs. A future
tudy could investigate how to build the VMD-CLSTM-VMD-ERCRF
odel using the 5-min settlement datasets, and how to integrate the
ata with real-time weather and weather events that affect electricity
emand, as well as electricity market stability, such as bush fires and
torms.

Through the improved VMD-CLSTM-VMD-ERCRF model, with its
ive minute prediction capability, we could be able to invest efficiently
n new technologies such as batteries, which can be used to back up
ind and solar power, and consumers can participate in the market
21

ore efficiently by responding to demand and generators responding r
to demand at a much granular level (in real-time). By using an error
correction method, the improved VMD-CLSTM-VMD-ERCRF model can
align the market’s price signal with the physical electricity system The
improved price signals forecasts can lead to more efficient decisions by
generators, lowering wholesale costs and typical electricity bills over
time. Finally, the model’s wider applicability could be tested by expand-
ing its half-hourly forecast horizon. In order to test the effectiveness
of the VMD-CLSTM-VMD-ERCRF model over these timescales, future
studies should use hourly, daily, weekly, monthly as well as long-term
(yearly) datasets.
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Appendix A. List of acronyms

Tables A.10 and A.11 show the abbreviations and acronyms used in
his paper.

Appendix B. Theoretical overviews

B.1. Theory of VMD method

Let {𝐸𝑃 (𝑡)}𝐻𝑡=1 denote a typically non-stationary electricity price
equence of EP discrete values sampled at periodic intervals. Then, its
ecomposition using VMD can be expressed by Eq. (B.1):

𝑃 (𝑡) =
𝐾
∑

𝑘=1
𝐹𝑘(𝑡) + 𝑟(𝑡) (B.1)

here 𝐹𝑘(𝑡) is the 𝑘th IMF sequence, 𝐾 is the decomposition level, and
(𝑡) is the residual. Adapting [84], IMFs are amplitude-modulated and
requency-modulated signals following Eq. (B.2):

𝑘(𝑡) = 𝐴𝑘(𝑡) cos𝜙𝑘(𝑡), 𝐴𝑘(𝑡) ≥ 0 (B.2)

here 𝜙𝑘(𝑡) is defined as phase, 𝐴𝑘(𝑡) is the envelope corresponding to
he 𝑘th IMF. It also has a slowly varying instantaneous frequency that
s mostly compact around a central frequency 𝜔𝑘.

Through the use of optimization techniques, the VMD algorithm
inds the 𝐾 IMFs and their respective central frequencies concur-

ently. The constrained variational optimization problem, expressed

https://www.aemo.com.au/
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Table A.10
List of acronyms.
Acronym Expansion

AI Artificial Intelligence
ANN Artificial Neural Network
AR Autoregressive
ARIFMA Autoregressive Fractionally Integrated Moving Average
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
AUD Australian Dollar
BDL Bayesian Deep Learning
BiLSTM Bi-Directional LSTM
BPNN Back-Propagation Neural Network
Catboost Categorical Boosting
CEEMD Complementary Ensemble Empirical Mode Decomposition
CEEMDAN Complementary Ensemble Empirical Mode Decomposition with Adaptive Noises
CNN Convolutional Neural Network
DBN Deep Belief Network
DELM Deep Extreme Learning Machine
DL Deep Learning
ELM Extreme Learning Machine
EMD Empirical Mode Decomposition
ENN Elman Neural Networks
EP Electricity Prices
ERC-DNN Error Compensation Deep Neural Network
ES Exponential Smoothing
EWT Empirical Wavelet Transform
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GPR Gaussian Process Regression
GRNN Generalized Regression Neural Network
GRU Gated Recurrent Unit
ICEEMDAN Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noises
IDPSO Inverted and Discrete Particle Swarm Optimization
ILRCNN Integrated Long-Term Recurrent Convolutional Network
KDE Kernel Density Estimate
KNN K-Nearest Neighbours
KNNR K-Nearest Neighbours Regression
LASSO Least Absolute Shrinkage and Selection Operator
Table A.11
List of acronyms.
Acronym Expansion

