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ABSTRACT

The trimming of excess fat from beef striploin primal is currently a
manual process costing the Australian beef industry an estimated $89
million annually due to yield losses within beef processing plants. Robotics
have been successfully deployed to address efficiency and productivity
issues in similar products such as pork but are yet to be adapted to red
meat. Specifically, a sensing technology capable of acquiring the fat depth

information required for automated trimming is yet to be developed.

The work undertaken in this dissertation investigates the characteristics of
the beef striploin primal and the processing considerations to develop a
sensing performance framework for the application of beef striploin fat
trimming. Computed-Tomography is used to provide a means of
benchmarking the error present between manual measurements and the
'gold standard' of sensing technologies for this application in the
performance metrics of accuracy (described as median error), precision
(described as Inter-Quartile Range of error), linearity (described as R-
squared quantity of actual vs predicted measurements), reliability
(described as the expected probability of acquiring 'no read'
measurements across surveyed nodes), and response time (described as
the time required to acquire measurements). A weighted sensor
performance evaluation framework was developed based upon analyses
conducted on key aspects of the striploin primal fat profile and the fat

specifications and operational constraints of the fat trimming process.

Fat depth measurement systems were developed using A-Mode and
B-Mode ultrasound sensing technologies to obtain results that could be
assessed using the developed weighted sensor evaluation framework. In
applying this framework it was identified that the A-Mode (score: 47 / 75)

ultrasound system was more suitable than B-Mode (score: 29 / 75) for



implementation within a commercial automated fat trimming system.
Though the majority of literature recommends the use of B-Mode
ultrasound for fat depth measurements it was found that the performance
metrics considered favoured simplicity and fast response typical of A-

mode ultrasound technology.

Further work to validate the recommendation of A-Mode ultrasound
technologies for uniform fat trimming of beef striploin is recommended by
integrating this technology within an automated system for commercial

use.
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CHAPTER 1: INTRODUCTION

1.1 Background

Australia’s agricultural sector is considered to be one of the five pillars
of the economy and crucial for Australia’s prosperity. This industry provides
93% of the nation’s domestic food supply and supports 445,000 employees
within 23,000 businesses with approximately 90% of these jobs based in
regional or remote areas of Australia (Ernest & Young 2021). An industry
survey conducted by the Australian Bureau of Agricultural and Resource
Economics and Sciences found that from 2021 to 2022 Australia’s
agricultural production value totalled $93b gross with an export value of
$71b (ABARES, 2023).

According to report by Ernest & Young (2021) the red meat and livestock
industry had the 16th largest turnover of all key industries in Australia,
contributing $69.9b (1.3%) towards Australia’s key industry total value
(see Figure 1-1). According to report by Ernest and Young (E&Y) the red
meat and livestock industry (referred to as “red meat”) contributes most
significantly (45%) towards the total value of Australia’s total agriculture
production (Ernest & Young, 2021). This is illustrated in the chart presented
in Figure 1-2.
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Figure 1-1: Industry turnover compared with other industries between 2019-20. Source - (Ernest
& Young, 2021)
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support services
@ 45% - Food production (red meat)
@ 34% - Agriculture excl. food product

Figure 1-2: Agriculture production industry value add in 2019-20. Source - (Ernest &
Young, 2021)

The red meat and livestock industry spans three species of
domesticated animals: bovine, ovine and caprine, which are slaughtered
to create beef (including veal and buffalo), sheepmeat (also referred to as
lamb or mutton), and goatmeat products respectively. The red meat
industry supply chain includes the production (farming of animals),

processing (slaughter and creation of products) and retail (sale of



product) of an assortment of various meat products for domestic and
export markets (see Figure 1-3). In 2020, Australia was the world’s
largest sheepmeat exporter, and the second largest exporter in beef

products and goatmeat globally.

Red meat and livestock industry highlights
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Red meat and livestock species
'
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Figure 1-3: The supply chain of the red meat processing industry. Source — (Ernest & Young,
2017a)

Red meat processing is a crucial sub-sector of the red meat industry
that adds value by creating meat products from livestock for sale in both
the domestic and international markets. In 2020, 7.1 million head of
cattle were slaughtered for processing products for domestic and
international markets whilst 1.05 million head were exported as livestock
(Ernest & Young, 2021). Of the red meat and livestock industry’s export
value of $18.4b in 2019 - 2020, the significant majority of this value
($15b; 82%) was derived from meat products whereas approximately $2b
(11%) was derived from livestock (Ernest & Young, 2021). The
significance of the red meat processing export value is illustrated by the
relative proportion of export value of “Chilled/frozen meat” as shown in

Figure 1-4.
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Figure 1-4: The significance of the export value of the processing sub-sector within the red meat
industry. Source - (Ernest & Young, 2021)

When comparing the value add of processing of beef exported
(including processing costs), in contrast to the exporting of livestock
calculated as a value per equivalent weight ($/kg), the processing of beef
offers an additional $4.31/kg gross beef product value-add. This
highlights the value of the red meat processing industry for Australia’s

economy as opposed to live exporting of cattle.

1.1.1 The Challenges of Australia’s Red Meat Industry

The red meat industry faces a number of operational challenges and
risks surrounding the access to, and retention of, skilled labour. According
to a study conducted by the Australian Meat Industry Council (AMIC),
there are currently 10,000 job vacancies in the red meat processing
industry (Carter, 2022), with many processing plants unable to operate at
full capacity due to national labour shortages for the red meat processing

industry.



According to Carter (2022) there are several significant factors that
limit the talent pool of the red meat processing industry, including:

e the negative perception of the red meat processing industry
particularly prominent in younger generations,

e the lack of education and educational pathways to develop an
understanding of, and skills within, the red meat processing
industry, and

e the strenuous physicality of many roles in the processing
plant that do not lend themselves to a female or younger
demographic as well as the location of the majority of
abattoirs, the significant majority of which are based in

regional or remote communities.

In addition to the difficulty of attracting skilled labour, the red meat
processing industry also struggles to retain the skilled labour force.
According to a study conducted by The Response Group, on average the
annual turnover rate of the labour force of the Australian red meat
processing industry was 62% (Carter, 2022) with the highest staff
turnover in the most skilled jobs in the processing plant (78% in the
slaughter room; 56% in the boning/slicing room). A significant factor
contributing to this turnover rate is the high rate of incidents and severity
of injuries sustained by the labour force. This is predominantly injuries
such as: sprains/strains, lacerations, injuries from working at heights,
burns and injuries associated with animal handling, due to the repetitive,
strenuous physical demands. Another significant factor that affects
workforce retention is that a significant percentage of the workforce
consists of migrants who are employed through Government supported
migration initiatives. These programs are typically 24 months in duration,
and the immigrant workforce typically use these initiatives as a short-
term opportunity to earn money to then return to their families in their

native countries (Carter, 2022). The cultural diversity of the labour force



can also create language barriers that contribute to difficulties in training,

and training costs.

The Australian Meat Processor Corporation (AMPC), a rural research
and development corporation for the red meat processing industry of
Australia, has identified the costs associated with labour as one of their
most pressing issues. Past AMPC Chairman, Peter Noble, stated that the
Australian red meat industry is struggling to retain its export market due
to “Australia’s red meat processing costs (being) the highest in the world”
(Australian Meat Processor Corporation, 2016). This is illustrated in Table
1-1 which shows that the United States of America, Brazil and Argentina
face only 66%, 57% and 75% respectively of the processing costs (per
kilogram) to operate compared to Australia’s red meat processing
industry. Of all cost categories, labour-related costs most significantly
contribute to Australia’s cost to operate being substantially higher than
competitors. Australia’s labour-related costs are 63%, 178% and 138%
higher than the United States of America, Brazil and Argentina
respectively (see Table 1-1). This highlights the need to consider solutions
that may reduce the significance of labour-related costs in the red meat

processing sector.

The report by S.G. Heilbron Economic & Policy Consulting (2018)
concludes that for Australia to remain sustainable “the industry will be
required to identify ways in which it can reduce costs or improve
productivity and product quality”, which aligns to the core priorities
reflected in the Meat Industry Strategic Plan (MISP) of 2020 developed by
the Red Meat Advisory Council (RMAC). There is a strong focus in both the
strategic plans of RMAC and AMPC outlining the commitment to improving
access to labour, increasing productivity, and reducing processing costs
(Red Meat Advisory Council, 2020; Australian Meat Processor Corporation,
2020).



Table 1-1: Typical operating costs of global beef processor competitors. Source - (Australian Meat
Processor Corporation, 2017)

Australia United States Brazil Argentina
As % of As % of As % of As % of
Cost per  total costs Cost per  total costs Cost per total costs Cost per  total costs
Cost category head (excl. head (excl. head (excl. head (excl.
(AUS) livestock (AUS) livestock (AUS) livestock (AUS) livestock
purchases) purchases) purchases) purchases)
Labour-related $210.54 58.4% $129.46 44.6% §75.63 43.9% $88.31 42.9%
costs
Utilities-related $21.62 6.0% $§12.26 4.2% $19.93 11.6% $13.05 6.3%
costs
Certification- §7.29 2.0% $1.49° 0.5% $0.52 0.3% $2.28 1.1%
related costs
Total (excl. $360.62 100.0% $290.15 100.0% $172.29 100.0% $205.96 100.0%
livestock costs)
Cost per kg 51.22 50.80 50.70 50.92
HSCW

The challenges of labour availability and the high cost to operate,
predominantly due to labour-related expenses, highlight the significant
need for Australia’s red meat processing industry to be further

automated.

1.1.2 Limitations of Conventional Technology in Red Meat
Processing

Automation offers significant benefits, yet the processing industry
remains relatively untouched compared to other large production sectors.
When compared to highly automated industries like car manufacturing, it
becomes evident that implementing conventional robotic technologies
within red meat processing factories presents additional challenges (see
Figure 1-5).
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Figure 1-5: A juxtaposition of manufacturing: automotive (left) VS red meat processing (right).

Source - (Al-Naif Group, 2013, Farmers Weekly, 2018)

Some of the additional challenges with operating robotics in a red

meat processor include:

Variance in workpiece dimensions: The natural products
have differences in shape, position, and many other qualities.
The variability in the input product means that assumptions that
are typically made to simplify the process cannot be reasonably

made.

Complex components: Biological products cannot be
reasonably quantified by simple approximations due to the
complex relationships between intra-product structures (e.g.,
bone, muscle, fat) that are inherent in such workpieces as red
meat. This is contrary to conventional manufacturing production
lines whereby parts are generally made from quite easily

describable structures or assemblies.

Non-homogeneity: By design, the components handled by
robotic systems in typical production lines are consistently
homogeneous to tight tolerances to optimise the automatability
of the production line. With many uncontrollable inputs that have
contributed to this product (e.g., chemical composition of the

food, the variability between species, gender and age and



geographical origin of the animal) determining a consistent
behaviour or developing an accurate relationship to describe for

a control algorithm is difficult.

Flexible: As opposed to car manufacture, the rigidity of the
environment and stiffness of the product is assumed to ensure
that positional coordinates remain relevant even at the point of
contact by the system’s actuators. Red meat is a flexible product
and thus, even for the particular characteristic of this product,
the assumptions underpinning the entire control mechanisms of
the robot are void. Without real-time sensory perception and
continuous real-time modification of control strategy automation

will unlikely be successful.

Hard-to-fixate: Red meat products are difficult to fix due to the
size variabilities, non-uniformity of structure, slipperiness, and
non-destructive handling requirements. Additionally, even in
cases where effective fixation is possible, many complications
exist such as considerations relating to contamination due to
wear, down-time for servicing and maintenance and cleanability

of fixtures.

Challenging Operating Environment: For red meat processing
all hardware is required to be made from only particular
materials with high manufacture ratings (IP67) such that the
system is required to be dustproof, waterproof and food-grade
compatible with the versatility to work at high precision and

accuracy, in low temperature environments and be easy to clean.



Due to these limitations, the majority of operations that have been
automated for this industry are those that are repetitive, require heavy
handling or require very minimal dexterity or skilled butchery such as
packaging and storing, carcass splitting equipment and visual inspection.
The current capability of robotic butchery is restricted to low-value
operations where the sensitivities of the red meat product’s mechanical
properties may be rendered insignificant through ‘brute force’ and the
positioning of a cutting tool in reference to easily definable visual
markers. The primary factor preventing robotic systems from being
implemented to undertake the more complex operations in red meat
processing applications is the lack of sensing capability. This capability
typically requires the means to measure or estimate the subsurface
features of red meat products for which high value products are cut with
respect to. Without these sensing capabilities, robotics will remain unable
to emulate the skilled butchery of human operators with the capability of
cutting with reference to the flexible, biological interfaces within the meat
products. The lack of literature for these types of advancements in the
domain of red meat processing highlights the need for further work in this
area (Abolhassani, Patel & Moallem, 2007; Kettenbach et al., 2006).
Hence, the research conducted in this thesis will focus upon addressing
this gap in literature by exploring, and developing, a system capable for
sensing subsurface interfaces for automating applications within the red

meat processing industry.

1.1.3 Automation Focus: Uniform Fat Trimming of Beef Striploin

A single processing task of a meat product was chosen to define the
scope of this research to provide a focused investigation into the
development of a sensing system capable of achieving automated, skilled
butchery. The processing task chosen was the uniform fat trimming of a
beef product known as the boneless striploin. The selection of this
particular processing task and red meat product was based upon the

significant contribution that automating this task would have on the red
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meat processing industry. Beef processing accounts for 74.5% of the total
processed red meat in Australia and provides 69.3% of the total export
value (see Table 1-2). Additionally, the significant variability between
carcasses (due to carcass size, feed types, genetic breed, etc.) was
considered advantageous as it enabled the developed system to be most

impactful if successful.

Table 1-2: Comparison of species in the Australian Red Meat Industry calculated by statistics
available online. Source - (Meat & Livestock Australia, 2018a; Meat & Livestock Australia, 2018b;
Meat & Livestock Australia, 2018c; Meat & Livestock Australia, 2018d)

Comparison: Red Meat Processing Species (Statistics from 2018)
Categoy Beef & Veal Lamb Mutton Goat
Stock 26.2 million head (2% of world supply)|  23.1 million head (7% of world supply) 49 million head N/A
Processed (head) 7.2 million head 22.4 million head 2.1 million head
Processed (cwt) 2.24 million tonnes 531,793 tonnes 203,724 tonnes| 31,414 thousand tonnes
Exported 71% 61% 96% 91%
Export Value $7.45 billion $3.04 billion $260 million
Ave Value (S/kg) 595 c/kg 629 cikg| 446 c/kg 585 c/kg

Within beef processing there are several products that could be
examined from the carcass (see Figure 1-6). Through an evaluation of
primal (a large ‘primary’ meat product removed from a carcase) weights
in bovine carcases on average, and the wholesale value of these primals,
the striploin was found to be the most valuable primal (13.3% of the total
carcass value) for a standard MSA-graded (Meat Standards Australia)

beef carcass (see Table 1-3).
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Figure 1-6: Beef carcass breakdown of primal and sub-primal MSA cuts. Source - (Meat &

Livestock, 2018e)

Table 1-3: Evaluation of entire beef carcase for to identify value significance by primal using
statistics available online. Source — (Meat & Livestock, 2018a; Meat & Livestock 2018b; Meat &

Livestock 2018c; Meat & Livestock 2018d)

Beef Primal and Sub-Primal Comparison
Carcass Wholesale MSA |Value per |Value per
Cut Name MSA Name . Weight (kg) ) el Sl
Proportion (%) Price (S/kg) Carcass (S) |Carcass (%)
Topside 6.2% 16.1kg| $ 7.05 | S 113.51 8.2%)
Thick Flank Knuckle 3.7% 9.6 kg| S 711§ 68.26 4.9%|
Hindquarter Qutside Silverside 5.7% 14.8 kg| $ 7.05 |5 104.34 7.5%]
D-Rump Rump 3.8% 9.9kg| $ 9.05 | S 89.60 6.5%)
Tenderloin Butt fillet 1.6% 4.2kgl| § 2581 |$  108.40 7.8%)
Striploin sirloin 4.4% 11.4 kg| § 16.09 | $  183.43 13.3%
Navel End Brisket 3.3% 8.6 kgl $ 5.55| S 47.73 3.5%)
Point End Brisket 3.8% 9.9 kg| $ 5558 54.95 4.0%)
Cube Roll Cube Roll 1.7% 4.4kg| $ 24.02 | 5 105.69 7.6%)
Blade Blade 5.5% 143 kg| S 6.00 | S 85.80 6.2%)
Forequarter Chuck Roll . 4.5% 11.7 kg| $ 5.81|S 67.98 4.9%|
Chuck Tender Stir Fry 0.9% 2.3kg| S 5.81 |5 13.36 1.0%
shin Shank Diced 4.6% 12.0kg| $ 5.55|$ 66.60 4.8%
Thin Skirt 0.2% 0.5kg| $ 5558 2.78 0.2%)
Flank Steak 0.4% 1.0kg| S 5.55|5% 5.55 0.4%)
Trimmings 18.4% 47.8 kg| $ 5.55| $ 265.29 19.2%
Meat Yield 68.7% 178.6 kg| S 532|S$  950.15 -
Components [Fat 12.0% 31.2kg| S 0.30($ 9.36 -
Bone 19.3% 50.2 kg| 0.05 | $ 2.51 -
Total HSCW Equivalent 100.0% 260.0 kg| $ 370 |$  962.00 -
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The processing of the beef striploin is primarily the trimming of
excess subcutaneous fat to ensure a uniform layer of fat at a depth
determined by market specifications remains on the primal. An
investigation conducted by Khodabandehloo for AMPC estimated a cost in
yield losses of $263k per year for a typical work shift for each processor
for a 1 mm over-trim from the target product specification
(Khodabandehloo, 2018). An industry survey conducted by Palmer for
MLA identified that processors consider the capability of trimming
subcutaneous fat to specification the most beneficial development for

processing (Palmer, 2015).

This is supported by general managers of processors that process
over 70% of Australian red meat have reported significant losses in the
processing of beef striploin including Kilcoy Global Foods (KGF), JBS
Foods (JBS) and Teys Australia (J McCormack 2018, pers. comm., 21
October). Shane Clancy, General Manager of KGF, reported that the
operation of beef striploin fat trimming amounts to a loss of $20/head (a
loss of 4.1% to 4.5% vyield) simply due to the inability of skilled labour to
consistently trim to the market specification of the customer. Clancy
estimates that, with a throughput of 4,000 head per week, this amounts
to $80k/week (over $40m per year) and have employed various
techniques such as selling half-striploins which have been unsuccessful (S
Clancy 2019, pers. comm., 12 May). This was emphasised at the
International Food and Automation Networking Conference (IFAN) in 2018
by Tom Maguire, General Manager of Teys Australia (Maguire, 2018).

Maguire reported:

“anyone who can come up with a solution for striploin fat trimming

will dominate the industry”
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Much of the common tasks of red meat processing consists of
cutting with respect to subsurface, biological interfaces to ensure that
these products can be supplied to the consumer with a high degree of
consistency, and thus, be highly valued with respect to the price that can
be charged - particularly for the application of trimming excess
subcutaneous fat from primals. Thus, by investigating the task of
trimming subcutaneous fat the findings and conclusions of this thesis can

be highly relevant for the industry in general.

1.2 Research Objectives

This dissertation is an investigation conducted towards developing
the capability of robotics to address the limitations preventing the
automation of the red meat processing industry. This investigation aims
to focus on the application of uniform fat trimming of beef striploin, and
more generally, the capability of a system to ascertain, within an
acceptable tolerance, the position of the fat-lean interface within the
primal. The most significant and foremost limitation for this task involves
acquiring the necessary information to inform the cut path of a tool for
trimming subcutaneous fat in accordance with industry specifications. The
numerous complexities associated with the task make this a novel

undertaking worthy of study.

The following objectives have been defined for the study:

Objective 1: To identify the most feasible sensing technologies for
the application of automated uniform fat trimming of beef striploin
through conducting a literature review.

Objective 2: To define the key parameters that inform the system

capabilities for the task of uniform fat trimming of beef striploin through

analysing fat characteristics and industry standards.
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Objective 3: To establish a framework for evaluating sensor
performance that outlines the process of ranking sensors against metrics

important for the automation of beef striploin fat trimming.

Objective 4: To develop, implement and evaluate novel ultrasound
sensing systems capable of integration into an automated system to

measure fat depth across an untrimmed beef.

Objective 5: To conclude upon evaluations of sensing systems and
provide recommendations to inform the development of practical sensing
systems for integration into an automated system capable of uniform fat

trimming of beef striploin.

1.3 Thesis Outline

This thesis is ordered as follows:

Chapter 2 presents the current progress towards automation of
uniform fat trimming before summarising the various sensing
technologies that may be employed to measure the subcutaneous fat
thickness on a beef striploin primal. This desktop literature review applies
criteria, developed in consideration with the task-specific requirements of
beef striploin fat trimming, to identify the most promising methods to be

further investigated through this research.

Chapter 3 is a collection of smaller experiments that provide the
context of the product and process to inform the methodological approach
of the thesis. These experiments present findings pertaining to the
variability of the striploin product presented for trimming, an
approximation of the processing time for striploin trimming and an
evaluation of fat thickness across the striploin. Through these analyses

this chapter provides rationale that informs the development of a

15



performance evaluation framework and the sensing systems developed

for analysis within this thesis.

Chapter 4 presents the evaluation of CT technology for the
application of measuring the fat depth of a beef striploin primal. This
chapter disseminates the results of the ‘gold standard’ sensing technology
to benchmark performance and develop a framework to evaluate the
performance of the candidate technologies for industry use in automation

of the trimming task.

Chapter 5 contains the evaluation of the first candidate sensing
technology — B-Mode ultrasound technology. This chapter provides the
rationale employed to determine the feasibility of the selected B-Mode
ultrasound sensor before outlining the process of developing this sensor
into a system for measuring subcutaneous fat depth on a beef striploin
primal. The results obtained were evaluated by applying the sensor
evaluation framework to conclude on this system’s capability to be
employed for the sensing of an automated beef striploin fat trimming

system.

Chapter 6 contains the evaluation of the second candidate sensing
technology — A-Mode ultrasound technology. This chapter provides the
rationale employed to determine the feasibility of the selected B-Mode
ultrasound sensor before outlining the process of developing this sensor
into a system for measuring subcutaneous fat depth on a beef striploin
primal. The results obtained were evaluated by applying the sensor
evaluation framework to conclude on this system’s capability to be
employed for the sensing of an automated beef striploin fat trimming

system.

16



Chapter 7 concludes upon the processes and methodologies
employed to develop, evaluate and implement a system to measure or
estimate the fat depth of a beef striploin primal. The results of each
system are compared and recommendations upon the most promising
technology and technique for implementation upon automated beef
striploin fat trimming is provided. A reflection is provided upon further
sensing work and integration insights, both particular to beef striploin fat

trimming and alternative tasks in the red meat processing industry.
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CHAPTER 2: LITERATURE REVIEW

This chapter defines the beef striploin product and the processing
task of uniform fat trimming, present the current progress towards
automation of uniform fat trimming of beef striploin and summarise the
various sensing technologies and techniques that may be employed to
measure, or ascertain, the fat thickness on a beef striploin primal. This
desktop literature review applies criteria, developed in consideration with
the task-specific requirements of beef striploin fat trimming, to identify
technologies that are most promising to be further investigated through
this research (Research Objective 1). Through this process this literature
review aims to recommend the technology most suitable for consideration

in the context of an automated trimming system.

2.1 Defining Uniform Fat Trimming of Beef Striploin

The trimming of subcutaneous fat from the striploin primal is a
process that requires skill and judgement. This is a complex process due
to the need to leave a uniform thickness of subcutaneous fat on the
striploin primal which requires trimming in reference to the fat-lean tissue
interface of the product. Currently, this remains to be a labour-intensive
process which, due to the inability of the slicer (the person
‘slicing’/*finishing’ the large meat components into meat products) to see

this interface prior to making an incision, creates large yield losses.
The following subsection presents key information regarding the

primal (beef striploin), current process (uniform fat trimming) and

product (fat specifications) for the application considered in this research.
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2.1.1 Beef Striploin Primal
According to Aus-Meat standards (AUS-MEAT Limited, 2005):
“"Striploin is prepared from a Hindquarter by a cut at the
lumbosacral junction to the ventral portion of the Flank.
The Flank is removed at a specified distance from the eye

muscle (M. longissimus dorsi) at both cranial and caudal ends.”

@V

Figure 2-1: Anatomical location of a typical striploin primal on a bovine carcase. Source -
(AUS-MEAT Limited, 2005)

The location of the striploin primal is presented anatomically in Figure
2-1. The striploin primal is considered particularly high value of all within
the bovine carcass due to the tenderness and flavour of the M.
Longissimus dorsi muscle (commonly referred to as the ‘eye’ muscle) that
it is comprised of. A few anatomical variations are sold within the
hindquarter to include the striploin primal within a product such as

shortening (e.g., short loin) or lengthening (e.g., Rump and Loin, pistola
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hindquarter) products (see Figure 2-2), or creating boneless or bone-in
(0, 1, 2 or 3 rib) products (Figure 2-3).

Pistola Hindquarter Rump and Loin Short Loin
(Iltem No: 1020) (Iltem No: 1540) (Iltem No: 1552)

Figure 2-2: Striploin-Derived Products (shortened / lengthened). Source - (AUS-MEAT
Limited, 2005)

Figure 2-3: Striploin products: Boneless (0 rib) / Bone-In (1-3 rib). Source - (AUS-MEAT
Limited, 2005)
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Though this research could be applied to all striploin products, and
perhaps many other beef and lamb products that require similar
subcutaneous fat specifications, the focus of this research is the boneless
(0-rib) striploin defined by Aus-Meat’s unique time number: 2141 (AUS-
MEAT Limited, 2005). Typically, processors sell this boneless primal as a
vacuum-packed product to wholesalers or restaurants to then be
portioned into high value steaks and roasts of varying thicknesses to sell

to consumers (see Figure 2-4).

Figure 2-4: From primal to portions for consumers. Source - (Beef It's What's for Dinner, 2023)

Figure 2-5 illustrates the anatomical terminology and planes that
may be used to precisely reference biological features of the bovine
carcase and striploin primal. Throughout the thesis the use of this
anatomical nomenclature is used to reference features within the striploin

primal consistently.
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Figure 2-5: The anatomical terms and planes of bovine. Source - (Vetscraft, 2023)

A bovine carcase is sawn down the centre of the spine through the
median plane of the carcase. This is commonly referred to ‘carcase
splitting’ and is a process that creates a ‘left’ and ‘right’ carcase body,
which in turn, creates two anatomically mirrored striploin orientations:
left-hand side (referred to as ‘LHS’ striploin) and right-hand side (referred
to as a '‘RHS’ striploin). A transverse (cross-sectional) view of a bovine
carcase is presented in Figure 2-6 to illustrate how mirrored striploins

(LHS and RHS) are created after carcase splitting.
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Figure 2-6: An illustration of how LHS and RHS striploins are created from bovine carcase. Source
- (Government of Canada, 2023)

The anatomical planes and axes, as well as the colloquial
terminologies used by slicers to refer to external features of, and internal
tissues within, the striploin will be used within this research. This

terminology is shown respectively in Figure 2-7 and Figure 2-8.

Striploin Primal
Terminology

y

Figure 2-7: The anatomical (white) & slicer nomenclature (blue) used refer to features of the beef
striploin primal illustrated for a RHS striploin.
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Figure 2-8: The slicer nomenclature (blue) used refer to features of the beef striploin primal
illustrated for a RHS striploin.

2.1.2 Uniform Fat Trimming Process

Currently the fat trimming process is performed manually by slicers
who use boning knives or various electric or pneumatic powered tools
with reciprocating blades or shaving mechanisms (see Figure 2-9). The
domestic and international markets that Australian processors sell
boneless striploin have differing fat depth requirements typically ranging
between 0 mm (denuded) and 25 mm (United Nations Economic
Commission for Europe, 2007). The typical range of fat thickness
requirements is shown in Table 2-1. The collaborating processor’s most
common fat specification was 12 mm, and hence this is the specification

considered within this research.
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Figure 2-9: Manual fat trimming methods for beef striploin. Source - (Khodabandehloo, 2018)

Table 2-1: Fat thickness specifications of beef striploin. Source — (United Nations Economic

Commission for Europe, 2007)

Fat thickness code
(Data field 10)

Category

0

Not specified

Peeled, denuded, surface membrane removed

Peeled, denuded

Practically free (75% lean/seam surface removed)

3 mm maximum fat thickness or as specified

6 mm maximum fat thickness or as specified

13 mm maximum fat thickness or as specified

25 mm maximum fat thickness or as specified

Chemical lean specified

E=RE--N R U= EX R L 7o | R

Other

The complexity of trimming accurately to achieve a consistent

(uniform) fat depth across the striploin is largely due to the large

variations in subcutaneous fat thickness across the striploin. Due to the

lack of perception that slicers have during trimming there is a high

probability that the striploin products produced through manual trimming

methods are not trimmed precisely to the fat specification. An ideal

trimming to a 12 mm fat thickness specification is visualised on a cross-

section of a boneless striploin in Figure 2-10. An under-trimming of the
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striploin (fat depth larger than the product specification) could result in a
‘fat claim’ whereby processors are financially penalised by customers.
Alternatively, an over-trimming of the striploin (fat depth smaller than the
product specification) reduces the saleable weight of the product whereby
the yield of these products for processors is reduced. Though there is yet
to be a conclusive analysis of the degree of imprecision and inaccuracy
that occurs during manual fat trimming, or the cost associated with this, a
1 mm over-trimming error is estimated to cost processors up to $263,000

per typical work shift in direct yield losses (Khodabandehloo, 2018).

Excess Fat to Trim Lean Muscle Fat Depth Specification
(various depths) (12 mm)

Figure 2-10: An ideal trimming of a striploin for a 12 mm fat depth specification.

2.1.3 Product Fat Specifications

The product of focus for developing an automated system for
trimming is defined by the Aus-Meat code 2141 (0O rib / boneless beef
striploin). In addition to the Aus-Meat specifications, the product is also

required to adhere to international standards as defined by the United
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Nations Economic Commission for Europe (UNECE Standard, 2016) which

defines that:

“The purchaser can specify the maximum fat thickness of carcases,

sides and cuts.”

UNECE (2016) further defines the requirements of fat trimming with
the following statements:

a) Sufficient care to maintain cut integrity and identity and avoid
scores in the lean [muscle].

b) All cross-sectional surfaces [of a product] shall form approximate
right angles with the skin surface [of the carcase].

c) Trimming of external fat shall be accomplished by smooth
removal along the contour of underlying muscle surfaces.

d) Bevelled fat edges alone do not substitute for complete trimming
of external surfaces when required.

e) Fat thickness requirements may apply to surface fat
(subcutaneous and / or exterior fat in relation to the item), and

seam (intermuscular) fat as specified by the purchaser.

UNECE (2016) provide further definitions of two methods that may

be used to describe fat trim limitations:

- Maximum fat thickness at any one point: Evaluated by
visually determining the area of a cut which has the greatest fat
depth and measuring the thickness of the fat at that point.

- Average (mean) fat thickness: Evaluated by visually
determining and taking multiple measurements of the fat depth
of areas where surface fat is evident only. Average fat depth is

determined by computing the mean depth in those areas.

For each of these methods, the measurements of fat thickness
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... are made on the edges of cuts by probing or scoring the
overlying surface fat in a manner that reveals the actual thickness and
accounts for any natural depression or seam which could affect the

measurement.”

These natural depressions capable of causing measurement
discrepancies are intra-muscular and inter-muscular subcutaneous fat
deposits defined by UNECE (2016) as:

- Bridging: When a natural depression occurs in a muscle, only
the fat above the portion of the depression, which is more than
19 mm in width is considered [in fat depth measurements]

- Planing: When a seam of fat occurs between adjacent muscles,
only the fat above the level of the involved muscles is measured

[in fat depth measurements]

Instances of bridging and planning are illustrated in Figure 2-11.
Illustrations to exemplify the cross-sections of a “perfectly” trimmed
striploin primal according to these fat specifications are exemplified in
Figure 2-12.

BRIDGING

PLANING

Figure 2-11: Defining the measurement of fat thickness for cases of intra-muscular
(‘bridging’) and inter-muscular (‘planing’) fat deposits. Source - (UNECE, 2016)
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Face 3 (225mm

Figure 2-12: Cross-sectional examples of the "perfect” trimming of beef striploin according to a 12
mm fat thickness specification.
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2.2 Progress Towards Automated Beef Striploin Fat Trimming

The following progress has been made towards informing the

automation of uniform fat trimming of beef striploin.

2.2.1 Registered Patents
There are several patents that have been submitted in anticipation
of creating an autonomous system with the capability of uniform fat

trimming, yet all of these have since expired or have not been developed.

A patent submitted by Leblanc (1990) expired in 2010 described a
system capable of trimming the subcutaneous fat of pork loin. This patent
illustrates a highly mechanised system which utilises many gear, pulley,
belt and chain arrangements to achieve trimming. The system includes an
endless chain system to provide compression and tension to fix the
striploin against the conveyor whilst an arcuated blade is used to trim
back fat and a 20-teeth chain is used to smooth the remaining trim. The
mechanism of this design allows the articulated blade to replicate the

curvature of the loin’s subcutaneous fat surface (see Figure 2-13).

This mechanised system may provide a means of trimming uniform
fat layers from the striploin, yet without a means of sensing the fat depth
along the loin, there is not capability of trimming to leave uniform fat on
the striploin. For use on a striploin sensing is required and therefore this
patent doesn’t provide a valid solution for leaving the product with
uniform fat for this trimming application. This suggests that these
mechanisms would likely be unsuccessful for beef striploin fat trimming

applications.
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Figure 2-13: A registered patent for a mechanised system of trimming pork fat uniformly. Source -
(Leblanc, 1990)

A patent submitted by Matthews et. al (1976) expired in 2005
described a process of simulating a natural fat-lean meat product using
forming techniques to replicate the presentation of a genuine trimmed
striploin. This process outlines the co-extrusion of meat and a fat-
simulated, emulsified mixture (fabricated from lean meat, fat, salt, skin
and other extenders) into fitted non-toxic plastic sleeves to simulate the
shape of natural meat products with fat cover. To assist to bond the
emulsified fat mixture with the lean meat an adhesive emulsion (meat,

water, polyphosphate and salt) may be added (see Figure 2-14).
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Figure 2-14: A registered patent for a forming method of producing a uniform fat thickness on a
meat product. Source - (Mathews et al, 1976)

Whilst the system presented may be suitable for high-end 'designer’
steaks that are perfectly formed, the forming process would not be
scalable for the large volumes of meat that is processed. This process
would also introduce larger processing costs due to the need to denude
(remove) subcutaneous fat from the striploin and then reform this fat on

the primal.

A patent submitted by Long & Thiede (1994) illustrates a
mechanism that uses an inclined conveyor to force the subcutaneous fat
of a striploin against a rotating trimming blade. This patent outlines that
the amount of material trimmed from the meat product will be dependent
on the number of rotations allowed for the contact between the trimming

blade and striploin product determined by setting the rotational and
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translational speed of the trimming blade and conveyor moving the

striploin respectively (see Figure 2-15).

6 FIG. 2

Figure 2-15: A registered patent for a mechanised system of trimming fat uniformly. Source -
(Long & Thiede, 2014)

Similar to the patent registered by Leblanc (1990), there currently
exists no method for quantifying fat depth at various points along the
striploin. Consequently, the ability to maintain a consistent fat layer on
the striploin product is limited. While it is asserted that this approach is
applicable to various meat products such as beef, pork, poultry, and fish,
there is an absence of empirical data or presented research substantiating
this assertion. The rigidity of beef fat raises uncertainties regarding the

feasibility of fat trimming as outlined by this system.
In summary, there are no feasible patents that have been found to

present a uniform fat trimming solution for beef striploin in the surveyed

literature.
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2.2.2 Commercial Systems

The four largest international robotics companies servicing
Australia’s red meat processing industry are: Frontmatec (Denmark),
Marel (Iceland), Scott Automation & Robotics (New Zealand) and
Mayekawa (Japan). Many operations that have been automated by these
companies for the meat processing industry are tasks that are repetitive,
require heavy handling or require very minimal dexterity or skilled
butchery such as: packaging and storing, carcass splitting equipment and
visual inspection. Presented below are the commercial solutions most
relevant to the application of beef striploin fat trimming characterised by
the capability to measure to, and position a cutting tool in respect to, a

subsurface biological interface.

Frontmatec: Frontmatec, a Danish food automation company, has
developed a number of fat trimming systems to the commercial market
such as: the automatic loin trimmer (model ALTL-1100) and the 3D loin
trimmer (model ALTD-450).

Model ALTL-1100 is a commercial system developed for the
automated trimming of subcutaneous fat of pork products (see Figure
2-16). This system features a pressure wheel and plastic guides to both
mould the primal into a pre-defined shape and feed it through a static

blade to uniformly remove excess subcutaneous fat (see Figure 2-17).
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Automatic loin trimmer

Figure 2-17: The mechanism of feeding and moulding the pork loin through a cutting blade of
Frontmatec’s automatic loin trimmer. Source — (Frontmatic, 2020a)

There are three pressure wheel designs that assist to mould the
different pork products, boneless/bone-in loin and back, as they are fed
through the cutting knife. Two blade configurations for pork loin or back
that have been designed to approximate the contour of the fat-lean
interface of the moulded product (see Figure 2-18). During installation the
machine is fitted with one of these blades depending upon the product to

be trimmed.
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Figure 2-18: The numerous pressure wheel and blade contours for trimming pork loin (bone-in and
boneless) and back of Frontmatec’s automatic loin trimmer. Source — (Frontmatic, 2020a)

An optical probe is inserted into the product from the surface of the
fat into the lean muscle to ascertain a fat thickness measurement at a
single location of the product (Frontmatec, 2020a). This measurement is
used to adjust the gap between the knife and the infeed conveyor to
provide a depth of cut specific to the product (see Figure 2-19) which
enables the subcutaneous fat to be removed from the pork primal (see

result in Figure 2-20).

