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ABSTRACT 

 

The trimming of excess fat from beef striploin primal is currently a 

manual process costing the Australian beef industry an estimated $89 

million annually due to yield losses within beef processing plants. Robotics 

have been successfully deployed to address efficiency and productivity 

issues in similar products such as pork but are yet to be adapted to red 

meat. Specifically, a sensing technology capable of acquiring the fat depth 

information required for automated trimming is yet to be developed. 

 

The work undertaken in this dissertation investigates the characteristics of 

the beef striploin primal and the processing considerations to develop a 

sensing performance framework for the application of beef striploin fat 

trimming. Computed-Tomography is used to provide a means of 

benchmarking the error present between manual measurements and the 

'gold standard' of sensing technologies for this application in the 

performance metrics of accuracy (described as median error), precision 

(described as Inter-Quartile Range of error), linearity (described as R-

squared quantity of actual vs predicted measurements), reliability 

(described as the expected probability of acquiring 'no read' 

measurements across surveyed nodes), and response time (described as 

the time required to acquire measurements). A weighted sensor 

performance evaluation framework was developed based upon analyses 

conducted on key aspects of the striploin primal fat profile and the fat 

specifications and operational constraints of the fat trimming process.  

 

Fat depth measurement systems were developed using A-Mode and 

B-Mode ultrasound sensing technologies to obtain results that could be 

assessed using the developed weighted sensor evaluation framework. In 

applying this framework it was identified that the A-Mode (score: 47 / 75) 

ultrasound system was more suitable than B-Mode (score: 29 / 75) for 
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implementation within a commercial automated fat trimming system. 

Though the majority of literature recommends the use of B-Mode 

ultrasound for fat depth measurements it was found that the performance 

metrics considered favoured simplicity and fast response typical of A-

mode ultrasound technology.   

 

Further work to validate the recommendation of A-Mode ultrasound 

technologies for uniform fat trimming of beef striploin is recommended by 

integrating this technology within an automated system for commercial 

use. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Australia’s agricultural sector is considered to be one of the five pillars 

of the economy and crucial for Australia’s prosperity. This industry provides 

93% of the nation’s domestic food supply and supports 445,000 employees 

within 23,000 businesses with approximately 90% of these jobs based in 

regional or remote areas of Australia (Ernest & Young 2021). An industry 

survey conducted by the Australian Bureau of Agricultural and Resource 

Economics and Sciences found that from 2021 to 2022 Australia’s 

agricultural production value totalled $93b gross with an export value of 

$71b (ABARES, 2023).  

 

According to report by Ernest & Young (2021) the red meat and livestock 

industry had the 16th largest turnover of all key industries in Australia, 

contributing $69.9b (1.3%) towards Australia’s key industry total value 

(see Figure 1-1). According to report by Ernest and Young (E&Y) the red 

meat and livestock industry (referred to as “red meat”) contributes most 

significantly (45%) towards the total value of Australia’s total agriculture 

production (Ernest & Young, 2021). This is illustrated in the chart presented 

in Figure 1-2. 
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Figure 1-1: Industry turnover compared with other industries between 2019-20. Source – (Ernest 
& Young, 2021) 

 

 

Figure 1-2: Agriculture production industry value add in 2019-20. Source – (Ernest & 
Young, 2021) 

 

The red meat and livestock industry spans three species of 

domesticated animals: bovine, ovine and caprine, which are slaughtered 

to create beef (including veal and buffalo), sheepmeat (also referred to as 

lamb or mutton), and goatmeat products respectively. The red meat 

industry supply chain includes the production (farming of animals), 

processing (slaughter and creation of products) and retail (sale of 
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product) of an assortment of various meat products for domestic and 

export markets (see Figure 1-3). In 2020, Australia was the world’s 

largest sheepmeat exporter, and the second largest exporter in beef 

products and goatmeat globally. 

 

 

Figure 1-3: The supply chain of the red meat processing industry. Source – (Ernest & Young, 
2017a) 

 

Red meat processing is a crucial sub-sector of the red meat industry 

that adds value by creating meat products from livestock for sale in both 

the domestic and international markets. In 2020, 7.1 million head of 

cattle were slaughtered for processing products for domestic and 

international markets whilst 1.05 million head were exported as livestock 

(Ernest & Young, 2021). Of the red meat and livestock industry’s export 

value of $18.4b in 2019 - 2020, the significant majority of this value 

($15b; 82%) was derived from meat products whereas approximately $2b 

(11%) was derived from livestock (Ernest & Young, 2021). The 

significance of the red meat processing export value is illustrated by the 

relative proportion of export value of “Chilled/frozen meat” as shown in 

Figure 1-4.  
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Figure 1-4: The significance of the export value of the processing sub-sector within the red meat 

industry. Source – (Ernest & Young, 2021) 

 

When comparing the value add of processing of beef exported 

(including processing costs), in contrast to the exporting of livestock 

calculated as a value per equivalent weight ($/kg), the processing of beef 

offers an additional $4.31/kg gross beef product value-add. This 

highlights the value of the red meat processing industry for Australia’s 

economy as opposed to live exporting of cattle. 

 

 

1.1.1 The Challenges of Australia’s Red Meat Industry 

The red meat industry faces a number of operational challenges and 

risks surrounding the access to, and retention of, skilled labour. According 

to a study conducted by the Australian Meat Industry Council (AMIC), 

there are currently 10,000 job vacancies in the red meat processing 

industry (Carter, 2022), with many processing plants unable to operate at 

full capacity due to national labour shortages for the red meat processing 

industry.  
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According to Carter (2022) there are several significant factors that 

limit the talent pool of the red meat processing industry, including: 

• the negative perception of the red meat processing industry 

particularly prominent in younger generations,  

• the lack of education and educational pathways to develop an 

understanding of, and skills within, the red meat processing 

industry, and 

• the strenuous physicality of many roles in the processing 

plant that do not lend themselves to a female or younger 

demographic as well as the location of the majority of 

abattoirs, the significant majority of which are based in 

regional or remote communities.   

 

In addition to the difficulty of attracting skilled labour, the red meat 

processing industry also struggles to retain the skilled labour force. 

According to a study conducted by The Response Group, on average the 

annual turnover rate of the labour force of the Australian red meat 

processing industry was 62% (Carter, 2022) with the highest staff 

turnover in the most skilled jobs in the processing plant (78% in the 

slaughter room; 56% in the boning/slicing room). A significant factor 

contributing to this turnover rate is the high rate of incidents and severity 

of injuries sustained by the labour force. This is predominantly injuries 

such as: sprains/strains, lacerations, injuries from working at heights, 

burns and injuries associated with animal handling, due to the repetitive, 

strenuous physical demands. Another significant factor that affects 

workforce retention is that a significant percentage of the workforce 

consists of migrants who are employed through Government supported 

migration initiatives. These programs are typically 24 months in duration, 

and the immigrant workforce typically use these initiatives as a short-

term opportunity to earn money to then return to their families in their 

native countries (Carter, 2022). The cultural diversity of the labour force 
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can also create language barriers that contribute to difficulties in training, 

and training costs. 

 

The Australian Meat Processor Corporation (AMPC), a rural research 

and development corporation for the red meat processing industry of 

Australia, has identified the costs associated with labour as one of their 

most pressing issues. Past AMPC Chairman, Peter Noble, stated that the 

Australian red meat industry is struggling to retain its export market due 

to “Australia’s red meat processing costs (being) the highest in the world” 

(Australian Meat Processor Corporation, 2016). This is illustrated in Table 

1-1 which shows that the United States of America, Brazil and Argentina 

face only 66%, 57% and 75% respectively of the processing costs (per 

kilogram) to operate compared to Australia’s red meat processing 

industry. Of all cost categories, labour-related costs most significantly 

contribute to Australia’s cost to operate being substantially higher than 

competitors. Australia’s labour-related costs are 63%, 178% and 138% 

higher than the United States of America, Brazil and Argentina 

respectively (see Table 1-1). This highlights the need to consider solutions 

that may reduce the significance of labour-related costs in the red meat 

processing sector. 

 

The report by S.G. Heilbron Economic & Policy Consulting (2018) 

concludes that for Australia to remain sustainable “the industry will be 

required to identify ways in which it can reduce costs or improve 

productivity and product quality”, which aligns to the core priorities 

reflected in the Meat Industry Strategic Plan (MISP) of 2020 developed by 

the Red Meat Advisory Council (RMAC). There is a strong focus in both the 

strategic plans of RMAC and AMPC outlining the commitment to improving 

access to labour, increasing productivity, and reducing processing costs 

(Red Meat Advisory Council, 2020; Australian Meat Processor Corporation, 

2020).  
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Table 1-1: Typical operating costs of global beef processor competitors. Source – (Australian Meat 
Processor Corporation, 2017) 

 
 

 

The challenges of labour availability and the high cost to operate, 

predominantly due to labour-related expenses, highlight the significant 

need for Australia’s red meat processing industry to be further 

automated.  

 

1.1.2 Limitations of Conventional Technology in Red Meat 

Processing 

Automation offers significant benefits, yet the processing industry 

remains relatively untouched compared to other large production sectors. 

When compared to highly automated industries like car manufacturing, it 

becomes evident that implementing conventional robotic technologies 

within red meat processing factories presents additional challenges (see 

Figure 1-5).  
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Figure 1-5: A juxtaposition of manufacturing: automotive (left) VS red meat processing (right). 
Source – (Al-Naif Group, 2013; Farmers Weekly, 2018) 

 

Some of the additional challenges with operating robotics in a red 

meat processor include: 

 

- Variance in workpiece dimensions: The natural products 

have differences in shape, position, and many other qualities. 

The variability in the input product means that assumptions that 

are typically made to simplify the process cannot be reasonably 

made. 

 

- Complex components: Biological products cannot be 

reasonably quantified by simple approximations due to the 

complex relationships between intra-product structures (e.g., 

bone, muscle, fat) that are inherent in such workpieces as red 

meat. This is contrary to conventional manufacturing production 

lines whereby parts are generally made from quite easily 

describable structures or assemblies. 

 

- Non-homogeneity: By design, the components handled by 

robotic systems in typical production lines are consistently 

homogeneous to tight tolerances to optimise the automatability 

of the production line. With many uncontrollable inputs that have 

contributed to this product (e.g., chemical composition of the 

food, the variability between species, gender and age and 
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geographical origin of the animal) determining a consistent 

behaviour or developing an accurate relationship to describe for 

a control algorithm is difficult. 

 

- Flexible: As opposed to car manufacture, the rigidity of the 

environment and stiffness of the product is assumed to ensure 

that positional coordinates remain relevant even at the point of 

contact by the system’s actuators. Red meat is a flexible product 

and thus, even for the particular characteristic of this product, 

the assumptions underpinning the entire control mechanisms of 

the robot are void. Without real-time sensory perception and 

continuous real-time modification of control strategy automation 

will unlikely be successful. 

 

- Hard-to-fixate: Red meat products are difficult to fix due to the 

size variabilities, non-uniformity of structure, slipperiness, and 

non-destructive handling requirements. Additionally, even in 

cases where effective fixation is possible, many complications 

exist such as considerations relating to contamination due to 

wear, down-time for servicing and maintenance and cleanability 

of fixtures.  

 

- Challenging Operating Environment: For red meat processing 

all hardware is required to be made from only particular 

materials with high manufacture ratings (IP67) such that the 

system is required to be dustproof, waterproof and food-grade 

compatible with the versatility to work at high precision and 

accuracy, in low temperature environments and be easy to clean. 
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Due to these limitations, the majority of operations that have been 

automated for this industry are those that are repetitive, require heavy 

handling or require very minimal dexterity or skilled butchery such as 

packaging and storing, carcass splitting equipment and visual inspection. 

The current capability of robotic butchery is restricted to low-value 

operations where the sensitivities of the red meat product’s mechanical 

properties may be rendered insignificant through ‘brute force’ and the 

positioning of a cutting tool in reference to easily definable visual 

markers. The primary factor preventing robotic systems from being 

implemented to undertake the more complex operations in red meat 

processing applications is the lack of sensing capability. This capability 

typically requires the means to measure or estimate the subsurface 

features of red meat products for which high value products are cut with 

respect to. Without these sensing capabilities, robotics will remain unable 

to emulate the skilled butchery of human operators with the capability of 

cutting with reference to the flexible, biological interfaces within the meat 

products. The lack of literature for these types of advancements in the 

domain of red meat processing highlights the need for further work in this 

area (Abolhassani, Patel & Moallem, 2007; Kettenbach et al., 2006). 