ADMM Alternating Direction Method of Multipliers
LR Linear Regression
LSTM Long Short-Term Memory
MARS Multivariate Adaptive Regression Splines
MIF Mutual Information
ML Machine Learning
MLP Multilayer Perceptron
NARMAX Nonlinear Autoregressive Moving Average Model With Exogenous Inputs
NBEATS Neural Basis Expansion Analysis For Interpretable Time Series
PACF Partial Autocorrelation Function
PDF Probability Density Function
PI Prediction Interval
PNN Probabilistic Neural Network
RBFNN Radial Basis Function Neural Network
RF Random Forest Regression
RM Regression Model
RNN Recurrent Neural Networks
SEQ South-East Queensland
SHAP Shapley Additive Explanations
SILO Scientific Information For Land Owners
SM Statistical Methods
SRM Structural Risk Minimization
SSA Sparrow Search Algorithm
STL Seasonal and Trend Decomposition Using Loess
SVR Support Vector Regression
TCN Temporal Convolutional Network
TF Transfer Function
VMD Variational Mode Decomposition
WNN Wavelet Neural Network
XGB eXtreme Gradient Boos
22
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by Eq. (B.3), can be solved using alternating direction method of
multipliers (ADMM).

min
{𝑢𝑘},{𝜔𝑘}

{

∑

𝑘 ‖𝜕𝑡
[(

𝛿(𝑡) + 𝑗
𝜋𝑡

)

⊗ 𝑢𝑘(𝑡)
]

𝑒−𝑗𝜔𝑘𝑡
‖

2
2

}

𝑠.𝑡.
∑

𝑘 𝑢𝑘(𝑡) = 𝑓 (𝑡)
(B.3)

where 𝛿(𝑡) denotes the Dirac distribution, ⊗ and 𝜕 denotes convolution
and partial differential operators, respectively, and

{

𝑢𝑘
}

∶=
{

𝑢1,… , 𝑢𝑘
}

and
{

𝜔𝑘
}

∶=
{

𝜔1,… , 𝜔𝑘
}

represents the IMF and central frequencies,
respectively. Eq. (B.3) can be addressed by introducing a quadratic
penalty and Lagrangian multipliers (𝜆(𝑡)). The augmented Lagrangian
(𝓁) is given by :

𝓁
({

𝑢𝑘
}

,
{

𝜔𝑘
}

, 𝜆
)

∶= 𝛼
∑

𝑘
‖𝜕𝑡

[(

𝛿(𝑡) +
𝑗
𝜋𝑡

)

∗ 𝑢𝑘(𝑡)
]

𝑒−𝑗𝜔𝑘𝑡
‖

2
2+

‖𝑓 (𝑡) −
∑

𝑘
𝑢𝑘(𝑡)‖22 +

⟨

𝜆(𝑡), 𝑓 (𝑡) −
∑

𝑘
𝑢𝑘(𝑡)

⟩ (B.4)

where 𝛼 denotes the equilibrium parameter of the data-fidelity con-
straint, and the term:
‖

‖

‖

‖

‖

𝑓 (𝑡) −
∑

𝑘
𝑢𝑘(𝑡)

‖

‖

‖

‖

‖

2

2

, (B.5)

is the quadratic penalty term to accelerate the convergence rate. The
modes 𝑢𝑘 (𝜔) in the frequency domain are estimated using ADMM in
the form of the Wiener filter structure as Eq. (B.6):

̂𝑛+1𝑘 (𝜔) =
𝑓 (𝜔) −

∑

𝑖≠𝑘
𝑢̂𝑖 +

𝜆̂(𝑤)
2

1 + 2𝛼
(

𝜔 − 𝜔𝑘
)2

, (B.6)

where 𝑢̂𝑘, 𝑓 (𝜔), 𝜆̂(𝑤), and 𝑢̂𝑖 are the Fourier transform (FT) of the
components with 𝑛 the number of iterations. The central frequency
(𝜔𝑘) are updated using Eq. (B.7) and the 𝜆 is simultaneously updated
by Eq. (B.8).

𝜔̂𝑛+1
𝑘 =

∝
∫
0
𝜔|
|

𝑢̂𝑘 (𝜔)||
2𝑑𝜔

∝
∫
0

|

|

𝑢̂𝑘 (𝜔)||
2𝑑𝜔

(B.7)

̂𝑛+1 (𝜔) = 𝜆̂𝑛 (𝜔) + 𝜏

(

𝑓 (𝜔) −
∑

𝑘
𝑢̂𝑛+1𝑘 (𝜔)

)

(B.8)

here 𝜏 denotes the noise tolerance. The above iterative calculations
Eqs. (B.6)–(B.8)) continue until the following convergence (Eq. (B.9))
s reached:
∑