As with many other designs, this mechanism is restricted to
trimming uniform subcutaneous fat with reference to the surface of the
product rather than the fat-lean tissue interface required of market
specifications. The sensing technique of acquiring a single measurement
to approximate the fat depth across the entire pork primal indicates that
this system cannot account for fat variability along the length of the
primal. The mechanism of feeding the primal through a fixed contour
blade indicates that the system cannot account for the fat variability

across the width of the primal.
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Figure 2-19: The optical probe (spike at centre of image) for acquiring fat depth of the pork primal
for adjusting the trimming depth of Frontmatec’s automatic loin trimmer. Source - (Frontmatic,
2020a)

Figure 2-20: The finished output of pork loin through Frontmatec’s automatic loin trimmer. Source
- (Frontmatic, 2020a)

The 3D loin trimmer was developed by another Denmark
automation company called Attec which was acquired by Frontmatec in
July of 2016. In comparison to Frontmatec’s automatic loin trimmer, this
commercial system has the capability to adjust trimming depth lengthwise
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and widthwise across boneless pork loin and back primals (see Figure
2-21).

3D loin trimmer
Type ALTD-450

Figure 2-21: Frontmatec's 3D loin trimmer system. Source - (Frontmatic, 2020b)

The 3D loin trimmer employs a similar handling technique as the
automatic loin trimmer where a deliberately shaped pressure wheel
moulds the primals into a specific shape while also feeding against a static
blade arrangement. The 3D loin trimmer has an arrangement of eight
‘planer’ blades that are positioned in a similar contour to the previous
single contoured blade, and each of these individual blades that can be
positioned to change the trimming depth along the width of the primal

(see Figure 2-22).
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Figure 2-22: The 'planer' blade arrangement used to vary the trimming depth of Frontmatec's 3D
loin trimmer. Source - (Attec Denmark A/S, 2014)

The blades are controlled through a servo-driven mechanism that
resembles a camshaft; small rotations of a shaft below will push on the
blades through a connecting rod. Through this mechanism, the gap
between each blade and the conveyor (which the primal is being forced
onto through the pressure wheel) can be controlled with precision (see
Figure 2-23 & Figure 2-24).

Ll i

Figure 2-23: Back View: The mechanism for positioning each blade in the trimming arrangement
used to vary the trimming depth of Frontmatec's 3D loin trimmer. Source — (Attec Denmark A/S,
2014)
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Figure 2-24: Isometric View: The mechanism for positioning each blade in the trimming
arrangement used to vary the trimming depth of Frontmatec's 3D loin trimmer. Source -
(Frontmatic, 2020b)

According to Frontmatec (2020b), the ALTD-450 model acquires the
fat depth data across the primal using an array of ultrasound sensors and
a camera-based vision system at the system’s inlet (see Figure 2-25). For
pork back primals 15 individual measurements are taken to ascertain the

fat depth at particular locations of the primal (see Figure 2-26).

Figure 2-25: The images acquired by ultrasound sensors used in Frontmatec's 3D loin trimmer
system. Source - (Attec Denmark A/S, 2014)
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Figure 2-26: The location of ultrasound measurements for estimating the fat depth across
pork back of Frontmatec's 3D loin trimmer system. Source — (Frontmatic, 2020b)

A study by Khodabandehloo (2018) conducted using this system
illustrated that a plastic guide is used to compress the primal for the
ultrasound probes to contact, and measure tissue depth from, the surface
of the lean muscle. The interruption of a laser sensor to gauge the leading
edge of the primal and the known, constant feed-rate of the conveyor
enabled the positioning of the ultrasound probe at the measurement sites
within the pork primal (see Figure 2-27). Through combining sensing
information and registering the data acquired from the camera-based and
ultrasound sensing systems a 3D model is created for each primal (see
Figure 2-28).
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Figure 2-27: The mechanism of locating the ultrasound probe (centre of image) at measurement
sites within the pork back of Frontmatec's 3D loin trimmer system. Source - (Khodabandehloo,
2018)

Figure 2-28: The 3D model generated by combining the ultrasound and imaging
information acquired by Frontmatec's 3D loin trimmer system. Source - (Attec Denmark A/S,
2014)

The camera and ultrasound measurements acquired across the pork
primal are used to position the trimming blades as the primal is indexed
though to leave a uniform fat depth across the pork primal (see Figure
2-29). It is likely that by utilising the pressure wheel applying force onto
the primal it has been assumed that the fat surface is uniformly
positioned against the conveyor belt. This provides a constraint to the fat
surface of the volumetric model of the primal to be defined if the
conveyor belt is kept tight. In order for the camera system to identify the
fat and lean tissues on the exposed cross-section of the model, at least
one of the cameras must be positioned to acquire an image of this cross-

section (blue lighting is used to assist the visual thresholding to
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differentiate between fat and lean muscle). It is likely that this image is
used to define the initial position of the blades before beginning the

trimming of the primal.

Figure 2-29: The resulting uniform fat trim of pork primals using the Frontmatec's 3D loin trimmer
system. Source - (Attec Denmark A/S, 2014, Frontmatic, 2020b)

Whilst this commercial system is seen to deliver the capability of
leaving a uniform fat trim on the loin product, the specific development is
limited to pork processing applications. A feasibility study conducted by
Khodabandehloo (2018) to assess the feasibility of the application of this
solution to trim beef striploin deemed Frontmatec’s 3D loin trimmer to be
incompatible for such applications due to the higher degree of trimming
controllability. The product characteristics of typical beef striploin are out
of scope of the limits of Frontmatec’s 3D loin trimmer as summarised in
Table 2-2 (Khodabandehloo, 2018; Frontmatec, 2016).
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Table 2-2: Limitations of a Frontmatec 3D Loin Trimmer for Beef Striploin Applications. Source -
Khodabandehloo, 2018; Frontmatec, 2020b)

3D Loin Trimmer
(System Limits)

Beef Striploin (Product
Characteristics)

Maximum Width <225 mm <245 mm
Minimum Fat Depth >8 mm >2 mm
Maximum Fat Depth <40 mm <75 mm

Marel: Marel have commercialised the following automated

solutions in similar applications as Frontmatec: the Loin Trimmer (model

6000DHT), AutoTrimmer (model AT21-620) used for pork butts and the

Auto Shoe Adjust Skinner (model SK 15 - 350).

Marel’s 6000DHT Loin Trimmer (see Figure 2-30) utilises an infeed

conveyor to a heavy-duty shoe and tooth roll at a pre-set height in order

to trim a uniform layer of fat and skin from bone-in pork loins (Marel,

2020a). A promotional video of the product indicates that a pre-set height

of the shoe, and hence trim depth, is selected manually (Marel, 2018). A

conveyor is used to apply downward force on the lean meat face of the

primal as shown (see Figure 2-31). The manufacturer claims that the

system can trim beef striploin to leave uniform fat cover, however this is

not shown publicly and without sensing capabilities would not be able to

trim to the correct depth.
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Figure 2-30: Marel’s 6000DHT Loin Trimmer system. Source - (Marel, 2020a)

Figure 2-31: Marel’s 6000DHT Loin Trimmer forces the pork primal through a shoe that trims to a
manually selected depth with a particular profile. Source - (Marel, 2018)
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The Townsend AT 21-620 AutoTrimmer is the successor to the
6000DHT Loin Trimmer which utilises a single measurement from an
optical probe to adjust the height of the trimming shoe (see Figure
2-32). This enables an automated adjustment of the trim thickness
through the vertical positioning of the shoe. Similar to the 6000DHT Loin
Trimmer, this system uses a plastic guide to force the primal onto the
surface of the conveyer to ensure the blade of the shoe cuts at a depth
above the conveyor (see Figure 2-33). This product is very similar to the
Auto Shoe Adjust Skinner, which features the ability to select vertical
shoe positions to select up to 4 pre-programmed trim depths (Marel,
2020c¢).

Figure 2-32: The optical probe (centre of image) used within Marel’s AutoTrimmer system. Source
- (Marel, 2020b)

Due to the use of a shoe profile cutting blade the shape of the trim
of this design is restricted to the blade profile. Additionally, whilst the
optical probe may approximate the fat depth of the product, this single
measurement allows only an estimate of the fat depth along the entire
product. Hence, whilst these products may trim fat, without additional

sensing capabilities and adjustment the cutting profile this system would
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not be able to leave uniform fat cover behind. As with Frontmatec, there
is no published evidence to support the claim that beef products may be

similarly trimmed using these automated pork trimming solutions.

E L EEL LS

Figure 2-33: A View of Marel's AutoTrimmer System along the conveyor belt. Source -
(Marel, 2020b)

Whilst Frontmatec and Marel have several, both Scott Automation
and Robotics and Mayekawa have no commercial automated systems for
uniform fat trimming applications. Frontmatec provides the only solution
(3D loin trimmer) that has the capability required to meet market
specifications of trimming to a uniform fat cover on the product. This has
been proven for pork loin trimming but within a feasibility study this
system has been deemed inappropriate for beef striploin applications due
to the vastly incomparable fat characteristics of beef to pork
(Khodabandehloo, 2018). This review concludes that an automated
system developed with the capability of uniform fat trimming of beef

striploin is yet to be developed.
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2.2.3 Summary of Automation Progress

Within literature it has been identified that there remains to be a
system capable of automating the trimming of subcutaneous fat for beef
striploin primals. Whilst there are many aspects still requiring work to
develop a system technically capable of automated trimmings (e.g.,
methods of handling and fixation, designing trimming tools, etc.), there
remains to be a significant gap in knowledge of developing a practical
sensing system using existing technologies for this application. The
sensing technologies utilised in the reviewed systems primarily focused
upon ultrasound and optical sensing technologies. All these systems were
developed for the application trimming subcutaneous fat from pork. This
highlights the significant gap in literature focused on automated fat
trimming applications for beef processing. The remainder of this literature
review considers all sensing technologies that may offer the capability to
measure fat thickness and is practical for beef striploin fat trimming

applications.

2.3 Desktop Evaluation of Sensing Technologies

This literature review subsection evaluates potential technologies
that may be used for developing a sensing system capable for measuring
the fat depth of a beef striploin primal. For a technology to be appropriate
for this application there are a few core requirements that need to be

met:

Sensing Capability: As defined by product specifications the fat
specification is measured as the fat remaining on the striploin measured
from the subcutaneous fat surface to the fat-lean interface. Therefore,
sensor must have the capability to measure, or ascertain, the

subcutaneous fat thickness with respect to the fat-lean interface.

Accurate & Precise: The cost to a meat processor for poor

accuracy is high — estimated by a feasibility report by AMPC (2018) as
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over $1 million per year for a 1 mm over-trim on striploin product. This
means that a target accuracy and precision of a few millimetres would be
ideal and lower accuracies would weigh heavily in the sensor selection

process.

Deep Penetration Range: For this sensor to be effective it must
be capable of penetrating and providing measurements to tissues in a

range of approximately 2 mm - 75 mm (Khodabandehloo, 2018).

In addition to meeting core requirements an appropriate sensing
technology must be practical for integration for processors. The following
functionality will be considered in reviewing feasible sensing technologies
to account for the nature of the striploin product, processing procedures,

operating environment, and market specification for the product.

Non-Destructive: It should be noted that whilst devices typically
used for grading, such as the Hennessy Grading Probe and the SFK Fat-O-
Meater, may cause carcass damage during use, this is an industry
required necessity restricted to specific measurement sites of the carcass
(Kempster, Chadwick & Jones, 1985). In the specific evaluation of sensors
for striploin fat trimming it remains ideal to avoid significant damage to

the product due to the potential risk of devaluing the striploin primal.

Robust in Harsh Environments: The developed system and its
sensing components must be designed to withstand the harsh
environment of the processing facility. Therefore, the following must be
considered mandatory for practical application:

- cleanable (IP67-rated - sealed from water and dust)

- durable to operate at low temperatures (3-7 degrees Celsius)

- robust to breakdown
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High Throughput: According to an AMPC (2018) report the fat
trimming process needs to be delivered at line speed, which in the
abattoir surveyed (Dinmore - IJBS) is 240 striploins per hour, or 4
striploins per minute. Whilst in this evaluation it would be inappropriate to
stringently apply such a criterion this does set a measure to gauge
technology feasibility. It may also be possible to increase the throughput
of these technologies by employing multiple sensors or automated

systems in parallel.

Small Footprint: One of the most significant constraints of
implementing automated solutions for industry use is the footprint
required of the system. This is particularly important for this application
as slicer stations are typically quite small and confined to fit around a
central conveyor for which striploins are retrieved from. The ideal
footprint for a solution is comparable to a human operator station (e.g.,

approximately a 2 m x 2 m area).

Cost Effective: As reported by industry R&D Program Manager at
AMPC, the general rule considered for the red meat processing industry is
that a system should have a payback period of approximately 1.5 - 2

years (S Shaw 2021, personal communication, May 9, 2021).

From literature survey there many techniques of measuring the fat
deposits of pork products that have been developed, validated, and
compared (Hambrock 2005; Zhou, Peng & Liu 2014). The sensing
technologies and methods presented in this section are particular to the
application of beef striploin fat trimming and therefore specific to
measuring the subcutaneous fat of the striploin for the potential

integration into an automated trimming system.
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2.3.1 X-Ray

CT (Computed-Tomography) is a medical imaging technique that
uses X-rays and computer algorithms to create detailed images of the
tissues within body or, in this case, primal. The process involves multiple
steps, including data acquisition, image reconstruction, and image post-
processing. During the data acquisition step, a motorised table or
conveyor is used to position the cross-section of the tissue location to be
scanned within the aperture of the CT machine (see Figure 2-34). The CT
scanner emits a series of narrow X-ray beams that rotate around the
patient, each producing a set of 2D X-ray images. The X-ray images are
captured by detectors on the opposite side of the patient and are

converted into digital signals (see Figure 2-35).

Figure 2-34: A typical Computed-Tomography system. Source — (Radiology Key, 2021)
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Figure 2-35: The imaging mechanism of Computed-Tomography. Source - (Radiology Key, 2021)

The attenuation of X-rays as they pass through different materials
is a fundamental principle that underlies CT imaging. The X-rays used in
CT imaging have a high energy level, and when they pass through the
body, they interact with the atoms and molecules of the tissues they
encounter. The amount of attenuation that occurs depends on the
material properties of the tissue, including its density, atomic number,
and thickness. Materials with higher density, such as bone, attenuate
more X-rays than materials with lower density, such as muscle or fat. This
is because the high-density materials have more atoms per unit volume,
which increases the probability that the X-rays will interact with the
material and be absorbed or scattered. The attenuation of X-rays leads to
the creation of bright and dark pixels in the CT image. Regions of the
body that attenuate more X-rays appear brighter, while regions that

attenuate fewer X-rays appear darker. For example, bone appears bright
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in CT images because it attenuates a lot of X-rays, while air appears dark

because it attenuates very few X-rays.

The use of X-ray to acquire images that enable the discrimination
and measurement of tissues has been researched in the context of red
meat processing since 1998 (Meat & Livestock Australia, 2011). X-ray
imaging is a process whereby a beam of electromagnetic radiation is
transmitted through an object which, depending on X-ray absorption
properties (primarily thickness and density) of the tissue, will result in
varying amounts of X-ray being measured by a detector positioned on the
opposing side of the object (see Figure 2-36). This creates a 2D image
with pixels with varying values of brightness used to visualise the areas of
high absorption (high value / bright pixels) and low absorption (low value

/ dark pixels).
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Figure 2-36: Illustration of how the x-ray technology can detect sub-surface tissues based
on their x-ray absorption properties. Source — (Plus Maths, 2021)

Computed-Tomography (CT) images are by combining multiple X-
ray images acquired at multiple orientations. This enables a 3D image can
be created which typically provides greater detail and information than

standard X-Ray imaging.
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Numerous trials have been funded, and conducted, by MLA and
AMPC to explore the commercial viability of using X-ray technologies and
techniques for the red meat processing industry (Cook & Anderson, 2017;
Meat & Livestock Australia, 2014; McPhee M. 2014a; McPhee M. 2014b,
Brumby, Shirazi, & Starling, 2016; Cook, Shirazi & Gardner, 2016;
Morton, 2020; Four Dimensional Digital Imaging Inc, 2021; Calnan et al.,
2021; Mata et al., 2021). These trails including the following methods.

- 2D imaging using single image capture:

o SEXA (Single Energy X-ray Absorption),
o DEXA (Dual-Energy X-ray Absorption),
o MEXA (Multiple Energy X-ray Absorption),

- 3D imaging using multi-image capture in conjunction with

tomosynthesis to interpolate in 3D:
o Multibeam X-ray - which is a method of using a cone beam
or multiple pairs of emitters and receivers.

- 3D imaging using multi-image capture in conjunction with

constructing images taken over 360 degree captures:
o CT (Computed-Tomography) — both medical grade and

non-medical grade CT.

In summary, it is seen that X-ray technologies have been
demonstrated successful for OCM and eating quality measurements such
as intra-muscular fat (IMF) in the significant majority of trials. Various X-
ray technologies with the capability of generating 3D images have been
trialled for fat depth measurement applications. Only medical-grade CT
technology was shown to be capable of measuring subcutaneous fat
depth, and is considered the ‘gold standard’ of tissue measurements for
red meat processing which is what other methods are compared to (Cook
& Anderson, 2017). However, the power requirements of medical-grade
CT system cannot provide operate at line speed or operate continuously

without causing damage. According to Cook & Anderson (2017):
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"The scan range of the system, in both distance and time, is
restricted by heat dissipation of the X-ray tube. Thus, a trade-off must be
made between duration of scan and energy levels (equating to image
quality), a balance which is bounded by the machine firmware and

software to prevent damage to the system.”

CT imaging machines that have been custom-designed for low-
power, high-throughput without the clarity of medical CT would be a more
feasible X-ray technology for this application. The only two manufacturers
of this technology are RapiScan Systems, who manufacture airport CT
imaging machines, and the Danish Meat Research Institute (DMRI), who
support the pork processing industry in Europe, both of which are
conducting trials to demonstrate their systems’ capability for Australia’s
red meat processing industry with a focus on beef. Testing of the
RapiScan RTT110 CT system (RTT referring to Real-Time Tomography)
have concluded that this system is not suitable for red meat applications
due to the lack of resolution (Calnan et al., 2021). In this analysis, the
imaging resolution (illustrated by pixel count) of RapiScan’s RTT110 can
be seen to be a magnitude of 10 less than medical CT imaging (see Figure
2-37). RapiScan is currently conducting further work to improve the
image construction filter to enable the image clarity required for red meat

processing applications (Morton, 2020).

In addition to resolution issues trials highlighted cost of the RTT110
RapiScan system as an adoption constraint of processors. A feasibility
study conducted by McPhee in 2014 by estimated that the cost to
processors to adopt CT technology would be $3.63m over a 15-year
period (McPhee, 2014b). In addition to the prohibitive cost, the legislative
requirements of lead shielding for CT installations, the lack of space and
the impracticality of altering the infrastructure of processing plants makes
this CT technology more difficult to justify (Australian Radiation Protection

and Nuclear Safety Agency, 2008).
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Figure 2-37: A comparison between medical-grade CT and the RapiScan RTT110 System. Source -
(Calnan et al., 2021)

In summary, at the time of publishing there was no feasible X-ray
imaging system commercially demonstrated for the red meat processing

industry.

2.3.2 Ultrasound

Ultrasound is a rapid, non-invasive sensing technique that utilises
high frequency soundwaves (generally 20 kHz to 15 MHz) to locate
various objects or layers of various densities within a medium. This
technology utilises the principle of acoustic propagation through media
where the boundary of differing tissue types (signified by density) will
reflect soundwaves due to an introduction of impedance (Brgndum, 1998;
Pathak, Singh & Sanjay 2011). An ultrasonic probe will transmit sound at
a particular frequency and detect the receival of this reflected soundwave
through a piezoelectric transducer. This is diagrammed illustrated in
Figure 2-38.
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Figure 2-38: The internal structure of a piezoelectric ultrasound transducer. Source -
(Medical Radiation Resources, 2012)

The two parameters measured by the transducer are the amplitude
of echo and time taken to receive the echo (referred to as time-of-flight
or TOF). The amplitude of soundwave reflection is proportional to the
electrical signal generated by the transducer when switched to ‘receiving’
mode (Pathak, Singh & Sanjay, 2011). The measurements of these two
parameters provide a means of characterising the tissue and the tissue
position within the medium soundwaves are transmitted through. Using
the measured TOF parameter and considering the velocity of the
soundwave propagating through the medium (dependent upon the
specific acoustic property of the material), a distance measurement of the
tissue from the transducer can be ascertained. This is illustrated with a
diagram shown in Figure 2-39 and can be estimated formulaically using

the expression presented in Equation 2.1.
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Figure 2-39: An illustration of how the TOF of reflected waves can be used to calculate
distance of an object. Source - (Science ABC, 2022)

Equation 2.1: Calculation of tissue depth using ultrasound TOF principles

. ) tr
Tissue Distance, di = vg * X

where:
vs = the speed of sound propagation through fat tissue wave
through subcutaneous fat is generally considered to be 1,450
m/s (Johnson & Wales University, 2019)
tg = the time taken for the soundwave to reflect and be read

by the ultrasonic transducer

The operational state of ultrasound for meat is typically A-Mode or
B-Mode (Schulze, Curic & d’'Hoedt, 2002). A-Mode, referred to as
amplitude modulation, plots the amplitude as a vertical spike (strong
echo), signifying a detected tissue interface, of the received soundwave (y

axis) with the depth ascertained by this soundwave (x axis). A-Mode
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ultrasound technology employs only a single transducer, allowing
examination of echoes along a one-dimensional axis. Tissue interfaces,
characterised by large amplitude signals generated by soundwave
reflections, are plotted against depth (calculated using TOF). This
produces a graph of spikes with height indicating echo strength and tissue
acoustic properties (Pathak, Singh & Sanjay, 2011). The means of
acquiring a depth measurement of a tissue interface from transducer
signals are illustrated in Figure 2-40. The amplitude captured by the
transducer can be used to differentiate tissues of differing densities by
considering acoustic properties and principles of soundwave propagation
through mediums. The amplitude measured by the transducer depends

upon various factors (University of Washington, 2017) including:

- The proportion of the soundwave that is absorbed, refracted, and
reflected at the tissue interface.
- The degree of attenuation of the soundwave travelling through

the medium (typically referred to as an attenuation coefficient)
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Figure 2-40: Illustration of A-Mode ultrasound technology to take depth measurements.
Source - (IMV imaging, 2023)

A-Mode provides a simple means of interrogating data to acquired
fat depth measurements. Instead of analysing a 3-dimensional dataset of
an image (X - pixel position, Y - pixel position, greyscale value using
machine vision algorithms to differentiate and locate tissues, simple
thresholds (e.g. noise filtering, signal amplification, time-gain
compensation) can be applied to a 1-dimensional dataset (Pathak, Singh
& Sanjay, 2011; Wagner et al., 2019). The data acquired using A-Mode is
relatively straightforward to understand and interpret, making it an
excellent tool for quick, qualitative assessments of tissue depth and
boundary identification. A-Mode ultrasound is simpler to analyse and
more cost-effective than B-Mode ultrasound with the trade-off of less
information per reading. The contrast of how A-Mode and B-Mode

systems present these echo sighals are shown in Figure 2-41.
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Figure 2-41: A comparison of ultrasound (Mode A vs Mode B) in displaying depth and
amplitude of tissue reflections. Source - (University of Washington, 2017)

Whilst A-Mode (amplitude modulation) ultrasound indicates a depth
measurement with an amplitude ‘spike’ in 1-dimension, B-Mode
(brightness modulation) ultrasound integrates multiple A-mode signals to
create a 2-dimensional, greyscale image (see Figure 2-42). In this way,
B-Mode ultrasound greyscale images consists of pixels, where the
brightness of each pixel is determined by the amplitude of the echoes at
that pixel location. This location is determined by the time-of-flight of the
reflected soundwave along the axis of the ultrasound transducer. These
echoes are reproduced as varying shades of grey in the resulting
ultrasound image, with B-mode using 64 shades of grey. This grey scale
allows for visualization of differences in acoustic properties of the tissue,
making B-mode ultrasound useful for providing the sensitivity to identify
and distinguish between different types of tissues and structures within

the medium, such as differentiating between fat and muscle layers
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(Pathak, Singh & Sanjay, 2011). The use of B-Mode ultrasound to
differentiate between lean muscle and fat tissue is illustrated by the

varying brightness of pixels in Figure 2-43.
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Figure 2-42: Illustrative comparison between A-Mode and B-Mode of how information is
displayed. Source - (IMV Imaging, 2023)
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Figure 2-43: An illustration of various discernible tissues in B-Mode ultrasound of beef carcases.
Source - (Leaflet, 1997)
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There are numerous configurations of transducer arrays that B-
Mode ultrasounds can consist of. The particular configuration type
determines the representation of the data as an image and typically the
shape of the probe. By sequencing the triggering of each transducer
separately (referred to as beam sweep), and knowing the orientation of
each transducer’s measurement axis, an image can be created from the

array of ultrasound readings (see Figure 2-44).

\\ /
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Figure 2-44: A convex array of ultrasonic transducers used in sequence to construct a B-
Mode image. Source - (university of Washington, 2017)

There are a number of hardware and software configurations which
create varying performance characteristics of ultrasound devices. A
hardware configuration typically describes the arrangement of
piezoelectric crystal arrangement within, and footprint of, the probe head
of the ultrasound. The selection of a probe head is an important factor to
consider as for the ultrasound to be emitted into a medium consistent
contact between the probe and the surface must be made to eradicate
any air gaps impeding the propagation of soundwaves. A few common
configurations include linear, convex and phased array; these produce
differing displays and have different advantages (see Figure 2-45 & Figure
2-46):
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Figure 2-45: Linear vs Convex vs Phased Array ultrasound array configurations. Source -
(Wen et al., 2022)

Linear: In a linear configuration, the transducer elements are
arranged linearly in a straight line. This configuration is commonly used
for imaging superficial structures, such as blood vessels, tendons, and
musculoskeletal tissues. It provides high-resolution images with a narrow

field of view.

Convex: In a convex configuration, the transducer elements are
arranged in a curved or convex shape. This configuration is suitable for
imaging deeper structures, such as abdominal organs and foetal imaging.
The convex shape allows for a wider field of view, facilitating imaging of

larger areas.
Phased-Array: Phased array ultrasound systems use a matrix of

transducer elements that can be electronically controlled to steer and

focus the ultrasound beam. This allows for real-time imaging in multiple
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directions without physically moving the transducer. Phased array
systems offer adjustable beam steering, variable focus, and sector
scanning capabilities. They are particularly useful in applications where
dynamic imaging, precise targeting, and real-time visualization are

required, such as cardiac imaging and interventional procedures.

Aot Active
elements
elements
R T

|m’bL area profile Image ¢ nm Beam
profile

Figure 2-46: Convex (left) vs Linear (middle) vs Phased Array (right) B-Mode ultrasound
transducer configuration profiles. Source - (Khaled, 2023)

For ultrasound wave propagation there is a beam profile that
describes the volume of measurement in the axis of measurement for
each transducer in the array. This beam profile narrows to a focal length,
dependent upon the transducer frequency and aperture of the transducer
array, before diverging into an unfocused wave (Ng & Swanevelder,
2011). At the penetration depth of the focal length the highest
concentration, and therefore resolution, of the ultrasound is emitted. The
focal length of transducers can be visualised using visualisation software
(Garcia, 2023). The beam concentration of an ultrasonic transducer is

visualised in Figure 2-47.
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Figure 2-47: Visualisation of focal lengths of ultrasonic transducers. Source - (Garcia, 2023)

Many modern ultrasound devices have the capability to allow the
user to adjust this focal length through transducer beam steering to
provide a focus beam, employing concave or acoustic lenses or adjusting
the soundwave frequency (e-Echocardiolography, 2023). Many modern
devices also provide pre-set software modes for various permutations of

settings for each of these parameters.

To ensure that the particular point of interest to be measured is
referenceable in the B-Mode ultrasound image precise positioning of the
probe head is required. Typically, this means alignment of the centre of
the transducer array aperture in the X (azimuth) and Y (elevation) axes
with the point of interest to ensure that this measurement is centred in
the image frame. Acoustic frequencies have a trade-off between
resolution and depth penetration due to energy absorption, and so
frequency selection is highly dependent on the application (Houghton &
Turlington, 1992). The soundwave frequency needs to be selected to
ensure that the ultrasound penetration depth in the Z (axial direction)

axis is sufficient to measure the point-of-interest (see Figure 2-48). The
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selection of frequency is a trade-off between image resolution (higher
frequency) and penetration depth (lower frequency). Balancing acoustic
parameters to define the focal length at the depth of the tissue interface
is ideal. A frequency of 2.5 MHz is typical for meat sensing applications
which permits high resolution to a depth of approximately 75 mm
(Brgndum, 1998).

Figure 2-48: The reference coordinate frame of the ultrasound probe. Source - (Garcia, 2023)

In many live animal and meat product applications B-Mode
ultrasound is applied to constantly update an image real time ultrasound
(RTU), enabling this data may be presented as an imaging sensor (Silva &
Cadavez, 2012). Whilst this technology is primarily used in the medical
industry it is highly prominent in numerous carcass measurements such
as fat depth, muscle depth and muscle area for beef grading and quality
evaluation systems in food (Morlein et al., 2005; Busch, Dinkel & Minyard,
1969; Shepard et al., 1996; Bergen et al., 1997). There has been a long
history of ultrasound technology being used in red meat processing

applications for measuring backfat and loin eye fat in various species
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including beef (Pathak, Singh & Sanjay 2011; McLaren, McKeith &
Novakofski, 1989; Hedrick, 1983; Houghton & Turlington, 1992).

One of the world’s most effective examples of ultrasonic-based
grading systems is used in pork and called Autofom. This is a U-frame
arrangement of 16 A-Mode ultrasonic probes which perform 200 scans
along the back of a pork carcass at a line speed of 1,250 carcasses per
hour (Brgndum et al., 1998)

Ultrasonic sensing has several distinct advantages in the application
for beef striploin fat trimming:

- It is non-invasive, safe and hygienic sensing method

- Relatively low cost

- Well-developed, trusted technology

- It is easily implementable with completely within a real-time

autonomous system

There are also additional sensing considerations when using
ultrasound (Hazwan et al., 2013; Mueller 2018):

- It requires consistent contact to the measurement site with a
lubricant/gel that can act as a medium for soundwaves to
propagate through to measure fat and meat

- A skilled operator is required to ensure a consistent, reliable
reading to be measured

- Measurements are affected by angle of probe, water content in
the medium, temperature, non-homogeneity of medium

- The dehiding process can disturb tissue interfaces air pockets
that prevent ultrasound measurements to be accurately collected
(Khodabandehloo, 2018)

In many instances ultrasonic measurements are subsequently

analysed though machine vision and machine learning applications (see
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Figure 2-49) to create an observation that can be action by robotics.
Many systems have been developed using machine learning algorithms
(e.g. Support Vector Regression, Neural Networks) in combination of key
features extracted from analysing frequencies (e.g. applying the Fourier
Transform) obtained through ultrasound reflectance signals (Park et al.,
1994; Halim et al., 2013; Simianer et al., 2013; Pathak, Singh & Sanjay,
2011). In the case of RTU applications machine vision algorithms have
been applied to determine automated location and measurement of
subcutaneous fat during post-mortem scanning (Pathak, Singh & Sanjay,
2011; Jung et al., 2015; Scholz, 2015).

Figure 2-49: An example of a typical ultrasound image of the depth of muscle that imaging
processing techniques could be used for automation. Source - (Sahin et al., 2008)

2.3.3 Vibrational Spectroscopy

Spectroscopy is a means of exciting vibrational states of a material
to determine informational characteristics through the interpretation of its
response to various frequencies of light (Whitman et al., 1996). Both
Raman and Near Infra-Red (NIR) spectroscopy have been employed for

the application of fat measurement (Prieto et al., 2017), and use different
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methods of interrogating information due to the way in which light energy
interacts with the material. The intensity of light that is absorbed within,
transmitted through or scattered by (referred to as ‘back scatter’) a
material can be measured to determine various material properties (Prieto
et al., 2017; Jespersen & Munch, 2009). The backscatter profile, which
represents the distribution of reflected light intensities across a spectrum
of wavelengths, can be effectively utilized to infer various quality
parameters. This profile provides insights into the size and intensity of the
backscatter can be correlated with key quality attributes such as
composition, the separability of fat, and the hardness of fat (Narsaiah &
Jha (2012). The interrogation of light backscatter profiles allows
vibrational spectroscopy to measure fat thickness with a great deal of
success with many commercial products on the market for pork - the
modified fat-o-meter (manufactured in Denmark), the Hennessy and
Chong fat depth indicator (manufactured in New Zealand) and the Ulster
probe (manufactured in Ireland) (Agri-Food and Biosciences Institute,
1982; Jones, Allen & Haworth, 1982, Brgndum et al., 1998).

One of the most successful NIR reflectance devices has been the Fat
Quality Meter (FQM) developed by the Danish Meat Research Institute
(DMRI). This device has been calibrated to employ the judgement of an
expert classifier to classify samples based upon 8 NIR sensors reading
numerous signals between 800-1800 nanometre wavelengths (Brgndum
et al., 1998). Similar applications of statistical methods (e.g. multi-variate
classifiers and parameter transformations) have been employed as
machine learning in practice to describe the state or material through the

classification of sensory signatures (Bacci, Porcinai & Radicati, 1997).
NIR Reflectance spectroscopy has a number of advantages such as:

- Relatively low cost

- Well-developed, trusted technology
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- Various meat characteristics may be identified additionally to fat
depth (e.g. meat colour)
- It may give real-time measurements

- Easy to use, robust

This technique has the following limitations:

- It requires extensive calibration to classify composition

- It is unable to measure in the presence of multiple fat and
muscle layers due to the misalignment of the probe with the
required anatomical position (Hambrock, 2020)

- Computational processing is required

- Insertion of optical diodes through meat to measure fat thickness

do cause mild damage to product

The exact numerical measurements as a backscatter profile are not
important, yet these can act as predictors/characteristic parameters that
can be manipulated. Techniques such as Principal Component Analysis
(PCA) can be used to extract relationships out between the readings and
characteristic properties (e.g. skin, skin + fat, skin + muscle) with
machine learning techniques (Roberts et al., 2017). Figure 2-50 illustrates
the implementation of a machine learning technique (clustering) to

determine the type of tissue from the spectroscopic signal acquired.
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Figure 2-50: NIR Spectroscopy can provide signals that can be classified using Principal
Component Analysis and clustering algorithms. Source — (Roberts et al., 2017)

2.3.4 Electrical Impedance

Through the technique of electrical stimulation both resistance and
capacitance may be measured in a medium between an electrode and
probe arrangement. Many manufacturers have developed these probes for
fat measurements with positive results world-wide predominantly in pork
(Brgndum et al., 1998). This technology is documented to have been first
implemented in an Australian plant since 1971 to measure hot and cold
carcass fat thickness with findings reporting up to + 2 mm tolerance in
70% of cases (Meat and Livestock Australia, 2020). A typical example of
this technology is the Meat-Fat-Automatic or KS-meter developed by SFK
Ltd in Denmark (Stavrev, 1997). The Meat-Fat-Automatic is a handheld
device that e handheld and drives an electrode on a probe tip through the
fat until it penetrates the meat whereby this increase in the electrical
conductivity of the medium is sensed by a change of current draw at a

given voltage exceeding a predetermined, calibrated threshold.
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Advantages of this technology include (Meat and Livestock
Australia, 2020):

Measurements could be obtained quickly and at a high frequency
(up to every 5 seconds in operation)
Has been previously trialled with success in industry applications.

Relatively low cost

Limitations of the technology include (Meat and Livestock Australia,

2020):

The maximum fat thickness of this technology is 28 mm

False readings have been observed whereby electrical
conductivity was tampered with due to fat smearing on the
electrodes as well as high pH levels in the lean meat muscle

Of the instrument’s errors (16% of readings were out of +/-3
mm tolerance), it is presumed that 10% of these were from
incorrect operating technique, with the remaining errors being
due to unusual physical factors of the meat product such as low
conductivity in the lean, and inclusions of lean / conducting fluid
in the fat layers.

Probe insertion deformation, varying with the degree of chill of
the carcass (yet this has been accounted for to some degree
using a simple linear equation)

Relative position of the electrode to the probe tip

Number of electrodes

Disposition of the electrodes along the stem of the probe

Probe traverse speed

Is an invasive sensing technique

The measures this sensor provides (resistance or capacitance) are

not informative on their own, but through association to the reference

voltage these devices are able to inform fat depth between the inserted

electrodes (Meat and Livestock Australia, 2020). The use of multiple
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frequencies can enable these devices to more precisely discriminate

between lean muscle and fat to improve fat depth measurement accuracy
(see Figure 2-51).
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Figure 2-51: A typical measurement of electrical impedance measured for fat depth.
Source - (Kim et al., 2016)

2.3.5 Tactile

Tactile sensing is the provision of perception acquired through
sensing the contact of a tool and its operating medium through
kinaesthetic (force) and cutaneous (tactile) feedback (Okamura, 2009). In
such cases the goal of this technology is to “detect local mechanical
properties of tissue such as compliance, viscosity, and surface texture -
all indications of the health of the tissue - or to obtain information that be
used directly for feedback to a human operator, such as pressure

distribution or deformation over a contact area” (Eltaib & Hewit, 2003).