Hence, the research conducted in this thesis will focus upon addressing 

this gap in literature by exploring, and developing, a system capable for 

sensing subsurface interfaces for automating applications within the red 

meat processing industry. 

 

1.1.3 Automation Focus: Uniform Fat Trimming of Beef Striploin 

A single processing task of a meat product was chosen to define the 

scope of this research to provide a focused investigation into the 

development of a sensing system capable of achieving automated, skilled 

butchery. The processing task chosen was the uniform fat trimming of a 

beef product known as the boneless striploin. The selection of this 

particular processing task and red meat product was based upon the 

significant contribution that automating this task would have on the red 
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meat processing industry. Beef processing accounts for 74.5% of the total 

processed red meat in Australia and provides 69.3% of the total export 

value (see Table 1-2). Additionally, the significant variability between 

carcasses (due to carcass size, feed types, genetic breed, etc.) was 

considered advantageous as it enabled the developed system to be most 

impactful if successful. 

 

Table 1-2: Comparison of species in the Australian Red Meat Industry calculated by statistics 

available online. Source – (Meat & Livestock Australia, 2018a; Meat & Livestock Australia, 2018b; 
Meat & Livestock Australia, 2018c; Meat & Livestock Australia, 2018d) 

 

 

Within beef processing there are several products that could be 

examined from the carcass (see Figure 1-6). Through an evaluation of 

primal (a large ‘primary’ meat product removed from a carcase) weights 

in bovine carcases on average, and the wholesale value of these primals, 

the striploin was found to be the most valuable primal (13.3% of the total 

carcass value) for a standard MSA-graded (Meat Standards Australia) 

beef carcass (see Table 1-3). 
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Figure 1-6: Beef carcass breakdown of primal and sub-primal MSA cuts. Source – (Meat & 
Livestock, 2018e) 

 

Table 1-3: Evaluation of entire beef carcase for to identify value significance by primal using 
statistics available online. Source – (Meat & Livestock, 2018a; Meat & Livestock 2018b; Meat & 

Livestock 2018c; Meat & Livestock 2018d) 
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The processing of the beef striploin is primarily the trimming of 

excess subcutaneous fat to ensure a uniform layer of fat at a depth 

determined by market specifications remains on the primal. An 

investigation conducted by Khodabandehloo for AMPC estimated a cost in 

yield losses of $263k per year for a typical work shift for each processor 

for a 1 mm over-trim from the target product specification 

(Khodabandehloo, 2018). An industry survey conducted by Palmer for 

MLA identified that processors consider the capability of trimming 

subcutaneous fat to specification the most beneficial development for 

processing (Palmer, 2015). 

 

This is supported by general managers of processors that process 

over 70% of Australian red meat have reported significant losses in the 

processing of beef striploin including Kilcoy Global Foods (KGF), JBS 

Foods (JBS) and Teys Australia (J McCormack 2018, pers. comm., 21 

October). Shane Clancy, General Manager of KGF, reported that the 

operation of beef striploin fat trimming amounts to a loss of $20/head (a 

loss of 4.1% to 4.5% yield) simply due to the inability of skilled labour to 

consistently trim to the market specification of the customer. Clancy 

estimates that, with a throughput of 4,000 head per week, this amounts 

to $80k/week (over $40m per year) and have employed various 

techniques such as selling half-striploins which have been unsuccessful (S 

Clancy 2019, pers. comm., 12 May). This was emphasised at the 

International Food and Automation Networking Conference (IFAN) in 2018 

by Tom Maguire, General Manager of Teys Australia (Maguire, 2018). 

Maguire reported: 

 

“anyone who can come up with a solution for striploin fat trimming 

will dominate the industry” 
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Much of the common tasks of red meat processing consists of 

cutting with respect to subsurface, biological interfaces to ensure that 

these products can be supplied to the consumer with a high degree of 

consistency, and thus, be highly valued with respect to the price that can 

be charged - particularly for the application of trimming excess 

subcutaneous fat from primals. Thus, by investigating the task of 

trimming subcutaneous fat the findings and conclusions of this thesis can 

be highly relevant for the industry in general. 

 

1.2 Research Objectives 

This dissertation is an investigation conducted towards developing 

the capability of robotics to address the limitations preventing the 

automation of the red meat processing industry. This investigation aims 

to focus on the application of uniform fat trimming of beef striploin, and 

more generally, the capability of a system to ascertain, within an 

acceptable tolerance, the position of the fat-lean interface within the 

primal.  The most significant and foremost limitation for this task involves 

acquiring the necessary information to inform the cut path of a tool for 

trimming subcutaneous fat in accordance with industry specifications. The 

numerous complexities associated with the task make this a novel 

undertaking worthy of study.  

 

The following objectives have been defined for the study: 

 

Objective 1: To identify the most feasible sensing technologies for 

the application of automated uniform fat trimming of beef striploin 

through conducting a literature review. 

 

Objective 2: To define the key parameters that inform the system 

capabilities for the task of uniform fat trimming of beef striploin through 

analysing fat characteristics and industry standards.  
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Objective 3: To establish a framework for evaluating sensor 

performance that outlines the process of ranking sensors against metrics 

important for the automation of beef striploin fat trimming. 

 

Objective 4: To develop, implement and evaluate novel ultrasound 

sensing systems capable of integration into an automated system to 

measure fat depth across an untrimmed beef. 

 

Objective 5: To conclude upon evaluations of sensing systems and 

provide recommendations to inform the development of practical sensing 

systems for integration into an automated system capable of uniform fat 

trimming of beef striploin. 

 

1.3 Thesis Outline 

 

This thesis is ordered as follows: 

 

Chapter 2 presents the current progress towards automation of 

uniform fat trimming before summarising the various sensing 

technologies that may be employed to measure the subcutaneous fat 

thickness on a beef striploin primal. This desktop literature review applies 

criteria, developed in consideration with the task-specific requirements of 

beef striploin fat trimming, to identify the most promising methods to be 

further investigated through this research.  

 

Chapter 3 is a collection of smaller experiments that provide the 

context of the product and process to inform the methodological approach 

of the thesis. These experiments present findings pertaining to the 

variability of the striploin product presented for trimming, an 

approximation of the processing time for striploin trimming and an 

evaluation of fat thickness across the striploin. Through these analyses 

this chapter provides rationale that informs the development of a 
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performance evaluation framework and the sensing systems developed 

for analysis within this thesis. 

 

Chapter 4 presents the evaluation of CT technology for the 

application of measuring the fat depth of a beef striploin primal. This 

chapter disseminates the results of the ‘gold standard’ sensing technology 

to benchmark performance and develop a framework to evaluate the 

performance of the candidate technologies for industry use in automation 

of the trimming task.  

 

Chapter 5 contains the evaluation of the first candidate sensing 

technology — B-Mode ultrasound technology. This chapter provides the 

rationale employed to determine the feasibility of the selected B-Mode 

ultrasound sensor before outlining the process of developing this sensor 

into a system for measuring subcutaneous fat depth on a beef striploin 

primal. The results obtained were evaluated by applying the sensor 

evaluation framework to conclude on this system’s capability to be 

employed for the sensing of an automated beef striploin fat trimming 

system.  

 

Chapter 6 contains the evaluation of the second candidate sensing 

technology — A-Mode ultrasound technology. This chapter provides the 

rationale employed to determine the feasibility of the selected B-Mode 

ultrasound sensor before outlining the process of developing this sensor 

into a system for measuring subcutaneous fat depth on a beef striploin 

primal. The results obtained were evaluated by applying the sensor 

evaluation framework to conclude on this system’s capability to be 

employed for the sensing of an automated beef striploin fat trimming 

system.  
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Chapter 7 concludes upon the processes and methodologies 

employed to develop, evaluate and implement a system to measure or 

estimate the fat depth of a beef striploin primal. The results of each 

system are compared and recommendations upon the most promising 

technology and technique for implementation upon automated beef 

striploin fat trimming is provided. A reflection is provided upon further 

sensing work and integration insights, both particular to beef striploin fat 

trimming and alternative tasks in the red meat processing industry. 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter defines the beef striploin product and the processing 

task of uniform fat trimming, present the current progress towards 

automation of uniform fat trimming of beef striploin and summarise the 

various sensing technologies and techniques that may be employed to 

measure, or ascertain, the fat thickness on a beef striploin primal. This 

desktop literature review applies criteria, developed in consideration with 

the task-specific requirements of beef striploin fat trimming, to identify 

technologies that are most promising to be further investigated through 

this research (Research Objective 1). Through this process this literature 

review aims to recommend the technology most suitable for consideration 

in the context of an automated trimming system. 

 

2.1 Defining Uniform Fat Trimming of Beef Striploin 

The trimming of subcutaneous fat from the striploin primal is a 

process that requires skill and judgement. This is a complex process due 

to the need to leave a uniform thickness of subcutaneous fat on the 

striploin primal which requires trimming in reference to the fat-lean tissue 

interface of the product. Currently, this remains to be a labour-intensive 

process which, due to the inability of the slicer (the person 

‘slicing’/‘finishing’ the large meat components into meat products) to see 

this interface prior to making an incision, creates large yield losses.  

 

The following subsection presents key information regarding the 

primal (beef striploin), current process (uniform fat trimming) and 

product (fat specifications) for the application considered in this research. 
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2.1.1 Beef Striploin Primal 

According to Aus-Meat standards (AUS-MEAT Limited, 2005):  

“Striploin is prepared from a Hindquarter by a cut at the 

lumbosacral junction to the ventral portion of the Flank. 

The Flank is removed at a specified distance from the eye 

muscle (M. longissimus dorsi) at both cranial and caudal ends.” 

 

 

Figure 2-1: Anatomical location of a typical striploin primal on a bovine carcase. Source – 

(AUS-MEAT Limited, 2005) 

 

The location of the striploin primal is presented anatomically in Figure 

2-1. The striploin primal is considered particularly high value of all within 

the bovine carcass due to the tenderness and flavour of the M. 

Longissimus dorsi muscle (commonly referred to as the ‘eye’ muscle) that 

it is comprised of. A few anatomical variations are sold within the 

hindquarter to include the striploin primal within a product such as 

shortening (e.g., short loin) or lengthening (e.g., Rump and Loin, pistola 
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hindquarter) products (see Figure 2-2), or creating boneless or bone-in 

(0, 1, 2 or 3 rib) products (Figure 2-3). 

 

 

 

Figure 2-2: Striploin-Derived Products (shortened / lengthened). Source – (AUS-MEAT 
Limited, 2005) 

 

Figure 2-3: Striploin products: Boneless (0 rib) / Bone-In (1-3 rib). Source – (AUS-MEAT 
Limited, 2005)  



 

21 

Though this research could be applied to all striploin products, and 

perhaps many other beef and lamb products that require similar 

subcutaneous fat specifications, the focus of this research is the boneless 

(0-rib) striploin defined by Aus-Meat’s unique time number: 2141 (AUS-

MEAT Limited, 2005). Typically, processors sell this boneless primal as a 

vacuum-packed product to wholesalers or restaurants to then be 

portioned into high value steaks and roasts of varying thicknesses to sell 

to consumers (see Figure 2-4).  

 

 

Figure 2-4: From primal to portions for consumers. Source - (Beef It's What's for Dinner, 2023) 

 

Figure 2-5 illustrates the anatomical terminology and planes that 

may be used to precisely reference biological features of the bovine 

carcase and striploin primal. Throughout the thesis the use of this 

anatomical nomenclature is used to reference features within the striploin 

primal consistently. 
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Figure 2-5: The anatomical terms and planes of bovine. Source – (Vetscraft, 2023) 

 

A bovine carcase is sawn down the centre of the spine through the 

median plane of the carcase. This is commonly referred to ‘carcase 

splitting’ and is a process that creates a ‘left’ and ‘right’ carcase body, 

which in turn, creates two anatomically mirrored striploin orientations: 

left-hand side (referred to as ‘LHS’ striploin) and right-hand side (referred 

to as a ‘RHS’ striploin). A transverse (cross-sectional) view of a bovine 

carcase is presented in Figure 2-6 to illustrate how mirrored striploins 

(LHS and RHS) are created after carcase splitting. 
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Figure 2-6: An illustration of how LHS and RHS striploins are created from bovine carcase. Source 
– (Government of Canada, 2023) 

 

The anatomical planes and axes, as well as the colloquial 

terminologies used by slicers to refer to external features of, and internal 

tissues within, the striploin will be used within this research. This 

terminology is shown respectively in Figure 2-7 and Figure 2-8. 