𝑘 ‖𝑢̂
𝑛+1
𝑘 − 𝑢̂𝑛𝑘‖

2
2

∑

𝑘 ‖𝑢̂
𝑛
𝑘‖

2
2

< 𝜀 (B.9)

The final output will be the frequency spectrums 𝑢̂𝑛+1𝑘 (𝜔) of 𝐾 mode
components, which are then transformed into the time-domain signals
by utilizing the inverse FT. The theory of VMD is briefly illustrated
in this study as above; further, the details of the computation proce-
dure can be found in Ref. [84]. The summarized version of the VMD
algorithm is presented in Algorithm 1.

B.2. Theory of LSTM method

The following define the updating formula for the three-gate struc-
ture information, i.e., Eqs. (B.10)–(B.15).

𝑓𝑡 = 𝜎
(

𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(B.10)

𝑖𝑡 = 𝜎
(

𝑊𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(B.11)

𝐶 ′ = tanh
(

𝑊 ⋅
[

ℎ , 𝑥
]

+ 𝑏
)

(B.12)
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𝑡 𝐶 𝑡−1 𝑡 𝐶 t
Algorithm 1 The process of VMD

Initialize:
{

⌢
𝑢
1
𝑘

}

,
{

⌢
𝜔
1
𝑘

}

,
⌢
𝜆
1
, 𝑛 ← 0

Repeat
𝑛 ← 𝑛 + 1
for 𝑘 = 1 ∶ 𝐾 do

update 𝑈𝑘 for all 𝜔 ≥ 0 using Eq. (B.6)
update

⌢
𝜔𝑘 using Eq. (B.7)

end for
Update

⌢
𝜆
𝑛
(𝜔) for all 𝜔 ≥ 0 using Eq. (B.8)

until convergence:
∑

𝑘
∥𝑢̂𝑛+1𝑘 −𝑢̂𝑛𝑘∥

2
2

∑

𝑘
∥𝑢̂𝑛𝑘∥

2
2

< 𝜀

obtain 𝑢𝑛+1𝑘 (𝑡) by the fast Fourier transform of 𝑢̂𝑛+1𝑘 (𝜔)
end

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶 ′
𝑡 (B.13)

𝑡 = 𝜎
(

𝑊0 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏0
)

(B.14)

𝑡 = 𝑜𝑡 ∗ tanh
(

𝐶𝑡
)

(B.15)

here 𝑊 and 𝑏 present the corresponding gate weights and deviation
alues; [ℎ𝑡−1, 𝑥𝑡] means to connect two vectors into a longer vector;
𝑡 represents the input value; 𝑡 represents the current moment; 𝑡 − 1
epresents the previous moment; ℎ represents hidden states; 𝑖𝑡 is the
utput of the input gate at time 𝑡; 𝐶𝑡 is the current memory cell state;
𝑡 and 𝑜𝑡 are the outputs of the forget gate and the output gate at the
urrent moment; 𝜎 is the sigmoid function while tanh is the hyperbolic
angent function; 𝐶 ′

𝑡 is the candidate value added to the new cell state
nd ℎ𝑡 is the output matrix.

.3. Theory of CNN-LSTM model

Each convolution layer has several convolution kernels. Following
he completion of convolution calculations, the results of each layer’s
onvolution are non-linearly processed using an activation function.
ommonly used activation functions include the Sigmoid activation

unction, Tanh activation function, and ReLU activation function. This
tudy utilizes the ReLU activation function to process the convolution
esults. While the convolution layer extracts data features, the resulting
eature dimensions are typically very high. To address this issue and
educe the network training cost, a pooling layer is added after the
onvolution layer to reduce feature dimension. Each convolutional
ayer can be depicted as:
𝑘
𝑖𝑗 = 𝜎((𝜔𝑘 ⊗ 𝑥)𝑖𝑗 + 𝑏𝑘) (B.16)

here ⊗ represents the convolution operation, 𝜔𝑘 and 𝑏𝑘 represent the
eight and deviation of the 𝑘th layer, respectively. Here the activation

unction 𝜎(𝑥) is the Rectified Linear Unit (𝑅𝑒𝐿𝑈) function, expressed
as:

𝜎(𝑥) = max(0, 𝑥) =

{

𝑥𝑗 , 𝑥𝑗 > 0
0, 𝑥𝑗 < 0

here 𝑥 is termed as input, 𝑥𝑗 is input element and 𝜎 is 𝑅𝑒𝐿𝑈 function.
t is a nonlinear function that behaves like a linear one to learn the
omplex relationships of the input value (See Fig. B.15).