In practice, there is a substantial amount of information that can be
used to perceive complex movements of natural tissues as opposed to
other sensing techniques (den Boer et al., 2014; Guo et. al. 2018).

Several applications of tactile sensing technologies have been developed
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for surgical applications such as robot-assisted minimally invasive surgery
(RMIS) where fine tool adjustments need to be made with accuracy and

precision within a flexible workpiece.

The importance of a sense of “feel” to enable this skilled surgical
capability of manipulating tools in reference to biological tissue has been
recognised by both surgeons and robotic engineers and supporting
research (Xin, Zelek & Carnahan, 2014; Ortmaier et al., 2007). Numerous
examples of haptic technology improving RIMS outcomes including
increasing accuracy of surgical skill in both surgeons and non-surgeons,
reducing unintentional tissue damage and injuries during dissection and
suture tasks (Wagner & Howe, 2007; Talasaz, Trejos & Patel, 2012;
Ortmaier et al., 2007). The notable success of the employment of haptic
perception in surgical robotics was first exemplified through the
development of a hand-held drill for cochleostomy surgical procedures
(Brett et. al. 2014).

Only until recently the implementation of force-sensing, particularly
over vision, has considered as an ideal mechanism for red meat
processing applications. Literature shows a prevalence of utilising e force-
control in automating complex red meat processing applications (i.e. beef
forequarter deboning) over the past 30 years (Purnell, Maddock &
Khodabandehloo 1990; Australian Meat Processor Corporation, 2020b). A
report recently conducted for AMPC (Australian Meat Processor
Corporation, 2018a; Australian Meat Processor Corporation, 2018b;
Australian Meat Processor Corporation, 2019) explicitly support this by
highlighting the lack of research yet current demand for integrating real-
time, tactile sensing for cut path determination within red meat

processing applications.

Force sensor feedback from the cutting tool as it progresses through

the meat will give different readings depending on whether it is cutting
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through muscle, fat or even bone. This varying feedback could potentially
be used to generate tool paths for the robot in real time. As opposed to
pre-determining the path using external or penetrating sensors such as
vision or ultrasound. Further research needs to be undertaken to
determine if force sensor feedback-based path generation is feasible and

what meat processor tasks it could be applied to.

Tactile sensing has several distinct advantages in the application for
beef striploin fat trimming (Tiwana, Redmond & Lovell, 2012):

- It can be non-invasive, safe and hygienic sensing method.

- Low cost

- Potential to gather extremely informative data about tool-

workpiece interaction.
- Great sensing repeatability, range, and sensitivity
- It is implementable within a real-time autonomous system.

- Can be designed with simplicity.

There are also several limitations to tactile sensing methods:

- Requires cleaning and hygienic design consideration.

- A skilled operator or controlled interaction is required to ensure a
consistent, reliable reading to be measured.

- Measurements are affected by meat characteristics such as
muscle grain direction, water content, temperature, non-

homogeneity of medium.

Full tactile perception more than just basic transduction of tactile
data — it also requires the computational processing of data to guide
control. However, real-time computational processing of tactile data can
be difficult, and so other less complex mathematical approaches have
been investigated (Du et. al., 2018). An example of this control is the
cochleostomy drill which informed control by discriminating pertinent

conditions of a cutting process in tissue mediums from which automated
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control strategy can be implemented. Du et. al. (2018) was able to
discriminate the character of drilling non-uniform, flexible media within

microns of accuracy by interpreting relationships between transient force

and torque responses (see Figure 2-52).
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Figure 2-52: Discrimination of beef striploin tissues using force and torque transients. Source -
(Khodabandehloo, 2018)

The state of the system (i.e. cutting skin, fat or lean meat) is
determined by analysing transient responses of parameters such as
torque and force. This approach is similarly applied in other medical
applications as a means of determining state from physically based
models based upon reactive force measurements to inform the tool
positioning for percutaneous operations (Rosen et al., 2006; van den
Gobbelsteen, 2012; Petra et al., 2006). With a traditional, non-temporal
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force-torque sensing method gravitational, Coriolis and inertial forces can
bias the force response characteristics of the tool-workpiece interaction
(Fumagalli et al., 2010). Brett's (2014) method of classifying signatures
of known descriptors of the task (i.e. force and torque with respect to
displacement or time) enables measurements inflicted by these factors to
be irrelevant as well as simplifying the computation of the state of the
task (see Figure 2-53).
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Figure 2-53: Using transient tactile measurements (force and torque) for discrimination of tissues
Source - (Brett et al., 2014)

2.3.6 Discussion

The following list of criteria was formed from the core and functional
requirements to assess each of the four sensing technologies against each
other:

a) Non-Destructive

b) Robust for Environment

c) High Throughput

d) High Accuracy & Precision

e) Small footprint

f) Cost Effective

g) Large Penetration Range
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For each of the criteria, each technology will be rated as:
- D: Desirable (worth 2 points)
- F: Feasible (worth 1 point)
- I: Infeasible (worth O points)

Ultrasound: Ultrasound is a non-destructive, contact or contactless
device that has been employed in the applications of pork processing,
thus confirming its robustness for the operating environments of
processing facilities. Frontmatec’s 3D loin trimmer exemplifies that this
technology facilitates the capacity of sensing up to 750 products per hour
which is more than adequate for beef striploin trimming applications. The
high accuracy of ultrasonic measurements in meat applications is evident
in @ number of studies summarised in literature (Halim et al., 2013). The
ultrasonic probes generally are very compact (e.g. 20 mm diameter x 15
mm long) and are sold by a large number of retailers for less than
$60,000 making this technology affordable for system implementation.
Selecting an ultrasonic technology according to its rated frequency will
determine penetration depth, compromising resolution, yet can measure
the maximum striploin fat of 75 mm. With the ability to utilise both A-
mode and B-mode, in real-time, this sensor offers much versatility and
capability to create an informative sensing technique for this application
(University of Gelph, 2020).

Vibrational Spectroscopy: This technology has been employed
successfully (e.g., Fat-o-Meater) to measure pork fat, hence whilst
showing evidence of a robust system integration, it does show the
invasive, mildly destructive nature required of this sensing technique. Due
to its mechanical nature requiring insertion, measurement, retraction and
cleaning for each measurement cycle its throughput was determined as
feasible. According to the University of Gelph (2020), this technology has

an accuracy of 0.5 mm over 180 mm measurements and is packaged as a
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hand-held device, hence performing well in categories d), €) and g). Due
to its simple, mechanical nature the cost-effectiveness of this technology
is extremely high yet, without taking a significant number of readings
(and causing damage to the product) this technology is limited as a real-
time, informative sensor even through applying machine learning

algorithms to differentiate fat and meat readings.

Electrical Impedance: Whilst electrical impedance technologies
are invasive, they have been developed and trialled in processing plants
with a degree of success. Due to this sensors accuracy being determined
by insertion accuracy, meat pH levels and the potential of fat smearing on
the device, all of which are likely issues within a production environment,
this technology was rated infeasible for commercial robustness. Studies
have found that the throughput attainable for this technology is more
than adequate for the line speed of striploin processing (Meat and
Livestock Australia Limited, 2020). Due to its mechanical nature requiring
insertion, measurement, retraction and cleaning for each measurement
cycle its throughput was determined as feasible. This handheld technology
was deemed a desirable footprint yet the accuracy of + 3 mm as
evaluated in (Meat and Livestock Australia Limited, 2020) was deemed
infeasible due to the extremely high yield loss value expected with this
magnitude of error. Due to the similarity of electrical impedance and
vibrational spectroscopy technologies for this application, electrical
impedance performed similarly in the categories of cost-effectiveness (f),
real-time (h) and informative sensing capabilities (i). Due to the limitation
of sensing up to 28 mm of fat thickness at a time this sensing

technologies was rated as ‘infeasible’ for its penetration range (g).

Tactile: Although tactile sensing does require the contact and an
applied force to the product, there is no requirement to puncture,
disfigure or damage the striploin. Hence, this technology is deemed to be

desirable in category (a). Force modules require deflection to measure
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tactile features and are generally packaged in small, sealed components
meaning that robustness of system integration is desirable. Many studies,
particular to the medical field, have exemplified the development of real-
time, informative sensing techniques for accuracy of less than 1 mm is
possible (Rosen et al., 2006; van den Gobbelsteen, 2012; Petra et al.,
2006). This as such deems tactile sensing a highly desirable technology
for considerations d), h) and i). The cocleoscopy drill developed by Brett
et. al. (2018) illustrated that such technology could be packaged in the
form of an extremely inexpensive (less than $2,000), handheld device
(deeming e) and f) as desirable). With the validation of this technology’s
ability to sense the thickness of fat (Khodabandehloo, 2018) the only
questionable consideration, whilst expected to be similar to spectroscopy
and impedance probes, is that of its capability to match the throughput

required for striploin trimming.

Summary: The desktop feasibility evaluation of the sensing
technologies considered for fat trimming is summarised in Table 2-3.
From the review of sensing technologies that have potential to be or have
been employed within red meat processing for fat measurement
applications it is evident that there is no single optimal technique. Two
tied for the highest score and are recommended to be developed further:

ultrasound and tactile sensing technologies.

81



Table 2-3: Comparison of sensing technologies to determine most feasible for further

development.
Criteria Ultrasound | Spectroscopy | Impedance | Tactile
Non-Destructive D F F D
Robust D D I D
High Throughput D F F F
Accurate & Precise D D I D
Small Footprint D D D D
Cost-Effective F D D D
Deep Penetration D I D
TOTAL SCORE 13 10 4 13

Note: ‘I’ is infeasible, 'F’ is feasible, and ‘D’ is desirable (for each category)

Ultrasound: With the prior success of implementing ultrasonics
within Frontmatec’s 3D Loin Trimmer, ultrasonic sensing should be further
explored for beef fat applications. Whilst this system is not able to be
applied directly for beef fat developments based upon similar sensing
techniques is highly recommended. Yet much development is needed to
ensure ultrasound technology is practically developed within a system
capable of measuring fat thickness across beef striploin primals. This
desktop review has highlighted the following challenges for development
of an ultrasonic sensing system as:

- ensuring adequate contact with the ultrasound probe and the
primal

- ascertaining which type of ultrasound is most appropriate

82



- Developing a means of using measurements to create a cut

path for an automated system

Tactile: Tactile sensing also scored strongly against the criteria and
has been successfully deployed in similar fields i.e. the surgical field with
some initial exploration in the red meat industry (Brett et al., 2018). The
potential to extract real-time tactile information as shown in the medical
field may revolutionalise the means of perceiving and anticipating the
cutting tool position with reference to the fat-lean interface. Yet much
development is needed to develop the capability of ascertaining a means
of discriminating the cutting of lean meat and fat tissue for a practical tool

that can be used on an automated system.

Of the two sensing technologies ultrasound was selected for
development within this research due to this technology being most
proven in the applications of fat depth measurement and commercial pork
trimming systems. The prior work identified in literature also supported
the readiness for ultrasound to be implemented within a fat depth sensing

system moreso than tactile sensing technologies.

2.4 Conclusion

The literature review conducted fulfilled the goal to recommend the
technology most suitable for consideration in the context of an automated
trimming system. A survey of patents and commercial systems found that
no automated fat trimming system exists for beef striploin. In surveying
technologies, based upon the considerations deemed important and non-
negotiable to the holistic characteristics of an automated fat trimming

system, ultrasound was identified to be most promising.

It is evident that there are several unknowns surrounding the

requirements and benchmarks of the process of uniform fat trimming of
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beef striploin. In the survey of patents and commercial systems there was
very little representation in beef processing within automated fat
trimming systems. These systems were not designed to be cross-
compatible with beef either suggesting that the characteristics of the fat
trimming process between pork and beef are significantly different. Many
of these systems either estimated fat depth (did not acquire measures) or
estimated the entire subcutaneous fat profile with few measurements.
This suggests that it is likely that the characteristics between beef and
pork processing are significantly different, and that an analysis of the
striploin variability and subcutaneous fat profile and the trimming process

of fat trimming should be undertaken.

The learnings from the literature review inform the development of
a methodology for sensor evaluation. The learnings also inform the study
of other variables within a processing plant that may impact system
design and sensor selection, which is further evaluated in the next
chapter (Chapter 3) before defining a benchmark performance using CT

imaging in Chapter 4.
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CHAPTER 3: SENSING SYSTEM DEFINITION
FOR BEEF STRIPLOIN FAT TRIMMING

This chapter presents preliminary experimentations that provide an
in-depth analysis of the striploin primal variability, the processing
requirements for uniform fat trimming for the specific collaborating
processor and the product specifications of trimmed beef striploin. These
investigations inform the automation constraints and sensing
considerations of a system that can meet the performance requirements
(Research Objective 2). The preliminary experiments presented in this
chapter provide specifics to the functional requirements of the sensor
evaluation framework developed in Chapter 4, and again for the

development of ultrasound systems in Chapter 5 and Chapter 6.

3.1 Introduction

This section presents a review of the striploin product and the
processor-specific processes important for consideration to develop the
experimental aims and processes required to inform the methodology of

this thesis.

3.1.1 Preliminary Work

Prior to the beginning of this thesis there was a striploin fat
trimming feasibility study conducted (Khodabandehloo, 2018). The focus
of this study was to identify the range and variability of striploin primals
and therefore the measurements presented were based upon the smallest
and largest striploin that could be collected during the survey period at an
undisclosed processing plant. The findings pertaining to variability of the
striploin primal relevant to this thesis are summarised in Table 3-1. The
dimensions referenced in this table were measured as illustrated in Figure
3-1.
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Table 3-1: Variability of physical characteristics of untrimmed beef striploin primal.

Quantity Smallest | Largest Range
Dimension: Length (mm) 470 mm 605 mm 135 mm
Dimension: Width (mm) 200 mm 245 mm 45 mm

Dimension: Height (mm) 90 mm 125 mm 35 mm

Weight: Primal (kg) 15 kg (nominal)

Fat Thickness: Depth (mm) 2 mm 75 mm 73 mm

Fat Thickness: Gradient (degrees)

60 (across length of striploin)

66 (across width of striploin)

Striploin Primal
Dimensions

Figure 3-1: The definition of measurements (length, width and height) of a beef striploin primal.

This study highlighted the possible presence of delamination of fat

layers in the subcutaneous fat of striploins surveyed as well as the

potential for fat cover damage to be introduced by the ‘hide puller’

mechanism used in processing process prior to striploin fat trimming

(Khodabandehloo, 2018). The ‘*hide puller’ mechanism employed in beef

processing that, in some cases, causes damage to the fat cover of the
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striploin. Typically hides are ‘pulled’ from carcases in processing plants to
‘dress’ the carcase for further processing. Based on these observations
the author suggested that the sensing be conducted on the medial surface
(lean meat surface) of the striploin to avoid complications of ‘no contact’

instances inhibiting ultrasound sensing performance.

Khodabandehloo’s (2018) investigation provides valuable insights
for considerations in developing a feasible automated striploin fat
trimming system. The biggest limitation of the statistics presented within
this study was the very limited sample dataset (2 striploins) that were
acquired from the line of a different processor. The collaborating
processor for this thesis runs a 100 to 120-day grain-fed feeding
programme that produces uniquely consistent (dimensions and fat
profiles) striploin products. Due to such a small sample size and concerns
for representativeness, it was determined that an independent study
using striploins supplied by the collaborating processor was required for

defining the sensing capabilities for this application.

3.1.2 Processor-Specific Context

Though there are some operations that are performed by all beef
processors in Australia there are many variations of tasks that occur
throughout the processing workflow (Cross, 2011a; Cross 2011b; Cross
2011c). These processor-specific operations will determine how the
boneless striploin product is presented to the slicer, or automated system,
for fat trimming. These processor-specific operations for the collaborating
processor are presented, in order of occurrence, in the following

subsection.

De-hiding Carcase:
As mentioned by Khodabandehloo (2018) one such processing
method that may cause damage to the fat cover on beef striploin primals

is the ‘hide puller’. Typically hides are ‘pulled’ from carcases in abattoirs
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to ‘dress’ the carcase for further processing. The predominant types of
hide pullers are upward (see Figure 3-2) and downward (see Figure 3-3).
Australian processors typically employ the downward hide pulling
mechanism due to the reduced likelihood of faecal contamination
introduced during this process (Thompson, 2009). Though, the drawback
of this method is the possibility of causing fat tears from the loin and
hindquarter regions of the carcase which create inconsistent intra-striploin
fat profiles. Though the collaborating processor confirmed the use of
downward hide pulling the significance of the phenomena of ‘fat tears’ will
be investigated in this chapter (C Anderson 2019, pers. comm., 13

November).

Figure 3-2: The mechanism of upward 'hide pulling' to dress the carcase. Source -
(Thompson, 2009)
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Figure 3-3: The mechanism of downward 'hide pulling' to dress the carcase typically used
by Australian processors. Source — (Thompson, 2009)

Process of Boning Striploin:
The boning processes employed will determine the physical
dimensions of the striploin. The following processes are employed by the

collaborating processor:

1) Carcass Splitting: The process after de-hiding
whereby the carcase is split in half by sawing through the

spine (mid-sagittal plane) to create two beef sides (see Figure

3-4).
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Figure 3-4: Bovine carcase splitting using a saw to create beef sides. Source - (Savell,
2015)

This operation separates the carcase into 2 sides (‘left’ and ‘right’)
and thus 2 separate striploin primals that are anatomically mirrored at the
spine in the transverse plane. During carcase splitting the saw cuts the
spine in the direction of most caudal (Rump face) to cranial (Rib face) end
and defines the most medial edge (referred to as the spine edge) of each

striploin primal.

2) Chilling Beef Sides: The process whereby the beef side is
rapidly cooled in a chiller to prolong meat shelf life by

preventing microbial growth occurring (see Figure 3-5).

A A

Figure 3-5: Beef sides being cooled in a processor's chiller prior to grading. Source — (Betancourt,
2019)
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This operation rapidly cools the beef side which causes the
contraction of muscles to the degree that the carcase frame permits
(which resists these contraction forces) during the time in the chiller
(Husband, 1993). Though there is no literature defining the degree of this
phenomena, and how the cutting of the carcase for grading may
exacerbate this, the contraction of muscles is likely the cause a curvature

of varying significance of the spine edge of each striploin primal.

3) Carcase Grading & Quartering: Typically, whilst the beef
side is in the chiller it is cut between the 12th and 13th
thoracic rib to expose the eye muscle for grading and mark

the position to use to quarter the beef side (see Figure 3-6).

Figure 3-6: Beef sides cut between the 12" and 13 rib for grading whilst in the chiller.
Source - (Konopacki, 2006)

This operation is a straight cut parallel to rib bones and separates
the beef side into 2 quarters (‘hindquarter’ and ‘forequarter’). This cut
defines the anatomical cut plane of the “rib” face of each striploin. This
cut line is parallel between the 12t and 13t rib, cut from the medial
(spine) to the lateral (flank) direction. The skeletal structure of the bovine

carcase provides a guide for the boner’s knife, and upon cutting past the
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end of the rib, the boner cuts out of the carcase “straight” by eye. This
provides explanation of the 2 different angled cuts that typically create
the rib face of the striploin, which at their intersection identifies the end of
the 12t rib bone when the boning knife changes orientation (see Figure
3-7). This also provides an explanation as to the varying degrees of
chamfers (the cut line defining the rib face from the end of the 12% rib to

the flank end) that have been observed in striploins.

Quartering Cut Line

Gray;
2% cyp D
ne

Figure 3-7: Two distinct cut lines used to define rib face of striploin at the collaborating processor’s
facility. Original image source - (McDonald-Keating, 2021)

4) Hindquarter Boning — Flank Removal: The hindquarter is

cut along a seam of fat to remove the flank from the

hindquarter (see Figure 3-8).

92



End of Eye
Muscle

Figure 3-8: Removal of the flank from the hindquarter by cutting along fat seam. Original image
source - (John the Butcher, 2018)

This operation is a straight cut along a fat seam to remove the flank
from the striploin leaving at least 37 mm of fat after the eye muscle in the
most ventral direction (commonly referred to as “tail”). This cut defines
the anatomical cut plane of the “flank” edge of each striploin and is
typically quite consistently cut perpendicular to the “spine” edge (see
Figure 3-9).
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Figure 3-9: The cut line that removes the flank from the hindquarter to define the flank edge of
the striploin at the collaborating processor’s facility. Original image source — (McDonald-Keating,
2021)

5) Hindquarter Boning - Striploin Removal: The hindquarter
is cut straight between the lumbar junction and 1st sacral
vertebrae to remove the striploin from the hindquarter (see
Figure 3-10).
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Figure 3-10: Removal of the striploin from the hindquarter by cutting straight from
between the lumbar junction and 15t sacral vertebrae. Original image source - (John the Butcher,
2018)
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This operation is a straight cut straight between the lumbar junction
and 1st sacral vertebrae to remove the striploin from the hindquarter.
This cut defines the anatomical cut plane of the Rump face of each
striploin (see Figure 3-11).

Lumbar junction — 1%
sacral vertebrae
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Striploin Removal
Cut Line |
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Figure 3-11: The cut line that removes the striploin (and tenderloin) from the hindquarter
to define the rump face of the striploin at the collaborating processor’s facility. Original image
source — (McDonald-Keating, 2021)

6) Striploin Boning — Chine Sawing: After removing the
tenderloin a bandsaw is used to cut the 13t rib extending
from the striploin and then to cut the chine bone along the
length of the striploin to separate this with the feature bones

into easy-to-remove flat and button bones (see Figure 3-12).
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Figure 3-12: Chine sawing to disconnect the chine and feather bones for easier removal of
smaller bones. Original image source — (Adobe, 2021)

Through this process of chine sawing bones are released so that a
table boner can remove bones (the 13t rib, the remainder of the chine
bone along the chine edge, and several button bones and flat bones) with

as little yield loss as possible.

7) Striploin Boning — Table Boning: The striploin is then
boned on the table to remove the rest of the bones

underneath the striploin (see Figure 3-13).

\ B -l &0
Flat Bones 13t Rib

N

Chine Saw Cut Plane i
Button Bones

Backbone

Figure 3-13: An illustration of the bones that are under the striploin after chine sawing. Original
image source - (McDonald-Keating, 2021)
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A brief study was conducted to investigate the cavities that are
created on the medial surface (lean meat surface) upon table boning the
striploin, and what the approximate positions and extent of these cavities
were (see Appendix A.1: Cavities Created by Table Boning). A summary
of this analysis revealed that post-chine sawing the striploin had 7 sets of
button and flat bones in addition to those along the spine (see Figure
3-14). When removed the button and flat bones left cavities in the lean
meat surface of the striploin 10 - 20 mm deep spaced on average 55 mm

from each other.

Figure 3-14: An analysis of flat bones (F1, F2, ...) and button bones (B1, B2, ...) removed from the
medial surface (lean) of the striploin prior to fat trimming.

Fat Specifications and Trimming:

There are many fat thickness specifications used by processors to
produce striploin products depending upon the market the product is sold
to. The fat thickness specification chosen for this thesis was selected as
12 mm as this was the most common customer requirement of the

collaborating processor (C Anderson 2019, pers. comm., 13 November).
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The processor provides products to customers according to the
‘maximum fat thickness at any point” method with the exception of
‘bridging” and ‘planing’ scenarios (C Anderson 2019, pers. comm., 13
November). In the case whereby a customer identifies a beef striploin
with a fat thickness of more than the maximum 12 mm fat thickness a ‘fat
claim’ against the processor may be actioned. In such a scenario, the
processor is required to refund the cost of the entire striploin product to
the customer (C Anderson 2019, pers. comm., 13 November). In order to
reduce the number of fat claims that are lodged for reimbursement the
processor instructs slicers to purposeful over-trim striploin products (C
Anderson 2019, pers. comm., 13 November). The yield losses incurred
from over-trimming this product is estimated to be significantly greater,
though less visible, than fat claims. Until there is a mechanism of
measuring the fat depth within a striploin there will not be the precision

required to trim accurately to the desired fat thickness specification.

The task definition of the ‘fat trimming’ and the time taken to by
slicers to complete are processor-specific constraints that are important to
consider in the development of an automated fat trimming system. These
processes will be documented for the collaborating processor and further
analysed to provide these insights for system development in subsequent

chapters.

Summary of Processor-Specific Considerations

The key product specifications that inform the development and
evaluation of the sensing system for automated trimming are summarised
in Table 3-2. These processor-specific factors contribute to defining the
scope of an automated system capable of fat trimming for this application

in this processing facility.
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Table 3-2: Key product constraints to consider for the development of an automated system
capable of trimming to specifications.

Product Specification

Sensing System Considerations

Fat Specification:

Commonly 12 mm

A maximum fat specification of 12 mm will be
considered as per the typical customer
requirements of the processor. Practically,
this would be a perpendicular measurement
from the fat-lean interface as opposed to
vertically (as this would yield a measurement

of the maximum fat depth)

Trimming Standards:

Avoid scores in the lean

In addition to decreasing yield over-trimming
fat may also significantly devalue the product

if lean muscle is scored during trimming.

Trimming Standards:
Smooth trimming along the
contour of underlying

muscles

A sensing mechanism/configuration needs to
be considered to acquire enough fat depth
measurements to generate a contour
representative of underlying tissues

throughout the striploin primal.

Measurement Method:
Maximum fat thickness at
any point measured at the

edges of cuts

An under-trimming-related failure is clearly
defined as fat thickness over the maximum
specified at any point. Though, it should be
highlighted that the nature of retailers
portioning striploin means that only a limited
number of edges (e.g., cross-sections / faces
of steaks) will be seen. In addition to this,
these cross-sections are likely only measured
(and fat claimed) if large deviations from the
fat specification are observed. This suggests
that an ‘unspoken’ error tolerance exists in

the practical application of specifications.

Measurement Method:
Fat depth accounts for

‘bridging’ and 'planing’

This introduces the need for some degree of
path planning using fat depth measurements

to optimise automated trimming for yield.
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Cost of Failure: Further investigation is required to quantify
Fat Claims vs Loss of Yield the cost of both failures (over-trimming and
under-trimming) to determine what failure
should be prioritised and to what degree. This

will inform the performance evaluation.

3.1.3 Chapter Aims

More processor-specific information is required to better define the
considerations and capability scope for a suitable automated fat trimming
system. The analyses to presented in this subsection address these

knowledge gaps.

Investigation 1: Product Variability & Processing Constraints
There has been very little work conducted to quantifying the
variabilities of the striploins presented for fat trimming, and the prior
processes that create such variabilities. These variabilities are important
to consider for developing an automated solution to ensure that the
automated system is capable of servicing the range of striploins, or to
define the scope for which the system can cater for. This has a significant
impact on the following aspects of the automated fat trimming system:
- The surface area of the striploin will determine the sensing
area (and number of nodes) to be considered.
- The sensing area will contribute towards defining the number
of nodes, and the spacing within the nodes which will create a
trade-off between the sensing time required (in total and per
node) and the representativeness of sensor data to the
striploin.
- The temperature of striploin primals will determine ultrasound
settings which are typically considered for calibration.
- The significance, and likelihood, of product surface

deformations (e.g. fat cover damage, fat delamination, etc.)

100



present in the fat and lean surfaces of striploins will determine
the sensing orientation that would be best for ultrasound

sensing.

A survey of the physical attributes (dimensions, weight,
temperature, surface deformations and fat cover damage) of untrimmed
striploins will be conducted at the processor’s facility to better define the
input variability of the system with respect to the overall dimensions and
general characteristics of untrimmed striploins, and the processing
methods that contribute to this.

Investigation 2: Time Motion Study of Uniform Fat Trimming

There is yet to be data collected defining the processing speed that
is currently being adhered to within the fat trimming operation of beef
striploin at the collaborating processor’s facility. This line speed is a
constraint that needs to be considered in the development of a feasible
automated system capable of striploin fat trimming in this processing
plant. This has a significant impact on the following aspects of the
automated fat trimming system:

- The total time permitted for the entire system’s cycle time
which assists to define the time (in total and per node) for
sensing. This also then provides insight towards the trade-off
between: the humber of sensing nodes in the node mesh, the
cycle time of the sensing process, and the response time of

the sensor per measurement.

Therefore, a time-motion study was conducted on slicers performing
fat trimming at the processor’s facility to better define the response time
of a sensor and the sensing cycle time of a system feasible for fat
trimming system at this line speed.
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Investigation 3: Subcutaneous Fat Characteristics

Whilst Chapter 2 identified ultrasound to be the most promising
technology for the application of measuring fat thickness on a beef
striploin further investigation is required to determine the characteristics
of which an appropriate ultrasound device can be selected using. This has
a significant impact on the following aspects of the automated fat
trimming system:

- The range of fat thickness measurements that can be
expected at the sensing nodes of striploins from the
processor’s processing line. This will assist to define the
minimum and maximum penetration depth of an appropriate
ultrasound device.

- The maximum gradient between fat thickness measurements
that can be expected at the sensing nodes of striploins from
the processor’s processing line. This will assist to define the
cut path considerations for a robotic automated solution.

- An evaluation of the fat distribution and the variability of fat
distributed inter-striploin and intra-striploin will provide
insight towards optimising the trade-off between
measurement representativeness and sensing cycle time

through the number of sensing nodes in the node mesh.

An in-depth analysis of the subcutaneous fat profile of untrimmed
striploins at the processor’s facility will be conducted to better define the

context that the sensing system will be applied within.

3.2 Product Variability & Processing Constraints
This experiment quantified the product variability and the
processing processes and constraints important for the collaborating

processor.
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3.2.1 Experimental Set-Up

The processing steps that occur before the striploin primal is
presented to the slicer impacts the size and dimensions of the primal. The
processing steps presented are specific to defining the presentation of a
beef striploin primal for fat trimming at the collaborating processor’s
facility (P McDonald-Keating 2021, pers. comm., 20 July). An example of
the overall shape and dimensions of a typical striploin at the collaborating

processor’s processing line is illustrated in Figure 3-15.
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Figure 3-15: The anatomical cut lines determining the overall dimensions of the boneless beef
striploin primal presented for fat trimming at collaborating processor’s facility illustrated on a LHS
striploin.

A survey was conducted to ascertain the typical dimensional
variations of 100-day grain-fed beef striploin primals at the collaborating
processor’s site on the late morning shift (11:30 AM - 1:00 PM) on the
28th of April 2021. For this survey, twenty untrimmed beef striploin

primals were acquired during a typical run at the processor’s facility.
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Detailed information defining the characteristics of the striploins used in
this survey is outlined in Appendix A.2: Dataset for Product Variability of

Untrimmed Striploins.

The length, width, and height of the primals were measured using a
stainless-steel ruler, the weight was measured using digital scales in the
processor’s facility, and the average temperature of the primal was
measured using an infrared digital thermometer. A qualitative description
of the fat cover over each striploin was reported, and each face of each

striploin was photographed (see Figure 3-16).

Figure 3-16: The set-up for the survey of the physical characteristics of untrimmed striploin
primals.

3.2.2 Experimental Analysis

The dimension and weight measurements of the twenty untrimmed
striploins surveyed were averaged (mean) with the calculation of 2
standard deviations to define the variance of these characteristics to a
95% confidence interval. This gave clarity in defining the percentage and

variance of products that are not in scope for an automated system.
According to MLA (2022), considerable fat cover damage is defined

as areas of more than 10cm x 10cm that were void of fat. For the

purposes of fat trimming, these affected areas were only considered
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significant whereby this area was in a position that it may inhibit the
capability to acquire a fat thickness measurement (e.g. the fat cover
damage was on a location that was at least 20 mm from an edge). As
such, these instances were counted from observations of the fat cover on
each striploin. Statistically, the expected probability was calculated to
estimate the likelihood of fat tear-related damage being presented on

striploins based on this sample dataset.

3.2.3 Results

The twenty (20) striploins surveyed were measured in length (spine
edge), width (rump face cross-section), height (maximum at rump face)
and weight (overall primal) and results were tabulated (see Table 3-3)
with the five number summary plus the confidence interval bounds (£
2SD) presented in Table 3-4. This analysis quantified the typical striploin
(within a 95% confidence interval) presented for fat trimming being 388 -
456 mm in length, 221 - 309 mm in width and 72 - 103 mm in height.

Table 3-3: Measurements of the 'typical’ untrimmed striploins acquired from the collaborating
processor’s conveyor.

Measurement of Untrimmed Striploin Primals
Date & Time Measured |Striploin# |Feed Regime L / R|Lsere (mm) |Weure (mm) [Hwmax (mm) |Weight (kg)
28/04/2021 11:39 1 100-120 day grainfed R 430 270 101 8.66
28/04/2021 11:43 2 100-120 day grainfed R 451 309 81 9.31
28/04/2021 11:47 3 100-120 day grainfed R 446 292 77 912
28/04/2021 11:50 4 100-120 day grainfed R 412 261 105 8.17
28/04/2021 11:53 5 100-120 day grainfed R 448 288 83 9.27
28/04/2021 11:56 6 100-120 day grainfed R 393 229 74 6.78
28/04/2021 11:59 7 100-120 day grainfed R 401 246 82 6.99
28/04/2021 12:02 8 100-120 day grainfed R 405 254 90 7.22
28/04/2021 12:05 9 100-120 day grainfed R 422 261 88 8.65
28/04/2021 12:05 10 100-120 day grainfed R 414 257 83 8.51
28/04/2021 12:08 1" 100-120 day grainfed R 412 249 84 8.4
28/04/2021 12:10 12 100-120 day grainfed R 423 265 87 8.36
28/04/2021 12:13 13 100-120 day grainfed R 433 273 96 8.71
28/04/2021 12:17 14 100-120 day grainfed R 405 231 98 7.08
28/04/2021 12:19 15 100-120 day grainfed R 412 252 92 8.57
28/04/2021 12:23 16 100-120 day grainfed R 431 271 87 8.75
28/04/2021 12:26 17 100-120 day grainfed R 397 234 86 6.87
28/04/2021 12:30 18 100-120 day grainfed R 427 267 86 8.61
28/04/2021 12:35 19 100-120 day grainfed R 434 279 84 9.04
28/04/2021 12:38 20 100-120 day grainfed R 445 306 82 9.01
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Table 3-4: Statistical summary of untrimmed striploin dimensions.

Statistical Summary

Lseine Wruup | Huax Weight
Statistic (mm) |[(mm) |(mm) |(kg)
Min 393 229 74 6.78
Median 423 263 86 8.59
Average 422 265 87 8.30
Max 451 309 | 105 9.31
sSD 17 22 8 0.81
Lower Bound (2SD) | 388 221 72 6.67
Upper Bound (2SD) | 456 309 | 103 9.93

Observations were also made regarding the shape of the twenty
striploins. It was seen that the most perpendicular face to the spine edge
of the striploin was the caudal/cranial edge with the cranial/rib edge being
curved at the ventral/flank edge. This finding supports using the
caudal/cranial edge and spine edge to reference the origin of the node
mesh of the sensing system proposed in the third experiment of this
chapter (Section 3.4). In addition to this, the temperature was made with
a digital infrared thermometer which revealed the average surface
temperature of the subcutaneous fat being 8.1 degrees Celsius. This
temperature was considered in the experimentation procedure outlined in
Chapter 5 and 6.

Observations regarding the significance of fat cover damage were
made from the twenty striploins within this dataset (see photographs
taken of fat cover for each striploin in Appendix A.2: Dataset for Product
Variability of Untrimmed Striploins). Two instances of significant fat cover
damage were identified for the location of measurement for the
prescribed node mesh. Using this sample size (twenty) the expected
probability was calculated to be 10% for instances of fat tears affecting
measurements for a fat trimming system. Furthermore, there was a

pattern observed that fat tear damage typically occurred on the ventral
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edge at approximately 100-200 mm from the caudal (rump) face as

shown (see Figure 3-17).

Figure 3-17: Illustration of fat tear damage found on two of the twenty surveyed striploins.

3.2.4 Discussion

The variability of the striploin primal presented to the slicer is a
significant factor that influences the effectiveness of developing an
automated fat trimming system. This variability has been characterized by
differences in length, width, height, weight, and the condition of the fat

cover.

The striploin primal's length, width, height, and weight show a

significant difference to the striploin characteristics presented in
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Khodabandehloo’s (2018) preliminary study. The contrasting striploin
characteristics supports the significance of bovine breeds, feeding regimes
and processing methods that translate to significant differences within
striploin dimensions, and inter-striploin variability within a typical
processing run (see Table 3-5). The significant differences between
preliminary work and the experimental survey presented within the
results section of this subsection confirm the decision to conduct the

survey using the particular striploins of the collaborating processor.

Table 3-5: Comparison of typical striploin dimensions with preliminary work.