 

 

Figure 2-7: The anatomical (white) & slicer nomenclature (blue) used refer to features of the beef 
striploin primal illustrated for a RHS striploin. 



 

24 

 

Figure 2-8: The slicer nomenclature (blue) used refer to features of the beef striploin primal 
illustrated for a RHS striploin. 

 

2.1.2 Uniform Fat Trimming Process 

Currently the fat trimming process is performed manually by slicers 

who use boning knives or various electric or pneumatic powered tools 

with reciprocating blades or shaving mechanisms (see Figure 2-9). The 

domestic and international markets that Australian processors sell 

boneless striploin have differing fat depth requirements typically ranging 

between 0 mm (denuded) and 25 mm (United Nations Economic 

Commission for Europe, 2007). The typical range of fat thickness 

requirements is shown in Table 2-1. The collaborating processor’s most 

common fat specification was 12 mm, and hence this is the specification 

considered within this research. 
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Figure 2-9: Manual fat trimming methods for beef striploin. Source – (Khodabandehloo, 2018) 

 

Table 2-1: Fat thickness specifications of beef striploin. Source – (United Nations Economic 
Commission for Europe, 2007) 

 

 

The complexity of trimming accurately to achieve a consistent 

(uniform) fat depth across the striploin is largely due to the large 

variations in subcutaneous fat thickness across the striploin. Due to the 

lack of perception that slicers have during trimming there is a high 

probability that the striploin products produced through manual trimming 

methods are not trimmed precisely to the fat specification. An ideal 

trimming to a 12 mm fat thickness specification is visualised on a cross-

section of a boneless striploin in Figure 2-10. An under-trimming of the 
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striploin (fat depth larger than the product specification) could result in a 

‘fat claim’ whereby processors are financially penalised by customers. 

Alternatively, an over-trimming of the striploin (fat depth smaller than the 

product specification) reduces the saleable weight of the product whereby 

the yield of these products for processors is reduced. Though there is yet 

to be a conclusive analysis of the degree of imprecision and inaccuracy 

that occurs during manual fat trimming, or the cost associated with this, a 

1 mm over-trimming error is estimated to cost processors up to $263,000 

per typical work shift in direct yield losses (Khodabandehloo, 2018).  

 

 

Figure 2-10: An ideal trimming of a striploin for a 12 mm fat depth specification. 

 

2.1.3 Product Fat Specifications 

The product of focus for developing an automated system for 

trimming is defined by the Aus-Meat code 2141 (0 rib / boneless beef 

striploin). In addition to the Aus-Meat specifications, the product is also 

required to adhere to international standards as defined by the United 
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Nations Economic Commission for Europe (UNECE Standard, 2016) which 

defines that:  

 

“The purchaser can specify the maximum fat thickness of carcases, 

sides and cuts.”  

 

UNECE (2016) further defines the requirements of fat trimming with 

the following statements:  

a) Sufficient care to maintain cut integrity and identity and avoid 

scores in the lean [muscle]. 

b) All cross-sectional surfaces [of a product] shall form approximate 

right angles with the skin surface [of the carcase]. 

c) Trimming of external fat shall be accomplished by smooth 

removal along the contour of underlying muscle surfaces.  

d) Bevelled fat edges alone do not substitute for complete trimming 

of external surfaces when required.  

e) Fat thickness requirements may apply to surface fat 

(subcutaneous and / or exterior fat in relation to the item), and 

seam (intermuscular) fat as specified by the purchaser.  

 

UNECE (2016) provide further definitions of two methods that may 

be used to describe fat trim limitations: 

- Maximum fat thickness at any one point: Evaluated by 

visually determining the area of a cut which has the greatest fat 

depth and measuring the thickness of the fat at that point. 

- Average (mean) fat thickness: Evaluated by visually 

determining and taking multiple measurements of the fat depth 

of areas where surface fat is evident only. Average fat depth is 

determined by computing the mean depth in those areas. 

 

For each of these methods, the measurements of fat thickness   
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“… are made on the edges of cuts by probing or scoring the 

overlying surface fat in a manner that reveals the actual thickness and 

accounts for any natural depression or seam which could affect the 

measurement.”  

 

These natural depressions capable of causing measurement 

discrepancies are intra-muscular and inter-muscular subcutaneous fat 

deposits defined by UNECE (2016) as: 

 

- Bridging: When a natural depression occurs in a muscle, only 

the fat above the portion of the depression, which is more than 

19 mm in width is considered [in fat depth measurements] 

- Planing: When a seam of fat occurs between adjacent muscles, 

only the fat above the level of the involved muscles is measured 

[in fat depth measurements]  

 

Instances of bridging and planning are illustrated in Figure 2-11. 

Illustrations to exemplify the cross-sections of a “perfectly” trimmed 

striploin primal according to these fat specifications are exemplified in 

Figure 2-12. 

 

 

Figure 2-11: Defining the measurement of fat thickness for cases of intra-muscular 
(‘bridging’) and inter-muscular (‘planing’) fat deposits. Source – (UNECE, 2016) 
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Figure 2-12: Cross-sectional examples of the "perfect" trimming of beef striploin according to a 12 
mm fat thickness specification. 
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2.2 Progress Towards Automated Beef Striploin Fat Trimming 

 

The following progress has been made towards informing the 

automation of uniform fat trimming of beef striploin. 

 

2.2.1 Registered Patents 

There are several patents that have been submitted in anticipation 

of creating an autonomous system with the capability of uniform fat 

trimming, yet all of these have since expired or have not been developed.  

 

A patent submitted by Leblanc (1990) expired in 2010 described a 

system capable of trimming the subcutaneous fat of pork loin. This patent 

illustrates a highly mechanised system which utilises many gear, pulley, 

belt and chain arrangements to achieve trimming. The system includes an 

endless chain system to provide compression and tension to fix the 

striploin against the conveyor whilst an arcuated blade is used to trim 

back fat and a 20-teeth chain is used to smooth the remaining trim. The 

mechanism of this design allows the articulated blade to replicate the 

curvature of the loin’s subcutaneous fat surface (see Figure 2-13).  

 

This mechanised system may provide a means of trimming uniform 

fat layers from the striploin, yet without a means of sensing the fat depth 

along the loin, there is not capability of trimming to leave uniform fat on 

the striploin. For use on a striploin sensing is required and therefore this 

patent doesn’t provide a valid solution for leaving the product with 

uniform fat for this trimming application. This suggests that these 

mechanisms would likely be unsuccessful for beef striploin fat trimming 

applications.  
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Figure 2-13: A registered patent for a mechanised system of trimming pork fat uniformly. Source – 
(Leblanc, 1990) 

 

A patent submitted by Matthews et. al (1976) expired in 2005 

described a process of simulating a natural fat-lean meat product using 

forming techniques to replicate the presentation of a genuine trimmed 

striploin. This process outlines the co-extrusion of meat and a fat-

simulated, emulsified mixture (fabricated from lean meat, fat, salt, skin 

and other extenders) into fitted non-toxic plastic sleeves to simulate the 

shape of natural meat products with fat cover. To assist to bond the 

emulsified fat mixture with the lean meat an adhesive emulsion (meat, 

water, polyphosphate and salt) may be added (see Figure 2-14).  
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Figure 2-14: A registered patent for a forming method of producing a uniform fat thickness on a 
meat product. Source – (Mathews et al, 1976) 

 

Whilst the system presented may be suitable for high-end 'designer' 

steaks that are perfectly formed, the forming process would not be 

scalable for the large volumes of meat that is processed. This process 

would also introduce larger processing costs due to the need to denude 

(remove) subcutaneous fat from the striploin and then reform this fat on 

the primal.   

 

A patent submitted by Long & Thiede (1994) illustrates a 

mechanism that uses an inclined conveyor to force the subcutaneous fat 

of a striploin against a rotating trimming blade. This patent outlines that 

the amount of material trimmed from the meat product will be dependent 

on the number of rotations allowed for the contact between the trimming 

blade and striploin product determined by setting the rotational and 
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translational speed of the trimming blade and conveyor moving the 

striploin respectively (see Figure 2-15).  

 

 

Figure 2-15: A registered patent for a mechanised system of trimming fat uniformly. Source – 
(Long & Thiede, 2014) 

 

Similar to the patent registered by Leblanc (1990), there currently 

exists no method for quantifying fat depth at various points along the 

striploin. Consequently, the ability to maintain a consistent fat layer on 

the striploin product is limited. While it is asserted that this approach is 

applicable to various meat products such as beef, pork, poultry, and fish, 

there is an absence of empirical data or presented research substantiating 

this assertion. The rigidity of beef fat raises uncertainties regarding the 

feasibility of fat trimming as outlined by this system. 

  

In summary, there are no feasible patents that have been found to 

present a uniform fat trimming solution for beef striploin in the surveyed 

literature. 
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2.2.2 Commercial Systems 

The four largest international robotics companies servicing 

Australia’s red meat processing industry are: Frontmatec (Denmark), 

Marel (Iceland), Scott Automation & Robotics (New Zealand) and 

Mayekawa (Japan). Many operations that have been automated by these 

companies for the meat processing industry are tasks that are repetitive, 

require heavy handling or require very minimal dexterity or skilled 

butchery such as: packaging and storing, carcass splitting equipment and 

visual inspection. Presented below are the commercial solutions most 

relevant to the application of beef striploin fat trimming characterised by 

the capability to measure to, and position a cutting tool in respect to, a 

subsurface biological interface. 

 

Frontmatec: Frontmatec, a Danish food automation company, has 

developed a number of fat trimming systems to the commercial market 

such as: the automatic loin trimmer (model ALTL–1100) and the 3D loin 

trimmer (model ALTD–450).  

 

Model ALTL–1100 is a commercial system developed for the 

automated trimming of subcutaneous fat of pork products (see Figure 

2-16). This system features a pressure wheel and plastic guides to both 

mould the primal into a pre-defined shape and feed it through a static 

blade to uniformly remove excess subcutaneous fat (see Figure 2-17). 
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Figure 2-16: Frontmatec's automatic loin trimmer system. Source – (Frontmatic, 2020a) 

 

 

Figure 2-17: The mechanism of feeding and moulding the pork loin through a cutting blade of 
Frontmatec’s automatic loin trimmer. Source – (Frontmatic, 2020a) 

 

There are three pressure wheel designs that assist to mould the 

different pork products, boneless/bone-in loin and back, as they are fed 

through the cutting knife. Two blade configurations for pork loin or back 

that have been designed to approximate the contour of the fat-lean 

interface of the moulded product (see Figure 2-18). During installation the 

machine is fitted with one of these blades depending upon the product to 

be trimmed.  
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Figure 2-18: The numerous pressure wheel and blade contours for trimming pork loin (bone-in and 

boneless) and back of Frontmatec’s automatic loin trimmer. Source – (Frontmatic, 2020a) 

 

An optical probe is inserted into the product from the surface of the 

fat into the lean muscle to ascertain a fat thickness measurement at a 

single location of the product (Frontmatec, 2020a). This measurement is 

used to adjust the gap between the knife and the infeed conveyor to 

provide a depth of cut specific to the product (see Figure 2-19) which 

enables the subcutaneous fat to be removed from the pork primal (see 

result in Figure 2-20). 

 

As with many other designs, this mechanism is restricted to 

trimming uniform subcutaneous fat with reference to the surface of the 

product rather than the fat-lean tissue interface required of market 

specifications. The sensing technique of acquiring a single measurement 

to approximate the fat depth across the entire pork primal indicates that 

this system cannot account for fat variability along the length of the 

primal. The mechanism of feeding the primal through a fixed contour 

blade indicates that the system cannot account for the fat variability 

across the width of the primal.  
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Figure 2-19: The optical probe (spike at centre of image) for acquiring fat depth of the pork primal 
for adjusting the trimming depth of Frontmatec’s automatic loin trimmer. Source – (Frontmatic, 

2020a) 

 

 

Figure 2-20: The finished output of pork loin through Frontmatec’s automatic loin trimmer. Source 
– (Frontmatic, 2020a) 

 

The 3D loin trimmer was developed by another Denmark 

automation company called Attec which was acquired by Frontmatec in 

July of 2016. In comparison to Frontmatec’s automatic loin trimmer, this 

commercial system has the capability to adjust trimming depth lengthwise 
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and widthwise across boneless pork loin and back primals (see Figure 

2-21). 