In the CLSTM model, an EarlyStopping(𝐸𝑆) step is applied to
rack the model’s loss on a validation dataset as per Fig. B.16. If a
alidation loss did not decrease for at least 10 consecutive epochs, the
odel training was terminated with best model parameters obtained in
raining phase. After hyperparameters are optimized as per Table B.12,
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Fig. B.15. The block diagram of hybrid CNN-LSTM model.
Table B.12
Hyperparameters search range for the models using Bayesian optimization method. (Note: ‘gbtree’ refers to the Gradient Boosted
Trees, ‘uniform’ returns a random integer in the range [0, upper), ‘quniform’ means quantized version of ‘uniform’, quniform(low,
high, q) return values in interval of ‘q’, ReLU is the Rectified Linear Unit Activation Function, and Adam is the optimizer known as
Adaptive Moment Estimation.)

Predictive models Model hyperparameters Hyperparameter selection

Convolution Neural
Network Integrated
with Long Short
Term Memory
Network (CLSTM)

Filter1 (CNN) (‘Filter1’, range(50,120,5))
Filter 2 (CNN) (‘Filter1’, range(50,100,5))
LSTM cell 1 (‘Units 1’, range(50,100,5))
LSTM cell 2 (‘Units 2’, range(50,80,5))
Epochs (CNN) [1000]
Activation function [ReLU]
Solver [‘Adam’]
Batch size (‘Batch_Size’, range(50,1500,200))

Deep Neural
Network
(DNN)

Hiddenneuron 1 (‘Units2’, range(50,150,5))
Hiddenneuron 2 (‘Units3’, range(50,80,5))
Hiddenneuron 3 (‘Units4’, range(50,50,5))
Batch Size (‘Batch_Size’, range(50,1500,200))
Solver [‘Adam’]
Epochs [1000]
The maximum
depth of the tree.

(‘max_depth’, range(1,20,1))

Random Forest
Regression
(RF)

The number of trees in the forest. (‘n_estimators’, range(5,100,2))
Minimum number of samples to split
an internal node

(‘min_samples_split’, range(2,100,1))

The number of features to consider
when looking for the best split.

[‘auto’, ‘sqrt’, ‘log2’]

Long Short
Term
Memory
Network
(LSTM)

LSTM cell 1 (‘Units 1’, range(50,100,5))
LSTM cell 2 (‘Units 2’, range(50,80,5))
Activation function [ReLU]
Epochs [1000]
Drop rate (‘drop_rate’, range(0,0.5,0.1))
Batch Size (‘Batch_Size’, range(50,1500,200))

eXtreme
Gradient
Boosting
(XGB)

Booster Type ‘gbtree’
Step size shrinkage used in update
to prevent overfitting.

(‘eta’, range(0.1,0.9,0.1))

The maximum depth of the tree. (‘max_depth’, range(1,20,1))
The number of trees in the forest. (‘n_estimators’, range(5,100,2))
Minimum sum of instance weight
(hessian) needed in a child.

quniform(‘min_child_weight’, 0, 10, 1)

Parameters for subsampling
of columns.

uniform(‘colsample_bytree’, 0.5,1),

L2 regularization term
on weights

uniform(‘reg_lambda’, 0,1)

L1 regularization term
on weights

uniform(‘reg_alpha’, 0,1)

Minimum loss reduction required to
make a further partition on
a leaf node of the tree.

uniform (‘gamma’, 1,9)
24
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Fig. B.16. (a) Learning rate change in training using ‘‘ReduceLRonPlateau’’. (b) Loss or mean square error of both the training and validation datasets are calculated. Early stopping
callbacks are implemented to stop the model from training further if there is no improvement in the validation loss for a specified number of epochs (Figure valid only for VMF1
training of DS5).