Quantity Study Smallest Largest Range
Length Khodabandehloo 470 mm | 605 mm 135 mm
Border 393 mm | 451 mm 58 mm
Width Khodabandehloo 200 mm | 245 mm 45 mm
Border 229 mm | 309 mm 80 mm
Height Khodabandehloo 90 mm 125 mm 35 mm
Border 74 mm 105 mm 31 mm
Primal Weight Khodabandehloo 15 kg (nominal)
Border 8.30 kg (mean)

This highlights the need for automation to be designed to
accommodate for such a large deviation of striploin primals or that of the
chosen processor. As shown in Table 3-5, the width and weight of the
striploin primal exhibit the most variability, as indicated by the standard
deviation values. Considering all striploins surveyed were from the same
‘processing run’ (a term used to describe the carcases were from the
same lot and roughly the same breeds and quality). For the trial
conducted at the site of the collaborating process this was reported to be
a processing run of mixed breed MSA 0-3 quality, and so there is little

case for variability being assigned to breed or genetic deviations.
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The variability in striploin boning, particularly in the precision of
cuts, is noteworthy. Edges cut based on visual estimation (lateral/flank
edge) exhibit more variability compared to those made along anatomical
landmarks such as tissues and bones (medial/spine edge, caudal/rump
face, cranial/rib face). This supports the argument that the variability of
the width is due to human error due to approximation of cutting lines. In
combination with the curvature of the cranial/rib face observed on the
striploins surveyed, the decision to position of the origin location in
reference to the medial / spine edge and the caudal / rump face has been
supported. This enables a more consistent approach of acquiring
measurements that can be registered between different striploins and
striploin types (LHS / RHS). This method also provides a means of
measuring a uniform mesh spacing without the complication of a node

mesh significantly skewed to the orientation of the striploin.

The condition of the fat cover also shows variability, with instances
of fat cover damage observed in only a small number of striploins. This
damage typically occurs on the ventral edge at approximately 100-200
mm from the caudal (rump) face (see Figure 3-17). The expected
probability for instances of fat tears affecting measurements for a fat
trimming system was calculated to be 10%. Whilst this observation was
used in Khodabandehloo’s (2018) preliminary study to recommend
applying ultrasound sensing, the insignificance of this phenomena
recontextualises the recommendation for this study. In the worst case,
the general location of this fat cover damage may contribute towards
recommending an altering of the node mesh to node place measurement
nodes on this region or else omit this node from the mesh. In addition,
and the lack of observations of fat delamination being unobservable in the
striploins surveyed did not make a definitive case to conclude that sensing
from the subcutaneous fat surface would yield ineffective results. Through
studying the process of boning the striploin it was identified that the

cavities created by table boning of the flat and button bones from the
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striploin could impose issues when measuring from the lean surface with
an ultrasound device. As such, the recommendation made in this study
was not deemed completely valid and further preliminary testing will be
conducted for the sensing orientation of systems presented in Chapter 5
and 6.

The average temperature of the striploin at the fat trimming
operator table was 8.2 degrees Celsius. This temperature will be
considered in the parameter settings of the ultrasound device to properly

tune this correctly (see Chapter 5 and 6).

3.3 Time Motion Study of Uniform Fat Trimming
This section presents a time motion study that was conducted to

define the processing speed benchmark for uniform fat trimming.

3.3.1 Experimental Set-Up

For the time-motion analysis of uniform fat trimming, slicers were
observed on a typical run at the processor’s facility on 6 June, 2021.
Through these observations, and the timing of slicers’ actions, the
particular actions required to perform the task of uniform fat trimming,
and the average processing time for the task, was defined (see Figure
3-18).
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Figure 3-18: A s/icerperforming uniform fat trimming of beef striploin at the' collaborating
processor's facility.

3.3.2 Experimental Analysis

The process of uniform fat trimming was documented as a series of
sequential tasks performed by slicers during fat trimming. Several
personnel (slicers, trainers and the leadership team) were consulted to
confirm the tasks that consist of fat trimming as well as photographs were
taken during observations. There were tasks conducted by slicers on the
lean muscle surface that were considered supplementary to fat trimming
and hence omitted from the time-motion study analysis conducted. These
‘lean surface’ type tasks are described in Table 3-6. De-identified results
were tabulated over four slicers trimming 25 striploins to ascertain the
time taken for this operation. Mean processing time, and the 95%

confidence interval / within 2 standard deviations (SD).
3.3.3 Results

The results of the time-motion analysis identified the following sub-

tasks performed by slicers to ‘finish’ the striploin (see Table 3-6).

111



Table 3-6: Motion analysis of fat trimming beef striploin

Motion Analysis of Finishing Beef Striploin
| Twe ]  SubTask |

Inspecting and removing any stray bones / bone chips.

Squaring off the underside to reduce the divets made by removing the

Lean Surface button and flat bones.

Removing a large portion of the tail by cutting at a 45 degree angle
from the medial to the lateral surface, cutting along the length. Then
cutting this portion to remove small amount of lean meat from the fat.
Cutting along the spine to square up this edge.

Square up the rib and rump faces with a perpendicular cut.

Fat Surface Trim fat using long knife strokes lengthwise. The tail gets timmed
significantly. The technique of each slicer differed as to where they cut
in general.

The time taken to trim both the lean and fat surface separately was
recorded for four unidentified slicers over 25 observations. The raw data
of this time motion study has been included in an appendix (see Appendix
A.3: Time-Motion Analysis of Striploin Fat Trimming). A summary of the
timings of each slicer for only the fat trimming component of these
observations is tabulated in Table 3-7 and presented as a box-and-
whisker plot to evaluate the spread of these individual measurements in
Figure 3-19. The timing of the fat trimming tasks identified an average
processing time of 27 seconds, with a 95% confidence interval for a
processing time range of 12-42 seconds. During this survey it was
observed that there were four slicers allocated for the fat trimming of beef
striploin each positioned in a 1m x 1.5m workspace. This observation
provides the space constraints of a feasible footprint for an automated

system to adhere to.
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Table 3-7: Summary of time recordings from fat trimming observations (n = 25)

Time Summary of Fat Trimming

Min 22.0 16.0 21.0 13.0 13.0
Median 30.5 26.0 S 21.0 29.0
Average 30.0 25.5 31.7 22.6 27.2
Max 36.0 32.0 42.0 38.0 42.0
Standard Deviation 4.1 5.7 7.5 7.7 7.4
Lower Bound (2SD) 21.8 14.1 16.7 7.2 12.4
Upper Bound (2SD) 38.2 36.9 46.6 37.9 421
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Figure 3-19: The fat trimming times from trimming observations (n = 25) presented in a box-and-

3.3.4 Discussion

whisker plot.

The time-motion analysis identified an average processing time of

27 seconds for the fat trimming element of the slicers’ trimming tasks,

with a 95% confidence interval for a processing time range of 12 - 42

seconds. Quantifying this processing timing provides a benchmark for the
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response time that a feasible sensing technology must be capable of. This
response time will be considered in the preliminary investigations of

Mode-A and Mode-B ultrasound systems developed in Chapter 5 and 6.

The footprint of a workstation was measured to be 1.5m x 1m could
be considered equivalent for a robot station, and perhaps initially this
system could be installed in series with slicers who can continue to deal
with peak loads by storing striploins could operate to similarly deal with
peak loads. With four stations for fat trimming the number of units that
may be installed could be reasonably presumed to be two (leaving two
stations for manual trimming until breakdown frequency is evaluated).
This provides an approximate limit for the number of units that could be
installed for such a processing line, which further constrains the maximum

cycle time of both units to achieve the line speed.

3.4 Subcutaneous Fat Characteristics
This section evaluates the subcutaneous fat distribution
characteristics of a typical striploin to inform the requirements for a

suitable sensing system for this application.

3.4.1 Experimental Set-Up

For this analysis, four striploins were selected from the processing
line of the processor as samples to conduct the analyses presented in this
investigation. The striploins acquired for this experiment had
characteristics that aligned to those identified as a ‘typical’ striploin in the
previous experiment in Section 3.2. The striploins were labelled with a
number and orientation (Striploin 1R, 2R, 3L, 4L) where 'L’ and ‘R’
denoted a LHS and RHS striploin respectively. The dimensions and

weights of the striploins used in this experiment are shown in Table 3-8.
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Table 3-8: A summary of the striploin dataset characteristics (dimensions & weight).

Striploin Dataset Characteristics

Date & Time Measured Striploin # Feed Regime L/R Lsene (mm) Weruwe (MM) Huax (mm)  Weight (kg)

08/12/2021 11:20:00 1 100-120 day grainfed | R 428 282 89 8.846
08/12/2021 22:05:00 2 100-120 day grainfed | R 435 305 92 6.582
09/12/2021 13:05:00 3 100-120 day grainfed | L 410 235 88 6.581
27/11/2021 00:45:00 4 100-120 day grainfed | L 445 235 76 6.679
Averages & Totals 430 264 86 717

To draw more insight into the fat characteristics, a node location
convention was created to ensure that inter-striploin measurements could
compared and intra-striploin patterns could be recognised. Since the
spine and rump edges were most consistently cut square between
striploins (identified in Section 3.2), the origin of the sensing mesh was
measured in reference from the Caudal (Rump) face and Medial (Spine)
edge. A permanent marker was used to mark the location of the origin of
a sensing node mesh on the plastic wrapping of each striploin on the face
of the subcutaneous fat. With the origin defined, a template created from
clear plastic 10 mm x 10 mm grid was used to both align to the rump face
and mark the measurement nodes array on each striploin (see Figure

3-20). The final origin locations of each striploin are defined in Table 3-9.

Figure 3-20: A clear, plastic grid was aligned with the origin and used to mark up the 25 mm X 50
mm spacings to create the node mesh on each striploin.
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The variability of striploin dimensions in the dataset meant that the
origin placement varied slightly with placement being as to ensure as
many nodes as possible in the mesh would be marked on the surface of
the striploin. By defining the origin similarly and aligning the node mesh
perpendicular to the Caudal face, which was generally cut perpendicular
to the spine edge, this enabled the spatial relationship of fat depth to be
evaluated across the entire striploin dataset despite variance in dimension
(length and width) and orientation (LHS/RHS).

Table 3-9: A summary of the measurement node mesh for the striploin dataset.

Measurement Nodes of Striploin Dataset

Striploin# L/R Faces (X) Markings (Y) Nodes Origin, X (mm) Origin, Y (mm)

Averages & Totals 38 52.5

The chosen spacing of measurement nodes was predetermined to
align with industry work being conducted simultaneously. The spacing
used for this node mesh was 50 mm in the X direction (across the length
/ medial-ventral anatomical plane of the striploin) and 25 mm in the Y
direction (across the width / caudal-cranial anatomical plane of the
striploin). This created a node array of measurements that could be
spatially registered for evaluation between other striploins regardless of
dimensions and type (both LHS and RHS). In addition to humbering each
node (i,j) based upon its x and y coordinate the terminology of “point” (y)

and “face” (x) was used (see Figure 3-21).
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Figure 3-21: The location of the measurement nodes marked for each striploin illustrated
on a RHS striploin.

The plastic wrapping of the striploin was pierced using a stainless-
steel skewer and marked with black, food-grade gel on the surface of the
fat to ensure these measurement points remained at the same location
(see Figure 3-22). A sharp boning knife was used to make a cross-
sectional cut along the transverse plane of the striploin to expose the

measurement nodes on each face (see Figure 3-23).
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Figure 3-22: Marking the location of the measurement nodes on the striploin fat surface using
food-grade gel.

N

Figure 3-23: Plastic wrapping was cut to create the cross-section face to measure fat thickness at
each of the nodes.

The fat depth at each node was measured at each face using a
stainless-steel ruler (see Figure 3-24). The fat depth measurements for all
nodes were recorded and tabulated on Excel. Comments were also

recorded for the instances of discrepancies and interesting phenomena
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with regards to the interfaces seen within the cross-section of the
striploin. The depth of fat is determined to be the distance from the fat
surface to the fat-lean or fat-sinew interface measured perpendicular to
the fat surface. The measurement axis of the ruler taken for a cross-

section / face is shown in Figure 3-25.
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Figure 3-24: Manual measurements of fat depth at each node were taken using a stainless-steel
ruler aligned perpendicular to the fat surface at each face.
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Figure 3-25: The fat depth measurements (red arrow) at each node was measured perpendicular
from the fat surface to the fat-lean or fat-sinew interface at a 25 mm pitch (for cross-sections at
50 mm thick) illustrated on a RHS striploin.
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One limitation of the measurement process is that there will always
be a discrepancy between fat depth measurements taken prior to, and
after, trimming. This is due to the product specifications measuring
maximum fat depth radial from the fat-lean interface of the striploin,
though without the capability of offsetting the trim tool perpendicular to
the fat-lean surface there will be a misalignment of the pre-trim and post-
trim measurement planes. This is illustrated below for a method of

measuring fat depth perpendicular from the fat surface (see Figure 3-26).

Node Misalignments

Fat is measured differently post-trim.
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(various depths) (12 mm)

Figure 3-26: The misalignment of measurement axes prior and post trimming illustrated
on a RHS striploin is deemed insignificant in this analysis.

The magnitude of measurement misalignment error (6,) between
the fat thickness measurements, pre-trimming (FTp,.) and post-trimming
(FTpest), is dependent upon the difference in angle between the fat surface
and fat-lean interface at each considered node and the desired fat trim
specification (FTp,s ). This unavoidable error is visually illustrated in Figure
3-27.
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Figure 3-27: An illustration of the insignificant error between pre-trim (measured by a sensor) and
post-trim (measured by quality assurance) that occurs due to misalignment of measurement axes.

This error is expressed formulaically in Equation 3.1.

Equation 3.1: Unavoidable misalignment error between sensor and post-trim fat depth

Misalignment Measurement Error, Ey = FTpre — FTp,: cos(6),

where:
FTp,., = target fat thickness pre-trim
FTp,s: = final fat thickness post-trim
6 = the angle difference between FTp,, and FTp,q:

measurement axes (perpendicular to the fat surface)

It should be noted that the ‘bridging’ definition used to accept or
reject fat trim (see Section 2.1.3) substantially reduces the likelihood of a
significant angular error due to omitting steep, intramuscular fat seams
being considered the point of measurement against fat specifications. As
such, an angular difference between the fat surface and fat-lean interface

may be considered to be within the magnitude of +30 degrees (30° < 6 <
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30°). Using the formula above (see Equation 3.1), an approximation of

this misalignment error for a 12 mm fat specification is calculated below.

Ey =12 — 12 cos(+30°)
Ey =12-10.39
Ey = 1.61mm

An error of 1.61 mm has been considered negligible compared to
several more substantial errors that are present within such validation
processes (e.g., human measurement, sensor measurements,
deformation during trimming, etc.). As such, whilst it is important to
acknowledge this error it is considered insignificant to the work conducted

further in this research.

3.4.2 Experimental Analysis

A statistical analysis of the manually measured fat depth dataset
(fu) of the untrimmed beef striploin was conducted to provide information
important to define the operational context (e.g., required sensing depth,
node spacing, etc.) to aid the development of a suitable sensing system

and sensor performance matrix.

Literature suggests investigation of the dataset distribution of this
fat depth dataset (fy) using the Kolmogorov-Smirnov Test (K-S Test) to
determine the most appropriate statistical measures to be identified
(Jakob, 2021; Specht, 2020; Lall, 2015). In applying the K-S Test it was
identified that this dataset was not dissimilar enough to a normally
distributed dataset of the same characteristics to reject the null
hypothesis of being normally distributed. The conclusion that this dataset
is normally distributed is further supported by the kurtosis and skewness
statistics shown in the results of this section. Therefore, mean-derived
statistical measures (mean, standard deviation and confidence interval)

were used for this analysis.
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For this application it is critical to identify the range of fat depth to
ensure that this can be considered in the selection of a sensor. This is
calculated using the unfiltered dataset due to the insignificant skew

introduced by outliers in this dataset (see Equation 3.2).

Equation 3.2: Range of Fat Depth

Range of Fat Depth, R(fy) = Max(fy) — Min(fy),

where:
fu = the total dataset of fat depth measurements acquired

using a ruler (manual measurements)

The addition of a spatial analysis of the fat depth distribution across
the untrimmed striploin dataset will enable location-specific insights to be
identified. This will inform conclusions that optimise the sensing mesh and
cut path generation of an automated system. As such, the following node
location and the coordinate system will be employed to enable a spatial
description of each node as a unit volume (see Figure 3-28 & Figure
3-29).
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Figure 3-28: Unit volume for each measurement node illustrated on a RHS Striploin.
Note: 1R had 8 x 9 & 2R had 9 x 9 node mesh (faces/columns X points/rows).

Figure 3-29: Unit volume for each measurement node illustrated on a LHS Striploin.
Note: 3L had 8 x 7 & 4L had 8 x 8 node mesh (faces/columns X points/rows).

The striploin fat depth measurements for each node would be
averaged across each type, RHS (1R & 2R), LHS (3L & 4L) and in entirety
(1R, 2R, 3L, 4L), according to each node position (i, j). In the case
whereby there are no measurement acquired from a striploin at a

particular node (due to differing node meshes) the node was not
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considered in the calculation of average fat depth. This will be calculated

as shown in Equation 3.3.

Equation 3.3: Calculations for average fat depth at each node (LHS, RHS & Combined)

Average fat depth at each node (RHS Striploin Dataset),

m n
RHS,; — ’
L nl’j

j=11i=1

Average fat depth at each node (LHS Striploin Dataset),

m n
LHS,, = ’
Y ni,;

j=11=1

Average fat depth at each node (Combined Striploin Dataset),

)

m n
zzFlRi'j +F2Ri‘j+F3Li,j +F4Li,j

FC -
L] nl,]

j=11i=1

where:

Fir, o For, jp Favg o Fany; = the manual fat depth measurement

matrices for each striploin (1R, 2R, 3L, 4L) with dimensions
(n,m)
n;; = the number of measurements acquired for the striploin

node (i,j) for each dataset (LHS, RHS, combined)

Visualisations were developed to graphically evaluate the spatial
relationship of fat depth across the striploin dataset fat depth
measurements. The number of nodes were equal to or less than the fat
specification (12 mm), as well as the respective distribution of fat
throughout the striploin considering measures of mean-derived
distribution measures. This will inform automation optimisation through
defining the location of nodes that are most likely to not require sensing,
or trimming, and the capability of estimating fat depth based upon spatial

location of the node within the primal.
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Evaluating the gradient of the change in fat depth across the
striploin will provide insight into the mechanism of sensing and trimming
for a production system. This would include considerations such as: the
number, and location of, nodes (optimised for less nodes that are more
descriptive to the fat profile) and the most appropriate trimming
orientation (the gradient of fat depth introduces complexity within
actuation and fixation). The nodes within the combined average fat depth

matrix (Fc,,) that is less than the fat specification (12 mm) will be

overridden as 12 mm to then calculate the gradient of the trimming blade
for automated trimming of this dataset (as there is no need to trim values
of fat depth less than the fat specification of 12 mm). This will be denoted
by a trimming cut path dataset, Te,jn which was calculated by applying the

filter as denoted in Equation 3.4.

Equation 3.4: Filtering of combined average fat depth dataset (Fe,,) for nodes with <12
mm fat thickness to create the trimming cut path dataset (TC”).

— Lj L]
|Fe,, > 12| = {0 e =12 }

The forward gradient of fat thickness with respect to both width and
length travelling out from the sensing mesh origin can be calculated using

Equation 3.5.

Equation 3.5: Forward Gradient of the trimming cut path dataset ( Tc,, ).

0T, . 0T¢ .
Ty

Gradient of Average Trim Cut Path Dataset, VT, = 3y

where:
T, = the trimming cut path position represented as a matrix
of coordinates
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The gradient was calculated between nodes in x and y directions
independently for comparison, where 'x’ is considered to be along the
length of the striploin and ‘y’ is considered to be along the width
(trimming from medial to lateral nodes). The forward gradient along the

striploin length and width is illustrated in red and blue respectively in

Figure 3-30.

—> Gradient along Y / Point
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Figure 3-30: An illustration of gradient vectors calculated from average fat depth at each node of
striploin datasets developed using a RHS striploin image.

The scalar gradients of the trim cut path for each direction,

individually, can be expressed formulaically (see Equation 3.6).

Equation 3.6: Scalar Forward Gradient of the trimming cut path dataset (TCU ).

n—-1
. . . . . 'd aTC TCi+1 - TCl
Gradient of Trim Cut Path Dataset in X direction, Tc, = I = SR v—
X i X
m—1

. , , . , . oT¢ TCj+1 - TCj
Gradient of Trim Cut Path Dataset inY direction, Tcy = E = Z T ,
j=1
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where:
Te,, = the trimming cut path position at the particular node
(i,3)
Ax = the average node spacings in the x direction (50 mm)

Ay = the average node spacings in the y direction (25 mm)

To practically consider the effect of fat thickness gradient in each

direction (T'Cx , T;y), the gradient matrices were evaluated for maximum

absolute gradient, maximum positive gradient and average absolute
gradient. This is calculated, for both ‘x’ and ‘y’ components of T, to
compare, and provide insight towards, the trimming orientation of beef
striploin. In practicality, difficulties arise in particular trimming scenarios
as identified in previous trials delivered upon with industry
(Khodabandehloo, 2019), such as:

A) a large change in blade/trimming tool position (gradient): due to
the potential of ‘scalloping’ and disfiguring the presentation of the
striploin surface,

B) a large, upward of position (positive gradient): due to the potential
of the blade lifting the striploin upon rapidly changing orientation
within the fat,

C) the average change in position of the trimming tool: due to the
additional programming complexities and the movement time of the

robot.

3.4.3 Results

The analysis of the fat depth measurements using reference
measurements was conducted for all measured nodes (n = 272) with
additional tables and figures included in Appendix B: Dataset for Manual
Fat Depth Measurements. The results of the K-S test for normality are

presented in Table 3-10. These results indicate that there is a non-
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significant difference between this unfiltered dataset and the equivalent
normal distribution dataset (D(272) = 0.062, p = 0.243), and so the

dataset was determined to be normally distributed.

Table 3-10: K-S Test results for manual fat depth measurements generated using an
online K-S Test statistics tool (Statistics Kingdom, 2022)

Parameter
P-value

D

Sample size (n)
Average (x)
Median

Sample Standard
Deviation (S)

Sum of Squares
K
Skewness

Skewness Shape

Excess kurtosis

Kurtosis Shape

Value
0.2429
0.06161
272
16.0018
15.5

7.8747

16804.7491
1.0161
0.4865

A Asymmetrical, right/positive
(pval=0.001)

0.4278

‘ Potentially Mesokurtic, normal like
tails (pval=0.146)

Unfiltered and outlier-filtered (+- 3SD from the mean) datasets

were statistically evaluated to evaluate the effect of these outliers to the

manual measurement dataset. These datasets are seen to be similar as

shown in Table 3-11.
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Table 3-11: Statistical summary of manual fat depth measurements (n = 272)

Fat Depth of Striploins (n = 272) for Manual Dataset

Statistical Measures Unfiltered Filtered Dataset
Dataset (3SD)
Minimum Fat Depth (Qo) 0 mm 0 mm
25th percentile of Fat Depth (Q1) 11.0 mm 11.0 mm
Median of Fat Depth (Q2) 15.5 mm 15.0 mm
Mean of Fat Depth 16.0 mm 15.7 mm
75th percentile of Fat Depth (Q3) 21.0 mm 21.0 mm
Maximum Fat Depth (Q4) 44.0 mm 38.5 mm
Interquartile Range (IQR) 10.0 mm 10.0 mm
Standard Deviation (SD) 7.9 mm 6.8 mm
Range (Max - Min) 44.0 mm 38.5 mm
Lower Outlier Boundary (3SD) -7.6 mm -4.8 mm
Upper Outlier Boundary (3SD) 39.5 mm 36.1 mm

Three outliers (3SD) were identified within the unfiltered dataset (40

mm, 40.5 mm and 44 mm); though the slightly positive skewed distribution

(right tailed) was not particularly created from these outliers. Instead, the

skewness of this dataset was primarily due to the significant number of

measurements below the dataset mean.

The unfiltered dataset was

concluded to be representative of the fat depth measurements and therefore

used for further analysis. The distribution of this dataset is illustrated in

Figure 3-31 & Figure 3-32.
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Figure 3-31: Histogram plot for the fat depth across measurement nodes.
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Figure 3-32: Distribution plot for the fat depth across measurement nodes.

The histogram and distribution of the fat depth measurements
(manual measurement) reflects a normally distributed dataset and
highlights the significant distribution of measurements being centrally
distributed at the mean (16 mm). This analysis quantifies the
characteristic fat depth of the striploins that are to be presented for fat
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trimming. For a 95% confidence interval, the subcutaneous fat depth of 0
- 32 mm can be expected for an untrimmed striploin with the maximum
depth being 44 mm. This is an important consideration for defining the
range of a suitable sensor to measure fat depth of untrimmed striploin

primals.

The cumulative histogram illustrated in Figure 3-33 highlights that
approximately 45% of all nodes measured for this analysis have less than
12 mm of subcutaneous fat depth. If the trimming threshold was
increased to 17 mm (since trimming at a depth of only 5 mm could be
difficult for a slicer or robot) then the number of nodes required to be

trimmed would be further reduced to 28% of those surveyed.

Nodes Requiring Trimming for 12mm Fat Specification
100 100%
90 90%
80 80%
70 70%
60 60%
50 50%
40 40%
30
20
10
0

Frequency

30%
20%
10%

0%
<12 (12, 17](17, 221(22, 271(27, 321(32, 371(37, 40] > 40

Fat Depth (in mm)

Figure 3-33: Nodes requiring trimming for the fat trim specification of 12 mm.

The spatial analysis the average fat depth for untrimmed striploin
types, LHS & RHS, is illustrated separately (see Figure 3-34). These
figures illustrate the locations of nodes that have 12 mm of less fat depth
(coloured red) and hence do not require trimming or sensing. Note: The
LHS striploin is vertically flipped to align to anatomical planes (caudal-

cranial, lateral-medial) of the RHS to visualise spatial patterns more easily
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Figure 3-34: RHS & LHS striploin datasets highlighting unit volumes with 12 mm or less fat depth
(highlighted red)..

By combining all corresponding nodes of the total striploin dataset
and mapping averaging fat thicknesses (e.g. average fat thickness for
node i,j for all LHS and RHS striploins) this spatial fat distribution pattern

is further emphasised (see Figure 3-35). The pattern illustrates that
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measurement nodes within 50-75 mm of the striploin spine edge (both
LHS and RHS) will typically not require trimming or sensing. This pattern
illustrates the exception of a fat deposit approximately found 50 mm from

the cranial face of the striploin.
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Figure 3-35: Combined striploin dataset highlighting unit volumes with 12 mm or less fat depth
(highlighted red) illustrated on a RHS striploin primal.

For each of these datasets (LHS, RHS and combined) the fat depth
distribution dataset (normally distributed) can be spatially observed

considering their respective mean and standard deviation (see Table
3-12).
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Table 3-12: Statistical summary of fat depth measurements for LHS, RHS and Combined
Striploin Datasets

Statistical Summary of Striploin Dataset Fat Depth

Minimum

Q1 (25%) 9 13.25 11
Median 13.5 18 15.5
Mean 14.6 17.8 16.0
Q3 (75%) 18 22.5 21
Maximum 44 40.5 44
Standard Deviation 7.6 7.9 7.9

These datasets are illustrated with the average fat depth highlighted
red for unit volumes with less than or equal to their average and the
atypically large average fat depths more than 1 standard deviation above
the mean (the largest 32%) being highlighted green (see Figure 3-36 &
Figure 3-37). These figures illustrate the large deviations of fat depth
across the striploin. The LHS striploin in Figure 3-36 is vertically flipped to
align to anatomical planes (caudal-cranial, lateral-medial) of the RHS to

visualise spatial patterns more easily.
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Figure 3-36: RHS (top) & LHS (bottom) striploin datasets highlighting large deviations of fat depth
across the striploin.
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Figure 3-37: Combined (RHS & LHS) striploin datasets highlighting large deviations of fat depth
across the striploin.

The forward gradient across the typical striploin using the cut path
for the average fat depth of the combined striploin dataset is shown in
Figure 3-38 and Figure 3-39. A summary of the gradient measures of
each direction of cutting is shown in Table 3-13 which identifies significant
gradient statistics for trimming along the striploin length (X) and width
(Y). These gradient measures differ significantly for trimming cut paths
along the length and width of the striploin. For trimming across the length
(X direction) of the striploin it would be approximately half of the
gradient, both on average and as a maximum, in comparison to trimming

across the cross-section of the striploin.
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Figure 3-38: Forward gradient of the tool cut path moving along the length of the striploin
calculated with combined average fat thickness dataset.
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Figure 3-39: Forward gradient of the tool cut path moving along the width of the striploin
calculated with combined average fat thickness dataset.
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Table 3-13: Summary of Gradient Measures for Striploin Dataset

Summary of Gradient Measures for Trim Cut Path (Tc)

X 35 189 18.9
Y 6.9 35.5 355
Relative
Difference 51% 53% 53%

3.4.4 Discussion
The findings within the analyses presented on the subcutaneous fat
distribution of beef striploins highlight several insights for informing the

automation of fat trimming beef striploin.

The striploin primal's length, width, height, and weight show
considerable variability, with the width and weight exhibiting the most
variability. This variability is largely due to human error in the
approximation of cutting lines and the curvature of the cranial/rib face.
This finding supports referencing the node mesh from the spine edge and
the caudal cross-section to define the sensing mesh for the remainder of
the research and is recommended in future work. This will provide a more
accurate reference between the sensing nodes with respect to locations
on the striploin and therefore enable node-by-node spatial relationships to

be comparable in future work.

The fat depth measurements, conducted for all measured nodes (n
= 272), were identified to be normally distributed (at a 95% confidence
level) without major outliers skewing the characteristics of the dataset.
evaluated for normality using the K-S test at a 95% confidence level. This
suggests that statistical analyses that derive from the mean may be
adequate for characterising the fat distribution of a striploin by mean-

derived statistics for comparative evaluations. This is useful for the
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application of developing fat depth models based upon typical fat depth
characteristics. For example, perhaps interpolation by the mean may be
used for developing an automated system for use in a different processing
plant if the means can be compared. Additionally, this analysis has
highlighted the typical range of fat depths that a sensing system will need
to measure to. The mean fat depth was found to be 16 mm, with a 95%
confidence interval indicating that the majority of measurements will be
at fat depths between 0 - 32 mm. The deepest measured fat depth in this
dataset (n = 272) was identified to be 44 mm. In contrast, literature
suggests that the fat depth of an untrimmed beef striploin is 2 mm - 75
mm though this investigation was conducted at a single processing plant
which differs from the processing plant consulted for this thesis
(Khodabandehloo, 2018). To ensure that the maximum range is designed
for, the fat depth range for untrimmed beef striploin will be considered 0
- 75 mm. This range is an important consideration in Chapter 5 and 6 for
defining the depth penetration capabilities of a suitable ultrasound sensor

to measure fat depth of untrimmed striploin primals.

The analysis of fat depth characteristics revealed insights useful for
the development of an automated fat trimming system. Overall, it was
found that 45% of nodes are typically less than 12 mm in fat thickness
with an average fat depth of 16 mm (72% of nodes). Such findings
provide insight into the possibility of determining erroneous values that
can occur through sensor malfunctions and therefore prevent instability in

the control system in generating cut paths.

The spatial patterns presented with reference to the anatomical
location on the striploin provide insights towards the optimisation of the
sensing and trimming node mesh and the cycle time of an automated
system. The key anatomical patterns identified for striploin fat thickness
datasets (shown in Figures 3-38 & 39) that inform practical optimisation

strategies are provided below:
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Typically, nodes that were within 50 mm from the spine edge
of the striploin exhibited a fat thickness of less than 12 mm.
As such, 22.2% of the node mesh may be omitted from the
sensor node mesh. With generalised presumption that 4 mm
error is unnoticeable the nodes within 75 mm from the spine
edge can be omitted (33.3% of nodes).

A region of significant fat depth significantly higher than the
mean of the distribution located at 50 - 200 mm from the
caudal face and from past 75 mm from the spine edge to the
flank edge. This area of interest travels from the flank edge
into the striploin along a 45-degree cross-section between the
caudal face and flank edge. An optimisation strategy would be
to reduce the node spacing within this region (more nodes per
area) and increase the spacing in other areas of the striploin
that has a more uniform fat thickness distribution. This would
enable the sensor node measure to better fit the striploin fat
profile without increasing the number of nodes and extending
the cycle time of the sensing routine.

The striploin tail has a significantly higher distribution of fat
thickness that typically extends 50 mm from the flank edge.
This fat thickness is consistent across the entire length except
for the centre and the cranial face which spikes with large fat
deposits. An optimisation strategy would be to reduce the
node spacing in the centre to capture the fat profile in more
resolution at the deep fat deposit and perhaps use a camera
to measure fat thickness on the cranial face of the striploin.
This would enable the sensor node measure to better fit the
striploin fat profile at the area of large fat deposits without
increasing the number of nodes and extending the cycle time

of the sensing routine.
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An even more substantial optimisation could be achieved if the fat
thickness at the anatomical location of these nodes could be estimated
without as many or any sensing nodes at all based on a heuristic model or
estimate. The normally distributed fat depth dataset suggests that simple
mean-derived heuristics may be employed to estimate fat depth but
further work with a significantly large dataset is required to conclude on

this hypothesis.

The gradient measures, which differ significantly for trimming cut
paths along the length and width of the striploin, clearly indicate that the
least complex orientation of trimming is along the X axis (lengthwise).
The average gradient changes mean that a more complex cut path is
required in the widthwise direction. The maximum gradient, which is twice
as complex when travelling across the faces, poses challenges in robotics
due to the potential of lifting of the primal (prone to occurring with steep
positive gradients) or the inability to manipulate the tool within the meat
without deviating from the generated cut path through deforming the
striploin. As such, with the findings presented (see Table 3-13), it was
recommended that trimming lengthwise be advantageous for
considerations of the tool cut path gradient. This would further ensure
that the automated trimming system is capable to perform without the
limitation of the cutting tool being dextrous enough to cut into sudden,

deep pockets of subcutaneous fat.

3.5 Conclusion
The research conducted in this chapter has provided significant insights
into the key parameters and characteristics that need to be considered for
developing an automated fat trimming system for beef striploins:
- The physical characteristics (dimensions, weight, shape, fat
cover), and variability of these dimensions, for a typical
striploin presented to Slicers through the processes

implemented by the collaborating processor.
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- The processing constraints (time, space) to be considered for
the process of fat trimming beef striploin.

- The range and spatial distribution of subcutaneous fat tissues
across beef striploins to be considered for defining the sensing

node mesh and trimming cut path of an automated system.

The striploin’s dimensions and weight ranges and variability inform the
definition of the work volume and payload requirements of an automated
system. This processing cut path variability that occurs largely due to
human error in the boning process causing curvature of the cranial/rib
face and variation of the flank edge identifies the caudal/rump face and
the spine edge being most consistently cut. This finding supports
referencing the node mesh from the spine edge and the caudal cross-
section to define the sensing mesh for the remainder of the research and
is recommended in future work. This will provide a more accurate
reference between the sensing nodes with respect to locations on the
striploin and therefore enable spatial relationships to be implemented to

optimise the sensing node mesh and robotic cut path development.

The condition of the fat cover also shows variability, with instances of
fat cover damage observed in some striploins. However, the expected
probability for instances of fat tears affecting measurements for a fat
trimming system was calculated to be only 10%, which was considered
insignificant to the sensing node mesh. As a result, for this study the
subcutaneous fat surface will still be considered for ultrasound sensing in

contrast to the recommendation from Khodabandehloo (2018).

The time-motion analysis identified an average processing time of 27
seconds for the fat trimming element of the Slicers’ trimming tasks, with
a 95% confidence interval for a processing time range of 12 - 42
seconds. Further, only 2 units could be reasonably installed for fat

trimming due to the limited number of fat trimming stations available, all
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with the approximate footprint of 1x1.5m. These constraints further
inform that the total cycle time (sensing and trimming) of a feasible
automated system will need to be between one to half of the processing
line speed. This timing provides a guideline for the response time that an
automated system should aim for when completing automated fat
trimming operation. With the presumption of operating at the same speed
as a human operator, this constraint defines the cycle time to
approximately 27 - 54 seconds per striploin. This provides an estimate for
which to aim towards for both sensing and trimming to be completed
within and gives an appropriate benchmark for determining response time
of a suitable sensor (see Chapter 4) and an appropriate number of nodes

in the sensing mesh of a feasible automated system.

Due to the requirement to apply ‘bridging” and ‘planing’ techniques to
suitably trim striploin to specification a path-planning sensing approach is
required. This highlights the importance of using a sensing node mesh to
define a cut path as opposed to simply generating a cut depth at each
node independently. This highlights the importance of optimising the
sensor hode mesh to balance the need of completing the sensing cycle as
soon as possible (dependent upon the sensor response time and the
number of nodes in the mesh) whilst representing the fat profile as
precisely as possible to provide the best capability to trim to a maximum

fat specification of 12 mm on a continuous path.

The analysis of the subcutaneous fat depth of beef striploin has
revealed several key characteristics that have significant implications for
the development of a suitable sensing system and an automated system
for uniform fat trimming. The fat depth measurements were identified to
be normally distributed, with a mean fat depth of 16 mm and a 95%
confidence interval indicating that the majority of measurements will be

at fat depths between 0 - 32 mm. The deepest measured fat depth was
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identified to be 44 mm - hence this will be considered for the penetration

depth range of a suitable ultrasound sensor.

With further insights from applying sensing to acquire fat depth
measurements, and further analysis of fat distribution, an optimisation of
node locations are likely to contribute towards automation optimisation. A
probabilistic approach, based upon spatial relationships of fat depth
distribution across the striploin would enable many nodes to be omitted
from the sensing and trimming processes of the automated system. The
normality of fat distribution, and the spatial patterns observed suggest
that through further analysis spatial modelling may assist or enhance fat
depth estimations alongside, or in replacement, of sensing techniques as
well as the capability to apply generalised cut path and fat depth
learnings between processors through a comparison of mean fat depth of

‘typical’ striploins.

The gradient measures indicate that the least complex orientation of
trimming is along the X axis (lengthwise). As such it is suggested that the
trimming orientation, and therefore if sensing is to occur just in front of

the trimming, the sensing process should also be measured lengthwise.