 

 

Figure 2-21: Frontmatec's 3D loin trimmer system. Source – (Frontmatic, 2020b) 

 

The 3D loin trimmer employs a similar handling technique as the 

automatic loin trimmer where a deliberately shaped pressure wheel 

moulds the primals into a specific shape while also feeding against a static 

blade arrangement. The 3D loin trimmer has an arrangement of eight 

‘planer’ blades that are positioned in a similar contour to the previous 

single contoured blade, and each of these individual blades that can be 

positioned to change the trimming depth along the width of the primal 

(see Figure 2-22).  
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Figure 2-22: The 'planer' blade arrangement used to vary the trimming depth of Frontmatec's 3D 

loin trimmer. Source – (Attec Denmark A/S, 2014) 

 

The blades are controlled through a servo-driven mechanism that 

resembles a camshaft; small rotations of a shaft below will push on the 

blades through a connecting rod. Through this mechanism, the gap 

between each blade and the conveyor (which the primal is being forced 

onto through the pressure wheel) can be controlled with precision (see 

Figure 2-23 & Figure 2-24). 

 

 

Figure 2-23: Back View: The mechanism for positioning each blade in the trimming arrangement 
used to vary the trimming depth of Frontmatec's 3D loin trimmer. Source – (Attec Denmark A/S, 

2014) 
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Figure 2-24: Isometric View: The mechanism for positioning each blade in the trimming 
arrangement used to vary the trimming depth of Frontmatec's 3D loin trimmer. Source – 

(Frontmatic, 2020b) 

 

According to Frontmatec (2020b), the ALTD–450 model acquires the 

fat depth data across the primal using an array of ultrasound sensors and 

a camera-based vision system at the system’s inlet (see Figure 2-25). For 

pork back primals 15 individual measurements are taken to ascertain the 

fat depth at particular locations of the primal (see Figure 2-26).  

 

 

Figure 2-25: The images acquired by ultrasound sensors used in Frontmatec's 3D loin trimmer 
system. Source – (Attec Denmark A/S, 2014) 
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Figure 2-26: The location of ultrasound measurements for estimating the fat depth across 
pork back of Frontmatec's 3D loin trimmer system. Source – (Frontmatic, 2020b) 

 

A study by Khodabandehloo (2018) conducted using this system 

illustrated that a plastic guide is used to compress the primal for the 

ultrasound probes to contact, and measure tissue depth from, the surface 

of the lean muscle. The interruption of a laser sensor to gauge the leading 

edge of the primal and the known, constant feed-rate of the conveyor 

enabled the positioning of the ultrasound probe at the measurement sites 

within the pork primal (see Figure 2-27). Through combining sensing 

information and registering the data acquired from the camera-based and 

ultrasound sensing systems a 3D model is created for each primal (see 

Figure 2-28).   

 



 

42 

 

Figure 2-27: The mechanism of locating the ultrasound probe (centre of image) at measurement 
sites within the pork back of Frontmatec's 3D loin trimmer system. Source – (Khodabandehloo, 

2018) 

 

Figure 2-28: The 3D model generated by combining the ultrasound and imaging 
information acquired by Frontmatec's 3D loin trimmer system. Source – (Attec Denmark A/S, 

2014) 

 

The camera and ultrasound measurements acquired across the pork 

primal are used to position the trimming blades as the primal is indexed 

though to leave a uniform fat depth across the pork primal (see Figure 

2-29). It is likely that by utilising the pressure wheel applying force onto 

the primal it has been assumed that the fat surface is uniformly 

positioned against the conveyor belt. This provides a constraint to the fat 

surface of the volumetric model of the primal to be defined if the 

conveyor belt is kept tight. In order for the camera system to identify the 

fat and lean tissues on the exposed cross-section of the model, at least 

one of the cameras must be positioned to acquire an image of this cross-

section (blue lighting is used to assist the visual thresholding to 
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differentiate between fat and lean muscle). It is likely that this image is 

used to define the initial position of the blades before beginning the 

trimming of the primal.  

    

 

 

Figure 2-29: The resulting uniform fat trim of pork primals using the Frontmatec's 3D loin trimmer 
system. Source – (Attec Denmark A/S, 2014; Frontmatic, 2020b) 

 

Whilst this commercial system is seen to deliver the capability of 

leaving a uniform fat trim on the loin product, the specific development is 

limited to pork processing applications. A feasibility study conducted by 

Khodabandehloo (2018) to assess the feasibility of the application of this 

solution to trim beef striploin deemed Frontmatec’s 3D loin trimmer to be 

incompatible for such applications due to the higher degree of trimming 

controllability. The product characteristics of typical beef striploin are out 

of scope of the limits of Frontmatec’s 3D loin trimmer as summarised in 

Table 2-2 (Khodabandehloo, 2018; Frontmatec, 2016). 
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Table 2-2: Limitations of a Frontmatec 3D Loin Trimmer for Beef Striploin Applications. Source – 
Khodabandehloo, 2018; Frontmatec, 2020b) 

 
3D Loin Trimmer 

(System Limits) 

Beef Striploin (Product 

Characteristics) 
 

Maximum Width 

 

< 225 mm 

 

< 245 mm 

 

Minimum Fat Depth 

 

> 8 mm 

 

> 2 mm 

 

Maximum Fat Depth 

 

< 40 mm 

 

< 75 mm 

 

 

Marel: Marel have commercialised the following automated 

solutions in similar applications as Frontmatec: the Loin Trimmer (model 

6000DHT), AutoTrimmer (model AT21–620) used for pork butts and the 

Auto Shoe Adjust Skinner (model SK 15 – 350).  

 

Marel’s 6000DHT Loin Trimmer (see Figure 2-30) utilises an infeed 

conveyor to a heavy-duty shoe and tooth roll at a pre-set height in order 

to trim a uniform layer of fat and skin from bone-in pork loins (Marel, 

2020a). A promotional video of the product indicates that a pre-set height 

of the shoe, and hence trim depth, is selected manually (Marel, 2018). A 

conveyor is used to apply downward force on the lean meat face of the 

primal as shown (see Figure 2-31). The manufacturer claims that the 

system can trim beef striploin to leave uniform fat cover, however this is 

not shown publicly and without sensing capabilities would not be able to 

trim to the correct depth.  
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Figure 2-30: Marel’s 6000DHT Loin Trimmer system. Source – (Marel, 2020a) 

 

 

 

Figure 2-31: Marel’s 6000DHT Loin Trimmer forces the pork primal through a shoe that trims to a 
manually selected depth with a particular profile. Source – (Marel, 2018) 
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The Townsend AT 21-620 AutoTrimmer is the successor to the 

6000DHT Loin Trimmer which utilises a single measurement from an 

optical probe to adjust the height of the trimming shoe (see  Figure 

2-32). This enables an automated adjustment of the trim thickness 

through the vertical positioning of the shoe. Similar to the 6000DHT Loin 

Trimmer, this system uses a plastic guide to force the primal onto the 

surface of the conveyer to ensure the blade of the shoe cuts at a depth 

above the conveyor (see Figure 2-33). This product is very similar to the 

Auto Shoe Adjust Skinner, which features the ability to select vertical 

shoe positions to select up to 4 pre-programmed trim depths (Marel, 

2020c). 

 

 

Figure 2-32: The optical probe (centre of image) used within Marel’s AutoTrimmer system. Source 
– (Marel, 2020b) 

Due to the use of a shoe profile cutting blade the shape of the trim 

of this design is restricted to the blade profile. Additionally, whilst the 

optical probe may approximate the fat depth of the product, this single 

measurement allows only an estimate of the fat depth along the entire 

product. Hence, whilst these products may trim fat, without additional 

sensing capabilities and adjustment the cutting profile this system would 
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not be able to leave uniform fat cover behind. As with Frontmatec, there 

is no published evidence to support the claim that beef products may be 

similarly trimmed using these automated pork trimming solutions. 

 

 

Figure 2-33: A View of Marel's AutoTrimmer System along the conveyor belt. Source – 

(Marel, 2020b) 

 

Whilst Frontmatec and Marel have several, both Scott Automation 

and Robotics and Mayekawa have no commercial automated systems for 

uniform fat trimming applications. Frontmatec provides the only solution 

(3D loin trimmer) that has the capability required to meet market 

specifications of trimming to a uniform fat cover on the product. This has 

been proven for pork loin trimming but within a feasibility study this 

system has been deemed inappropriate for beef striploin applications due 

to the vastly incomparable fat characteristics of beef to pork 

(Khodabandehloo, 2018). This review concludes that an automated 

system developed with the capability of uniform fat trimming of beef 

striploin is yet to be developed. 
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2.2.3 Summary of Automation Progress 

Within literature it has been identified that there remains to be a 

system capable of automating the trimming of subcutaneous fat for beef 

striploin primals. Whilst there are many aspects still requiring work to 

develop a system technically capable of automated trimmings (e.g., 

methods of handling and fixation, designing trimming tools, etc.), there 

remains to be a significant gap in knowledge of developing a practical 

sensing system using existing technologies for this application. The 

sensing technologies utilised in the reviewed systems primarily focused 

upon ultrasound and optical sensing technologies. All these systems were 

developed for the application trimming subcutaneous fat from pork. This 

highlights the significant gap in literature focused on automated fat 

trimming applications for beef processing. The remainder of this literature 

review considers all sensing technologies that may offer the capability to 

measure fat thickness and is practical for beef striploin fat trimming 

applications.   

 

2.3 Desktop Evaluation of Sensing Technologies 

This literature review subsection evaluates potential technologies 

that may be used for developing a sensing system capable for measuring 

the fat depth of a beef striploin primal. For a technology to be appropriate 

for this application there are a few core requirements that need to be 

met:  

 

Sensing Capability: As defined by product specifications the fat 

specification is measured as the fat remaining on the striploin measured 

from the subcutaneous fat surface to the fat-lean interface. Therefore, 

sensor must have the capability to measure, or ascertain, the 

subcutaneous fat thickness with respect to the fat-lean interface. 

 

Accurate & Precise: The cost to a meat processor for poor 

accuracy is high – estimated by a feasibility report by AMPC (2018) as 
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over $1 million per year for a 1 mm over-trim on striploin product. This 

means that a target accuracy and precision of a few millimetres would be 

ideal and lower accuracies would weigh heavily in the sensor selection 

process. 

 

Deep Penetration Range: For this sensor to be effective it must 

be capable of penetrating and providing measurements to tissues in a 

range of approximately 2 mm – 75 mm (Khodabandehloo, 2018). 

 

In addition to meeting core requirements an appropriate sensing 

technology must be practical for integration for processors. The following 

functionality will be considered in reviewing feasible sensing technologies 

to account for the nature of the striploin product, processing procedures, 

operating environment, and market specification for the product. 

 

Non-Destructive: It should be noted that whilst devices typically 

used for grading, such as the Hennessy Grading Probe and the SFK Fat-O-

Meater, may cause carcass damage during use, this is an industry 

required necessity restricted to specific measurement sites of the carcass 

(Kempster, Chadwick & Jones, 1985). In the specific evaluation of sensors 

for striploin fat trimming it remains ideal to avoid significant damage to 

the product due to the potential risk of devaluing the striploin primal. 

 

Robust in Harsh Environments: The developed system and its 

sensing components must be designed to withstand the harsh 

environment of the processing facility. Therefore, the following must be 

considered mandatory for practical application: 

- cleanable (IP67-rated – sealed from water and dust) 

- durable to operate at low temperatures (3–7 degrees Celsius) 

-  robust to breakdown 
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High Throughput: According to an AMPC (2018) report the fat 

trimming process needs to be delivered at line speed, which in the 

abattoir surveyed (Dinmore - JBS) is 240 striploins per hour, or 4 

striploins per minute. Whilst in this evaluation it would be inappropriate to 

stringently apply such a criterion this does set a measure to gauge 

technology feasibility. It may also be possible to increase the throughput 

of these technologies by employing multiple sensors or automated 

systems in parallel. 