Fig. B.17. The Keras model.summary() screenshot of the CLSTM, displays the network layers’ output sizes and number of parameters. The total number of parameters is also
indicated at the bottom of the image (Figure valid only for VMF1 training of DS5).
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Fig. C.18. Actual vs. predicted half-hourly EP generated by the half-hourly VMD-CLSTM-VMD-ERCRF hybrid model in the testing phase, shown for 1-day dataset for the case of
𝐷𝑆2. Comparison models are: (b) VMD-CLSTM, (c) LSTM, (d) DNN, (e) XGB and (f) RF. The relative error encountered is indicated in the blue colour.
the CLSTM model adopt Adaptive Moment Estimation (Adam) as a
widely-used optimizer with ‘‘ReLU’’ as the activation function and the
LSTM layers are succeeded by a recurrent dropout layer with dropout
rate of 0.1. Fig. B.17 shows the parameters and network output size in
training phase of VMF1 for DS5 in this study.

Appendix C. Supplementary results

Figs. C.18–C.21 show the actual vs. predicted half-hourly EP gen-
erated by the proposed VMD-CLSTM-VMD-ERCRF hybrid model for
26
half-hourly EP predictions in the testing phase, albeit shown for 1-day
dataset for the case of 𝐷𝑆2, 𝐷𝑆3, 𝐷𝑆4 and 𝐷𝑆5, respectively.

Similar to Tables 3 and 4, Table C.13 now evaluates the proposed
VMD-CLSTM-VMD-ERCRF model for half-hourly EP prediction by also
providing the CLSTM model without the data decomposition (i.e. VMD)
method. Note that the CLSTM model is not reported elsewhere in the
body of the paper for conciseness but here, the purpose is to demon-
strate the influence of the VMD error correction strategy on CLSTM
model’s output. It is important to note that the application of VMD-
based error correction strategy has led to a significant improvement
in the model performance in terms of the Willmott’s, Nash, and the
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Fig. C.19. As per Fig. 9 but for DS3.
Legate’s Indices, as well attaining as a lower error for the VMD-CLSTM
compared to the CLSTM model. This reaffirms the efficacy of the
variational mode decomposition algorithm and the error correction
method in predicting half-hourly electricity demand.

To provide comprehensive insights into the predictive performance
of different models from multiple perspectives, we have included
Fig. C.22. This heatmap visually represents the 𝑅𝑀𝑆𝐸 values for the
objective model (i.e., VMD-CLSTM-VMD-ERCRF) in comparison to six
benchmark models across all five datasets (DS1, DS2, DS3, DS4, and
DS5). However, the simulations are performed at eight specific time
intervals: 00:00 AM, 3:00 AM, 6:00 AM, 9:00 AM, 12:00 PM, 3:00 PM,
6:00 PM, and 9:00 PM. Furthermore, we have introduced the CLSTM (a
standalone model) model for comparative analysis with the objective
model (VMD-CLSTM-VMD-ERCRF), as well as VMD-CLSTM (a single
decomposition model).
27
Upon examining the results of the objective model in contrast
to other benchmark models across all five datasets, it becomes ev-
ident that VMD-CLSTM-VMD-ERCRF consistently yields predictions
with lower 𝑅𝑀𝑆𝐸 scores when compared to VMD-CLSTM, CLSTM,
LSTM, DNN, XGB, and RF models. The figure reveals that the VMD-
CLSTM-VMD-ERCRF model closely aligns with 𝐸𝑃 values at all time
points under consideration. The elevated 𝑅𝑀𝑆𝐸 values observed for
DNN, LSTM, CLSTM, XGB, and RF models underscore their limitations
in providing a suitable alternative for EP prediction. On the contrary,
the lower 𝑅𝑀𝑆𝐸 values for the VMD-CLSTM model compared to
CLSTM, LSTM, DNN, XGB, and RF models highlight that a single
model may not be sufficient for accurate predictions in scenarios
involving high volatility, nonstationary, multi-seasonality, and non-
linearity in 𝐸𝑃 , thereby emphasizing the significant value offered by
decomposition models in prediction.
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Fig. C.20. As per Fig. 9 but for DS4.
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Fig. C.21. As per Fig. 9 but for DS5.
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Fig. C.22. A heatmap visually representing the 𝑅𝑀𝑆𝐸 (Root Mean Square Error) values for the Objective model in comparison to benchmark models across 3-h intervals for
five datasets. The colour scheme represents 𝑅𝑀𝑆𝐸 values in AUD∕MWh, highlighting discrepancies between the models. The colour gradient shifts from green (indicating lower
𝑅𝑀𝑆𝐸) to dark green (indicating higher 𝑅𝑀𝑆𝐸). Each cell displays the specific 𝑅𝑀𝑆𝐸 values for each of the models.