In conclusion, the findings of this chapter provide a comprehensive
understanding of the key parameters and characteristics that need to be
considered for developing an automated fat trimming system. The
insights gained from this study contribute towards the broader objective
of developing an automated system capable of trimming excess fat on
beef striploins, informed by a thorough analysis of fat characteristics and
industry standards. This chapter contributes towards the following chapter
to describe the parameters to be considered within a sensor performance
metric to define feasibly ultrasonic sensors for development within

sensing systems presented in Chapter 5 and 6.
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CHAPTER 4: SENSOR PERFORMANCE METRICS
USING CT BENCHMARKING

This chapter outlines the development undertaken to enable
computed-tomography technology to be used for the application of
measuring the fat depth of a beef striploin primal. The output of the CT
analysis is the estimation of the ‘gold standard’ for which more practical
sensors may be evaluated against. In addition to providing benchmarking,
CT imaging measurements were utilised to evaluate the fat depth of beef
striploin primals prior to trimming to inform the operating range required

of a sensor for this application.

The output of this chapter is a weighted performance evaluation
matrix to define the minimum feasible requirements and best possible
performance for a sensing system capable for integration within an
automated beef striploin fat trimming system. This performance
evaluation matrix identifies the key performance metrics deemed most
appropriate to the application of beef striploin fat trimming is presented
as well as their significance to evaluating an appropriate sensing system

(denoted by a metric weighting).

4.1 Introduction

To benchmark these performance metrics a sensing system was
developed using CT imaging that was capable of acquiring the
measurements that could inform automated trimming. Alighed to
literature, this investigation enables the approximation of what is possible
using the ‘gold standard’ of medical-grade sensing and, in conjunction
with considering the context of this application, provides insight into how
a suitable sensing system may perform with respect to these metrics
(Merriam, 2005; Cook, Shirazi & Gardner, 2016; Cook & Anderson, 2017,
Morton, 2020; Four Dimensional Digital Imaging Inc, 2021). This
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evaluation will also define the significance of each of these metrics to

inform a suitable sensing system will be investigated.

4.1.1 Performance Metrics

Within literature it is common for a sensor evaluation framework to
be applied in order to evaluate the performance of a sensor for a
particular application (Coravos et al., 2020; Kuorilehto, Hannikdinen &
Hamaldinen, 2008). To design such a framework, the key metrics that are
of high importance for the particular application, and context the sensor is
used, needs to be identified (Border, 2016). Once these performance
metrics are defined weightings can be associated with these to ensure
that each metric is considered proportional to their importance (Zhao,
Song & Xin, 2011; Rieger & Majchrzak, 2016).

The selection and prioritisation of performance metrics for sensor
evaluation are highly application-specific. To effectively assess sensor
performance in the context of automated beef striploin fat trimming, it is
crucial to consider the unique requirements of this application (Niesten et
al., 2019; Brooke, 2016). The relevant performance metrics will be
identified, substantiated by literature, and then used to establish a
tailored evaluation framework for this specific application (Drury et al.,
2022; Song et al., 2022).

The tolerances and numerical targets of the metrics for an
evaluation framework must be defined within the context of the specific
application The flexible and non-homogenous nature of meat products
means that ‘true’ reference measurements are difficult to define. As such,
to better define these performance metrics a ‘gold standard’ sensing
system is appropriate to provide a measurement of the best available
performance per consensus as a reference (Versi, 1992; Goldsack, 2020).
This approach is typically used within literature to define the performance

metrics, and thus the performance of sensors, in comparison to the
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sensor that has consensus to provide the best performance (Godfrey et
al., 2015; Midller et al., 2017). For the application of sensing tissue
interfaces within red meat processing the ‘gold standard’ sensing
technology is considered to be medical grade CT imaging (Meat &
Livestock Australia, 2022).

4.1.2 Chapter Aims
The aim of this chapter was investigated through the two research
questions posed to focus this chapter to address the various

considerations within the objective.

1) What is the ‘gold standard’ performance for sensing fat depth
using CT imaging according to the performance metrics considered

important for developing a fat trimming automated system?

2) Considering performance metrics, context-derived weightings,
and ‘gold standard’ benchmarks, how can a sensor performance

evaluation matrix be created for the context of automated fat trimming?

4.2 Experimental Setup

This section provides the data collection and data analysis methods
implemented to benchmark a medical-grade CT imaging system. This
sub-section includes the methods for CT imaging of striploins, the
registration of nodes between CT and manual measurements, and the

calculation of error between the CT and manual measurements.

Experiment Samples: The same samples (Striploin 1R, 2R, 3L &
4L) were used as those selected for the analyses presented within
Chapter 3. These 4 striploins deemed to be ‘typical” as their dimensions
and characteristics were within 2SD of the survey conducted in Chapter 3
(see Table 4-1).
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Table 4-1: Comparison of striploin dataset with ‘typical’ striploin characteristics.

Dataset vs Typical Striploins

Lspme Werump Huwmax Weight

Striploin # L/R (mm) (mm) (mm) (kg)
1 R 428 282 89 8.85
2 R 435 305 92 6.58
3 L 410 235 88 6.58
7 L 445 235 76 6.68
Average 430 264 86 717
Lower Bound (-2SD) 387 220 72 6.63
Upper Bound (+2SD) 457 310 103 9.98

Node Marking: The nodes were marked on the plastic of the
striploin fat surface as shown in Chapter 3 before CT imaging (see Figure
3-21).

Fat Depth Measurements using CT Imaging: A Siemens Somato
GoUp CT machine was used to acquire the reference measurements for
this experiment. Striploins were stored in a refrigerated trailer before and
after CT scanning and were not unwrapped or cooled during the scanning
process which took approximately 10 minutes including preparation. A
simple rig was used to allow the striploins to lay flat on a board to prevent
the deformation of this fat profile during scanning. The striploins were
aligned using the laser sight of the CT to ensure that the cross-sectional
images of the CT were close-to perpendicular (see Figure 4-1). This plane
alignment simplified the visualisation of the fat profile throughout the

striploin and assist in providing a means of calibrating images.
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Figure 4-1: The laser lines of the CT imaging system were used to align to the front edge of the
striploin (rump / cranial face) to align nodes to appear on similar cross-sectional images.

In preliminary CT imaging trials it was found that this alignment
method was not accurate enough to use to determine the position of
nodes within CT images without additional aids. Medical-grade CT
markers which consisted of 2.1 mm ball bearings embedded within
adhesive tags were attached to the nodes of the striploin prior to scanning
(see Figure 4-2). In doing so, the position of these nodes was able to be

visualised in 3D space within CT images (see Figure 4-3).
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Figure 4-2: The adhesive CT markers were attached on the plastic at the locations of the
prescribed measurement nodes.

Figure 4-3: Screenshot of CT images illustrating CT markers highlighting measurement
node locations shown on Striploin 1.
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Although the CT markers provided referencing positions (nodes) to
be identified these caused image distortion commonly referred to as
artifacting. Thes CT markers affected image clarity and the ability to
clearly identify the fat surface to measure from (see Figure 4-4). To avoid
artifacting issues a nearby image was chosen to measure from. As each
image is a 0.6 mm slice it was deemed that offsetting a few images would
be an acceptable compromise. In this analysis the maximum number of
images offset to avoid artifacting was 4, and hence a maximum offset of

2.4 mm from each measurement node (see Figure 4-5).

Zoom: 92.19% : Name: 1L
Series:3/8 Id: 112821
Image: 87 /501 Owner: Border, Fraser
View: Pelvis Pre C- 1.00 Soft Institution:
Study Date: 01/11/2021, 5:06 pm
Acq Time: 01/11/2021, 5:09 pm m
5

W/L: 400/40 A Rotation Angle:0° w

Figure 4-4: CT markers illuminating the position of measurement nodes though causing artifacting
within CT images.

Zoom: 92.19% - Name: 1L

Series: 3/8 Id: 112821

Image: 85/501 Owner: Border, Fraser

View: Pelvis Pre C- 1.00 Soft Institution:
Study Date: 01/11/2021, 5:06 pm
Acq Time: 01/11/2021, 5:09 pm

H. Flip
W/L: 400/40 Rotation Angle: 0°

Figure 4-5: An example of offsetting by 2 images (e.g., from Image #87 to #85) to remove
artifacting in an image for Striploin 1.
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The collection of images within the CT scan of each striploin were
uploaded to the Siemens cloud repository (called Asteris Omni). The pixel
per mm calibration of these images was conducted by correlating an
image and physical measurement. The known width of the plastic board
the striploin was scanned on was used. Measurements were made using
the ‘ruler’ software tool at the locations of the visualised measurement

nodes and tabulated in Microsoft Excel (see Figure 4-6).

Zoom: 234.43% y Name: 2L
Series:3/8 Id: 112822
Image: 59/476 Face 1 Owner: Border, Fraser

View: Pelvis Pre C- 1.00 Soft Institution:
Study Date: 01/11/2021, 5:20pm

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Points | AcqTime: 01/11/2021,5:21pm ‘

H.Flip
W/L: 400/40 A Rotation Angle: 0°

Figure 4-6: An illustration of the fat thickness measurements acquired from CT images acquired
for rows (1 - 9) on face 1 of striploin 2R.

Fat Depth Measurements using a Ruler: The process of
acquiring fat thickness measurements through a manual process using a
stainless-steel ruler is outlined in Chapter 3. CT imaging was conducted
prior to manual measurements whereby the striploin was sealed in plastic
wrapping. After CT imaging each striploin was carefully unwrapped to
ensure the accurate preservation of the node locations. When the CT
markers were removed, at the same location (marked by the permanent
marker on the plastic), a stainless-steel skewer was used to pierce the
plastic slightly to mark the striploin surface (see Figure 4-7). This enabled

the registration of points between the manual measurements and the
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location of the CT markers in CT images by then using black, food-grade

dye ink to mark these nodes for manual measurement.

Figure 4-7: Method for registering nodes between CT imaging (using CT markers) and manual
measurements.

4.3 Experimental Analysis

The assessment of CT imaging for beef striploin fat trimming
focuses on identified performance metrics (accuracy, precision,
reliability), excluding those metrics observable only upon implementation
(operating range and response time). This benchmarking approach
facilitates a standardised evaluation of CT imaging as a sensor, compared
to manual measurements, and serves as a model for evaluating other

sensing technologies.

The following performance metrics for this application are proposed

and defined from drawing on the literature (Lewis & Groth, 2022).
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Accuracy & Precision: Accuracy is a performance metric that
refers to how closely the sensor's measurements correspond to the true
value of the quantity being measured, whilst precision refers to the
consistency of the sensor's measurements over time. These performance
metrics are typically considered most important for sensor evaluations
across literature (De Ponte Mdller, 2017). The system’s capability to trim
and to leave a uniform fat thickness as outlined in the fat specification is
dependent upon acquiring accurate measurements of fat depth along the
striploin. The outcome of trimming to leave a uniform fat thickness of 12
mm is required by industry, yet there is no acceptable error tolerance that
has been identified within literature or standard industry practice (AUS-
MEAT Limited, 2005).

Two methods of analysing the difference between reference and
sensor datasets are commonly cited within literature (Tomazevic, Likar &
Pernus 2004; Shcherbina et al., 2016). This may be through a statistical
comparison between means of the 2 datasets (reference and sensor
measurements), or else through the analysis of error (determining the
corresponding error between values within these datasets). The latter
analysis method best aligns with the aims of this thesis as it enables a
more in-depth analysis of evaluating sensor biases and systematic
differences as opposed to an evaluation predominantly focused upon
dataset correlations and describes the sensing system output in a form
more important for the overall system functionality (measurement error).
Literature evaluating sensor performance with similar research aims to
this investigation reflect the choice of this analysis method (Tomazevic,
Likar & Pernus 2004; Shcherbina et al., 2016; Kollman et al., 2005;
Fischer et al., 2021). This is further reflected in literature through
research that highlights the pitfalls of evaluating correlations of datasets
as an alternative to applying descriptive statistics on the differences
between sensor and reference measurements (Kollman et al., 2005;
Rodbard, 2014). This also ensures that the distinction is made that
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despite CT imaging being the “gold standard” in fat depth measurement,
it is not used to provide the reference measurements of which the final
system is judged. In actuality, the reference values, and how specification
is confirmed by the Quality Assurance (QA) process and the customer, is
the manual method (using a stainless-steel ruler). As such, the better
method for comparing all sensors for this application is through defining
the error between the reference value (ruler) and the sensor (in this case,
CT imaging). Therefore, this analysis will rely upon calculating the
measurement error (Ey_s) between ruler (manual measurement) and CT
fat depth measurements. This is expressed formulaically in a generalised
notation to be used with all evaluated sensing technologies of CT (Chapter
4), B-Mode ultrasound (Chapter 5) and A-Mode ultrasound (Chapter 6)

and shown in Equation 4.1.

Equation 4.1: Error between CT and manual fat depth measurements (CT - manual)

Error, Ey-s = fu—1s

where:
fu = the fat thickness measurement acquired manually using
a ruler (considered the reference measurement).
fs = the fat depth measurement acquired using the sensor to

be evaluated (considered the estimated measurement)

The inclusion of dataset outliers, and their significance to the
distribution of the dataset, was considered and informed whether they
should be filtered. If these were deemed to be considerably influencing
the dataset, they were removed using the 1.5IQR filtering method, also
known as Tukey’s Method (Hoaglin, Iglewicz & Tukey, 1986). In literature
this statistical method is seen to be used as a means of outlier
identification for non-gaussian data (normally distributed data) similar to
the dataset presented in this chapter and those preceding (Durai &
Shamili, 2022; Dash et al., 2023; Carling, 2000). The method for
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identifying outliers between reference and observed measurement errors
is used by Carling (2000). The following set of equations were used to
identify and remove outliers from the error dataset across all statistical

evaluations in this research (see Equation 4.2).

Equation 4.2: Identifying outliers within the error dataset (E).

Lower Bound Outliers < Q,(E) — 1.5*IQR(E)
Upper Bound Outliers > Qs(E) + 1.5« IQR(E)

where:
Q.(E) = the first quartile (25th percentile) value of the error
measurement dataset (E;) and considered the lower bound /
minimum value of this trimmed dataset
Q;(E) = the third quartile (75th percentile) value of the error
measurement dataset (E;) and considered the upper bound /
maximum value of this trimmed dataset
IQR(E) = the difference between the first (25 percentile)
and the third quartile (75th percentile) values

Whilst a number of statistical analyses were considered in order to
gain an understanding of the error between CT and ruler measurements,
only a few metrics were used to evaluate sensor performance in terms of
accuracy and precision. As suggested in the literature, measurement error
datasets typically do not follow a parametric or normal distribution and
display the characteristic of homoscedasticity and hence this assumption
is usually violated within statistical analysis methods (Kollman, 2005;
Rodbard, 2014; Alvarez et al., 2019; Falbriard et al., 2018; Anderson,
Moore & Cohn, 2000). As such, non-parametric statistical methods that
account for non-normality, skewed distributions and heteroscedasticity
(variance of residuals in a regression model isn't constant across all
values of the independent variable) should typically be considered when

expressing statistical measures of accuracy and precision. The literature
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suggests the most representative, and easy-to-compare, statistical
descriptors are median or median-derived (median difference, median
absolute difference, average median error, etc.) as this is applicable for
both unskewed and skewed datasets (Kollman, 2005; Nam, 2016; ). For
this application, the polarity of error is a critical component of the analysis
due to the significantly different consequences of error in the positive
from the negative direction. This is similar to research conducted by
Klonoff (2004), which supports describing positive and negative errors
separately whereby there are differing consequences of an erroneous
measurement based upon an underestimate or overestimate. Therefore,
aligned with literature (Shcherbina et al., 2016; Falbriard et al., 2018) the
evaluation of CT imaging, and all other sensor evaluation analyses, will
provide median error as a measure of accuracy and interquartile range as
a measure of precision. Therefore, the following statistical measures were
used to describe sensors’ performance for accuracy and precision. For the
evaluations conducted to benchmark the performance of CT, the error
dataset relates to the difference between manual and CT measurements
(Ey—cr), though the equations presented below are generalised for the
evaluation framework that will be applied to other sensors. As such these

equations will be denoted as the error dataset (E).

Accuracy Metric Calculation:

- Median Error (Eyeq): is @ measure of central tendency that
describes the median of the difference between the reference
measurement (ruler) and the sensor measurement. It is a useful
measure of the performance of a prediction model when dealing
with datasets that are skewed data or include outliers (see
Equation 4.3).

Equation 4.3: Statistical descriptor of the accuracy performance metric (median error).

Accuracy Performance Metric = Median(E)
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Precision Metric Calculation:

- Interquartile Range (IQR(E)): is a measure of spread or
dispersion of a set of data and calculated as the difference
between the upper quartile, Q3 (75th percentile) and the lower
quartile, Q1 (25th percentile) of the dataset. It is a useful
measure of the performance of a prediction model when dealing
with datasets that are skewed data or include outliers (see
Equation 4.4).

Equation 4.4: Statistical descriptor of the precision performance metric (IQR of error).

Precision Performance Metric = IQR(E)

Reliability: Reliability refers to the ability of the sensor to produce
valid measurements consistently over an extended period of time or
operating conditions. In many cases, this becomes more important in
spatial applications whereby missing data points introduce complexities
for spatial modelling or measurement critical applications (De Ponte
Muller, 2017). Reliability differs from metrics that describe error, such as
precision and accuracy, and instead describes the likelihood of the sensor
acquiring a complete set of measurements. According to Cai et al. (2018),
this is commonly referred to in literature as data completeness
(expressed as a “miss rate” probability). The chosen application of beef
striploin fat trimming requires a spatial map to be generated for a cut
path to be planned to use. The likelihood of acquiring a complete set of
measurements is an important consideration for automating striploin fat
trimming due to the necessity to trim with minimal time. The reliability of
a sensor, overall or at particular locations, could inform an overall
evaluation of a sensor and the location, or number of, sensing nodes and

therefore is an important factor of consideration.

With respect to reliability, data completeness is expressed as a miss

rate probability for the sensor’s capability to acquire measurements for
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the total nodes surveyed. The Miss Rate (PM) will provide a measure of
reliability in terms of how likely it is that a node will not be measured by
the sensor. This will provide a means of quantifying sensor-related
failures whereby no measurement is acquired. Typically, this is defined as
a value between 0 and 1 and can be expressed as an expected probability
or percentage likelihood (Cai et al., 2018; Hodan et al., 2018; Zhang et

al.,2021). This is expressed as a percentage in Equation 4.5).

Equation 4.5: Statistical descriptor of the reliability performance metric (Miss Rate).

Reliability Per formance Metric = Miss Rate, Py

N
Miss Rate, Py = N_M * 100%, where 0% < Py < 100%
T

where:
Ny = the number of measurements “"missed” measurements

Ny = the total number of measurement nodes investigated

Operating Range & Linearity: The operating range refers to the
minimum and maximum values that the sensor can acquire
measurements for. Literature typically suggests that the operating range,
and the accuracy across the operating range, are key considerations in
evaluating the performance of the sensor (De Ponte Miller, 2017; Lui et
al., 2019; Islam & Mukhopadhyay, 2019). These considerations must be
made in the context of the application for which the sensor will be applied
within, beef striploin fat trimming. The system’s capability to provide
comprehensive fat depth information is dependent upon the operating
range, and the accuracy across the operating range, of the sensor. As
identified in Chapter 3, the maximum range of fat depth expected to
measure will be considered to be the largest of the two. As such, the

operating range of fat depth measurements is considered 75 mm.
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Literature suggests that when evaluating the operating range of the
sensor, the detecting range and the accuracy across the detecting range
should be considered (De Ponte Miller, 2017). As such datasheets should
be first consulted to ensure that the technical specifications of the sensor
can detect for the range required by the application. For CT imaging there
is significant research indicating that the depth of measurement is
typically feasible for a human body (Lain, 2017; Fong, 2022). Though this
is significantly larger than the fat thickness of beef striploin, this will be
cross-examined within the statistical analysis presented within the results
section. This will be by considering the following constraint to conclude on
the feasibility of the sensor’s operating range for this application.
Therefore, the sensor is deemed feasible if the technical datasheet
indicates that its minimum and maximum measurement (operating range)
surpasses that expected of the reference fat depth dataset. Through the
evaluation presented in Chapter 3 the minimum and maximum fat depth
expected for this application is 0 mm and 75 mm respectively. As such,
the following equation shows the minimum requirements for any sensor

to be deemed feasible for this application (see Equation 4.6).

Equation 4.6: The operating range constraints of a feasible sensor.

Minimum Sensor Measurement Depth, Dyin < 0mm

Maximum Sensor Measurement Depth, Dyax = 75mm

Upon concluding upon a sensor’s capability to acquire
measurements the linearity of these measurements can be evaluated. To
evaluate the sensor linearity across the operating range a statistical,
linear regression analysis of the fat depth measurement error was
undertaken as per numerous literature papers (Liu et al., 2020; Liu et al.,
2019). This was calculated as the determination of coefficient value, R?,
which is seen to be a statistical measure of linearity. As such, literature
suggests evaluating the residual plot’s correlation to visualise

homoscedasticity as well as statistically describe this with a linear
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regression line (R?). According to Lui (2019), this is calculated as shown

in Equation 4.7.

As a benchmark of linearity, CT imaging is concluded upon with the

following measures:

Equation 4.7: Statistical descriptor of the linearity performance metric (R?)

Variance over Operating Range = z (fR‘
? (fs, —
where:
fr, = all values (i) of the fat thickness dataset acquired using
a ruler
fs, = all values (i) of the fat thickness dataset acquired using
the applied sensor
fs = the mean of the values (i) of the fat thickness dataset

acquired using the applied sensor

Response Time: The response time performance metric refers to
the time it takes for the sensor to acquire a measurement. Literature for
systems required to respond or actuate quickly typically consider
response time an important factor that determines sensor performance
(De Ponte Mdller, 2017). The line speed of the processing plant
determines the time constraints of the fat trimming processing task, and
hence the sensors and sensing strategies that are viable to be
implemented at these speeds. This constraint defines the suitability of a
sensor, and sensing strategy, and informs considerations such as:

- Real-time vs non-real-time

- direct (e.g., numerical values) vs indirect sensing (e.g., images

to later ascertain measurements through further processing)

- a small vs large number of nodes in the sensing mesh
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As highlighted in previous analyses the typical time taken by
personnel trimming fat from striploins is approximately 27 seconds on
average (see Section 3.3). There are several integration contingencies
that may be employed to adhere to this line speed (such as multiple
parallel or in-series systems) depending on the magnitude of the
response time. As such the response time will be considered an important
performance metric in order to evaluate the suitability of a sensor and

sensing strategy for this application.

There are a number of processes that need to be considered in the
estimation of the time required to acquire a fat depth measurement for a
final system. As such an approximate estimate will be provided from the
observations and conclusions made from the development of this system
as an opinion of feasibility for the application of beef striploin fat
trimming. Through the evaluation presented in Chapter 3 the average
response time of the system was identified at an approximate average of
27 seconds. As previously stated, a feasible time may be up to a number
of magnitudes larger than this depending upon the yield improvement of
the automated system. With the presumption that the trimming tool will
trim slightly behind the sensor, and hence not add significant time to the
cycle time of the system. It may be concluded that for a proposed 90
second trimming cycle time (a multiple of '3’ longer than manual
processing), the time allocated for sensing (considering some time for
fixation/location of the striploin and trimming), the sensing portion of the
automation may be 60 seconds. The following equation shows the
minimum requirements for any sensor to be deemed feasible for this

application (see Equation 4.8).

Equation 4.8: The response time constraint of a feasible sensor.

Response Time, Tr < 15 seconds
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4.4 Results

Through evaluating the CT and ruler measurements of four
striploins (two each of LHS and RHS) a total data set of 272 nodes were
considered in this investigation (see additional figures and tables in

Appendix C: Computed-Tomography Error Dataset Measurements.

The error measurement dataset (E) was calculated to create a
means of evaluating the distribution of error between the ruler (f;z) and
CT (f¢r) fat thickness measurements. The comparison between the

unfiltered and filtered error dataset is presented in Figure 4-8.

Measurement Error (Reference - CT Imaging)
Data: All Striploins: [S1,2,3,4]
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Figure 4-8: Statistical Summary of error measurement datasets (unfiltered vs filtered).

The key statistical measures are presented for the unfiltered
dataset, and the filtered dataset (see Table 4-2). It should be noted that

the filtered dataset was created from the unfiltered dataset by removing
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all values identified as outliers using the 1.5IQR method presented in

Equation 4.2.

Table 4-2: Statistical summary of error dataset (E) between ruler and CT measurements (n = 272)

Unfiltered | Filtered

Statistics Dataset Dataset

Minimum of Error Dataset, Q,(E) -6.7 mm -3.5 mm
25th percentile of Error Dataset, Q,(E) -0.1 mm 0.0 mm
Median of Error Dataset, Q,(E) 1.2 mm 1.2 mm
Mean of Error Dataset, (E) 1.0 mm 1.0 mm
’5th percentile of Error Dataset, Q;(E) 2.4 mm 2.4 mm
Maximum of Error Dataset, Q,(E) 7.1 mm 5.9 mm
Interquartile Range of Error Dataset, IQR(E) 2.5 mm 2.4 mm
Standard Deviation of Error Dataset, SD(E) 2.1 mm 1.7 mm
Range of Error Dataset, Range(E) 13.8 mm 9.4 mm
Lower Outlier of Dataset, Q,(E) — 1.5IQR(E) -3.8 mm -3.6 mm
Upper Outlier of Dataset, Q;(E) + 1.5IQR(E) 6.1 mm 5.9 mm

Six lower and four upper bound outliers were identified in this dataset and
removed for the creation of the filtered dataset:

Lower Outliers (< —-3.8 mm): -6.7, -6.6, -6.1, -4.9, -4.5, -3.9

Upper Outliers (= +6.1mm): 7.1, 6.9, 6.4, 6.2,

With only a very slight reduction of IQR (precision) of 0.1 mm due
to the impact of outliers causing the spread to be further towards
negative errors (CT over-estimating fat measurements), the effect of
outliers was deemed negligible and so the unfiltered dataset was
concluded to be representative of the fat depth measurements and

therefore used for further analysis.

The error dataset was plotted on a histogram using bin widths of 1
mm, with excess bins being used to group lower and upper bound outliers
(see Figure 4-9). This error distribution is not normally distributed, and is
negatively skewed, showing a bias for CT imaging to typically measure fat
depth less than the ruler quite consistently. The largely distributed,

central peak supports that there are no underlying subgroups trends.
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Figure 4-9: Error distribution of unfiltered data showing a non-normal distribution.

For this dataset the error of the CT imaging measurements
compared to the manual measurements (E) was calculated to be 1.0 mm
and 1.2 mm for the average and median error respectively. This
measurement error quantifies the combined discrepancies for the process
of aligning nodes for CT and manual measurement comparisons. This
statistic describes the imprecision of node alignment, the inaccuracies of
human error including the precision tolerance of using a 0.5 mm
resolution ruler, and the deformation of the striploin handling between CT

imaging and manual measurements.

As a benchmark of accuracy and precision, CT imaging is concluded

upon with the following measures:

+1.2 mm

Accuracy: Median of Error, E,py

Precision: Interquartile Range of Error, IQR(E) = 2.5 mm
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Firstly, it should be noted that CT imaging was able to measure at
any depth required within this analysis. For this subset of striploins, the
minimum range and maximum ranges were found to be 0 mm and 44
mm respectively. The measurement error across the range of

measurements acquired is described in Figure 4-10.

Actual (Ruler) VS Predicted (CT)
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Figure 4-10: The Computed-Tomography (CT) vs actual (Ruler) measurement plot

The closeness of the correlation of determination (R?) value of this
linear regression to ‘1’ indicates that spread of residual errors is narrow,
and in general, the predicted and actual measurements are quite similar
across the entire measurement error dataset. This is further reflected in
the similarity of the outliers with other measurements within the dataset.
A further analysis of heteroscedasticity is visualised in Figure 4-11 &
Figure 4-12 which shows insignificant variation of error across the range
of measurements (reference values). This analysis provides a conclusion
upon the strong homoscedasticity error along the range of reference

values of this dataset (E).
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Residual Measurement Error (mm)
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Figure 4-11: Residual error plot of CT-Ruler dataset (in mm)
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Figure 4-12: Residual relative error plot of CT-Ruler dataset (%)

As a benchmark of operating range, CT imaging is concluded upon

with the following measures:
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Range Requirements:

Minimum Sensor Measurement Depth, Dyin £ 0mm, ~ Feasible
Maximum Sensor Measurement Depth, Dyin < 75 mm, = Feasible
Linearity:

Variance over Operating Range = R? = 0.93

There was only one instance whereby a manual fat depth
measurement could not be taken after a CT image was taken. This was
due to deformation of the meat between the sensor and physical
measurements and not a limitation of CT imaging technology. As such, it
was considered that no ‘missed’ measurements occurred and therefore

the miss rate (Py) for CT imaging was concluded to be 0%.

As a benchmark of reliability, CT imaging is concluded upon with the

following measures:

Reliability:

Miss Rate, Py

= 0, — 0,
572 * 100% 0%

The process of acquiring CT images of the striploins took
approximately 10 minutes to perform though this included loading and
precisely positioning the striploin in the CT (due to localisation
requirements), running initialisation scans to identify the correct scanning
parameters for the striploin (no pre-sets were made). The procedure was
restricted to have all images uploaded to the cloud which took, on

average, 5 - 7 days to complete and provide access to CT images.
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4.5 Discussion

This section applies the results towards the specification of the
weightings of, and the thresholds for ranking performance within, metrics
to evaluate the performance of a sensor for the application of uniform fat

trimming of beef striploin.

Accuracy & Precision: Acquiring accurate and precise fat depth
measurements is crucial to enable the capability of the system to produce
a trimmed striploin to fat specification. Though both performance metrics
are important, there are several factors to be considered for deducing the

weighting of these performance metrics.

A highly accurate but low precision sensor will provide a trimmed
striploin that is close to 12 mm specification on average yet with low
controllability. A highly precise yet low accuracy sensor will provide a
trimmed striploin that is not close to 12 mm specification on average yet
with high controllability. In a practical sense the processing plants, who
would be the interested parties of such a system, have financial incentive
to desire a controllable output moreso than an accurate output (within
reason). The controllability of such a system enables the more precise

tuning of how much error this system trims to.

For example, consider 2 systems with the following outputs:

i) System A provides +2 mm of error (average) with a variance of
error of + 8 mm

ii) System B provides +8 mm of error (average) with a variance of

error of + 2 mm

By creating offsets within the control algorithm of this system to be
added to the measurements acquired of -2 mm and -8 mm to Systems A
and B respectively we can reduce the average error to approximately 0

mm. Though, due to the variance of error, System A will vary between +
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8 mm and - 8 mm (16 mm) and System B will vary between +2 mm and
- 2. mm (4 mm). Thus, if we set the target of the control system to trim at
12 mm, the output of each system will vary for each system significantly:
i) System A output will provide a trimmed fat depth of 4 mm to 20
mm
i) System B output will provide a trimmed fat depth of 10 mm to

14 mm

As such, due to the highly non-uniform trimming, there are
instances in the trimmed striploin that largely vary from the fat
specification. This large variation is significantly more easily detectable,
due to being visibly apparent, as opposed to a striploin provided with a
larger average error spread over the primal. In addition to this, the
capability to control the average error precisely (e.g. less variance of
error) enables the capability of a processor to fine tune the average error
of the striploin. This is where this system can contribute significantly to
the industry whereby a precise, yet inaccurate trimming performance, can

lead to significant profit margins for this product.

For example, let’'s assume that an error of +8 mm (20 mm fat
depth for a 12 mm specification) is deemed visibly erroneous to a
customer and hence would create a scenario, or significantly increase the
likelihood, of a fat claim being lodged. For System A, this would mean
that this would just meet specification though sensing used to produce a
striploin with an average error of 0 mm (hence a target fat depth at 12
mm). In comparison for System B, the average error could be increased
to 6 mm (hence a target fat depth at 18 mm) and could similarly meet fat
specifications as System A with significant additional economic benefit
(see Table 4-3). At an average error of +6 mm over a typical striploin, for
a throughput of 1,100 head per day over a 50-week operation, this
controllable under-trimming could substantiate to a value-add of $182.4

million per year to processors across Australia.
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Table 4-3: Estimation of the value for a controllable error of +6 mm (under-trimming) for a typical
beef striploin product.

Estimation of Yield Losses Reduction using Visualisation
Statistical Measures System A | System B
Overall Ave Error (mm)? 0 6
Average Surface Area per Striploin (mm?)°® 113,495
Average Volume of Under-trim (mm?3)°© 0 680,970
Average Volume of Under-trim (cm3) 0 681
Density of Beef Fat (g/ cm3)¢ 1.0195
Mass of Under-trim (g) 0 694
Average Weight Gain due to Under-Trim (kg) 0 0.694
Value of Fat on Striploin ($ / kg)© 22.6
Value Fat as Tallow ($ / kg) 0.67
Net Value Difference ($ / kg) 21.93
Net Value Add ($ / striploin) $0.00 $15.22
Relative Net Value Add to Striploin (%)® 0.00% 9.68%
Net Value Add Difference ($ / striploin) $15.22
Annual Striploins at processor" 114,400
Annual Value-Add to processor (million) $0 $1.74
Value-Add for processor (million) $1.74
Annual striploins Australia (million)' 12.036
Annual Value-Add to Australia (million) $0.00 $183.15

These calculations were made with the following assumptions:

a) System A is considered the base case with 0 mm of average error (average)
in comparison to System B with +6 mm (under-trimming) of average error

b) The average surface area of striploins was calculated considering the average
length and width of striploins used within this analysis (Length = 429.5 mm
and Width = 264.5 mm)

c) The average volume of fat was calculated considering by multiplying the

average error with the average surface error of striploins
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d)

e)

f)

9)

h)

The average density of fat was calculated between 1.006 - 1.033 g/cm3, and
therefore “Density of Beef Fat (g / cm3)” is considered to be 1.0195 (Pan &
Singh, 2001)

According to meat wholesaler MOCO Food Services, Beef City Black boneless
striploin sells for $28.20/kg as of March 2023 (Moco Food Services, 2023).
Hence, it is assumed that MOCO sells at a 20% mark-up, hence buys it from
the processor for approximately $22.60 / kg. This constant variable is used for
the parameter referred to as “Value of Fat on Striploin ($/kg)”

According to MLA (2020c), tallow sold for $963/tonne ($0.963/kg) as of 2020.
It is unknown if this price can be demanded by processors or wholesales;
there is also likely a significant volumetric loss in the process of melting solid
fat into tallow, and there are also additional processing and heating costs
involved to do so. As such, a conservative estimate of 30% losses from this
value can be considered, as such, 0.647. This constant variable is used for the
parameter referred to as “Value of Fat as Tallow ($/kg)”

This was calculated by considering the net weight retained due to under-
trimming divided by the average weight of striploins used within this analysis
(Weight = 7.172 kg). This provided the parameter of “"Net Value Add to
Striploin (%)".

Considering the throughput of a large processor to be 1,100 head per day
(Goodwin, 2018). Hence, considering 2 striploins per head (2,200 striploins /
day), operating for 5 weekdays (11,000 striploins / week), operating for 50
weeks per year (550,000 striploins / year)

According to MLA (2022c), even at the lowest annual project in the past 36
years the projected slaughter for 2022 is 6.018 million head (12.036 million

striploins)

The table above presents an approximation of the additional yield
that is calculations, and assumptions, used to ascertain the additional
yield for striploin fat trimming application for a system optimised for yield
with a precision of + 2 mm (System B) in comparison to a system with a

precision of + 8 mm (System A).

In conclusion, the performance metric of precision is most desirable

in comparison to accuracy, yet both are important for evaluating a sensor
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for this application. As such, the weighting of accuracy will be considered

3/ 5, whilst precision is determined to be 5/ 5.

To determine a weighting for the accuracy and precision
performance metric the performance of medical-grade CT imaging should
be considered the ‘gold standard’. Therefore, a sensing system that
exhibits a median error of 1.2 mm or less and an IQR of error of 2.5 mm

or less will achieve a score of 5 for accuracy and precision respectively.

Whilst the specification exists as a maximum fat thickness
definition, in practice, there is a tolerance of error that is commonly
accepted by the customer, though this has not been agreed upon or
defined. Without such data, it may be reasonable to assume that an error
of 10 mm may be easily perceivable to customers, and hence, likely to be
interrogated with a ruler to identify a product defect. Hence, equally
spaced thresholds were created to develop a Likert scale to define the

rating of a sensor for the metric of accuracy. This is shown in Table 4-4.

Table 4-4: Thresholds for ranking sensor accuracy.

Performance Rank
Metric Weight

0 1 2 3 4 5
Fall Fair Average | Good | Excellent | Exceptional
Accuracy 3
(Evpn) >10mm | <10mm | <7.8mm | <56mm | < 3.4 mm <1.2mm

The IQR of the error dataset represents the middle 50% of errors
values in the dataset. It was considered that intervals of the gold
standard IQR (2.5 mm) was appropriate as it was decided that an IQR of
a multiple of three of CT would be an appropriate / “average”
performance of a sensor. As such, the following table was created to rate

a sensor performance for precision (see Table 4-5).
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Table 4-5: Thresholds for ranking sensor precision.

Performance Rank
Metric Weight
0 1 2 3 4 5
Fail Fair | Average| Good |Excellent | Exceptional
Precision
(IQR(E)) 5 >12.5 mm =12.5 <10 mm =75 < 5mm <2.5mm
mm mm

It should be noted that the rating of “exceptiona

|II

is reserved for a

sensor that performs equal or better than the gold standard of CT

imaging. The ‘0’ ranking is a failure and therefore any sensor that is

determined within this ranking will cease to be considered a feasible

option for this application due to its incapacity to acquire measurements

with the accuracy and precision required for this application.