 

Small Footprint: One of the most significant constraints of 

implementing automated solutions for industry use is the footprint 

required of the system. This is particularly important for this application 

as slicer stations are typically quite small and confined to fit around a 

central conveyor for which striploins are retrieved from. The ideal 

footprint for a solution is comparable to a human operator station (e.g., 

approximately a 2 m x 2 m area). 

 

Cost Effective: As reported by industry R&D Program Manager at 

AMPC, the general rule considered for the red meat processing industry is 

that a system should have a payback period of approximately 1.5 – 2 

years (S Shaw 2021, personal communication, May 9, 2021).  

 

From literature survey there many techniques of measuring the fat 

deposits of pork products that have been developed, validated, and 

compared (Hambrock 2005; Zhou, Peng & Liu 2014). The sensing 

technologies and methods presented in this section are particular to the 

application of beef striploin fat trimming and therefore specific to 

measuring the subcutaneous fat of the striploin for the potential 

integration into an automated trimming system. 
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2.3.1 X-Ray 

CT (Computed-Tomography) is a medical imaging technique that 

uses X-rays and computer algorithms to create detailed images of the 

tissues within body or, in this case, primal. The process involves multiple 

steps, including data acquisition, image reconstruction, and image post-

processing. During the data acquisition step, a motorised table or 

conveyor is used to position the cross-section of the tissue location to be 

scanned within the aperture of the CT machine (see Figure 2-34). The CT 

scanner emits a series of narrow X-ray beams that rotate around the 

patient, each producing a set of 2D X-ray images. The X-ray images are 

captured by detectors on the opposite side of the patient and are 

converted into digital signals (see Figure 2-35). 

 

 

 

Figure 2-34: A typical Computed-Tomography system. Source – (Radiology Key, 2021) 
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Figure 2-35: The imaging mechanism of Computed-Tomography. Source – (Radiology Key, 2021)  

 

The attenuation of X-rays as they pass through different materials 

is a fundamental principle that underlies CT imaging. The X-rays used in 

CT imaging have a high energy level, and when they pass through the 

body, they interact with the atoms and molecules of the tissues they 

encounter. The amount of attenuation that occurs depends on the 

material properties of the tissue, including its density, atomic number, 

and thickness. Materials with higher density, such as bone, attenuate 

more X-rays than materials with lower density, such as muscle or fat. This 

is because the high-density materials have more atoms per unit volume, 

which increases the probability that the X-rays will interact with the 

material and be absorbed or scattered. The attenuation of X-rays leads to 

the creation of bright and dark pixels in the CT image. Regions of the 

body that attenuate more X-rays appear brighter, while regions that 

attenuate fewer X-rays appear darker. For example, bone appears bright 
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in CT images because it attenuates a lot of X-rays, while air appears dark 

because it attenuates very few X-rays. 

 

The use of X-ray to acquire images that enable the discrimination 

and measurement of tissues has been researched in the context of red 

meat processing since 1998 (Meat & Livestock Australia, 2011). X-ray 

imaging is a process whereby a beam of electromagnetic radiation is 

transmitted through an object which, depending on X-ray absorption 

properties (primarily thickness and density) of the tissue, will result in 

varying amounts of X-ray being measured by a detector positioned on the 

opposing side of the object (see Figure 2-36). This creates a 2D image 

with pixels with varying values of brightness used to visualise the areas of 

high absorption (high value / bright pixels) and low absorption (low value 

/ dark pixels).  

 

 

Figure 2-36: Illustration of how the x-ray technology can detect sub-surface tissues based 
on their x-ray absorption properties. Source – (Plus Maths, 2021) 

 

Computed-Tomography (CT) images are by combining multiple X-

ray images acquired at multiple orientations. This enables a 3D image can 

be created which typically provides greater detail and information than 

standard X-Ray imaging. 
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Numerous trials have been funded, and conducted, by MLA and 

AMPC to explore the commercial viability of using X-ray technologies and 

techniques for the red meat processing industry (Cook & Anderson, 2017; 

Meat & Livestock Australia, 2014; McPhee M. 2014a; McPhee M. 2014b, 

Brumby, Shirazi, & Starling, 2016; Cook, Shirazi & Gardner, 2016; 

Morton, 2020; Four Dimensional Digital Imaging Inc, 2021; Calnan et al., 

2021; Mata et al., 2021). These trails including the following methods. 

- 2D imaging using single image capture:  

o SEXA (Single Energy X-ray Absorption),  

o DEXA (Dual-Energy X-ray Absorption),  

o MEXA (Multiple Energy X-ray Absorption),  

- 3D imaging using multi-image capture in conjunction with 

tomosynthesis to interpolate in 3D: 

o Multibeam X-ray – which is a method of using a cone beam 

or multiple pairs of emitters and receivers. 

- 3D imaging using multi-image capture in conjunction with 

constructing images taken over 360 degree captures: 

o CT (Computed-Tomography) – both medical grade and 

non-medical grade CT. 

 

In summary, it is seen that X-ray technologies have been 

demonstrated successful for OCM and eating quality measurements such 

as intra-muscular fat (IMF) in the significant majority of trials. Various X-

ray technologies with the capability of generating 3D images have been 

trialled for fat depth measurement applications. Only medical-grade CT 

technology was shown to be capable of measuring subcutaneous fat 

depth, and is considered the ‘gold standard’ of tissue measurements for 

red meat processing which is what other methods are compared to (Cook 

& Anderson, 2017). However, the power requirements of medical-grade 

CT system cannot provide operate at line speed or operate continuously 

without causing damage. According to Cook & Anderson (2017): 
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“The scan range of the system, in both distance and time, is 

restricted by heat dissipation of the X-ray tube. Thus, a trade-off must be 

made between duration of scan and energy levels (equating to image 

quality), a balance which is bounded by the machine firmware and 

software to prevent damage to the system.” 

 

CT imaging machines that have been custom-designed for low-

power, high-throughput without the clarity of medical CT would be a more 

feasible X-ray technology for this application. The only two manufacturers 

of this technology are RapiScan Systems, who manufacture airport CT 

imaging machines, and the Danish Meat Research Institute (DMRI), who 

support the pork processing industry in Europe, both of which are 

conducting trials to demonstrate their systems’ capability for Australia’s 

red meat processing industry with a focus on beef. Testing of the 

RapiScan RTT110 CT system (RTT referring to Real-Time Tomography) 

have concluded that this system is not suitable for red meat applications 

due to the lack of resolution (Calnan et al., 2021). In this analysis, the 

imaging resolution (illustrated by pixel count) of RapiScan’s RTT110 can 

be seen to be a magnitude of 10 less than medical CT imaging (see Figure 

2-37). RapiScan is currently conducting further work to improve the 

image construction filter to enable the image clarity required for red meat 

processing applications (Morton, 2020). 

 

In addition to resolution issues trials highlighted cost of the RTT110 

RapiScan system as an adoption constraint of processors. A feasibility 

study conducted by McPhee in 2014 by estimated that the cost to 

processors to adopt CT technology would be $3.63m over a 15-year 

period (McPhee, 2014b). In addition to the prohibitive cost, the legislative 

requirements of lead shielding for CT installations, the lack of space and 

the impracticality of altering the infrastructure of processing plants makes 

this CT technology more difficult to justify (Australian Radiation Protection 

and Nuclear Safety Agency, 2008). 
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Figure 2-37: A comparison between medical-grade CT and the RapiScan RTT110 System. Source – 

(Calnan et al., 2021) 

 

In summary, at the time of publishing there was no feasible X-ray 

imaging system commercially demonstrated for the red meat processing 

industry. 

 

2.3.2 Ultrasound  

Ultrasound is a rapid, non-invasive sensing technique that utilises 

high frequency soundwaves (generally 20 kHz to 15 MHz) to locate 

various objects or layers of various densities within a medium. This 

technology utilises the principle of acoustic propagation through media 

where the boundary of differing tissue types (signified by density) will 

reflect soundwaves due to an introduction of impedance (Brøndum, 1998; 

Pathak, Singh & Sanjay 2011). An ultrasonic probe will transmit sound at 

a particular frequency and detect the receival of this reflected soundwave 

through a piezoelectric transducer. This is diagrammed illustrated in 

Figure 2-38.  
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Figure 2-38: The internal structure of a piezoelectric ultrasound transducer. Source – 
(Medical Radiation Resources, 2012) 

  

 

The two parameters measured by the transducer are the amplitude 

of echo and time taken to receive the echo (referred to as time-of-flight 

or TOF). The amplitude of soundwave reflection is proportional to the 

electrical signal generated by the transducer when switched to ‘receiving’ 

mode (Pathak, Singh & Sanjay, 2011). The measurements of these two 

parameters provide a means of characterising the tissue and the tissue 

position within the medium soundwaves are transmitted through. Using 

the measured TOF parameter and considering the velocity of the 

soundwave propagating through the medium (dependent upon the 

specific acoustic property of the material), a distance measurement of the 

tissue from the transducer can be ascertained. This is illustrated with a 

diagram shown in Figure 2-39 and can be estimated formulaically using 

the expression presented in Equation 2.1.  

 



 

58 

 

Figure 2-39: An illustration of how the TOF of reflected waves can be used to calculate 
distance of an object. Source – (Science ABC, 2022) 

 

 

 

Equation 2.1: Calculation of tissue depth using ultrasound TOF principles 

𝑇𝑖𝑠𝑠𝑢𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑑𝑡 = 𝑣𝑆 ∗
𝑡𝑅

2
, 

 

where:  

𝑣𝑆  = the speed of sound propagation through fat tissue wave 

through subcutaneous fat is generally considered to be 1,450 

m/s (Johnson & Wales University, 2019) 

𝑡𝑅  = the time taken for the soundwave to reflect and be read 

by the ultrasonic transducer 

 

The operational state of ultrasound for meat is typically A-Mode or 

B-Mode (Schulze, Curic & d’Hoedt, 2002). A-Mode, referred to as 

amplitude modulation, plots the amplitude as a vertical spike (strong 

echo), signifying a detected tissue interface, of the received soundwave (y 

axis) with the depth ascertained by this soundwave (x axis). A-Mode 
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ultrasound technology employs only a single transducer, allowing 

examination of echoes along a one-dimensional axis. Tissue interfaces, 

characterised by large amplitude signals generated by soundwave 

reflections, are plotted against depth (calculated using TOF). This 

produces a graph of spikes with height indicating echo strength and tissue 

acoustic properties (Pathak, Singh & Sanjay, 2011). The means of 

acquiring a depth measurement of a tissue interface from transducer 

signals are illustrated in Figure 2-40. The amplitude captured by the 

transducer can be used to differentiate tissues of differing densities by 

considering acoustic properties and principles of soundwave propagation 

through mediums. The amplitude measured by the transducer depends 

upon various factors (University of Washington, 2017) including: 

 

- The proportion of the soundwave that is absorbed, refracted, and 

reflected at the tissue interface. 

- The degree of attenuation of the soundwave travelling through 

the medium (typically referred to as an attenuation coefficient) 
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Figure 2-40: Illustration of A-Mode ultrasound technology to take depth measurements. 
Source – (IMV imaging, 2023)  

 

A-Mode provides a simple means of interrogating data to acquired 

fat depth measurements. Instead of analysing a 3-dimensional dataset of 

an image (X - pixel position, Y - pixel position, greyscale value using 

machine vision algorithms to differentiate and locate tissues, simple 

thresholds (e.g. noise filtering, signal amplification, time-gain 

compensation) can be applied to a 1-dimensional dataset (Pathak, Singh 

& Sanjay, 2011; Wagner et al., 2019). The data acquired using A-Mode is 

relatively straightforward to understand and interpret, making it an 

excellent tool for quick, qualitative assessments of tissue depth and 

boundary identification. A-Mode ultrasound is simpler to analyse and 

more cost-effective than B-Mode ultrasound with the trade-off of less 

information per reading. The contrast of how A-Mode and B-Mode 

systems present these echo signals are shown in Figure 2-41.  
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Figure 2-41: A comparison of ultrasound (Mode A vs Mode B) in displaying depth and 
amplitude of tissue reflections. Source – (University of Washington, 2017)  

 

Whilst A-Mode (amplitude modulation) ultrasound indicates a depth 

measurement with an amplitude ‘spike’ in 1-dimension, B-Mode 

(brightness modulation) ultrasound integrates multiple A-mode signals to 

create a 2-dimensional, greyscale image (see Figure 2-42). In this way, 

B-Mode ultrasound greyscale images consists of pixels, where the 

brightness of each pixel is determined by the amplitude of the echoes at 

that pixel location. This location is determined by the time-of-flight of the 

reflected soundwave along the axis of the ultrasound transducer. These 

echoes are reproduced as varying shades of grey in the resulting 

ultrasound image, with B-mode using 64 shades of grey. This grey scale 

allows for visualization of differences in acoustic properties of the tissue, 

making B-mode ultrasound useful for providing the sensitivity to identify 

and distinguish between different types of tissues and structures within 

the medium, such as differentiating between fat and muscle layers 
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(Pathak, Singh & Sanjay, 2011). The use of B-Mode ultrasound to 

differentiate between lean muscle and fat tissue is illustrated by the 

varying brightness of pixels in Figure 2-43. 