Applied Energy 353 (2024) 122059S. Ghimire et al.
Table C.13
Evaluating the proposed VMD-CLSTM-VMD-ERCRF model for half-hourly EP predictions. Note: 𝑅2 = Coefficient of Determination, 𝑅𝑀𝑆𝐸 ∶
𝐴𝑈𝐷∕𝑀𝑊ℎ = Root Mean Square Error; 𝑀𝐴𝐸:AUD/MWh = Mean Absolute Error; 𝐼𝑊 𝐼 = Wilmott’s Index; 𝐼𝑁𝑆 = Nash–Sutcliffe Index; 𝐼𝐿𝑀 =
Legates and McCabe Index; 𝐴𝑃𝐵 = Absolute percentage Bias. The objective model is benchmarked against the VMD-CLSTM, CLSTM, XGB, RF,
DNN and the LSTM models for four different seasons and the yearly (i.e., 2022) prediction dataset with the best model indicated in blue.
Dataset Predictive models 𝑅2 𝐼𝑊 𝐼 𝐼𝑁𝑆 𝐼𝐿𝑀 RMSE MAE APB

VMD-CLSTM-VMD-ERCRF 0.999 0.994 0.995 0.935 5.191 3.057 3.66%
VMD-CLSTM 0.874 0.860 0.845 0.785 11.352 6.770 8.11%
CLSTM 0.877 0.605 0.584 0.481 46.265 24.313 29.14%
LSTM 0.882 0.644 0.602 0.514 45.171 22.781 27.31%
DNN 0.858 0.548 0.539 0.456 48.574 25.486 30.55%
XGB 0.883 0.625 0.607 0.511 44.846 22.902 27.45%

DS1

RF 0.882 0.638 0.605 0.508 44.983 23.050 27.63%

VMD-CLSTM-VMD-ERCRF 0.998 0.992 0.988 0.916 13.190 8.250 4.27%
VMD-CLSTM 0.916 0.882 0.873 0.767 19.412 13.124 6.79%
CLSTM 0.929 0.828 0.742 0.628 60.453 36.685 18.97%
LSTM 0.911 0.839 0.752 0.648 59.306 34.654 17.93%
DNN 0.929 0.825 0.744 0.634 60.199 36.105 18.68%
XGB 0.897 0.817 0.738 0.631 61.038 36.375 18.82%

DS2

RF 0.930 0.826 0.746 0.639 60.123 35.595 18.41%

VMD-CLSTM-VMD-ERCRF 0.998 0.983 0.990 0.897 6.247 3.388 4.55%
VMD-CLSTM 0.902 0.832 0.862 0.716 12.333 7.062 9.49%
CLSTM 0.747 0.369 0.271 0.238 54.017 25.123 33.73%
LSTM 0.776 0.377 0.358 0.266 50.652 24.178 32.48%
DNN 0.779 0.298 0.362 0.250 50.510 24.704 33.18%
XGB 0.770 0.369 0.351 0.277 50.944 23.827 32.00%

DS3

RF 0.770 0.364 0.350 0.286 50.957 23.530 31.61%

VMD-CLSTM-VMD-ERCRF 0.999 0.992 0.995 0.930 4.748 2.507 2.55%
VMD-CLSTM 0.891 0.877 0.882 0.835 11.367 5.900 6.00%
CLSTM 0.821 0.478 0.453 0.401 49.870 21.375 21.71%
LSTM 0.832 0.513 0.477 0.415 48.753 20.855 21.19%
DNN 0.817 0.489 0.429 0.398 50.921 21.467 21.81%
XGB 0.839 0.512 0.494 0.433 47.923 20.223 20.55%

DS4

RF 0.837 0.506 0.489 0.453 48.168 19.497 19.81%

VMD-CLSTM-VMD-ERCRF 0.999 0.996 0.994 0.953 10.220 5.154 2.61%
VMD-CLSTM 0.914 0.858 0.877 0.819 21.855 13.178 6.67%
CLSTM 0.747 0.369 0.271 0.238 54.017 25.123 33.73%
LSTM 0.906 0.851 0.801 0.680 61.125 34.886 17.66%
DNN 0.872 0.828 0.786 0.654 63.370 37.680 19.07%
XGB 0.926 0.845 0.798 0.672 61.584 35.690 18.06%

DS5

RF 0.896 0.844 0.798 0.672 61.651 35.692 18.06%
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