Measurement Range: It can be concluded from previous literature

and analyses (presented in Chapter 3) that the measurement range of 0

mm to 75 mm is necessary, and hence will be considered as a

prerequisite requirement prior to developing the sensing system with the

chosen sensor. As such, the linearity of the sensor will be considered for

evaluating the performance of the sensor. The linearity of the sensor,

described as the coefficient of determination (R?) plotted for the sensor

measurement and reference measurements plot, will be used to rank

feasible performances (0 - 5). The R-Squared value of ‘1’ suggests a

perfectly linear correlation between sensor and actual measurements; the

gold standard benchmark using CT imaging was calculated at 0.93

indicating a high linearity. In practice, the characteristic of linearity

provides a measure of accuracy at a particular fat depth range which is a

valuable metric for interpolating results and identifying inconsistencies

with sensor interpretation. Though useful, this does not constitute failure
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of a sensor independently as a performance metric. A ‘good’ coefficient of
determination is subjective to many factors including sample size and
biases, though it was determined that a value of ‘0.5’ would be a ‘fair’
linear correlation between sensor and actual measurements. The
thresholds for the linearity metric Likert scale were created between the
‘fair’ (0.5) and exceptional/gold standard (0.93) coefficient of

determination values.

The performance metric of range was considered important enough
to consider as this property enables the adjustment of error to be offset
uniformly throughout the range of the sensor with a constant offset more
accurately. From the analysis undertaken in Chapter 3 (mean = 16 mm,
SD = 7.9 mm), 95% (2SD) of fat depth measurements were between
approximately 0 - 30.6 mm although there was a maximum measurement
of 44 mm. This narrow distribution exemplifies that for this application
linearity is less important than that whereby fat depth measurements are
more spread across the range, hence linearity evaluated across the range
of fat depth measurements of the reference dataset has less of an
informative description for sensor performance. Also, the smaller the
measurement range, the less a sensor’s description of linearity matters as
this approaches a similar description of measurement accuracy. Thus,
whilst considering the measurement range performance metric is
important, this is accounted for in the feasibility evaluation of
Measurement Range (ranking of '0’). For this application which has a high
central distribution accuracy would take more of a weighting than
linearity, as such measurement range was considered slightly less

important and therefore weighted as a 2 / 5 (see Table 4-6).
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Table 4-6: Thresholds for ranking sensor linearity.

Performance Rank
Metric Weight
0 1 2 3 4 5
Poor Fair | Average| Good | Excellent | Exceptional
Linearity
(R?) 2 <05 >05 > 0.6 >0.7 > 0.8 >0.93

Reliability: In respect to reliability, the performance of CT imaging

was faultless, without a single missed measurement being observed over

the 272 nodes measured. As such a rating, and allowing for a small

amount of deviation, it was considered that P,, < 1 % would be considered

the gold standard (ranking of '5’). To identify the maximum value of P, to

be considered infeasible, the significance of a "missed” measurement

must be considered within the context of this application. For every

missed measurement there is a cost of time loss and substantial error

that is introduced to the system due to the need to interpolate the missed

measurement, or otherwise, a smaller number of measurement nodes

that can provide an accurate estimation of the fat depth profile across the

entire striploin. This creates a critical problem to consider due to the high

cost to the system of such a missed measurement. Though, lots of

measurements that are low quality (not accurate/precise) is less valuable

than less measurements that are of high quality (accurate/precise). As

such, it is reasonable to consider reliability to be weighted as less

important than these metrics. As such, the weighting of reliability was
considered to be 3 / 5.

Whilst CT imaging shows an incredible reliability (capturing every

measurement at each node), it should be noted that literature shows

successful trimming solutions that use as few as one fat depth

measurement to trim subcutaneous fat in pork (see Chapter 2). In
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conjunction with the narrow distribution of fat depth measurements
presented in Chapter 3, the ‘failure’ threshold for reliability would
primarily be centred around a percentage whereby there is a considerable
likelihood that too much time would pass before getting one, or a few,
measurements from the interrogated nodes. As such, it was defined that
a system that ‘missed’ 75% of measurements of the nodes surveyed may
the cut-off for an infeasible system as this would be a measurement of 4
points to get 1 valid reading. As such, this was used to establish the
thresholds for the ratings for the reliability performance metric (see Table
4-7).

Table 4-7: Thresholds for ranking sensor reliability.

Performance Rank
Metric Weight

0 1 2 3 4 5
Fail Fair | Average | Good [ Excellent Gold
Standard
Reliability S
(Py) >75% | <75% [ <50% | <25% < 10% < 1%

Response Time: It can be concluded from previous literature and
analyses (presented in Chapter 3) that the response time of less than 15
seconds is necessary, and hence will be considered as a prerequisite
requirement prior to developing the sensing system with the chosen
sensor. As such, any response time faster than this can be used to
evaluate the performance of the sensor. The determination of a feasible,
and a fair to outstanding rank can only be based upon observations of the
sensing system and foresight into how this system may be built in its final
stages to enable it to perform according to time constraints. Whilst CT
imaging has provided a benchmark for other performance metrics the
benchmark for response time is dependent upon time constraints of the

task of fat trimming. With the processing time of approximately 27
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seconds per striploin, and with an average number of nodes being
approximately 8 rows and 8 columns, a reasonable observation could be
made that a robot could position sensors at all, or most nodes, take a
measurement and then start slicing the striploin with multiple cutter
assemblies to process this striploin in the cycle time required. Whilst the
exact configuration of sensors, tools and robots are yet to be defined, it is
possible to identify that for this to be plausible the sensing process at
each node needs to take less time than 1 seconds for each node. As such,
the infeasible ranking ('0’) is considered for this sensing process taking
longer than 15 seconds, which is scaled up to less than 1 second for an

III

“exceptional” rating.

Similar to reliability, response time is a metric that measures the
system’s capability to measure more nodes for a given time. As such, this
would be weighted less important than accuracy and precision for the
similar reason that quality data at less nodes is more important than
quantity of data over more nodes. Though, when compared to reliability,
response time has less uncertainty than reliability, and therefore less
important for a sensor to perform well in. In addition to this, it could be
argued that a configuration with additional sensors would resolve the
issue of increasing the number of measurements moreso, and more
predictably, in a scenario of longer response time in comparison to less
reliable sensors. As such, a sensor that performed comparatively better in
reliability than response time would be more important, and therefore,
the weighting of this performance metric is considered to be ‘2’ (see Table
4-8). The thresholds of these performance ranks are chosen within
multiples that enable a magnitude of sensing nodes to be measured
within the absolute ideal (< 1 sec) and feasible (15 sec). For example,
considering the maximum sensing time as 15 seconds, fail is no
measurements (response time >15 second, fair would be 1 (response
time <15 sec), average would be 2 (response time <7.5 sec), good would

be 3 (response time <5 sec), excellent would be 6 (response time <2.5
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sec), exceptional would be 15 (response time <1 sec). This approximation
could be scaled to a magnitude depending upon the number of sensors

used in the configuration.

Table 4-8: Thresholds for ranking sensor response time.

Performance Rank
Metric Weight

0 1 2 3 4 5
Fail Fair | Average | Good | Excellent [ Exceptional
Response 2
Time > 15 <15 | <75sec | <5sec < 2.5sec < 1lsec
(TR) sec sec
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Through the analyses presented in Chapter 3 and Chapter 4 the following sensor performance matrix was

defined (see Table 4-9). This framework will be applied in the subsequent chapters by analysing the

measurements acquired by sensors to identify their quantities for the selected performance metrics to then be

evaluated considering the metric ranking and weighting to conclude on a sensor performance score.

Table 4-9: Performance evaluation framework for evaluating sensors for automated fat trimming of beef striploin.

Performance |Quantity Performance Rank Metric Metric
Metric Weighting| Score
FAIL/POOR FAIR AVERAGE GOOD EXCELLENT [ EXCEPTIONAL
0 1 2 3 4 5
Accuracy - >10 mm <10 mm <7.8mm < 5.6 mm < 34 mm <1.2mm 3 --
(EMDN)
Precision -- >12.5 mm < 12.5mm <9.5mm < 6.5mm < 45mm < 25mm 5 --
(IQR(E))
L'Q;‘Z‘;'ty - <05 >05 > 0.6 >0.71 >0.82 >0.93 2 -
Reliability - > 75% < 75% < 50% < 25% < 10% < 1% 3 -
(Pm)
ReSpor(];e)Tlme - > 15sec < 15sec < 7.5sec < 3sec <2sec <1sec 2 --
R
Sensor Performance Score 175
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4.6 Conclusion

The analyses presented within this chapter provide a means of
defining the metrics, and their corresponding weightings, for integration
into a framework to evaluate and compare sensors for the specific task of
uniform fat trimming of beef striploin. These metrics are:

- Accuracy (Weighting: 3): statistically determined as the median
of the error between the sensor and manual measurement
dataset.

- Precision (Weighting: 3): statistically determined as the IQR of
the error between the sensor and manual measurement dataset.

- Linearity (Weighting: 2): statistically determined as R-squared
value of the regression line for the sensor (y) vs reference (x)
measurement plot.

- Reliability (Weighting: 3): statistically determined as the
percentage of "missed” measurements by the sensor.

- Response Time (Weighting: 2): estimated through observation of

the developed sensing system for evaluation.

This framework, with thresholds determined in consideration to the
gold standard of fat depth measurements (medical-CT imaging), will be
applied to independently evaluate Mode B and Mode A ultrasonic sensors
presented in Chapters 5 and 6 respectively. Through the uniform
application of this evaluation framework a side-by-side comparison will be
presented to recommend which sensor is most suitable for this

application.
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CHAPTER 5: ANALYSIS OF B-MODE ULTRASOUND
SENSING SYSTEM

This chapter focuses on the development and evaluation of B-Mode
ultrasound technology for measuring the fat depth of a beef striploin
primal. The objective is to assess the capability of Mode-B ultrasound to
be employed in an automated system for uniform fat trimming of beef
striploin through the application of the sensor evaluation framework
developed in Chapter 4. The findings presented in this chapter contribute
to the understanding of the potential of B-Mode ultrasound technologies
and inform the design and optimization of future automated fat trimming

systems.

5.1 Introduction

Through the literature review presented in Chapter 2 ultrasound
was identified as the most promising, proven sensing technology for
measuring fat thickness on a beef striploin. This chapter presents the
development of a B-Mode ultrasound system in alignment with the key
design considerations outlined in previous chapters. The performance of
this system is evaluated using the sensor performance evaluation

framework presented in Chapter 4.

In comparison to A-Mode, B-Mode ultrasound offers a more
comprehensive view of internal tissues which can be beneficial in
applications where a more detailed tissue structure is desired. In the
context of measuring fat thickness and automatic fat trimming systems,
B-Mode ultrasound can also provide a two-dimensional image of the area
being evaluated, allowing for a better spatial understanding of the
distribution of fat tissue. Additional to this, there is more certainty of
acquiring a measurement to the correct interface due to the ability to

locate this interface in a larger window that is easier to interpret visually.
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This can be particularly useful in automated systems where precision and
detailed information about tissue layout is required for optimal, more

‘certain’ measurements.

Commonly, ultrasound has been used for the measurement of
subcutaneous fat depth over the rib, lumbar, and rump, and that of the
longissimus muscle area (Houghton & Turlington, 1992; Pathak, Singh &
Sanjay, 2011). Halim et al (2013) presents a comprehensive list of
twenty-seven research papers that have explored the use of ultrasound
as a fat measurement sensor between the period of 1990 and 2012.
Within the review of literature conducted by Halim et al. (2013), research
has predominantly favoured B-Mode ultrasound with ten of the eleven
studies highlighted being using B-Mode (91%) compared to A-Mode (9%).
Discussions regarding the context of using B-Mode ultrasound within an

automated fat trimming are presented at the conclusion of this chapter.

5.1.1 Chapter Aims
The aims of this chapter were to develop and evaluate a B-Mode
ultrasound system capable of measuring fat thickness and implemented

within the context of an automated system.

Key design considerations that were highlighted in previous
explorative work presented in Chapter 3 & 4 were implemented in the
design of this system to provide insights towards how a B-Mode
ultrasound sensing system may be developed. The performance of this
system was evaluated through applying the sensor performance
evaluation framework to conclude on its performance and compare with

another sensing technology (A-Mode).
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5.2 Experimental Setup

This section presents the methods employed for the data collection
of acquiring sensor and manual fat depth measurements as well as the
data analysis method implemented to evaluate the performance of the
sensor according to the sensor evaluation framework developed in
Chapter 4.

5.2.1 Preliminary Investigation into Sensor Feasibility

According to analyses summarised in previous chapters (Chapter 3
& 4), it has been identified that the following parameters define a feasible
sensor for measurement of fat depth for the context of automated beef
striploin trimming. As such, preliminary analyses (see Methods section)
were conducted to confirm the feasibility of the chosen sensor prior to the
development of a fat depth measurement system. This includes
evaluating:

- The sensor range / penetration depth of the ultrasound

- Sensor Response Time

- Fat Depth Measurements (in practice)

According to past work presented in Chapter 3, the sensing
configuration chosen for this investigation was measuring from the
surface of the subcutaneous fat to the fat-lean interface. Three B-Mode
ultrasound systems were evaluated before selecting the final, most
promising system. The two with the most promise after preliminary
evaluations were conducted were: ReproScan Flexx and the Butterfly iQ+
(see Figure 5-1). These B-Mode ultrasound imaging systems provided a
means of acquiring greyscale images for further analysis to determine fat
depth at each node surveyed. The details for accessing product
information and datasheets of these two systems are provided in

Appendix D: B-Mode Ultrasound Device Datasheets.
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X: == mm ¥ — mm

Figure 5-1: B-Mode ultrasound systems evaluated in preliminary trials: ReproScan Flexx (top) and
Butterfly iQ+ (bottom). Sources — (ReproScan, 2023; Butterfly, 2023a).

In comparison, both probes were developed for vastly different
applications and therefore had distinct advantages. The ReproScan Flexx
unit is an ultrasound device developed for on-the-go veterinary
examinations of animals. One such advantage of the ReproScan Flexx unit
was that through external hardware the image provided on the screen of
the unit could be acquired into a laptop as a live webcam input. This
enabled real-time machine vision to be applied to the acquired greyscale
images using pixel value filters to identify interfaces and measure depth
automatically (see Figure 5-2). Despite this, it struggled to consistently
provide images that had clearly discernible tissue interface features in it
(see Figure 5-3). It was ascertained that the ‘grainy’ image in addition to
the image quality lost in the conversion from analogue to digital hardware

affected the capability of providing clear images from this device.
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Raw Image Filter: Greyscale Value

Figure 5-2: Machine vision algorithms applied to ReproScan Flexx system for automated fat depth
measurement.
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Figure 5-3: Four examples of encountering difficulties discerning tissues on the ReproScan Flexx.

As such, the Butterfly iQ+ device was trialled which provided
images with more clarity and tissue discernability. This was the
predominant basis for selecting the Butterfly iQ+ probe for this

application.
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The probe of the Butterfly iQ+ has 9000 capacitive micromachined
ultrasonic transducers (CMUT) arranged in a 2D array with an adjustable
frequency range of 1 — 10MHz and penetration depth between 10 - 300

mm (Butterfly, 2023a). The probe components are shown in Figure 5-4.

7

Table 3-1 Probe Components

Item Description Item Description
1 Lens 5 Battery Indicator Button
2 Midline Mark 6 Probe/Cable Boundary
3 Orientation Mark 7 Mobile Device Cable
4 Battery Indicator Lights 8 Charging Surface

Figure 5-4: Butterfly iQ+ probe components. Source - (Butterfly, 2023b)

A rubber standoff was purchased to ensure that contact on the non-
planar surface of the striploin was achieved more consistently. In addition
to better contact producing images that provided more discernible tissue
interfaces, this standoff provided a 5 mm offset from the surface of the
subcutaneous fat which provided a means of measuring nearer to the
required minimum fat depth (see Figure 5-5 & Figure 5-6). In conjunction
with this standoff, several food-safe lubricants were trialled for use before

selecting extra virgin olive oil as the lubricant.
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Figure 5-5: Photo of the Butterfly iQ+ with ultrasonic standoff attachment.

TIS: 0.01, MI; 6.19, Nerve

XF 14lem |

No Standoff Standoff Implemented

Figure 5-6: Improvement of tissue discernibility within an image taken at the same node on a
striploin using ultrasonic standoff with Butterfly iQ+.

This probe and software package was used in-conjunction with an
iPad mini (5t generation) to provide computational processing to the
probe as well as save the images to the Butterfly network cloud where
measurements could be taken (see Figure 5-7). For an automated system
integration, a Wi-Fi communication from the iPad into a laptop could be
created to enable the live feed to be used as a webcam for further

machine vision processing.
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Figure 5-7: A screenshot of the user-interface for acquiring measurements from saved
images stored on the Butterfly cloud.

The Butterfly iQ+ software system also enabled the tuning of
parameters to ensure tissue echo, and its depth, could be measured.
These parameters were set within preset configurations classified as
medical practitioner applications (e.g. Abdomen, Cardiac, Soft Tissue,
etc.). The presets defined the ultrasound frequency and penetration
depth, focus/gain, transducer configuration and visualisation mode (Mode
B was selected). Of all presets the most appropriate was “"Nerve” which
set a penetration focus of 30 mm depth. This aligned with the average
fat depth of the striploin, which after the 5 mm thick standoff, provided
the best focus for detecting superficial tissue interfaces near the surface
of the striploin. The probe also calibrated itself based upon an on-board

air temperature sensor that considered the temperature of the medium.

Sensing Range: The sensing orientation chosen for this

experiment was from the fat surface. The delamination of fat layers that
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were cited by previous research leading to measurements from the lean
surface was not observed in surveys presented in Chapter 3 and hence,
this was identified to be less prominent and risky than the interfaces seen
in the lean muscle of striploins. The measurement depth would be
significantly less through the fat as opposed to the lean meat of up to a
penetration depth of 103 mm required (97.5% confidence interval) as
opposed to a depth of an absolute maximum fat depth of 75 mm. The
trade-off between penetration depth and image clarity was a more
important consideration for B-Mode as opposed to A-Mode due to the

subjectivity of image interpretation.

The relationship between ultrasound penetration depth and the
soundwave frequency is informed by the penetration depth decreasing as
the frequency increases. This is because higher frequencies have shorter
wavelengths, leading to more interactions with the medium and thus
greater attenuation. Typically, the rule of thumb to calculate the
penetration depth of a particular frequency of sound in a given medium is
5001 (Johnson & Wales University, 2019). Using the equations below the
minimum frequency of ultrasound for the given depth is defined as shown

in Equation 5.1).
Ef fective Penetration Depth, Dp = 5004,

Considering:

Uw
Wavelength, A = T,

v
Penetration Depth, Dp =500 (TW>,

Equation 5.1: Rule of Thumb for Penetration Depth.

v
Frequency for Depth, fp <500 (D—W),
P
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where:
vy = velocity of soundwave through medium

D, = effective penetration depth (in metres)

Considering a maximum penetration depth of 75 mm (0.075m), and
the velocity of soundwave propagation through subcutaneous fat of 1,450
m/s (Johnson & Wales University, 2019) the appropriate frequency is

determined as follows:

F Depth <500(1450)
requency for Depth, fo < 0.075)

Frequency for Depth, fp <9.67 MHz,

The B-Mode ultrasound probe transmits 1 - 10MHz soundwaves
(having a selectable preset of less than 9.67 MHz), and hence was
determined to provide the penetration depth required for this application

within the chosen configuration.

Sensor Response Time: The response of this ultrasound device
was measured to be less than 1 second to acquire the measurements of
the B-Mode ultrasound into the iPad with only a small amount of latency
for connection to a laptop. For machine vision to be applied to acquire a
measurement value and provide this to a robot operating system would

be a response time of approximately 3 seconds.

Fat Depth Measurements: In general, prior to the selection of B-
Mode ultrasound system three systems were evaluated in preliminary
trials to confirm that this sensor was the most capable of providing fat
depth readings. This was conducted through a number of preliminary
trials to test that measurement data was indicative of fat depth measured

in beef striploin primals. During these preliminary trials, testing
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methodology contained in this chapter was developed and applied for 2
striploins which showed ultrasound measurements aligned with manual
ruler-derived measurements. Furthermore, ‘calibration cubes’ were
created by cutting an interface into cubes of beef dripping at known,
varying depths to ensure that these interfaces could be seen and to check
the penetration depth of the settings used for the experiments (see Figure
5-8, Figure 5-9 & Figure 5-10).

--
T ———

Figure 5-8: Creation of phantom tissue interfaces at known depths within beef fat for preliminary
testing.
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Figure 5-9: Preliminary experiments validating Butterfly iQ+ tissue depth measurements.

10:45 pm Sat 24 Jun
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Figure 5-10: A preliminary experiment showing the tissue measurement of a 10 mm deep tissue
interface created on side III of the calibration cube showing 15 mm deep (10 mm deep + 5 mm
standoff thickness).
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5.2.2 Experimentation

Experiment Samples: The same samples used in Chapter 4
(striploin 1R, 2R, 3L & 4L) were used in this analysis as well as an
additional two striploins that were made available by the collaborating
processor. Therefore, a total of six striploins were used in this experiment
(LHS: 3 & RHS: 3) which equated to 358 nodes measurements in total.
These six striploins deemed to be ‘typical’ of the untrimmed striploin as
their overall characteristics (dimensions and weight) were comparable

with those surveyed in Section 3.2.

Node Marking: The nodes were marked on the plastic of the
striploin fat surface as shown in Chapter 3 before CT imaging. Upon
returning the striploins to the refrigerated trailer they had the CT markers

on them (see Figure 5-11).

Figure 5-11: Experimental set-up for B-Mode ultrasound sensing experiment.

A stainless-steel was used to poke holes through the plastic to score
the node on the surface subcutaneous fat. Upon doing so, the striploin
measurement nodes are transferred from the plastic wrapping to the

striploin surface. The spacing used for this node mesh was 50 mm in the
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X direction (across the length / medial-lateral anatomical plane of the
striploin) and 25 mm in the Y direction (across the width / caudal-cranial

anatomical plane of the striploin) shown in Figure 5-12.

Figure 5-12: Marking nodes through plastic wrapping using a stainless-steel skewer.

Fat Depth Measurements using B-Mode Ultrasound: Literature
suggests the clear link between temperature and soundwave propagation
through lean muscle and subcutaneous fat (Diaz-Almanza et al., 2021).
To account for this all sensor measurements were taken at a controlled
temperature of 8 degrees Celsius in a refrigerated trailer to ensure a

similar temperature to that of the processing line.

The probe and the striploins were left in the temperature-controlled
room for long enough to ensure that the probe, and hence the
temperature adjustment on the probe, was to that of the striploin and
environment. After this, the striploin was carefully unwrapped from the
plastic wrapping and the Butterfly iQ+ ultrasound probe was placed on
each node to acquire ultrasound images. The orientation of the Butterfly
iQ+ probe was carefully aligned to ensure that the centre of the probe
was aligned to the node so that the centre of the image may be evaluated

for precise measurements at the nodes. This was done visually by aligning
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both of the blue lines marked on both sides of the probe (indicating the
middle of the probe) with the measurement node to acquire images. The
image was then analysed on Butterfly Cloud software with measurement

tools (see Figure 5-13).

For all of the measurements the standoff and olive oil was used with
a single attempt to acquire an image at each node. In some cases the
shape of the probe head (with the standoff) and the chasms in the fat
surface caused difficulties in acquiring a sound image due to lack of
surface contact between the transducer array and the subcutaneous fat
(see Figure 5-14). In the case whereby the lack of contact of the
ultrasound transducers prevented the acquisition of a discernible image,

this node was counted as a ‘missed reading’.

TIS: 0.01, Mi: 019, Nerve
V4 | ‘ Standoff (Smm)
Image Left (“B”) Image Centre - -
~—

-~
N Standoff

Image Left (“B”) Interface (10mm)

Image Centre

e ——
T —
L T—
—
| e—

No contact
No contact

Figure 5-14: An example where the ultrasound could not get a reading due to air gap separation
with the surface of the fat.

197



Fat Depth Measurements using a Ruler: The process of
acquiring fat thickness measurements through a manual process using a
stainless-steel ruler is outlined in Chapter 3. It is important to note that
the B-Mode ultrasound imaging was conducted prior to manual
measurements to ensure that there was no deformation causing
soundwave backscattering. Upon ultrasound imaging, these nodes were
marked with black, food-grade dye, cut into cross-sections and measured

at the cross-section face.

A dissection of the striploin was made across the cross-sectional
face of the striploin at each 50 mm face. A stainless-steel ruler was then
used to record manual fat depth at each node which was recorded in an
Excel spreadsheet for later analysis. A photograph of each cross-section,
and each node, was acquired to provide a cross-referenceable record and

qualitative data of the fat depth measurements (see Figure 5-15).

Figure 5-15: Manual measurements of fat depth at each node: qualitative (left) and quantitative
(right)

5.3 Experimental Analysis

This B-Mode ultrasound sensing system was evaluated against the
sensor performance evaluation framework developed in Chapter 4 (see
Table 4-9). This will be evaluated by considering the error between the
manual and B-Mode ultrasound measurements that were interpreted from
the greyscale images. As such, the following equation can be considered

to calculate error (see Equation 5.2).

198



Equation 5.2: Error between B-Mode ultrasound and manual fat depth measurements.

Error, Ev-usy = fu — fusg

where:
fu = the fat thickness measurement acquired manually using
a ruler (considered the reference value);
fusp = the fat depth measurement acquired using the B-Mode

ultrasound sensor (considered the estimated value);

As outlined in Chapter 4 the performance metrics were calculated
using the equations specified below:
- Accuracy: Median of Error dataset (see Equation 4.3).
- Precision: IQR of Error dataset (see Equation 4.4).
- Linearity: Coefficient of Determination (see Equation 4.5).
- Reliability: The ‘Miss Rate’ of the sensor (see Equation 4.7).
- Response Time: The time required to acquire a measurement.
For reliability, the total number of nodes were considered as the
number of nodes that there was a measurable lean muscle presented. In
some cases, there were nodes where the striploin did not have a lean
muscle interface that was measurable. Therefore, at the nodes that there
was the capability of ultrasound measurement, and the device provided
an error value this was considered a ‘missed’ instance. Typically, these
readings displayed an image without any recognisable tissue interface
reflections or predominantly displayed ultrasound reflection errors (see
Figure 5-16). In preliminary trials two cases of ‘no value’ or ‘missed’
measurements were identified:
- Case 1: No contact between the ultrasound probe head and the
subcutaneous fat surface due to surface contours (illustrated in
the left image in Figure 5-16).
- Case 2: No interface was discernible in ultrasound image due to
the absence of soundwave echo received by the ultrasound

transducer (illustrated in the right image in Figure 5-16).
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Figure 5-16: Example of the two "No read" / "Missed" measurements for a B-Mode ultrasound.

During the preliminary investigation this sensor was deemed
capable to measure at a response time appropriate for this application
(T < 15sec) and was determined to be less than 3 seconds during

measurement observations.

5.4 Results
Through evaluating the B-Mode ultrasound and ruler measurements
of 6 striploins (RHS: 3, LHS: 3) a total data set of 358 nodes were

considered in this investigation.

The error measurement dataset (E) was calculated to create a
means of evaluating the distribution of error between the ruler (fz) and B-
Mode ultrasound (fys,) fat thickness measurements. Key statistical
measures are presented for the unfiltered dataset, and the 1.5 IQR
filtered dataset (see Table 5-1).
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Table 5-1: Statistical summary of error dataset (E) between ruler and Mode B ultrasound

measurements (n = 358)

Unfiltered | Filtered

Statistics Dataset Dataset

Minimum of Error Dataset, Q,(E) -8.6 mm -8.6 mm
25th percentile of Error Dataset, Q,(E) 1.0 mm 0.8 mm
Median of Error Dataset, Q,(E) 4.5 mm 4.0 mm
Mean of Error Dataset, (E) 6.5 mm 5.2 mm
75th percentile of Error Dataset, Q;(E) 11.0 mm 10.0 mm
Maximum of Error Dataset, Q,(E) 36.0 mm 19.0 mm
Interquartile Range of Error Dataset, IQR(E) 10 mm 9.3 mm
Standard Deviation of Error Dataset, SD(E) 7.9 mm 6.3 mm
Range of Error Dataset, Range(E) 44.6 mm 27.6 mm
Lower Outlier of Error, Q;(E) — 1.5IQR(E) -10.5 mm -9.9 mm
Upper Outlier of Error, Q;(E) + 1.5IQR(E) 19.5 mm 17.9 mm

Zero lower and twenty-five upper bound outliers were identified in

this dataset and removed for the creation of the filtered dataset. Filtering

the outliers from this dataset, and comparing it to the unfiltered dataset,

the general trends and error characteristics were quite similar though

these outliers had increased the spread of error at a higher positive value

(median, average, IQR). This is shown in in Figure 5-17.

Measurement Error (Reference - Mode-B Ultrasound)

Data: All Striploins: [1R, 2R, 3L, 7L, 11L, 12R]

Error (mm)

M unfiltered Dataset

M Filtered {1.510R)

Figure 5-17: Statistical Summary of error measurement datasets (unfiltered vs filtered).
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Considering the unfiltered dataset is statistically representative the
resulting B-Mode ultrasound accuracy and precision metrics were

identified as:

Accuracy: Median of Error, E,py = +4.5 mm
10.0 mm

Precision: Interquartile Range of Error, IQR(E)

Due to the impact of large, positive outliers a slight decrease in
precision of 0.7 mm (larger IQR) and accuracy of 1.3 mm (higher median
error). These outliers caused the spread of error to be further towards
positive errors (under-estimating the fat depth measurements). For the
purposes of evaluating the accuracy (median) and precision (IQR), the
effect of outliers was deemed to not to be substantial, though suggested
that the sensor or the interpretation of ultrasound images may have been

biased.

The unfiltered dataset was plotted on a histogram using bin widths
of 4 mm, with excess bins being used to group lower and upper bound

outliers (see Figure 5-18).

Measurement Error: Reference - Mode B Ultrasound (Unfiltered)

120
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[-8.6, -4.6] (-0.6, 3.4] (7.4,11.4] (15.4, 19.4] >19.5
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Figure 5-18: Error distribution of unfiltered data showing a non-normal distribution.
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This error distribution is not normally distributed, and instead is
positively skewed, showing a bias for B-Mode ultrasound to provide an
under-estimation of fat depth. The central peak at -0.6 to 3.4 mm error
supports that there are no underlying subgroup trends in the dataset

except for the positive outliers highlighted previously.

The measurement error across the range of measurements acquired
is described in Figure 5-19. An immediate observation derived from the
scatterplot is that whilst B-Mode ultrasound was observed to measure fat
depth between the range required (0 - 75 mm) in preliminary testing, it
did not provide accurate measurements across the operating range. The
value of the correlation of determination (R?) indicates that spread of
residual errors is wide, and in general, do not depict strong linear
correlation. The predicted and actual measurements are quite dissimilar
across the entire measurement error dataset (see Figure 5-20 & Figure
5-21). It was observed that this was predominantly occurring at larger
measurements of fat depth. A significant bias was observed in
measurements between 10 to 20 mm even in the instance where the fat
depth was a lot larger. The significant variation of error throughout the

range of reference measurements indicates strong heteroscedasticity.
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USA Measurement (mm)

Actual (Ruler) VS Predicted (USs)
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Figure 5-19: The B-Mode ultrasound (USB) vs actual (Ruler) measurement plot.
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Figure 5-20: Residual error plot of USB-Ruler Dataset (in mm)
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Residual Relative Measurement Error of USs
Data: All Striploins [51,2,3,7,11,12]
200%

Average Relative Error = 16.2% (n=358)
150%

100%
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0%

Error (%)

-50%
-100%

-150%

-200%
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Reference Measurement: Ruler (mm)

Figure 5-21: Residual relative error plot of USB-Ruler Dataset (%)

As a benchmark of linearity across the operating range, B-Mode

ultrasound is concluded upon with the following measures:

Range Requirements:

Found to be feasible in preliminary analyses.

Linearity:

Variance over Operating Range = R? = 0.10

There were a number of instances whereby the B-Mode ultrasound
returned an image that the tissue interface was indiscernible within. From
the 410 nodes of potential measurements, 52 nodes did not have a
measurement acquired. As such, the miss rate (Py) for B-Mode ultrasound

was concluded to be as follows:

Reliability:

Miss Rate, Py * 100% = 12.7%

~ 410
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It was identified that the response time of the B-Mode ultrasound
system to return a measurement to a robotic control system would be

approximately less than 3 seconds.

Response Time:

Response Time, Tp < 3 second

5.5 Discussion

An analysis of B-Mode ultrasound results highlights the predominant
distribution of error around zero which indicates that the sensor returned
sensible measurements, though skewed with positive error (median error
= 4.5 mm). The large spread of error (IQR of error = 10.0 mm) illustrates
the imprecision of this sensor to provide measurements that closely

represent manual measurements.

The presence of twenty-five, upper-bound outliers (>19.5 mm), in
the absence of any lower-bound, negative errors, skewed the data
towards higher positive error values. Although the elimination of these
outliers did reduce the overall inaccuracy (median error reduced from 4.5
mm to 4.0 mm) and imprecision (IQR of error reduced from 10.0 mm to
9.3 mm), similar overall error trends were observed in both the outlier-
filtered (+-1.5IQR) and unfiltered datasets. These outliers were significant
enough to illustrate a second peak in the error distribution histogram plot
(see Figure 5-18) and highlight systemic bias to underestimate the fat
depth at measurement nodes (Note: Error = Manual - Sensor
measurement; hence positive error is underestimation of fat depth). The
cause for this bias is either due to the sensor to produce clear ultrasound
images, the incorrect interpretation of these images, and or, the
ultrasound wave reflection of internal tissues within the subcutaneous fat

of striploin primal product. Through extensive preliminary
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experimentation with the Butterfly iQ+ that included cross-referencing
tissue depth measurements with known, artificial interfaces cut into beef
lard (melted beef fat) the consistency, quality and depth calibration of
these images have been confirmed. The interpretation of images was
quite simple, and even though post-examination of looking for a tissue at
a known depth (manually measured) many images didn’t show any
indication of the fat-lean interface tissue. It is probable that a large
proportion of positive errors was a measurement to an interface that was
significantly shallower than the actual tissue interface due to fat
delamination. Whilst delamination of the subcutaneous fat was evaluated
in the product survey conducted in Chapter 3 it is suspected that the
significance of this phenomenon within the internal product was
significantly more than that observed, and perhaps the capability to
visually identify delamination phenomena was overestimated (note: a
fraction of a millimetre air gap within a fat layer will reflect soundwaves
and appear as a tissue interface). This would also explain why this
phenomenon was not evident in preliminary trials using beef lard which is
rendered (melted) in a way to form a solidified beef fat product that does
not contain fat layers. This would also explain a lot of the positive bias of
the errors produced by this sensing system (median = 4.5 mm), as well
as the poor heteroscedasticity and linearity observed for this sensing
system (R”2 = 0.1). It should be noted that this error was not due to
human misinterpretation error, but the lack of deeper interfaces visibly
present in the image due to the inability of soundwaves to pass through
the air gap of the fat layer and therefore illustrated to be the deepest

interface on the image.

B-Mode ultrasound technology provided more information at each
node through the representation of tissue measurements as an image as
opposed to A-Mode which provided a numerical value. Though there is a
degree of certainty that can be received through an image (e.g., seeing a

continuous ‘line’ that would perhaps represent a tissue interface),
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importantly the distinction between the fat-lean interface and an air
pocket within the subcutaneous fat layers cannot be easily distinguished.
The reliability performance metric (reliability = 12.7%) is likely to have
been artificially inflated due to the perceived correctness of the fat-lean
tissue interface identifiable within an image, when in reality, this
assumption was incorrect due to this tissue interface being air pocket of a
fat layer. The perceived attractiveness of this technology to provide more
certainty in the information reported at each node was not seen to

translate to a better performance.

Though the decision to measure from the surface of the
subcutaneous fat was sound based upon known parameters prior to the
development of this system, the findings of these results suggest an
alternative sensing configuration due to the issues of fat delamination.
Instead, this sensing system should be applied measuring from the lean
surface of the striploin, at a lower frequency setting, to avoid such biases
caused by the delamination of subcutaneous fat layers of the beef
striploin. Whilst it is believed that there will be false detections of intra-
muscular and inter-muscular tissue interfaces, the images collected in this
study highlight that these are typically very different, and discrete, when
compared to the continuous fat-lean interface (as opposed to air within

fat layers mistakenly identified).

The performance of B-Mode ultrasound in comparison to CT imaging
is shown in Table 5-2. As expected, B-Mode ultrasound performed
significantly worse in all performance metrics when compared to the gold
standard of CT imaging except for response time. This comparison
highlights that B-Mode ultrasound is approximately a magnitude of four
times as inaccurate and imprecise as CT imaging, with a significantly
disproportionate performance in linearity and reliability. Despite this, the
response time of less than 3 seconds indicates the satisfaction of the

response time metric that makes this a feasible technology for the
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application of beef striploin fat trimming. In summary, the performance of
this sensing system is defined below through applying the performance

evaluation framework developed in Chapter 4 (see Table 5-3).

Table 5-2: Comparison of fat measurements using B-Mode ultrasound and medical-CT imaging.