 

 

 
Figure 2-42: Illustrative comparison between A-Mode and B-Mode of how information is 

displayed. Source – (IMV Imaging, 2023)  

 

 

Figure 2-43: An illustration of various discernible tissues in B-Mode ultrasound of beef carcases. 

Source – (Leaflet, 1997) 
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There are numerous configurations of transducer arrays that B-

Mode ultrasounds can consist of. The particular configuration type 

determines the representation of the data as an image and typically the 

shape of the probe. By sequencing the triggering of each transducer 

separately (referred to as beam sweep), and knowing the orientation of 

each transducer’s measurement axis, an image can be created from the 

array of ultrasound readings (see Figure 2-44). 

 

 

Figure 2-44: A convex array of ultrasonic transducers used in sequence to construct a B-
Mode image. Source – (university of Washington, 2017)  

 

There are a number of hardware and software configurations which 

create varying performance characteristics of ultrasound devices. A 

hardware configuration typically describes the arrangement of 

piezoelectric crystal arrangement within, and footprint of, the probe head 

of the ultrasound. The selection of a probe head is an important factor to 

consider as for the ultrasound to be emitted into a medium consistent 

contact between the probe and the surface must be made to eradicate 

any air gaps impeding the propagation of soundwaves. A few common 

configurations include linear, convex and phased array; these produce 

differing displays and have different advantages (see Figure 2-45 & Figure 

2-46):  
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Figure 2-45: Linear vs Convex vs Phased Array ultrasound array configurations. Source – 

(Wen et al., 2022) 

 

Linear: In a linear configuration, the transducer elements are 

arranged linearly in a straight line. This configuration is commonly used 

for imaging superficial structures, such as blood vessels, tendons, and 

musculoskeletal tissues. It provides high-resolution images with a narrow 

field of view. 

 

Convex: In a convex configuration, the transducer elements are 

arranged in a curved or convex shape. This configuration is suitable for 

imaging deeper structures, such as abdominal organs and foetal imaging. 

The convex shape allows for a wider field of view, facilitating imaging of 

larger areas. 

 

Phased-Array: Phased array ultrasound systems use a matrix of 

transducer elements that can be electronically controlled to steer and 

focus the ultrasound beam. This allows for real-time imaging in multiple 
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directions without physically moving the transducer. Phased array 

systems offer adjustable beam steering, variable focus, and sector 

scanning capabilities. They are particularly useful in applications where 

dynamic imaging, precise targeting, and real-time visualization are 

required, such as cardiac imaging and interventional procedures. 

 

  

Figure 2-46: Convex (left) vs Linear (middle) vs Phased Array (right) B-Mode ultrasound 
transducer configuration profiles. Source – (Khaled, 2023) 

  

For ultrasound wave propagation there is a beam profile that 

describes the volume of measurement in the axis of measurement for 

each transducer in the array. This beam profile narrows to a focal length, 

dependent upon the transducer frequency and aperture of the transducer 

array, before diverging into an unfocused wave (Ng & Swanevelder, 

2011). At the penetration depth of the focal length the highest 

concentration, and therefore resolution, of the ultrasound is emitted. The 

focal length of transducers can be visualised using visualisation software 

(Garcia, 2023). The beam concentration of an ultrasonic transducer is 

visualised in Figure 2-47.  
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Figure 2-47: Visualisation of focal lengths of ultrasonic transducers. Source – (Garcia, 2023) 

 

Many modern ultrasound devices have the capability to allow the 

user to adjust this focal length through transducer beam steering to 

provide a focus beam, employing concave or acoustic lenses or adjusting 

the soundwave frequency (e-Echocardiolography, 2023). Many modern 

devices also provide pre-set software modes for various permutations of 

settings for each of these parameters. 

 

To ensure that the particular point of interest to be measured is 

referenceable in the B-Mode ultrasound image precise positioning of the 

probe head is required. Typically, this means alignment of the centre of 

the transducer array aperture in the X (azimuth) and Y (elevation) axes 

with the point of interest to ensure that this measurement is centred in 

the image frame. Acoustic frequencies have a trade-off between 

resolution and depth penetration due to energy absorption, and so 

frequency selection is highly dependent on the application (Houghton & 

Turlington, 1992). The soundwave frequency needs to be selected to 

ensure that the ultrasound penetration depth in the Z (axial direction) 

axis is sufficient to measure the point-of-interest (see Figure 2-48). The 
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selection of frequency is a trade-off between image resolution (higher 

frequency) and penetration depth (lower frequency). Balancing acoustic 

parameters to define the focal length at the depth of the tissue interface 

is ideal. A frequency of 2.5 MHz is typical for meat sensing applications 

which permits high resolution to a depth of approximately 75 mm 

(Brøndum, 1998). 

 

 

Figure 2-48: The reference coordinate frame of the ultrasound probe. Source – (Garcia, 2023) 

 

In many live animal and meat product applications B-Mode 

ultrasound is applied to constantly update an image real time ultrasound 

(RTU), enabling this data may be presented as an imaging sensor (Silva & 

Cadavez, 2012). Whilst this technology is primarily used in the medical 

industry it is highly prominent in numerous carcass measurements such 

as fat depth, muscle depth and muscle area for beef grading and quality 

evaluation systems in food (Morlein et al., 2005; Busch, Dinkel & Minyard, 

1969; Shepard et al., 1996; Bergen et al., 1997). There has been a long 

history of ultrasound technology being used in red meat processing 

applications for measuring backfat and loin eye fat in various species 
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including beef (Pathak, Singh & Sanjay 2011; McLaren, McKeith & 

Novakofski, 1989; Hedrick, 1983; Houghton & Turlington, 1992). 

 

One of the world’s most effective examples of ultrasonic-based 

grading systems is used in pork and called Autofom. This is a U-frame 

arrangement of 16 A-Mode ultrasonic probes which perform 200 scans 

along the back of a pork carcass at a line speed of 1,250 carcasses per 

hour (Brøndum et al., 1998) 

 

Ultrasonic sensing has several distinct advantages in the application 

for beef striploin fat trimming:   

- It is non-invasive, safe and hygienic sensing method  

- Relatively low cost 

- Well-developed, trusted technology 

- It is easily implementable with completely within a real-time 

autonomous system  

 

There are also additional sensing considerations when using 

ultrasound (Hazwan et al., 2013; Mueller 2018): 

- It requires consistent contact to the measurement site with a 

lubricant/gel that can act as a medium for soundwaves to 

propagate through to measure fat and meat 

- A skilled operator is required to ensure a consistent, reliable 

reading to be measured 

- Measurements are affected by angle of probe, water content in 

the medium, temperature, non-homogeneity of medium 

- The dehiding process can disturb tissue interfaces air pockets 

that prevent ultrasound measurements to be accurately collected 

(Khodabandehloo, 2018) 

 

In many instances ultrasonic measurements are subsequently 

analysed though machine vision and machine learning applications (see 
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Figure 2-49) to create an observation that can be action by robotics. 

Many systems have been developed using machine learning algorithms 

(e.g. Support Vector Regression, Neural Networks) in combination of key 

features extracted from analysing frequencies (e.g. applying the Fourier 

Transform) obtained through ultrasound reflectance signals (Park et al., 

1994; Halim et al., 2013; Simianer et al., 2013; Pathak, Singh & Sanjay, 

2011). In the case of RTU applications machine vision algorithms have 

been applied to determine automated location and measurement of 

subcutaneous fat during post-mortem scanning (Pathak, Singh & Sanjay, 

2011; Jung et al., 2015; Scholz, 2015). 

 

 

Figure 2-49: An example of a typical ultrasound image of the depth of muscle that imaging 
processing techniques could be used for automation. Source – (Sahin et al., 2008)  

 

2.3.3 Vibrational Spectroscopy 

 Spectroscopy is a means of exciting vibrational states of a material 

to determine informational characteristics through the interpretation of its 

response to various frequencies of light (Whitman et al., 1996). Both 

Raman and Near Infra-Red (NIR) spectroscopy have been employed for 

the application of fat measurement (Prieto et al., 2017), and use different 
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methods of interrogating information due to the way in which light energy 

interacts with the material. The intensity of light that is absorbed within, 

transmitted through or scattered by (referred to as ‘back scatter’) a 

material can be measured to determine various material properties (Prieto 

et al., 2017; Jespersen & Munch, 2009). The backscatter profile, which 

represents the distribution of reflected light intensities across a spectrum 

of wavelengths, can be effectively utilized to infer various quality 

parameters. This profile provides insights into the size and intensity of the 

backscatter can be correlated with key quality attributes such as 

composition, the separability of fat, and the hardness of fat (Narsaiah & 

Jha (2012). The interrogation of light backscatter profiles allows 

vibrational spectroscopy to measure fat thickness with a great deal of 

success with many commercial products on the market for pork - the 

modified fat-o-meter (manufactured in Denmark), the Hennessy and 

Chong fat depth indicator (manufactured in New Zealand) and the Ulster 

probe (manufactured in Ireland) (Agri-Food and Biosciences Institute, 

1982; Jones, Allen & Haworth, 1982, Brøndum et al., 1998). 

 

One of the most successful NIR reflectance devices has been the Fat 

Quality Meter (FQM) developed by the Danish Meat Research Institute 

(DMRI). This device has been calibrated to employ the judgement of an 

expert classifier to classify samples based upon 8 NIR sensors reading 

numerous signals between 800–1800 nanometre wavelengths (Brøndum 

et al., 1998). Similar applications of statistical methods (e.g. multi-variate 

classifiers and parameter transformations) have been employed as 

machine learning in practice to describe the state or material through the 

classification of sensory signatures (Bacci, Porcinai & Radicati, 1997). 

 

NIR Reflectance spectroscopy has a number of advantages such as: 

- Relatively low cost 

- Well-developed, trusted technology 
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- Various meat characteristics may be identified additionally to fat 

depth (e.g. meat colour) 

- It may give real-time measurements 

- Easy to use, robust 

 

This technique has the following limitations: 

- It requires extensive calibration to classify composition 

- It is unable to measure in the presence of multiple fat and 

muscle layers due to the misalignment of the probe with the 

required anatomical position (Hambrock, 2020) 

- Computational processing is required 

- Insertion of optical diodes through meat to measure fat thickness 

do cause mild damage to product 

 

The exact numerical measurements as a backscatter profile are not 

important, yet these can act as predictors/characteristic parameters that 

can be manipulated. Techniques such as Principal Component Analysis 

(PCA) can be used to extract relationships out between the readings and 

characteristic properties (e.g. skin, skin + fat, skin + muscle) with 

machine learning techniques (Roberts et al., 2017). Figure 2-50 illustrates 

the implementation of a machine learning technique (clustering) to 

determine the type of tissue from the spectroscopic signal acquired. 
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Figure 2-50: NIR Spectroscopy can provide signals that can be classified using Principal 
Component Analysis and clustering algorithms. Source – (Roberts et al., 2017) 

 

2.3.4 Electrical Impedance 

Through the technique of electrical stimulation both resistance and 

capacitance may be measured in a medium between an electrode and 

probe arrangement. Many manufacturers have developed these probes for 

fat measurements with positive results world-wide predominantly in pork 

(Brøndum et al., 1998). This technology is documented to have been first 

implemented in an Australian plant since 1971 to measure hot and cold 

carcass fat thickness with findings reporting up to ± 2 mm tolerance in 

70% of cases (Meat and Livestock Australia, 2020). A typical example of 

this technology is the Meat-Fat-Automatic or KS-meter developed by SFK 

Ltd in Denmark (Stavrev, 1997). The Meat-Fat-Automatic is a handheld 

device that e handheld and drives an electrode on a probe tip through the 

fat until it penetrates the meat whereby this increase in the electrical 

conductivity of the medium is sensed by a change of current draw at a 

given voltage exceeding a predetermined, calibrated threshold.  

 



 

73 

Advantages of this technology include (Meat and Livestock 

Australia, 2020): 

- Measurements could be obtained quickly and at a high frequency 

(up to every 5 seconds in operation) 

- Has been previously trialled with success in industry applications. 

- Relatively low cost 

 

Limitations of the technology include (Meat and Livestock Australia, 

2020): 

- The maximum fat thickness of this technology is 28 mm 

- False readings have been observed whereby electrical 

conductivity was tampered with due to fat smearing on the 

electrodes as well as high pH levels in the lean meat muscle 

- Of the instrument’s errors (16% of readings were out of +/-3 

mm tolerance), it is presumed that 10% of these were from 

incorrect operating technique, with the remaining errors being 

due to unusual physical factors of the meat product such as low 

conductivity in the lean, and inclusions of lean / conducting fluid 

in the fat layers.  

- Probe insertion deformation, varying with the degree of chill of 

the carcass (yet this has been accounted for to some degree 

using a simple linear equation) 

- Relative position of the electrode to the probe tip 

- Number of electrodes 

- Disposition of the electrodes along the stem of the probe 

- Probe traverse speed 

- Is an invasive sensing technique 

 

The measures this sensor provides (resistance or capacitance) are 

not informative on their own, but through association to the reference 

voltage these devices are able to inform fat depth between the inserted 

electrodes (Meat and Livestock Australia, 2020). The use of multiple 
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frequencies can enable these devices to more precisely discriminate 

between lean muscle and fat to improve fat depth measurement accuracy 

(see Figure 2-51). 

 

 

Figure 2-51: A typical measurement of electrical impedance measured for fat depth. 

Source – (Kim et al., 2016) 

 

2.3.5 Tactile  

Tactile sensing is the provision of perception acquired through 

sensing the contact of a tool and its operating medium through 

kinaesthetic (force) and cutaneous (tactile) feedback (Okamura, 2009). In 

such cases the goal of this technology is to “detect local mechanical 

properties of tissue such as compliance, viscosity, and surface texture – 

all indications of the health of the tissue – or to obtain information that be 

used directly for feedback to a human operator, such as pressure 

distribution or deformation over a contact area” (Eltaib & Hewit, 2003). 

 

In practice, there is a substantial amount of information that can be 

used to perceive complex movements of natural tissues as opposed to 

other sensing techniques (den Boer et al., 2014; Guo et. al. 2018). 

Several applications of tactile sensing technologies have been developed 
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for surgical applications such as robot-assisted minimally invasive surgery 

(RMIS) where fine tool adjustments need to be made with accuracy and 

precision within a flexible workpiece.  

 

The importance of a sense of “feel” to enable this skilled surgical 

capability of manipulating tools in reference to biological tissue has been 

recognised by both surgeons and robotic engineers and supporting 

research (Xin, Zelek & Carnahan, 2014; Ortmaier et al., 2007). Numerous 

examples of haptic technology improving RIMS outcomes including 

increasing accuracy of surgical skill in both surgeons and non-surgeons, 

reducing unintentional tissue damage and injuries during dissection and 

suture tasks (Wagner & Howe, 2007; Talasaz, Trejos & Patel, 2012; 

Ortmaier et al., 2007). The notable success of the employment of haptic 

perception in surgical robotics was first exemplified through the 

development of a hand-held drill for cochleostomy surgical procedures 

(Brett et. al. 2014).  

 

Only until recently the implementation of force-sensing, particularly 

over vision, has considered as an ideal mechanism for red meat 

processing applications. Literature shows a prevalence of utilising e force-

control in automating complex red meat processing applications (i.e. beef 

forequarter deboning) over the past 30 years (Purnell, Maddock & 

Khodabandehloo 1990; Australian Meat Processor Corporation, 2020b). A 

report recently conducted for AMPC (Australian Meat Processor 

Corporation, 2018a; Australian Meat Processor Corporation, 2018b; 

Australian Meat Processor Corporation, 2019) explicitly support this by 

highlighting the lack of research yet current demand for integrating real-

time, tactile sensing for cut path determination within red meat 

processing applications. 

 

Force sensor feedback from the cutting tool as it progresses through 

the meat will give different readings depending on whether it is cutting 
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through muscle, fat or even bone. This varying feedback could potentially 

be used to generate tool paths for the robot in real time. As opposed to 

pre-determining the path using external or penetrating sensors such as 

vision or ultrasound. Further research needs to be undertaken to 

determine if force sensor feedback-based path generation is feasible and 

what meat processor tasks it could be applied to. 

 

Tactile sensing has several distinct advantages in the application for 

beef striploin fat trimming (Tiwana, Redmond & Lovell, 2012):   

- It can be non-invasive, safe and hygienic sensing method. 

- Low cost 

- Potential to gather extremely informative data about tool-

workpiece interaction. 

- Great sensing repeatability, range, and sensitivity 

-  It is implementable within a real-time autonomous system.  

- Can be designed with simplicity. 

 

There are also several limitations to tactile sensing methods: 

- Requires cleaning and hygienic design consideration. 

- A skilled operator or controlled interaction is required to ensure a 

consistent, reliable reading to be measured. 

- Measurements are affected by meat characteristics such as 

muscle grain direction, water content, temperature, non-

homogeneity of medium. 

 

Full tactile perception more than just basic transduction of tactile 

data — it also requires the computational processing of data to guide 

control. However, real-time computational processing of tactile data can 

be difficult, and so other less complex mathematical approaches have 

been investigated (Du et. al., 2018).  An example of this control is the 

cochleostomy drill which informed control by discriminating pertinent 

conditions of a cutting process in tissue mediums from which automated 
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control strategy can be implemented. Du et. al. (2018) was able to 

discriminate the character of drilling non-uniform, flexible media within 

microns of accuracy by interpreting relationships between transient force 

and torque responses (see Figure 2-52).  

 

Figure 2-52: Discrimination of beef striploin tissues using force and torque transients. Source – 

(Khodabandehloo, 2018) 

 

The state of the system (i.e. cutting skin, fat or lean meat) is 

determined by analysing transient responses of parameters such as 

torque and force. This approach is similarly applied in other medical 

applications as a means of determining state from physically based 

models based upon reactive force measurements to inform the tool 

positioning for percutaneous operations (Rosen et al., 2006; van den 

Gobbelsteen, 2012; Petra et al., 2006). With a traditional, non-temporal 
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force-torque sensing method gravitational, Coriolis and inertial forces can 

bias the force response characteristics of the tool-workpiece interaction 

(Fumagalli et al., 2010). Brett’s (2014) method of classifying signatures 

of known descriptors of the task (i.e. force and torque with respect to 

displacement or time) enables measurements inflicted by these factors to 

be irrelevant as well as simplifying the computation of the state of the 

task (see Figure 2-53).  

 

 

Figure 2-53: Using transient tactile measurements (force and torque) for discrimination of tissues 
Source – (Brett et al., 2014) 

 

2.3.6 Discussion 

The following list of criteria was formed from the core and functional 

requirements to assess each of the four sensing technologies against each 

other:  

a) Non-Destructive  

b) Robust for Environment 

c) High Throughput 

d) High Accuracy & Precision 

e) Small footprint 

f) Cost Effective 

g) Large Penetration Range 
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For each of the criteria, each technology will be rated as:  

- D: Desirable (worth 2 points) 

- F: Feasible (worth 1 point)  

- I: Infeasible (worth 0 points) 

 

Ultrasound: Ultrasound is a non-destructive, contact or contactless 

device that has been employed in the applications of pork processing, 

thus confirming its robustness for the operating environments of 

processing facilities. Frontmatec’s 3D loin trimmer exemplifies that this 

technology facilitates the capacity of sensing up to 750 products per hour 

which is more than adequate for beef striploin trimming applications. The 

high accuracy of ultrasonic measurements in meat applications is evident 

in a number of studies summarised in literature (Halim et al., 2013). The 

ultrasonic probes generally are very compact (e.g. 20 mm diameter x 15 

mm long) and are sold by a large number of retailers for less than 

$60,000 making this technology affordable for system implementation. 

Selecting an ultrasonic technology according to its rated frequency will 

determine penetration depth, compromising resolution, yet can measure 

the maximum striploin fat of 75 mm. With the ability to utilise both A-

mode and B-mode, in real-time, this sensor offers much versatility and 

capability to create an informative sensing technique for this application 

(University of Gelph, 2020). 

 

Vibrational Spectroscopy: This technology has been employed 

successfully (e.g., Fat-o-Meater) to measure pork fat, hence whilst 

showing evidence of a robust system integration, it does show the 

invasive, mildly destructive nature required of this sensing technique. Due 

to its mechanical nature requiring insertion, measurement, retraction and 

cleaning for each measurement cycle its throughput was determined as 

feasible. According to the University of Gelph (2020), this technology has 

an accuracy of 0.5 mm over 180 mm measurements and is packaged as a 
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hand-held device, hence performing well in categories d), e) and g). Due 

to its simple, mechanical nature the cost-effectiveness of this technology 

is extremely high yet, without taking a significant number of readings 

(and causing damage to the product) this technology is limited as a real-

time, informative sensor even through applying machine learning 

algorithms to differentiate fat and meat readings. 

 

Electrical Impedance: Whilst electrical impedance technologies 

are invasive, they have been developed and trialled in processing plants 

with a degree of success. Due to this sensors accuracy being determined 

by insertion accuracy, meat pH levels and the potential of fat smearing on 

the device, all of which are likely issues within a production environment, 

this technology was rated infeasible for commercial robustness. Studies 

have found that the throughput attainable for this technology is more 

than adequate for the line speed of striploin processing (Meat and 

Livestock Australia Limited, 2020). Due to its mechanical nature requiring 

insertion, measurement, retraction and cleaning for each measurement 

cycle its throughput was determined as feasible. This handheld technology 

was deemed a desirable footprint yet the accuracy of ± 3 mm as 

evaluated in (Meat and Livestock Australia Limited, 2020) was deemed 

infeasible due to the extremely high yield loss value expected with this 

magnitude of error. Due to the similarity of electrical impedance and 

vibrational spectroscopy technologies for this application, electrical 

impedance performed similarly in the categories of cost-effectiveness (f), 

real-time (h) and informative sensing capabilities (i). Due to the limitation 

of sensing up to 28 mm of fat thickness at a time this sensing 

technologies was rated as ‘infeasible’ for its penetration range (g). 

 

Tactile: Although tactile sensing does require the contact and an 

applied force to the product, there is no requirement to puncture, 

disfigure or damage the striploin. Hence, this technology is deemed to be 

desirable in category (a). Force modules require deflection to measure 
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tactile features and are generally packaged in small, sealed components 

meaning that robustness of system integration is desirable. Many studies, 

particular to the medical field, have exemplified the development of real-

time, informative sensing techniques for accuracy of less than 1 mm is 

possible (Rosen et al., 2006; van den Gobbelsteen, 2012; Petra et al., 

2006). This as such deems tactile sensing a highly desirable technology 

for considerations d), h) and i). The cocleoscopy drill developed by Brett 

et. al. (2018) illustrated that such technology could be packaged in the 

form of an extremely inexpensive (less than $2,000), handheld device 

(deeming e) and f) as desirable). With the validation of this technology’s 

ability to sense the thickness of fat (Khodabandehloo, 2018) the only 

questionable consideration, whilst expected to be similar to spectroscopy 

and impedance probes, is that of its capability to match the throughput 

required for striploin trimming. 

 

Summary: The desktop feasibility evaluation of the sensing 

technologies considered for fat trimming is summarised in Table 2-3. 

From the review of sensing technologies that have potential to be or have 

been employed within red meat processing for fat measurement 

applications it is evident that there is no single optimal technique. Two 

tied for the highest score and are recommended to be developed further: 

ultrasound and tactile sensing technologies. 
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Table 2-3: Comparison of sensing technologies to determine most feasible for further 
development. 