Sensors for Fat Depth Measurement
Performance
Metric
Medical-CT Imaging B-Mode Ultrasound

Accurac
Enipn) y +1.2 mm +4.5 mm
Precision
(IQR(E)) 2.5 mm 10 mm
Linearit
(R?) y 0.93 0.1
Reliabilit
) y 0 % 12.7 %
Response Time
(TR)p 10 min < 3 sec
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Table 5-3: Sensor performance evaluation framework applied to B-Mode ultrasound sensing system.

Performance |Quantity Performance Rank Metric Metric
Metric Weighting| Score
FAIL/POOR FAIR AVERAGE GOOD EXCELLENT | EXCEPTIONAL
0 1 2 3 4 5
Accuracy 4.5 mm > 10 mm <10 mm <7.8mm < 5.6 mm < 3.4 mm <1.2mm 3 9
(EMDN)
Precision 10.0 mm >12.5mm < 12.5mm <9.5mm < 6.5mm < 45mm < 25 mm 5 5
(IQR(E))
L'Q;?;'ty 0.1 <0.5 >0.5 >0.6 >0.71 >0.82 >0.93 2 0
Rey;‘b)'“ty 12.7% > 75% < 75% < 50% < 25% < 10% <1% 3 9
M
Respor(175:e)T|me < 3sec > 15 sec < 15sec < 7.5sec < 3sec < 2sec <1sec 2 6
R
B-Mode Ultrasound Sensor Performance Score 29/75
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In general, when considering the weightings of these performance
metrics, the B-Mode ultrasound sensing system is most significantly
penalised for precision (5/25) and linearity (0/10), with “good” scores for
accuracy (9/15), reliability (9/15), response time (6/10). The overall
score of 29 / 75 will be used in the comparison between B-Mode and A-

Mode ultrasound sensing systems in Chapter 7.

In terms of progression towards integration within an automated fat
trimming system it is first recommended that the configuration to sense
from the lean / medial surface of the striploin is trailed and evaluated
using this framework. Pending the results of this evaluation, the
ultrasound images acquired by the Butterfly iQ+ device can be sent to a
laptop for image analysis to determine the depth of the tissue interface to
then communicate this numerical value to a robotic trimming system to

inform an automated cut path.

5.6 Conclusion

The analyses presented within this chapter provide a means of
evaluating the use of B-Mode ultrasound technology as sensing system for
automated fat trimming of beef striploin. This system was developed
considering insights gained from Chapter 3 and 4 and evaluated using the
performance evaluation framework presented in Chapter 4 that
considered key performance metrics, weighted by importance, based
predominantly upon the gold standard of CT imaging technologies for fat
depth measurement. The B-Mode ultrasound sensing system achieved a
29 / 75 performance rating which will be compared to the A-Mode
ultrasound system in Chapter 7. The key future recommendation being
using the ultrasound sensor to measure from the medial surface of the
striploin to avoid measurement issues arising from the delamination of fat

layers on the beef striploin.
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CHAPTER 6: ANALYSIS OF A-MODE ULTRASOUND
SENSING SYSTEM

This chapter focuses on the development and evaluation of A-Mode
ultrasound technology for measuring the fat depth of a beef striploin
primal. The objective is to assess the capability of A-Mode ultrasound to
be employed in an automated system for uniform fat trimming of beef
striploin. By applying the sensor evaluation framework developed in
Chapter 4, this chapter concluded upon the effectiveness of A-Mode
ultrasound as a sensing modality for this application. The findings
presented in this chapter contribute to the understanding of the potential
of A-Mode ultrasound technologies and inform the design and optimization

of future automated fat trimming systems.

6.1 Introduction

This section presents fundamental principles and practical
considerations of A-Mode ultrasound, highlights the key design
considerations outlined in the analyses of previous chapters (Chapter 3

and 4), and presents the aims for the chapter.

A-mode ultrasound has been the longest used ultrasound
technology in the beef industry, used for over 40 years to measure
subcutaneous fat depth assisting in automated meat processing systems
(Pathak, Singh & Sanjay, 2011). Numerous recent studies comparing A-
Mode and B-Mode ultrasound suggest that the difference in accuracy of
both modes for subcutaneous fat depth measurements is insignificant in

most cases (Wagner et al., 2019; Wagner et al., 2020).
Whilst B-Mode ultrasound can provide clarity through additional

information (presented in nearby pixels of an image), the ambiguity of

which tissue is being measured cannot be negated completely from A-
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Mode. The uncertainty of measuring the correct tissue interface is an
inherent risk that accompanies the simplicity of this ultrasonic sensing
technology, and the degree of this impact will be highlighted within this

analysis.

6.1.1 Chapter Aims
The aims of this chapter were to develop and evaluate an A-Mode
ultrasound system capable of measuring fat thickness and implemented

within the context of an automated system.

Key design considerations that were highlighted in previous
explorative work presented in Chapter 3 & 4 will be implemented in the
design of this system to provide insights towards how a A-Mode
ultrasound sensing system may be developed. The performance of this
system was evaluated through applying the sensor performance
evaluation framework to conclude on its performance and compare with

another sensing technology (B-Mode).

6.2 Experimental Setup

This section presents the preliminary analysis of the selected
ultrasound sensor to demonstrate the feasibility of the chosen A-Mode
ultrasound sensor considering insights from past analyses. This section
outlines the methods employed for the data collection of acquiring sensor
and manual fat depth measurements as well as the data analysis method
implemented to evaluate the performance of the sensor according to the

sensor evaluation framework developed in Chapter 4.

6.2.1 Preliminary Investigation into Sensor Feasibility

According to analyses summarised in previous chapters (Chapter 3
& 4), it has been identified that the following parameters define a feasible
sensor for measurement of fat depth for the context of automated beef

striploin trimming:
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- The sensor range / penetration depth of the ultrasound
- Sensor Response Time

- Fat Depth Measurements (in practice)

As such, preliminary analyses within this section were conducted to
confirm the feasibility of the chosen sensor prior to the development of a

fat depth measurement system.

As outlined in Chapter 3, the work conducted alongside industry
was using ultrasound to measure from the lean muscle surface of the
striploin (Khodabandehloo, 2018). The A-Mode ultrasound system
evaluated utilised a 1 MHz A-Mode ultrasonic probe (classified) as shown

in Figure 6-1.

Figure 6-1: A-Mode ultrasound probe integrated into the fat depth sensing system.

The probe was integrated into a A-Mode measurement system in
previous work conducted alongside industry through research into the
feasibility of automated striploin fat trimming (AMPC, 2018). The system
used hardware to interpret ultrasound signals into measurements to be

serially communicated into a laptop application that provides a graphical
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interface for presenting A-Mode measurement information (see Figure 6-2
& Figure 6-3).

. Desktop PSU
Trigger power supply
connection

industrial )
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Instrument case CDICO0007
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Wired Ethernet to PC
(and wireless link)
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DOI
Module

Externally mounted analogue o/p

Figure 6-2: A diagram illustrating the A-Mode ultrasound system hardware. Source:
Khodabandehloo, 2021).
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Figure 6-3: The software interface of the A-Mode ultrasound system.

The system software also enabled the tuning of parameters to
ensure that the most likely tissue echo, and its depth, could be measured.
These parameters included:

- offset to first peak (an offset used to ignore echoes that are too

close to the ultrasonic transducer to be considered the fat-lean

interface)
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- threshold (a parameter that defines the amplitude of the echo
that can be considered a tissue as opposed to signal
disturbances)

- hysteresis (an offset used to differentiate between tissues close
to each other and produce similarly distanced echoes)

- min. peak distance (an offset used to set the expected distance
for which echoes are expected to be measured with the
ultrasonic transducer)

- meat temperature (temperature is considered to more accurately
estimate tissue depth based upon slight variations in soundwave

speed through the lean muscle)

Sensing Range: The sensing orientation chosen for this
experiment was from the lean surface to the fat lean interface. This
decision was based upon the decision of industry research and
development due to the presence of delamination in fat layers within the
subcutaneous fat tissues that would introduce measurement error due to
air bubbles disrupting ultrasound wave propagation (AMPC, 2018). The A-
Mode ultrasound measurement was taken upon locating the probe onto
the lean meat surface at each measurement node. From the striploins
surveyed the maximum height of the striploin primals was seen to be 103
mm (within 97.5% confidence interval). As previously outlined in Chapter
5, the relationship between ultrasound penetration depth and the

soundwave frequency can be described below.

v
Frequency for Depth, fp <500 (D_W)'
P

Considering the maximum depth of penetration as 103 mm
(0.103m), and the velocity of soundwave propagation through

subcutaneous fat as 1,450 m/s (Johnson & Wales University, 2019):
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r pepih, = 500 (142)
requency for Depth, fo < 0103/

Frequency for Depth, fo <7.04 MHz,

The A-Mode ultrasound probe transmits 1 MHz soundwaves (less
than 7.04 MHz), and hence was determined to provide the penetration

depth required for this application within the chosen configuration.

Sensor Response Time: The response of this ultrasound device
was measured to be less than 1 second to acquire the measurements of
the A-Mode ultrasound into a laptop (and robot operating system), and so

this was considered feasible for this consideration.

Fat Depth Measurements: In general, prior to development all
sensors were evaluated in preliminary trials to confirm that the sensor
was able to provide fat depth readings. This was conducted through a
number of preliminary trials at the premises of the University of Southern
Queensland to test that measurement data was indicative of fat depth
measured in beef striploin primals. During these preliminary trials the
methodology of this chapter was formed and applied for 4 striploins which
showed ultrasound measurements aligned with manual ruler-derived

measurements.

6.2.2 Experimentation

Experiment Samples: A random selection of sixteen LHS and four
RHS striploin primals (#1 - 16) deemed to be ‘typical’ of the collaborating
processor untrimmed striploins were chosen for this experiment (see
Table 6-1). These were taken from the processing line on a typical
production run of the collaborating processor and temporarily stored on a

bench prior to sensing.
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Table 6-1: Striploin dataset for the analysis of A-Mode ultrasound sensing.

Measurement Nodes of Striploin Dataset (Mode-A
Striploin # Faces (X) Markings (Y)

1 L 8 4 32
2 L 9 4 36
3 R 8 4 32
4 R 8 4 32
5 L 7 4 28
6 R 7 4 28
7 R g 4 36
8 L 9 4 36
9 L 8 3.5% 28
10 L 8 31" 25
11 L 8 3.5% 28
12 L 8 4 32
13 L 8 3.6* 29
14 L 7 30" 21
15 L g 3.6* 32
16 L 8 4 32

Averages Number of Measurement Nodes 30

Node Marking: A stainless steel plate, referred to as the ‘striploin
plate’, was desighed and manufactured from 5 mm thick 316L stainless
steel plate to be integrated with a food-grade compatible robotic system
(see Figure 6-4). The striploin plate was designed with 22 mm slots to
ensure the ultrasonic probe (20 mm in diameter) could be protruded
through the plate and into the lean (medial) surface of the striploin. These
slots were spaced at 37 mm (centre-to-centre) which was found to
provide measurement nodes at a close proximity whilst restricting plate
deflection under the striploin weight which would complicate programming
precise positioning of the ultrasound probe. The first iteration of this
‘striploin plate’ was made with holes, though the use of slots enabled
adjustment of measurement nodes lengthwise if needed during

prototyping.
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Figure 6-4: The 'striploin plate' developed for locating the striploin in the workspace of the robot
arm.

The measurement node spacing lengthwise was chosen to be 50
mm to balance cycle time and measurement node mesh resolution. The
spacing for this node mesh was 50 mm in the X direction (across the
length / medial-lateral anatomical plane of the striploin) and 37 mm in
the Y direction (across the width / caudal-cranial anatomical plane of the
striploin). The origin of the measurement node mesh was determined by
the first nylon bolt hole (in the X direction) and the first slot (in the Y
direction) with reference to the striploin located against the nylon bolts
that were assembled on the striploin plate. The position of these
measurement nodes is shown in Figure 6-5. The robotic system that was
used to position the sensors to acquire measurements at the

measurement nodes is shown in Figure 6-6.
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Figure 6-5: The measurement node locations in reference to the nylon bolts used for locating the
striploin on the 'striploin plate’.

Figure 6-6: The experimental setup inside the collaborating processor’s facility using a manipulator
arm robot to position sensors at measurement nodes.
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In addition to nhumbering each node (i, j), based upon its x and y
coordinate the terminology of “point” (y) and “face” (x) was used. Due to
the large fat deposits along the tail of the striploin (flank / ventral edge) it
was decided that measurement nodes at these locations were not too
important or crucial. As such, this edge was aligned to the nylon bolts
running lengthwise along the plate which had a 48 mm distance from this
edge to the first row of measurement nodes. No cross-sectional face
(rump / rib) was prescribed to be aligned to the nylon bolts running
widthwise along this plate. For this measurement node mesh a ‘typical’
striploin of 388 — 456 mm in length and 221 - 309 mm in width (as
defined in Chapter 3) would have approximately a measurement node

mesh of 4 x 7 (28 nodes) and 7 x 8 (56 nodes) respectively.

Literature suggests the clear link between temperature and
soundwave propagation through lean muscle and subcutaneous fat (Diaz-
Almanza, 2021). Therefore, the experiments were conducted within the
processor’s facility (near the processing line), which ensured that a
temperature-controlled environment was adhered to. In addition to this,
there was no need for plastic wrapping of the striploins which were
sourced minutes before the trial from the processing line and would not

be susceptible to moulding the shape of the vacuum bag.

During the fat depth measurement process the red dot of the LiDAR
(Light Detection and Ranging) sensor mounted above the striploin was
used to mark the location of the node measurement on the subcutaneous
fat using black, food-grade gel. These markings were used later to align
the node location of the A-Mode ultrasound measurements with manual

measurements (see Figure 6-7).
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Figure 6-7: Marking measurement nodes using laser dot to cross-reference manual and ultrasound
(A-Mode) measurements.

Fat Depth Measurements using A-Mode Ultrasound: A 304
stainless steel bracket assembly was designed with CAD software and
manufactured to locate the A-Mode ultrasound probe and a LiDAR
distance measurement sensor along the same axis using a manipulator
arm robot. Of this assembly, the key bracket referred to the ‘C-Arm’, was
designed to enable both sensors (A-Mode ultrasound and LiDAR) to align
measurement axes to ascertain the fat depth at the particular node (see
Figure 6-8 & Figure 6-9). This was manufactured from 5 mm stainless
steel 304 plate.
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4

Figure 6-8: C-Arm bracket designed for positioning ultrasound sensor at nodes on the striploin
plate.

Figure 6-9: LIDAR and ultrasound sensors assembled onto the C-Arm bracket.

Two sets of sensor pairs (LiDAR and ultrasound probe) were
attached to the C-Arm and used simultaneously to enable a larger amount
of measurement nodes to be measured within the constraints of the robot
reach. These were mounted on positions on the C-Arm to measure the

following simultaneously as shown in Figure 6-10.
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Figure 6-10: Sensing configuration using 2 sets of ultrasound probes (A-Mode) and LiDAR to
ascertain fat thickness.

Using this configuration, at each node the position of the surface of
the subcutaneous fat (referred to as ‘fat height’) was calculated by
considering the distance measurement from the LiDAR sensor to the
subcutaneous fat and the known height of the LIiDAR sensor above the
striploin plate when the measurement was acquired (illustrated in Figure
6-11). This method provided a simple means of ascertaining the fat
height at each node with the LiDAR sensor. The ultrasound measurement
provided the measurement from the lean surface of the striploin to the
fat-lean interface of the striploin (referred to as ‘meat height’). Through
calculating the differential distance between the meat height and fat
height the fat depth, or fat thickness, could be ascertained. This is
illustrated in Figure 6-12.
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Figure 6-11: An illustration of the calculation of fat height (FH) using the LiDAR sensor.
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Figure 6-12: An illustration of the calculation of fat depth using the LiDAR and ultrasound sensors
in this configuration.
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The precise positioning of the sensing axes of the sensors mounted
on the C-Arm was conducted through defining node positions in 3-
dimensional space with a 6-axis manipulator arm robot (ABB IRB140).
These node points were taught within the robot program precisely in 3D
space using stainless steel rulers, laser sights and spirit levels to ensure

alignment errors were not introduced in measurements (see Figure 6-13).

Figure 6-13: The measurement node locations were precisely taught into the robot coordinate
system in 3D space using laser levels.

Upon a programmatic trigger, the ultrasound measurements were
acquired within the device software and displayed graphically on a laptop
application. Preliminary trials using the ultrasound sensor with numerous
striploin samples identified the following parameter settings enabled this
sensor to work most consistently and accurately:

- offset to first peak: 20

- threshold: 6

- hysteresis: 6

- min. peak distance: 3

- meat temperature: 8
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The software filtered for the largest measurement result and
returned this measurement as this would provide a means of filtering for
reflections caused by tissue variances within the lean muscle. It is
assumed that the largest measurement result links to the echo reflection
of ultrasound wave at the fat-lean interface. As illustrated in Figure 6-14,
this method has the possibility to introduce errors to fat depth estimations
when a delamination in the subcutaneous fat of the striploin returns a
strong echo (due to an air gap). As highlighted in Chapter 3, the
phenomenon of air gaps within the subcutaneous fat layers were found to

be uncommon in the striploins surveyed in this experiment.

lLiDAR Distance lLiDAR Distance

Fat-Depth

CASE A

Largest value (MH2) measures to the fat-lean interface Largest value (MHz2) measures to a fat-fat interface

Figure 6-14: An illustration of the scenario whereby the chosen filtering method of the A-Mode
ultrasound measurements would, and would not, work to accurately estimate fat depth.

This distance measurement (Mn), as well as the calculated fat
height measurement derived using the LiDAR sensor measurement (FH),
was recorded within a sensing matrix of the robot indexed to store these
measurements in2-dimensional matrices corresponding to the physical

node position (i, j). Each measurement was returned to the TeachPendant

227



as the robot was progressed through each measurement node (see Figure
6-15).
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Figure 6-15: Measurements displayed using the robot movement program.

At the conclusion of each sensing cycle, the fat thickness (FtH)
matrix was calculated using values stored within the meat height (Mn)

and fat height (Fx1) matrices before these matrices were exported as a

comma-separated-value (“.csv”) file that was transferred to a laptop
through a wired ethernet connection.

Fat Depth Measurements using a Ruler: The process of

acquiring fat thickness measurements through a manual process using a

stainless-steel ruler was similar to that outlined in Chapter 3.

After A-Mode ultrasound measurements were acquired and saved in
a file a dissection of the striploin was made across the cross-sectional face
of the striploin at each 50 mm face. A stainless-steel ruler was then used
to record manual fat depth at each node which was recorded in an Excel
spreadsheet for post-experiment analysis. A plastic 10 x 10 mm grid was

placed against each of these cross-sectional faces to provide a cross-
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referenceable record of the fat depth at each node and photographed for

each face (see Figure 6-16).

£

Figure 6-16: Each cross-section was photographed with a plastic grid to provide cross-
referenceable measurements.

6.3 Experimental Analysis

This A-Mode ultrasound sensing system was evaluated against the
sensor performance evaluation framework developed in Chapter 4 (see
Table 4-9). Though, due to the configuration of the ultrasound providing
meat height (MH) values, which were then used to calculate fat depth, the
error between manual and ultrasound measurements of meat height (MH)
were considered. In preliminary trials LIDAR was seen to be highly
consistent and a well-proven technology. Hence the following equation

was used to calculate error for this analysis (see Equation 6.1).

Equation 6.1: Calculation of Error for A-Mode ultrasound considering meat height.

Error, Ey_ys, = MHy — MHys,

where:
MH,, = the height of the fat-lean interface measurement
acquired manually using a ruler (considered the reference

value)
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MHys,= the depth measurement acquired using the A-Mode

ultrasound sensor (considered the estimated value)

As outlined in Chapter 4 the performance metrics were calculated
using the equations specified below:

- Accuracy: Median of Error dataset (see Equation 4.3).

- Precision: IQR of Error dataset (see Equation 4.4).

- Linearity: Coefficient of Determination (see Equation 4.5).

- Reliability: The ‘Miss Rate’ of the sensor (see Equation 4.7).

- Response Time: The time required to acquire a measurement.

For reliability, the total number of nodes were considered as the
number of nodes that lean muscle was measured. In some cases, there
were no parts of the striploin over a node, where the striploin did not
have a lean muscle interface measurable. Therefore, at the nodes that
there was the capability of ultrasound measurement, and the device
provided an error value this was considered a ‘missed’ instance. In
preliminary trials it was identified that the following values that were
returned by the ultrasound system were typically error values (11-12, 13-
17, 24-28). As such, these values will be defined as ‘no value’ missed

measurements.

During the preliminary investigation this sensor was deemed
capable to measure at a response time less than 3 seconds, appropriate
for this application (T < 15 sec).

230



6.4 Results

Through evaluating the A-Mode ultrasound and ruler measurements of
16 striploins (RHS: 4, LHS: 12) a total data set of 477 nodes were

measured.

The error measurement dataset (E) was calculated to create a

means of evaluating the distribution of error between the ruler (fz) and A-

Mode ultrasound (fys—,) fat thickness measurements. Key statistical

measures are presented for the unfiltered dataset, and the 1.5 IQR

filtered dataset (see Table 6-2).

Table 6-2: Statistical summary of error dataset (E) between ruler and USA measurements (n =

216)
Unfiltered | Filtered
Statistics Dataset Dataset
Minimum of Error Dataset, Q,(E) -21.7 mm | -21.7 mm
25th percentile of Error Dataset, Q,(E) -0.8 mm -0.8 mm
Median of Error Dataset, Q,(E) 1.7 mm 1.6 mm
Mean of Error Dataset, (E) 3.6 mm 1.8 mm
75th percentile of Error Dataset, Q;(E) 3.2 mm 2.9 mm
Maximum of Error Dataset, Q.(E) 62.8 mm 30.9 mm
Interquartile Range of Error Dataset, IQR(E) 3.9 mm 3.7 mm
Standard Deviation of Error Dataset, SD(E) 10.6 mm 6.1 mm
Range of Error Dataset, Range(E) 84.5 mm 52.6 mm
Lower Outlier of Error, Q;(E) — 1.5IQR(E) -6.7 mm -6.5 mm
Upper Outlier of Error, Qs(E) + 1.5IQR(E) 9.1 mm 8.8 mm

Seven lower bound and 19 upper bound outliers were identified in

this dataset and removed for the creation of the filtered dataset:
Lower Outliers (< -6.7 mm): -7.7, -12.4, -21.7, -17.1, -11.5, -7.2, -13.4
Upper Outliers (= 9.1 mm): 62.8, 43.8, 30.9, 41.4, 38.5, 37.1, 29.7, 17.0,

46.3, 21.5, 46.3, 28.9, 12.8, 10.9, 28.4, 20.7, 28.8, 9.5, 49.1,

Filtering the outliers from this dataset, and comparing it to the

unfiltered dataset, the general trends and error characteristics differed
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significantly around the mean, though were similarly around the median

(see Figure 6-17).
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Figure 6-17: Statistical summary of error measurement datasets (unfiltered vs filtered)

With only a very slight reduction of IQR (precision) of 0.4 mm due
to the impact of outliers (mostly upper-bound outliers) causing the spread
to be further towards positive errors (A-Mode ultrasound under-
estimating the meat height, and therefore through calculations, over-
estimating fat depth measurements). For the purposes of evaluating the
accuracy (median) and precision (IQR), the effect of outliers was deemed
negligible. As such, the unfiltered dataset was concluded to be
representative of the fat depth measurements and therefore used for
further analysis. Though, for optimisation of the use of A-Mode ultrasound
this should be considered further. This reiterates the decision of using
median error as opposed to average error to compare sensors for this

thesis.
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The unfiltered dataset was plotted on a histogram using bin widths
of 1.5 mm, with excess bins being used to group lower and upper bound

outliers (see Figure 6-18).
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Figure 6-18: Error distribution of unfiltered data showing a non-normal distribution.

As supported within literature, this error distribution is not normally
distributed, and is negatively skewed, showing a bias for A-Mode
ultrasound to measure meat height less than the ruler quite consistently,
and thus would provide an over-estimation of fat depth. The central peak
at +2 to 3 mm error supports that there are no underlying subgroups
trends in the dataset except for the positive outliers highlighted

previously.

For this dataset the error of the A-Mode ultrasound measurements
compared to the manual measurements (E;_y;,) was calculated to be 3.6

mm and 1.7 mm for the average and median error respectively. The large
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change in the average of error from 3.6 to 1.7 mm (change of 1.9 mm) in
comparison to the median from 1.7 to 1.6 mm identifies the large amount
of bias created by the sensor, or the filtering applied to acquire a

measurement from the A-Mode ultrasound system.

As a benchmark of accuracy and precision, A-Mode ultrasound is

concluded upon with the following measures:

Accuracy: Median of Error, Eypy +1.7 mm

Precision: Interquartile Range of Error, IQR(E) 3.9 mm

The measurement error across the range of measurements acquired
is illustrated in Figure 6-19. Firstly, it can be seen that A-Mode ultrasound
was able to measure at any depth required within this analysis. For this
subset of striploins, the minimum range and maximum ranges were found

to be 18 mm and 83 mm respectively.
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Figure 6-19: The A-Mode ultrasound (USA) vs actual (Ruler) measurement plot.
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The correlation of determination (R?) value of this linear regression
for the error dataset is vastly different when error outliers are removed:
0.55 to 0.96 (see Figure 6-19). This illustrates that the majority of the A-
Mode measurements closely align with the manual measurements, though
the few outliers significantly weight the trendline towards
underestimation. Additionally, that there are a few clusters of datapoints
that have a high modality in the sensor measurement that are
significantly dissimilar to the reference (manual) measurement. This
occurs when A-Mode ultrasound measurements are at approximately 20

mm, and 33 to 38 mm.

A further analysis of heteroscedasticity is visualised within Figure
6-20 & Figure 6-21 which both show a slight to moderate increase in
variation of error across the range of reference measurements. Though
error in general does not substantially increase, the error magnifies with a
positive linear correlation the larger the measurement for outlier error
measurements. These are trends that indicate a systemic underestimation
of measurements and will be further discussed in the following

subsection.

235



Residual Measurement Error (mm)
80 Data: All Striploins [S1-16]
A =3.6 =216
" verage mm (n ) °
40
E 20
E
~ O
2
5 20
-40
-60
-80
0 10 20 30 40 50 60 70 80 90
Reference Measurement: Ruler (mm)
Figure 6-20: Residual Error Plot of USA-Ruler Dataset (in mm)
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Figure 6-21: Residual Relative Error Plot of USA-Ruler Dataset (%)

As a benchmark of linearity in the measurement range, A-Mode

ultrasound was found to exhibit the following performance:
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Range Requirements:

Found to be feasible in preliminary analyses.

Linearity:

Variance over Operating Range = R?* = 0.55

There were a number of instances whereby the A-Mode ultrasound
returned an error value identified in preliminary trials as 11-12, 13-17,
24-28. From the 477 nodes of potential measurements, 261 nodes did not
have a measurement acquired. As such, the miss rate (Py) for A-Mode

ultrasound was concluded to be as follows:

As a benchmark of reliability, A-Mode ultrasound is concluded upon

with the following measures:

Reliability:

1
= 0 — 0,
277 * 100% 55%

Miss Rate, Py

As previously presented, it was identified that the response time of

the A-Mode ultrasound system was approximately less than 1 second.

Response Time, TR < 1second

6.5 Discussion

An analysis of A-Mode ultrasound results highlight the narrow
distribution of error around zero which indicates that the sensor returned
accurate measurements on average, though slightly skewed with positive
error (median error = 1.7 mm). The narrow spread of error (IQR of error
= 3.9 mm) illustrates the quite high precision of this sensor to provide

measurements that closely represent manual measurements.
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The presence of nineteen upper-bound outliers (>9.1 mm), with
only seven lower-bound outliers (-6.7 mm), insignificantly skewed the
data towards higher positive error values. Although the elimination of
these outliers did very slightly reduce the overall inaccuracy (median
error reduced from 1.7 mm to 1.6 mm) and imprecision (IQR of error
reduced from 3.9 mm to 3.7 mm), the difference in overall trends were
between outlier-filtered (+-1.5 IQR) and unfiltered datasets was
negligible. Upon further analysis of these outliers, it was identified that
there were likely ‘error’ values returned by the A-Mode ultrasound
labelled at approximately 20 mm, and 33 to 38 mm. Though the further
optimisation of these prototype systems is out of scope for this work it
may be that by classifying any A-Mode ultrasound measurement less than
24 mm as an “error value” would remove 5 of the 19 upper-bound
outliers and increase the accuracy, precision, and linearity (R? = 0.55),
though decrease the reliability (reliability = 55%) of this A-Mode
ultrasound system. It is possible that the significant, though few, outliers
were either stray measurements that incidentally measured intra-
muscular fat tissue or even error codes of the device (due to the high

modality of few readings).

The A-Mode ultrasound technology provided less information at
each node (a single numerical value), though with a significantly faster
response time is likely to provide measurements at more node locations.
This is advantageous for a fat trimming system as it provides a capability
to better represent the fat depth in finer resolution across the striploin
with high fat depth variability. Though less information is provided at each
node using A-Mode ultrasound, there is a degree of certainty that can be
ascertained through considering the spatial and biological relationships of
fat depth across the beef striploin. The implementation of interpolation to
estimate fat depth at various "missed” measurement nodes is a powerful

technique that is recommended for further investigation.
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It is important to recognise that these performance metrics should
not be considered in absolute terms, but relatively to the performance of
the gold standard (medical-CT imaging) considered for this application. A
comparison of the A-mode ultrasound results against the gold standard is
shown in Table 6-3. A-Mode ultrasound performed comparatively similar
to the gold standard in a number of performance metrics. This
comparison highlights that A-Mode ultrasound is approximately 42% less
accurate and 56% less precise as CT imaging, with a significantly
disproportionate performance in linearity and reliability. Despite this, the
response time of less than 1 second indicates the satisfaction of the
response time metric that makes this a feasible technology for the
application of beef striploin fat trimming. In summary, the performance of
this sensing system is defined below through applying the performance

evaluation framework developed in Chapter 4 (see Table 6-4).

Table 6-3: Comparison of fat measurements using A-Mode ultrasound and medical-CT imaging.

Sensors for Fat Depth Measurement
Performance
Metric

Medical-CT Imaging | A-Mode Ultrasound
Accurac
(Evpn) 4 +1.2 mm +1.7 mm
Precision
(IQR(E)) 2.5 mm 3.9 mm
Linearity
Reliabilit
oy 0 % 55 %
Response Time )
(Tx) 10 min < 1 sec
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Table 6-4: Sensor performance evaluation framework applied to A-Mode ultrasound sensing system.

Performance |Quantity Performance Rank Metric Metric
Metric Weighting| Score
FAIL/POOR FAIR AVERAGE GOOD EXCELLENT | EXCEPTIONAL
0 1 2 3 4 5
Accuracy 1.7 mm > 10 mm <10 mm <7.8mm < 5.6 mm < 3.4 mm <1.2mm 3 12
(EMDN)
Precision 3.9mm >12.5 mm < 12.5mm <9.5mm < 6.5mm < 45mm < 2.5mm 5 20
(IQR(E))
LII’EIe;;.;Ity 0.55 <05 >0.5 >0.6 >07 >0.8 >0.93 2 2
Rey;‘b)'“ty 55% > 75% < 75% < 50% < 25% < 10% < 1% 3 3
M
Respor(175:e)T|me <1sec > 15 sec < 15 sec < 7.5sec < 3sec < 2sec < 1sec 2 10
R
A-Mode Ultrasound Sensor Performance Score 47 175
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In general, when considering the weightings of these performance
metrics, the A-Mode ultrasound sensing system is most significantly
penalised for reliability (3/15) and linearity (2/10), with “excellent” scores

III

for accuracy (12/15), precision (20/25), and “exceptional” for response
time (10/10). The overall score of 45/75 will be used in the comparison

between B-Mode and A-Mode ultrasound sensing systems in Chapter 7.

In terms of progression towards integration within an automated fat
trimming system it is concluded that this sensing system is capable for fat
depth measurement to a high degree of accuracy and precision, and this
chapter has outlined a means of integrating this sensing system into an

automated trimming system (see Section 6.2).

6.6 Conclusion

The analyses presented within this chapter provide a means of
evaluating the use of A-Mode ultrasound technology as sensing system for
automated fat trimming of beef striploin. This system was developed
considering insights gained from Chapter 3 and 4 and evaluated using the
performance evaluation framework presented in Chapter 4 that
considered key performance metrics, weighted by importance, based
predominantly upon the gold standard of CT imaging technologies for fat
depth measurement. The A-Mode ultrasound sensing system achieved a
49 / 75 performance rating which will be compared to the B-Mode
ultrasound system in Chapter 7. The key future recommendation being
the implementation of filtering and fat depth interpolation based upon

spatial and biological relationships of tissues within the beef striploin.
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CHAPTER 7: CONCLUSION

This chapter concludes upon the processes and methodologies
employed to develop, evaluate and implement a system to measure or
estimate the fat depth of a beef striploin primal. The results of each
system are compared and recommendations upon the most promising
technology and technique for implementation upon automated beef
striploin fat trimming is provided. A reflection is provided upon further
work, both particular to beef striploin fat trimming and alternative tasks in

the red meat processing industry.

7.1 Achievement Against Research Objectives
The research presented in this thesis provided the following insights

and conclusions upon the research objectives.

7.1.1 Review of Sensing Technologies for Uniform in Fat Trimming.

Objective 1: To identify the most feasible sensing technologies for
the application of automated uniform fat trimming of beef striploin

through conducting a literature review (see Chapter 2).

The objective of identifying the most feasible sensing technologies for
the application of automated uniform fat trimming of beef striploin is met
through a literature review that recommends ultrasound as the most
promising technology for this task. The recommendations were based on
criteria considered fundamental to the automated fat trimming system

with assigned weightings.
The literature review identified two ultrasound-derived sensing

systems (B-Mode and A-Mode) to be tested for measuring fat depth. The

literature review also identified gaps in knowledge related to the
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benchmarking and evaluation of sensing technologies for this application
and the key processing requirements and product considerations of the
uniform fat trimming process. This review emphasizes the need for
further examination of the process and the beef striploin primal to define
the performance requirements at a more detailed level. This
understanding will guide the development of a methodology to assess and
compare the performance of these ultrasound sensors, which are outlined

in detail in Chapter 4.

Furthermore, the review establishes medical CT, as shown in the
research assessing X-ray technologies for red meat processing, as the
'gold standard' in sensing systems. This provides a benchmark for the
optimal sensing performance and a basis for evaluating the performance
of practical technologies like ultrasound. Therefore, the literature review
effectively answers the objective by identifying ultrasound as the most
feasible technology and outlining steps for its development and evaluation

in the context of automated uniform fat trimming of beef striploin.

7.1.2 Provide insights from the analysis of striploin characteristics

and trimming task.

Objective 2: To define the key parameters that inform the system
capabilities for the task of uniform fat trimming of beef striploin through

analysing fat characteristics and industry standards.

The striploin primal's dimensions, particularly width and weight,
vary considerably due to human error in approximation and the cranial/rib
face curvature, impacting the system's sensing capabilities. Moreover, the
condition of the fat cover also varies, but with a 10% probability of fat
tears affecting system measurements, this factor is considered

insignificant.
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The average processing time for fat trimming is 27 seconds, serving
as a critical benchmark for an automated system's response time.
Furthermore, the analysis identifies that non-real-time 'bridging' and
'planing' techniques are required, suggesting that sensing is required for

path planning the trajectory of the trimming blade.

Analysis of the subcutaneous fat depth uncovers important
characteristics for developing a suitable sensing system. The mean fat
depth is 16 mm, with most measurements falling between 0 - 32 mm.
These insights help to define the penetration depth range of an ultrasound

Ssensor.

Spatial relationships of fat depth distribution across the striploin
could assist in the optimization of node locations, indicating that many
nodes could be omitted from the automated system's sensing and
trimming processes. Key spatial insights presented in Chapter 3 show that
there are various locations that have very little fat thickness (typically up
to 50 - 75 mm along the spine edge) that likely don’t require as high a
sensing resolution than other areas (or sensing in general). There are
other areas of the striploin that show high fat variability (50 - 200 mm
from the caudal face and from past 75 mm from the spine edge to the
flank edge) that suggest a small node mesh spacing for a higher
resolution to trim closer to the fat-lean interface. The fat distribution's
normality and observed spatial patterns suggest spatial modelling could
enhance fat depth estimations and apply generalised cut path and fat
depth learnings across processors. Finally, due to the gradient of fat
thickness on the striploin it was identified that the least complex

orientation for trimming is along length of the striploin.

This foundation aids the description of parameters for a sensor
performance metric, ultimately informing the development of feasible

ultrasonic sensors within sensing systems.
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7.1.3 Establishment of sensor performance evaluation metric

specific to uniform fat trimming automation.

Objective 3: To establish a framework for evaluating sensor
performance that outlines the process of ranking sensors against metrics
important for the automation of beef striploin fat trimming (see Chapter
4).

The section presents a clear framework to evaluate sensor
performance for automated beef striploin fat trimming. This framework
outlines a set of key metrics - Accuracy, Precision, Linearity, Reliability,
and Response Time - each with specific weightings reflecting their

importance to the system's performance.

Accuracy and Precision, both with a weighting of 3, assess the
deviation between the sensor's measurements and the manual
measurements, while Linearity, with a weighting of 2, examines the
degree to which the sensor's measurements correspond with the
reference measurements. Reliability, also weighted at 3, evaluates the
proportion of measurements missed by the sensor. Finally, Response
Time, weighted at 2, gauges the sensor's speed by observing the
developed sensing system. These metrics and their corresponding
weightings collectively provide a comprehensive set of criteria to measure
the performance of sensors in an automated beef striploin fat trimming
system. Using medical-CT imaging as the gold standard, this framework

sets the thresholds for each metric.

The framework was applied to evaluate the candidate sensing
technologies with reference to this gold standard. This consistent
application of the evaluation framework facilitated the means of a direct
comparison between the sensors, guiding the selection of the most

suitable sensor for this specific application.
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7.1.4 Development of ultrasound systems to evaluate performance

for automation implementation.

Objective 4: To develop, implement and evaluate novel ultrasound
sensing systems capable of integration into an automated system to

measure fat depth across an untrimmed beef striploin.

Insights gained from analysing the untrimmed beef striploin primal,
the final specifications of the striploin product and the trimming sub-tasks
and timing were used to define a means of ascertaining the feasibility of a
sensor prior to development. Preliminary experiments were performed
with each sensor to determine the best configuration for the sensor with
respect to the striploin to achieve their best against the evaluation

criteria.

7.1.5 Evaluation of systems to conclude upon the technologies’

appropriateness for this application.

Objective 5: To conclude upon evaluations of sensing systems and
provide recommendations to inform the development of practical sensing
systems for integration into an automated system capable of uniform fat

trimming of beef striploin.

The preceding chapters of this dissertation have provided a
comprehensive and in-depth analysis of two distinct ultrasound
technologies, A-Mode and B-Mode, and their viability as sensors for
automated fat trimming in bovine striploin using the developed

performance evaluation framework (see Table 7-1).
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Table 7-1: Comparative evaluation of A-Mode & B-Mode ultrasound systems.

Sensors Evaluated
Performance Importance
Metric Weighting
B-Mode Ultrasound A-Mode Ultrasound

Accuracy +4.5 mm +1.7 mm
(Empn) 3

[SCORE = 9] [SCORE = 12]
Precision 10 mm 3.9 mm
(IQR(E) ) 5

[SCORE = 5] [SCORE = 20]
Linearity 0.1 0.55
(R?) 2

[SCORE = 0] [SCORE = 2]
Reliability 12.7 % 55 %
(Pu) 3

[SCORE = 9] [SCORE = 3]
Response Time < 3 sec < 1 sec
(Tr) 2

[SCORE = 6] [SCORE = 10]

Sensor Score (/ 75) 29 47

Through this comparison it was identified that A-Mode was

performed better than the B-Mode ultrasound sensing system overall with

an overall score of 47 as opposed to 29. In comparison to B-Mode, A-

Mode performed 2 ranks better in precision, and response time, one rank

better in accuracy and linearity, but 2 ranks worse in reliability. Whilst

both error datasets showed positive error compared to reference

measurements to underestimate fat depth, B-Mode had significantly

higher median and IQR in addition to indications of systemic error due

likely to fat delamination within the striploin.
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In principle, B-Mode ultrasound was hypothesised to perform better
than A-Mode due to the capability to provide certainty through providing
greyscale images to discern tissue interfaces for measurement. Whilst B-
Mode ultrasound did perform significantly better in the reliability
performance metric, 55% in comparison to 12.7%, due to the imitation of
delaminated fat layers as the fat-lean interface, this did not assist. It is
very likely that the false confidence of tissue discernment deflated the
actual number of "missed” measurements, and therefore inflated the
reliability performance and deflated the accuracy and precision
performance of B-Mode ultrasound. This was not due to human
misinterpretation error, but the lack of deeper interfaces visibly present in
the image due to the inability of soundwaves to pass through the air gap
of the fat layer and therefore illustrated to be the deepest interface on the

image.

Despite yielding less information at each node, though this analysis
found this not to be useful, the significantly faster response time and the
ability to provide measurements at more node locations present a distinct
advantage. The fat variability identified in Chapter 3 supports the notion
that the increased number of nodes is valuable, if possible, for

representing the fat depth contour across the untrimmed beef striploin.

In terms of integration into an automated fat trimming system, both
technologies present unique challenges and opportunities. For B-Mode the
recommendation is to trial a configuration sensing from the lean surface
of the striploin, aiming to circumvent issues related to fat delamination.
Conversely, A-Mode shows promise for immediate integration given its

high degree of accuracy, precision, and response time.

The two sensing technologies represent different strategies in the
trade-off between providing richer data (B-Mode) and speedier, more

precise measurements (A-Mode). With a different measurement
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configuration to that employed in this research (from the lean surface), B-
Mode offers potential for more detailed understanding of the fat layer.
Though, this could be at the expense of efficiency and overall
effectiveness in a real-world, fast-paced meat processing environment.
Furthermore, the data complexity may increase the probability of
measurement errors and the difficulty of interpretation. On the contrary,
A-Mode, despite providing less information at each node, delivers
measurements with higher speed and precision. The capacity of this
technology to effectively capture the fat depth variability across the
striploin, combined with its quick response time, make it particularly
suited for an environment where high-throughput and precision are
paramount. In addition, the relatively straightforward data produced by
A-Mode could be more readily utilized with less need for complex

interpretation or high computational resources.

It can be concluded that A-Mode ultrasound technology exhibits
superior potential for the application of automated fat trimming. Its
inherent strengths in accuracy, precision, and response time, coupled with
the relative simplicity of data interpretation, provide a robust basis for its
integration into an automated system. While it may not offer the richness
of data inherent to B-Mode, it decisively compensates by delivering high-
performance metrics where they matter most in this specific application -
speed, accuracy, and precision. Thus, as we progress towards more
efficient and precise meat processing methods, A-Mode ultrasound

technology indeed stands as a promising tool for automated fat trimming.

Future research for further development of an automated fat
trimming system should focus on further enhancing the efficiency of A-
Mode technology, with potential avenues of exploration including the
implementation of advanced filtering techniques and fat depth
interpolation based on spatial and biological tissue relationships within the

beef striploin.
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7.2 Recommendations for Future Work

A number of recommendations are provided to further investigate
the development of an automated striploin fat trimming system. These
recommendations are centred around two areas: sensing and automation

implementation insights.

7.2.1 Sensing of Subcutaneous Fat Depth Measurements
The recommendations for future work regarding the evaluation and
development of the sensing technologies to measure the subcutaneous fat

depth of beef striploin are:

B-Mode Ultrasound: An independent evaluation was conducted in
Chapter 3 to evaluate the claim made by Khodabandehloo (2018) that fat
cover damage caused by processors’ downward hide puller mechanism
would yield measuring from the fat surface with ultrasound unfeasible.
This evaluation found that fat cover damage affected only 10% of
striploins, and of those affected, the location of damage was at a location
not critical for measurement (on the flank edge / tail). Despite this,
findings presented in Chapter 5 show that B-Mode ultrasound struggled to
acquire images with discernible fat-lean interface locations that accurate
measurement could be taken from. It was identified that delamination of
the subcutaneous fat layers of the striploin may have introduced
ultrasound barriers (air gaps) that prevented penetration of soundwaves
to acquire discernible images to be acquired. Through this research it has
been suggested that B-Mode ultrasound will likely yield better results
through sensing from the lean meat/muscle surface of the striploin and
therefore a different orientation to that considered in this research is

recommended.

Evaluating other Sensing Technologies: It is considered that
force, spectroscopy, and rapid-CT imaging would be potential candidates

for this application. These technologies were out of scope for this research
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and, as with all conclusions devised considering only every desktop
research, it is suggested they be developed using insights from this thesis
(particularly Chapter 3) and evaluated in practice using the performance
evaluation framework developed in this research. It is recommended that
future work should be undertaken to developed other sensing systems for
this application to be evaluated with the performance evaluation metric

developed within this research.

Rapid CT imaging (such as systems offered by DMRI and RapiScan)
should be investigated further. Whilst research has been conducted to
identify subcutaneous fat depth using CT imaging, for the application to
be feasible for beef striploin fat trimming a focus on integrating into
automation systems and operating this machine safely in a configuration
that is capable of sensing at line speed is required. Throughout this
research access to these machines was tried but unsuccessful, therefore

only medical-grade CT was considered for evaluation.

Since beginning this research substantial more research has been
conducted in the field of spectroscopy for fat depth measurements. It is
suggested that further desktop research should be conducted on this
technology and perhaps a prototype system be developed and assessed
using the performance evaluation metric develop and applied within this

research.

7.2.2 Automation of Uniform Fat Trimming of Beef Striploin
Further work is recommended to be undertaken to further progress
the capabilities of an automated system for uniform fat trimming using A-

Mode ultrasound sensing.

A-Mode Ultrasound Sensing Parameter Optimisation: With
further development both ultrasound sensing systems can perform better

than that shown in this research. The constraint of time and budget within
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the PhD was the limiting factor, hence the scope of development was for a
proof-of-concept system without focusing on optimisation of the
performance. Post-trials of results presented in Chapter 6 a better
parameter setting within the laptop software settings was identified that
would enable more reliable node measurements (e.g. less "*missed”
nodes). These settings will be implemented to improve the reliability of
the sensor, likely to the magnitude of approximately 10 - 20%

improvement (40% - 50% reliability).

In addition to this, the insight from Chapter 3 and Chapter 6
highlighted the optimisation of thresholds to remove error outliers of meat
height measurements (used to calculate fat depth), and improve accuracy
and precision at the cost of reliability. For example, applying the filter to
ignore all sensor values less than 25 mm would remove 5 outliers and 1
correctly measured datapoint. It is likely that there is a balance for this
filter threshold that will be most ideal for an automated system with

commercial constraints.

Path Planning Optimisation: Further work will be conducted
considering the findings of Chapter 3 and Chapter 6 to provide a means of
optimising the path for both the sensing path and cutting path of the
automated system. The spatial patterns of the "missed” measurement
nodes provide an insight into the nodes which are least likely to yield an
informative result, and therefore, may be omitted from the cycle to
reduce time spend on locations that have a low probability of receiving a
measurement. Additionally, the spatial patterns of fat height, meat height
and fat depth will be considered to tweak the filters applied to determine
erroneous values as well as the interpolation of the measurements at
these nodes. For example, applying the filter to ignore all sensor values
less than 25 mm would remove 5 outliers and 1 correctly measured
datapoint. It is likely that there is a balance for this filter threshold that

will be most ideal for an automated system with commercial constraints.
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Integration for Cutting: For a practical application it is vital to
consider the integration of this sensing technique with an automated
cutting control system. The scope of this research was on the sensing
with only general evaluation and consideration given for how these
sensors would lend themselves for integration within an automated
system. Whilst identifying and planning a cut path is the initial step, the
actuation of the cut path is another challenge that needs to be considered
as characteristics of flex, forces and fixation will affect the trimming
accuracy and the final fat trim remaining on the striploin. The deviations
during this process may also assist to further inform and refine the
thresholds of the performance evaluation framework developed in this

work.

Methods to Restraining Fat During Trimming: As previously
mentioned, the cut path is only a part of the issue for automated fat
trimming. As such, work is currently being conducted to develop a
restrainer to prevent the trimming tool to deviate from the cut path due
to reaction, shearing forces at the point of cutting and flexion of the fat
during trimming. The automated system presented in Chapter 6 is being

further developed within industry-sponsored R&D provided by AMPC.
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APPENDICES

Appendix A: Product & Process Analysis

A.1: Cavities Created by Table Boning
This appendix includes a summary of the analysis conducted to
ascertain the typical cavities that are created in the boning of a 100-day

grain-fed beef striploin primals at the collaborating processor’s facility.

A beef striploin was taken from the processing line immediately
after chine sawing to evaluate the cavities of the bones that needed to be
removed during the table boning process prior to fat trimming. A boning
knife was used to carefully remove all bones (button bones and flat
bones) from the lean muscle surface of the striploin whilst leaving as
much lean muscle on the striploin as possible (see Figure A- 1: Location
of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) in a
boneless striploin & Figure A- 2: Removal of button bones (B1, B2, ...,

B6) and flat bones (F1, F2, ..., F6) from a boneless striploin).
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Figure A- 1: Location of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) in a boneless
striploin
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Figure A- 2: Removal of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) from a
boneless striploin

The seven button bones (B1, B2, B3, B4, B5, B6, B7) and flat bones
(F1, F2, F3, F4, F5, F6, F7) were removed were photographed and
measured for maximum length and width to approximate the area of the
cavity (see Figure A- 3: Close-Up images of button bones & flat bones.).
The depth of each cavity that remained after deboning the striploin was
also measured with a stainless steel ruler (see Figure A- 4: Measurement

of Cavities after removing Button Bones & Flat Bones.).
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Figure A- 3: Close-Up images of button bones & flat bones.

Figure A- 4: Measurement of Cavities after removing Button Bones & Flat Bones.

Table A- 1: Measurement of Flat Bone Dimensions & Table A- 2:

Measurement of Button Bone Dimensions outline the area of the bone
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cavities in the striploin for flat bones and button bones respectively. The

depth of the cavities ranged from 10 - 20 mm with the average depth

being 15 mm.

Table A- 1: Measurement of Flat Bone Dimensions

Flat Bone # Max Width (mm) | Max Length (mm)
1 25 15
2 62 56
3 56 92
4 60 105
5 62 105
6 63 100
7 48 50

Table A- 2: Measurement of Button Bone Dimensions

Button Bone #

Max Width (mm)

Max Length (mm)

1 22 15
2 30 22
3 36 30
4 35 32
5 25 30
6 37 21
7 42 20
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A.2: Dataset for Product Variability of Untrimmed Striploins
This appendix includes a summary of the analysis conducted to
ascertain the typical dimensions and weights of an untrimmed 100-day

grain-fed beef striploin primals at the collaborating processor’s facility.

Twenty striploins were taken from the processing line conveyor of a
typical processing run immediately before fat trimming on the 28t of
April, 2021. The following table shows the carcase characteristics of the
striploins that were surveyed in this analysis. The following descriptions
apply to the striploins that were reported on in Table A- 3: Striploin
dataset characteristics captured by processor. (C Anderson 2021, pers.
comm., 29 April).:

- All carcases were from the same lot (approximately a 200km
radius in geographical location), slaughtered the day prior
(27/04/2021), were RFID labelled, assigned a body number and
these carcases entered the boning room between 11:23AM -
11:51AM on the experimentation date (28/04/2021).

- All carcases were declared to have conformed to standards (this
column has been removed from dataset)

- The steers were 139-day grain-fed steers (nominally termed
'100-day’ grain-fed) slaughtered on the 27th of April, 2021.

- The feedlot fed steers a mixture of vegetable oil, molasses,
forage silage, cereal hay, barley (C Anderson 2021, pers. comm.,
29 April).

- All carcasses were from male bovine and determined to be:

o mostly <18 months old (dentition = 0, n = 14)
o some <30 months old (dentition = 2, n = 5)
o one > 42 months old (dentition =4, n = 1)

- The following codes were used to classify the cattle breed of the

carcase:
o CHAR Charolais
o SG Santa Gertrudis
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Striploin primals were collected from the processor’s conveyor

prior to ‘finishing’ by a slicer and returned to the line after

MANSP
BRAFD
BRANG
HFD
SIM
ANG
LIM

Mandalong Special
Braford

Brangus

Hereford
Simmental

Angus

Limousin

measurements were acquired.
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Table A- 3: Striploin dataset characteristics captured by processor.

Live Left Hot Right Fat Eye
Weight Weight Right Hot Depth Meat Fat Muscle
Bodyihd (ke) B (ke)B Weight (kB (mm)Bll Dentitifl Marblf Colould colouBd RibSitRd (mm)Bd sSire B DamBd
524 737.6 209.5 205.5 32 2 1.2 1C 0 12 a0 CHAR CHAR
526 767.5 218 211.5 28.1 0 1.6 2 0 12 g2 MANSP MANSP
528 721.0 200 197.5 20.9 0 1 1C 0 12 87 BRAFORD BRANGUS
450 660.1 193 191.5 21.4 0 1.6 2 0 12 101 CHAR HFD
452 712.8 199.5 202.5 11.2 0 1.6 2 0 12 116 CHAR CHAR
454 082.8 179 181 26.6 2 1.4 2 0 12 64 BRANG HFD
457 707.6 198 202.5 23.5 0 1.4 2 0 12 89 HFD SIM
459 £95.2 190 193.5 28.1 2 1.4 2 0 12 104 CHAR CHAR
462 669.4 186.5 188.5 14.7 0 1.4 2 0 12 74 CHAR CHAR
465 650.8 182 182.5 31.5 0 1.4 2 0 12 78 HFD HFD
463 708.6 200.5 201 29.1 0 1.4 2 0 12 94 ANG HFD
468 097.3 197 199 17 2 1.2 2 0 12 108 ANG LIM
566 673.5 197.5 193.5 11.2 0 1 1B 0 12 74 CHAR HFD
567 744.8 197.5 197.5 18.7 4 1.6 2 0 12 72 ANG HFD
569 722.1 194.5 195 32.9 0 1.2 1B 0 12 86 HFD HFD
572 637.4 184.5 185.5 14.7 0 1.4 2 0 12 g5 LIM LIM
574 703.5 198 193 25.1 0 1.4 2 0 12 100 CHAR HFD
576 657.0 193.5 192 17 2 1.4 1C 0 12 a0 MANSP MANSP
578 729.3 209 207 23 0 1.4 2 0 12 80 HFD HFD
547 640.5 186 185 20.3 0 1.6 2 0 12 94 ANG LIM
Average 695.9 195.7 195.3 22.4 -—- --- -—- --- -—- 89.4 -—- -—-
sD 35.4 9.4 8.1 6.6 - - -—- - - 12.8 --- -
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The photographs in Figure A- 5: Striploin dataset (n=20) observed for fat cover damage. were used to
observations of fat cover. Of the observed striploin dataset (n = 20), two striploins exhibited a 10cm x 10cm

area of fat cover damage.

Figure A- 5: Striploin dataset (n=20) observed for fat cover damage.
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A.3: Time-Motion Analysis of Striploin Fat Trimming

This appendix includes the results of the time-motion analysis

conducted on the afternoon shift of the 5th of June 2023 at the

collaborating processor’s facility. The time to trim the entire striploin,

separated into trimming the lean (medial) side and fat components, for 4

unidentified slicers over 25 observations. The raw data recorded in this

Time-Motion study is presented in Table A- 4: Slicers' times for fat

trimming as recorded in the Time-Motion Study. Only the ‘Trimming Fat’

component was considered for the analysis presented in the main body of

the thesis.

Table A- 4: Slicers' times for fat trimming as recorded in the Time-Motion Study

Time-Motion Measurements of Fat Trimming
Striploin| Slicer Trimming Trimming Total Fat Trimming Slicer

# Label Lean (s) Fat (s) Trimming (s) Average (s)
1 29 30 59

2 22 22 44

3 A 17 36 53 30.0

4 15 31 46

5 21 30 51

6 21 31 52

7 23 23 46

8 21 16 a7

9 B 21 31 52 95 5
10 26 22 48

11 27 32 59

12 25 29 54

13 18 42 60

14 11 21 32

15 o 25 23 48 217
16 21 32 53

17 25 35 60

18 16 37 53

19 28 20 48

20 20 38 58

21 30 21 51

22 D 14 13 27 226
23 15 15 30

24 26 25 51

25 20 26 46

Average 21.5 27.2 48.7
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Appendix B: Dataset for Manual Fat Depth Measurements

This appendix includes the measurements and calculations used in

the calculation of results presented in Chapter 3.

B.1: Fat Depth Measurements (LHS & RHS)
The manual (ruler) fat depth measurements of the striploins used in

this analysis is tabulated below.

Average RHS Striploin Fat Depth Dataset:

Table B- 1: Average Fat Depth for RHS Striploins (1R & 2R)
presents the average fat depth calculated from combining the RHS
striploin dataset: 1R & 2R. It should be noted that most of these averages
were calculated using 2 measurements in total (one from each striploin).
The highlighted nodes in this dataset were calculated with only 1
measurement as shown below:

- Red: 1 measurement to calculate average (1R)

Table B- 1: Average Fat Depth for RHS Striploins (1R & 2R)

Average Fat Depth of RHS Striploin Dataset (Frns)

P1 10.5 6.0 8.8 6.0 9.0 11.3 15.3 19.8 9.0 -
P2 4.8 10.5 6.5 4.3 5.8 7.5 8.5 17.5 5.0
P3 8.3 125 15.0 11.3 11.8 45 7.3 11.0 275
P4 7.8 11.3 23.0 16.3 17.8 14.5 10.0 12.0 12.0
P5 10.3 21.3 23.8 16.5 14.0 14.3 8.0 8.3 11.0
P6 14.8 25.8 23.8 18.5 15.5 12.3 9.5 11.0 125
P7 22.0 21.5 20.0 14.5 12.3 13.3 15.0 17.0 19.0
P8 11.5 20.8 14.8 15.8 21.0 29.5 18.5 19.8 20.0
P9 16.0 18.3 18.3 18.0 34,5 33.0 20.5 20.0 25.5
P10
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Average LHS Striploin Fat Depth Dataset:

Table B- 2: Average Fat Depth for LHS Striploins (3L & 4L) presents
the average fat depth calculated from combining the LHS striploin
dataset: 3L & 4L. It should be noted that most of these averages were
calculated using 2 measurements in total (one from each striploin). The
highlighted nodes in this dataset were calculated with only 1
measurement as shown below:

- Red: 1 measurement to calculate average (3L)

- Yellow: 1 measurement to calculate average (4L)

Table B- 2: Average Fat Depth for LHS Striploins (3L & 4L)

Average Fat Depth of LHS Striploin Dataset (Fuus)

P1 11.3 8.0 7.5 7.5 9.3 12.8 17.5 16.5
P2 8.8 19.5 14.0 12.0 8.0 8.8 14.8 21.5
P3 8.8 23.3 16.5 20.8 20.3 15.0 16.3 18.5
P4 14.8 24.3 23.0 20.3 20.5 16.3 13.3 15.8
PS5 19.5 21.5 25.0 21.5 18.3 13.3 13.0 13.8
P6 17.8 26.0 225 215 213 16.3 15.5 16.8
P7 23.0 20.0 23.5 27.8 28.3 21.8 30.3 23.0
P8 20.0 18.0 20.0 - 31.0 22.0 21.0 27.0
P9

P10

Average Combined (LHS & RHS) Striploin Fat Depth Dataset:

Table B- 3: Average Fat Depth for Combined Striploin Dataset (1R,
2R, 3L, 4L) presents the average fat depth calculated from combining all
data from the striploin dataset: 1R, 2R, 3L & 4L. It should be noted that
most of these averages were calculated using 4 measurements in total
(one from each striploin). The highlighted nodes in this dataset were
calculated with less than 4 as shown below:

- Red: 1 measurement to calculate average (2R)

- Yellow: 2 measurements to calculate average (1R & 2R)
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- Grey: 3 measurements to calculate average (1R, 2R, 4L)

- Green: 3 measurements to calculate average (1R, 2R, 3L)

Table B- 3: Average Fat Depth for Combined Striploin Dataset (1R, 2R, 3L, 4L)

Average Fat Depth of Combined Striploin Dataset (Fc)

Pl 10.9 7.0 8.1 6.8 9.1 12.0 16.4 18.1 9.0
P2 6.8 15.0 10.3 8.1 6.9 8.1 11.6 19.5 5.0
P3 8.5 17.9 15.8 16.0 16.0 9.8 11.8 14.8 27.5
P4 11.3 17.8 23.0 18.3 19.1 154 11.6 139 12.0
P5 14.9 21.4 24.4 19.0 16.1 13.8 10.5 11.0 11.0
P6 16.3 25.9 23.1 20.0 18.4 14.3 12.5 139 12.5
P7 22.5 20.8 21.8 21.1 20.3 17.5 22.6 20.0 19.0
P8 15.8 19.4 17.4 15.8 26.0 25.8 19.8 234 20.0
P9 16.0 18.3 18.3 18.0 345 33.0 20.5 20.0 255
P10 i i i

B.2: Trim Cut Path for Combined (LHS & RHS) Striploin Dataset
Table B- 4: Cut Path Position for Combined Striploin Dataset (1R,
2R, 3L, 4L) presents the average fat depth of the combined striploin

dataset filtered to make the minimum coordinate the fat specification of

12 mm (highlighted in green).
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Table B- 4: Cut Path Position for Combined Striploin Dataset (1R, 2R, 3L, 4L)

Trim Cut Path of Combined Striploin Dataset (Tc)

P1 12.0 12.0 12.0 12.0 12.0 12.0 16.4 18.1 12.0
P2 12.0 15.0 12.0 12.0 12.0 12.0 12.0 19.5 12.0
P3 12.0 17.9 15.8 16.0 16.0 12.0 12.0 14.8 27.5
P4 12.0 17.8 23.0 18.3 19.1 15.4 12.0 13.9 12.0
P5 14.9 21.4 24.4 19.0 16.1 13.8 12.0 12.0 12.0
P6 16.3 25.9 23.1 20.0 18.4 14.3 12.5 13.9 12.5
P7 22.5 20.8 21.8 21.1 20.3 17.5 22.6 20.0 19.0
P8 15.8 19.4 17.4 15.8 26.0 25.8 19.8 234 20.0
P9 16.0 18.3 18.3 18.0 34,5 33.0 20.5 20.0 25.5
P10

B.3: Gradient of Fat Depth Measurements

The forward gradient calculated using the raw manual (ruler) fat
depth measurements of the striploins used in this analysis is tabulated in
Table B- 5: Gradient in the Y Direction (along striploin width) of the
trimming cut path. & Table B- 6: Gradient in the X Direction (along
striploin length) of the trimming cut path. and visualised in Figure B- 1:
The average fat depth of the striploin dataset (Fc) illustrating the gradient
across the length (Faces) in the 'X' direction. & Figure B- 2: The average
fat depth of the striploin dataset (Fc) illustrating the gradient across the
width (points) in the 'Y' direction..
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Table B- 5: Gradient in the Y Direction (along striploin width) of the trimming cut path.

Gradient in Y Direction of Trim Cut Path (Tc)

P1> P2 . 6.9 : : . . 10.0 3.2 :
P2>P3 ; 6.6 8.6 9.2 9.2 ; ; 10.9 35.5
P3>P4 . 0.3 16.6 5.2 7.2 7.7 . 2.0 35.5
P4 > P5 6.6 8.3 3.2 1.7 6.9 3.7 ; 4.3 _
P5 > P6 3.2 103 |- 2.9 2.3 5.2 11 11 4.3 11
P6 > P7 14.3 117 |- 32 2.6 43 7.4 23.2 14.0 14.9
P7 > P8 15.5 32 |- 100 12.3 13.2 18.9 6.6 7.7 2.3
P8 > P9 0.6 2.6 2.0 5.2 195 16.6 1.7 7.7 12.6
P10 - . . . . - - . .
5.0 6.2 5.8 4.8 8.2 6.9 5.3 6.8 12.7
15.5 11.7 16.6 12.3 19.5 18.9 23.2 14.0 35.5
14.3 10.3 16.6 9.2 19.5 18.9 23.2 14.0 35.5




Table B- 6: Gradient in the X Direction (along striploin length) of the trimming cut path.

Gradient in X Direction of Trim Cut Path (Tc)

P3 6.7 2.4 0.3 - 4.6 - 3.2 14.6 4.0 14.6 14.6
P4 6.6 6.0 5.4 1.0 4.3 3.9 2.1 2.1 3.9 6.6 6.6
P5 7.4 3.4 6.2 3.3 2.7 2.0 - - 3.1 7.4 7.4
P6 11.0 3.2 3.6 1.9 4.7 2.0 1.6 1.6 3.7 11.0 11.0
P7 2.0 1.1 0.7 1.0 3.2 5.9 3.0 1.1 2.3 5.9 5.9
P8 4.2 2.3 1.9 11.7 0.3 6.9 4.2 3.9 4.4 11.7 11.7
P9 2.6 - 0.3 18.9 1.7 14.3 0.6 6.3 5.6 18.9 18.9
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Average Fat Depth (Fc) in X Direction
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Figure B- 1: The average fat depth of the striploin dataset (Fc) illustrating the gradient across the length (Faces) in the 'X' direction.
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Average Fat Depth (Fc) in Y Direction
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Figure B- 2: The average fat depth of the striploin dataset (Fc) illustrating the gradient across the width (points) in the 'Y' direction.
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Appendix C: Computed-Tomography Error Dataset Measurements

This appendix includes the manual and CT measurements for the striploin dataset (1R, 2R, 3L and 4L) used

to calculate the error dataset used for results presented in Chapter 4. These are:
- Striploin 1R (see Table C- 1: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 1R)
- Striploin 2R (see Table C- 2: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 2R)

- Striploin 3L (see Table C- 3: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 3L)
- Striploin 4L (see Table C- 4: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 4L)

Table C- 1: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 1R

1] 11.0 9.9 1.2 2.0 1.5 0.5 5.5 2.8 2.7 2.0 1.5 0.5 6.0 6.2 |- 0.2 105 9.9 06| 185 12.1 6.4] 105 11.4 |- 0.8
2 45 4.1 0.4 80| 6.6 1.4 4.0 | 2.7 1.3 0.5 06 |- 0.1 3.0| 28 0.2 6.0 3.9 2.1 40| 43 |- 03| 110 8.2 2.8
3 8.5 6.6 1.9 12.5| 12.2 03] 16.0| 12,6 3.4 9.0 6.5 25| 13.0 9.5 3.5 50| 4.9 0.1 7.0 6.6 0.4 7.0 5.6 1.4
4 70| 48 2.2 9.0, 86 04| 210| 20.7 03] 15.0( 138 1.2 20.0| 17.2 28| 15.0| 14.6 04| 120 124 |- 04| 110 8.7 2.3
5| 115 7.9 3.6| 26.0]| 247 1.3| 21.0| 21.2 |- 0.2 14.0| 13.3 0.7 13.5| 13.0 05| 13.0| 111 1.9 7.0 53 1.7 7.5 7.3 0.2
6| 145| 14.4 01| 245 241 04| 17.5| 17.5 = 15.0 | 13.8 1.2 14.0| 111 29| 11.0 9.9 1.1 80, 41 39| 11.0| 11.8 |- 0.8
7| 20.0| 204 |- 04| 17.0| 16.2 0.8 15.0| 13.8 1.2| 11.0| 10.8 0.2 9.5 9.7|- 0.2] 12.0| 102 1.8 13.5| 119 1.6 16.0| 155 0.5
8 7.0 5.6 1.4 12.5| 125 = 11.5| 10.8 07| 165 | 16.7|- 0.2| 17.0| 16.4 0.6 27.0| 26.7 03| 17.0| 156 1.4 155 13.7 1.8
9 4.0 2.3 1.7 75| 4.8 27| 140 124 16| 17.0| 205|- 3.5 400 41.2 |- 1.2| 220 211 0.9 - 155 | 12.8 2.7
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Table C- 2: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 2R

Face 1 Face 2 Face 3 Face 4 Face 5 Face 6 Face 7

Point

Face 8

Ruler CT Diff. Ruler CT Diff. Ruler CT Diff. Ruler CT Diff. Ruler CT Diff. Ruler CT Diff. Ruler CT Diff. Ruler

CT  Diff. Ruler

Face 9

CcT

Diff.

1] 100| 75| 25| 100 94| 06| 120|11.7| 03] 10.0| 80| 20| 120 97| 23| 120| 84| 36| 120| 96| 24| 290|219 7.1 9.0 72| 18
2 50( 36| 14| 13.0|10.2| 2.8 9.0 7.7 | 13 80| 60| 20 85| 74| 11 90| 66| 24| 13.0(11.2 | 18| 240|226 1.4 50| 5.2 |- 02
3 80| 71| 09| 125|130(- 05| 140|112 | 28| 135|104 | 31| 105| 88| 17 40| 28| 12 75| 54| 21| 150|135| 15| 275|21.1| 64
4 85( /72| 13| 135|118 | 1.7| 250|226 | 24| 175 |16.5| 1.0 155133 | 2.2| 140|121 1.9 80( 62| 18| 13.0|10.7| 23| 12.0|10.8| 1.2
5 90( 71| 19| 165|167 |- 0.2 265|244 | 21| 19.0 (148 | 42| 145121 | 2.4]| 155|152 | 03 9.0 7.7 13 90| 67| 23| 110| 74| 36
6| 150|119 | 3.1| 270|287 |-17| 300 (284 | 16| 220|158 | 62| 170|135| 35| 135 10y | 28| 110 99| 11| 110| 7.7| 33| 125| 87| 3.8
7| 240|254 |- 14| 260|256 | 04| 250|226 24| 180|13.0| 50] 150/|13.0| 2.0| 145 118| 2.7 165|158 | 0.7| 180|186 (- 0.6 19.0|17.2| 1.8
8| 160|134 | 26| 290|285 | 05| 18.0|16.4| 1.6 150|11.0| 40| 250|226 | 24| 32.0|352| 3.2| 200|183 | 1.7| 240|212 | 28| 200|193 | 0.7
9| 280|278 | 02| 29.0|28.1| 09| 225|166 | 59| 190|183 | 0.7] 29.0|285| 05| 440 485|- 45 205|176 | 29| 245|238 07| 255|285 |- 3.0

Table C- 3: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 3L

1 17.0 16.1 0.9 15.0 12.2 2.8 11.0 9.1 19 11.0 8.1 2.9 14.5 11.2 3.3 18.0 16.6 1.4 23.0 21.8 1.2 21.0 15.6 5.4
“ 16.5 16.8 |- 0.3 29.0 22.1 6.9 19.5 16.5 3.0 18.0 16.4 16 8.0 3.6 2.4 10.5 9.5 1.0 215 20.2 13 32.0 28.6 3.4
3 17.5 19.3 |- 18 30.5 28.1 2.4 21.0 19.3 17 25.0 23.9 11 22.5 23.7 |- 12 14.5 12.6 19 15.5 13.1 2.4 20.5 18.7 18
4 29.5 23.8 3.7 315 30.0 15 23.0 21.1 19 24.5 21.9 2.6 20.0 18.0 2.0 13.5 11.4 21 13.5 10.6 2.9 17.5 14.4 3.1
3 29.0 27.9 11 25.0 21.2 3.8 24.0 20.7 3.3 22.0 19.6 24 17.5 16.0 15 11.0 9.8 12 11.0 10.5 0.5 13.5 10.9 2.6
6 23.5 20.6 2.9 18.0 15.5 25 18.0 15.1 2.9 20.0 18.3 17 24.0 20.2 3.8 17.0 17.7 |- 0.7 15.5 14.1 1.4 12.5 10.1 2.4
7 23.0 22.5 2.5 15.0 14.2 0.8 20.0 15.2 4.8 38.5 34.8 3.7 22.5 2L.9 0.6 22.5 2L.6 0.9 40.5 38.4 2.1 20.0 18.4 1.6

Table C- 4: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 4L

1 5.5 5.6 |- 0.1 1.0 1.0 - 4.0 4.1 |- 0.1 4.0 3.1 0.9 4.0 6.7 |- 2.7 7.5 8.9 |- 14 12.0 13.8 |- 18 12.0 12.0 -

2 1.0 2.5 |- 1.5 10.0 11.6 |- 1.6 8.5 6.3 E2NN 6.0 4.9 11 8.0 141 |- 6.1 7.0 7.0 = 8.0 8.9 (- 0.9 11.0 116 |- 0.6
3 16.0 15.9 0.1 12.0 12.7 |- 0.7 16.5 16.6 |- 0.1 18.0 19.7 |- 1.7 15.5 16.4 |- 0.9 17.0 19.6 |- 2.6 16.5 19.2 |- 2.7
4 < < = 17.0 17.0 = 23.0 22.8 0.2 16.0 17.6 |- 1.6 21.0 23.5 |- 2.5 19.0 22.9 |- 3.9 13.0 15.5 |- 2.5 14.0 11.6 24
5 10.0 10.4 |- 0.4 18.0 17.9 0.1 26.0 27.2 |- 1.2 21.0 23.4 |- 24 19.0 20.4 |- 14 15.5 16.8 |- 13 15.0 17.1 |- 2.1 14.0 11.6 24
6 12.0 15.0 |- 3.0 34.0 33.3 0.7 27.0 29.0 |- 2.0 23.0 26.9 |- 3.9 18.5 19.5 |- 1.0 15.5 20.4 (- 49| NoF-L No F-L NA 21.0 22.8 |- 18
7 21.0 20.3 0.7 25.0 317 |- 6.7 27.0 24.6 2.4 17.0 19.4 |- 24 34.0 36.6 |- 2.6 | No READ | NO READ NA 20.0 21.8 |- 18 26.0 27.1 |- 11
8 20.0 16.9 2 18.0 20.5 |- 2.5 20.0 21.3 |- 13 = = = 310 33.9 |- 20 22.0 19.7 2.3 21.0 22.6 |- 16 27.0 27.8 |- 0.8
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Appendix D: B-Mode Ultrasound Device Datasheets

This appendix includes the datasheets of the ultrasound sensors

evaluated in Chapter for this application.

D.1: B-Mode Ultrasound: ReproScan Flexx

In the preliminary analysis of Chapter 5 in determining the
feasibility of the ultrasound for the application this sensor was found
inappropriate for use at its current configuration (probe head shape). The
following links are useful for accessing more information on this device:

- Product Specifications: https://repro-scan.com/products/flexx/

- Product PDFs (downloadable): https://repro-scan.com/pdfs/

D.2: B-Mode Ultrasound System (Butterfly iQ+)

This B-Mode ultrasound was developed and evaluated as shown in
Chapter 5. The following links are useful for accessing more information
on this device:

- Product Specifications:

https://support.butterflynetwork.com/hc/en-
us/articles/16910421132187-System-Specifications

- User Manual:
https://support.butterflynetwork.com/hc/en-
us/articles/16910421132187-System-Specifications
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