 

Criteria 

 

Ultrasound 

 

Spectroscopy 

 

Impedance 

 

Tactile 

 

Non-Destructive 

 

D 

 

F 

 

F 

 

D 

 

Robust 

 

D 

 

D 

 

I 

 

D 

 

High Throughput 

 

D 

 

F 

 

F 

 

F 

 

Accurate & Precise 

 

D 

 

D 

 

I 

 

D 

 

Small Footprint 

 

D 

 

D 

 

D 

 

D 

 

Cost-Effective 

 

F 

 

D 

 

D 

 

D 

 

Deep Penetration 

 

D 

 

I 

 

I 

 

D 

 
 

TOTAL SCORE 

 

13 

 

10 

 

4 

 

13 

Note: ‘I’ is infeasible, ‘F’ is feasible, and ‘D’ is desirable (for each category) 

 

Ultrasound: With the prior success of implementing ultrasonics 

within Frontmatec’s 3D Loin Trimmer, ultrasonic sensing should be further 

explored for beef fat applications. Whilst this system is not able to be 

applied directly for beef fat developments based upon similar sensing 

techniques is highly recommended. Yet much development is needed to 

ensure ultrasound technology is practically developed within a system 

capable of measuring fat thickness across beef striploin primals. This 

desktop review has highlighted the following challenges for development 

of an ultrasonic sensing system as:  

- ensuring adequate contact with the ultrasound probe and the 

primal  

- ascertaining which type of ultrasound is most appropriate 
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- Developing a means of using measurements to create a cut 

path for an automated system  

 

Tactile: Tactile sensing also scored strongly against the criteria and 

has been successfully deployed in similar fields i.e. the surgical field with 

some initial exploration in the red meat industry (Brett et al., 2018). The 

potential to extract real-time tactile information as shown in the medical 

field may revolutionalise the means of perceiving and anticipating the 

cutting tool position with reference to the fat-lean interface. Yet much 

development is needed to develop the capability of ascertaining a means 

of discriminating the cutting of lean meat and fat tissue for a practical tool 

that can be used on an automated system.   

 

Of the two sensing technologies ultrasound was selected for 

development within this research due to this technology being most 

proven in the applications of fat depth measurement and commercial pork 

trimming systems. The prior work identified in literature also supported 

the readiness for ultrasound to be implemented within a fat depth sensing 

system moreso than tactile sensing technologies. 

 

2.4 Conclusion 

 

The literature review conducted fulfilled the goal to recommend the 

technology most suitable for consideration in the context of an automated 

trimming system. A survey of patents and commercial systems found that 

no automated fat trimming system exists for beef striploin. In surveying 

technologies, based upon the considerations deemed important and non-

negotiable to the holistic characteristics of an automated fat trimming 

system, ultrasound was identified to be most promising.  

 

It is evident that there are several unknowns surrounding the 

requirements and benchmarks of the process of uniform fat trimming of 
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beef striploin. In the survey of patents and commercial systems there was 

very little representation in beef processing within automated fat 

trimming systems. These systems were not designed to be cross-

compatible with beef either suggesting that the characteristics of the fat 

trimming process between pork and beef are significantly different. Many 

of these systems either estimated fat depth (did not acquire measures) or 

estimated the entire subcutaneous fat profile with few measurements. 

This suggests that it is likely that the characteristics between beef and 

pork processing are significantly different, and that an analysis of the 

striploin variability and subcutaneous fat profile and the trimming process 

of fat trimming should be undertaken. 

 

The learnings from the literature review inform the development of 

a methodology for sensor evaluation. The learnings also inform the study 

of other variables within a processing plant that may impact system 

design and sensor selection, which is further evaluated in the next 

chapter (Chapter 3) before defining a benchmark performance using CT 

imaging in Chapter 4. 
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CHAPTER 3: SENSING SYSTEM DEFINITION 

FOR BEEF STRIPLOIN FAT TRIMMING 

 

This chapter presents preliminary experimentations that provide an 

in-depth analysis of the striploin primal variability, the processing 

requirements for uniform fat trimming for the specific collaborating 

processor and the product specifications of trimmed beef striploin. These 

investigations inform the automation constraints and sensing 

considerations of a system that can meet the performance requirements 

(Research Objective 2). The preliminary experiments presented in this 

chapter provide specifics to the functional requirements of the sensor 

evaluation framework developed in Chapter 4, and again for the 

development of ultrasound systems in Chapter 5 and Chapter 6.  

 

3.1 Introduction 

This section presents a review of the striploin product and the 

processor-specific processes important for consideration to develop the 

experimental aims and processes required to inform the methodology of 

this thesis. 

 

3.1.1 Preliminary Work 

Prior to the beginning of this thesis there was a striploin fat 

trimming feasibility study conducted (Khodabandehloo, 2018). The focus 

of this study was to identify the range and variability of striploin primals 

and therefore the measurements presented were based upon the smallest 

and largest striploin that could be collected during the survey period at an 

undisclosed processing plant. The findings pertaining to variability of the 

striploin primal relevant to this thesis are summarised in Table 3-1. The 

dimensions referenced in this table were measured as illustrated in Figure 

3-1.  
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Table 3-1: Variability of physical characteristics of untrimmed beef striploin primal. 

Quantity Smallest Largest Range 

Dimension:        Length (mm) 470 mm 605 mm 135 mm 

Dimension:       Width (mm) 200 mm 245 mm 45 mm 

Dimension:       Height (mm) 90 mm 125 mm 35 mm 

Weight:             Primal (kg) 15 kg (nominal) 

Fat Thickness:  Depth (mm) 2 mm 75 mm 73 mm 

Fat Thickness:  Gradient (degrees) 60 (across length of striploin) 

66 (across width of striploin) 

 

 

Figure 3-1: The definition of measurements (length, width and height) of a beef striploin primal. 

 

This study highlighted the possible presence of delamination of fat 

layers in the subcutaneous fat of striploins surveyed as well as the 

potential for fat cover damage to be introduced by the ‘hide puller’ 

mechanism used in processing process prior to striploin fat trimming 

(Khodabandehloo, 2018). The ‘hide puller’ mechanism employed in beef 

processing that, in some cases, causes damage to the fat cover of the 
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striploin. Typically hides are ‘pulled’ from carcases in processing plants to 

‘dress’ the carcase for further processing. Based on these observations 

the author suggested that the sensing be conducted on the medial surface 

(lean meat surface) of the striploin to avoid complications of ‘no contact’ 

instances inhibiting ultrasound sensing performance.  

 

Khodabandehloo’s (2018) investigation provides valuable insights 

for considerations in developing a feasible automated striploin fat 

trimming system. The biggest limitation of the statistics presented within 

this study was the very limited sample dataset (2 striploins) that were 

acquired from the line of a different processor. The collaborating 

processor for this thesis runs a 100 to 120-day grain-fed feeding 

programme that produces uniquely consistent (dimensions and fat 

profiles) striploin products. Due to such a small sample size and concerns 

for representativeness, it was determined that an independent study 

using striploins supplied by the collaborating processor was required for 

defining the sensing capabilities for this application.  

 

3.1.2 Processor-Specific Context 

Though there are some operations that are performed by all beef 

processors in Australia there are many variations of tasks that occur 

throughout the processing workflow (Cross, 2011a; Cross 2011b; Cross 

2011c). These processor-specific operations will determine how the 

boneless striploin product is presented to the slicer, or automated system, 

for fat trimming. These processor-specific operations for the collaborating 

processor are presented, in order of occurrence, in the following 

subsection. 

 

De-hiding Carcase:  

As mentioned by Khodabandehloo (2018) one such processing 

method that may cause damage to the fat cover on beef striploin primals 

is the ‘hide puller’. Typically hides are ‘pulled’ from carcases in abattoirs 
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to ‘dress’ the carcase for further processing. The predominant types of 

hide pullers are upward (see Figure 3-2) and downward (see Figure 3-3). 

Australian processors typically employ the downward hide pulling 

mechanism due to the reduced likelihood of faecal contamination 

introduced during this process (Thompson, 2009). Though, the drawback 

of this method is the possibility of causing fat tears from the loin and 

hindquarter regions of the carcase which create inconsistent intra-striploin 

fat profiles. Though the collaborating processor confirmed the use of 

downward hide pulling the significance of the phenomena of ‘fat tears’ will 

be investigated in this chapter (C Anderson 2019, pers. comm., 13 

November). 

 

 

Figure 3-2: The mechanism of upward 'hide pulling' to dress the carcase. Source – 
(Thompson, 2009) 
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Figure 3-3: The mechanism of downward 'hide pulling' to dress the carcase typically used 

by Australian processors. Source – (Thompson, 2009) 

 

Process of Boning Striploin: 

 The boning processes employed will determine the physical 

dimensions of the striploin. The following processes are employed by the 

collaborating processor:  

 

1) Carcass Splitting: The process after de-hiding 

whereby the carcase is split in half by sawing through the 

spine (mid-sagittal plane) to create two beef sides (see Figure 

3-4).  
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Figure 3-4: Bovine carcase splitting using a saw to create beef sides. Source – (Savell, 
2015) 

  

This operation separates the carcase into 2 sides (‘left’ and ‘right’) 

and thus 2 separate striploin primals that are anatomically mirrored at the 

spine in the transverse plane. During carcase splitting the saw cuts the 

spine in the direction of most caudal (Rump face) to cranial (Rib face) end 

and defines the most medial edge (referred to as the spine edge) of each 

striploin primal. 

 

2) Chilling Beef Sides: The process whereby the beef side is 

rapidly cooled in a chiller to prolong meat shelf life by 

preventing microbial growth occurring (see Figure 3-5).  

 

 

Figure 3-5: Beef sides being cooled in a processor's chiller prior to grading. Source – (Betancourt, 
2019) 
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This operation rapidly cools the beef side which causes the 

contraction of muscles to the degree that the carcase frame permits 

(which resists these contraction forces) during the time in the chiller 

(Husband, 1993). Though there is no literature defining the degree of this 

phenomena, and how the cutting of the carcase for grading may 

exacerbate this, the contraction of muscles is likely the cause a curvature 

of varying significance of the spine edge of each striploin primal. 

 

3) Carcase Grading & Quartering: Typically, whilst the beef 

side is in the chiller it is cut between the 12th and 13th 

thoracic rib to expose the eye muscle for grading and mark 

the position to use to quarter the beef side (see Figure 3-6). 

 

 

Figure 3-6: Beef sides cut between the 12th and 13th rib for grading whilst in the chiller. 
Source – (Konopacki, 2006)  

 

 This operation is a straight cut parallel to rib bones and separates 

the beef side into 2 quarters (‘hindquarter’ and ‘forequarter’). This cut 

defines the anatomical cut plane of the “rib” face of each striploin. This 

cut line is parallel between the 12th and 13th rib, cut from the medial 

(spine) to the lateral (flank) direction. The skeletal structure of the bovine 

carcase provides a guide for the boner’s knife, and upon cutting past the 
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end of the rib, the boner cuts out of the carcase “straight” by eye. This 

provides explanation of the 2 different angled cuts that typically create 

the rib face of the striploin, which at their intersection identifies the end of 

the 12th rib bone when the boning knife changes orientation (see Figure 

3-7). This also provides an explanation as to the varying degrees of 

chamfers (the cut line defining the rib face from the end of the 12th rib to 

the flank end) that have been observed in striploins.  

 

 

Figure 3-7: Two distinct cut lines used to define rib face of striploin at the collaborating processor’s 
facility. Original image source – (McDonald-Keating, 2021) 

 

4) Hindquarter Boning – Flank Removal: The hindquarter is 

cut along a seam of fat to remove the flank from the 

hindquarter (see Figure 3-8). 
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Figure 3-8: Removal of the flank from the hindquarter by cutting along fat seam. Original image 

source – (John the Butcher, 2018)  

 

This operation is a straight cut along a fat seam to remove the flank 

from the striploin leaving at least 37 mm of fat after the eye muscle in the 

most ventral direction (commonly referred to as “tail”). This cut defines 

the anatomical cut plane of the “flank” edge of each striploin and is 

typically quite consistently cut perpendicular to the “spine” edge (see 

Figure 3-9). 
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Figure 3-9: The cut line that removes the flank from the hindquarter to define the flank edge of 
the striploin at the collaborating processor’s facility. Original image source – (McDonald-Keating, 

2021) 

 

5) Hindquarter Boning – Striploin Removal: The hindquarter 

is cut straight between the lumbar junction and 1st sacral 

vertebrae to remove the striploin from the hindquarter (see 

Figure 3-10). 

 

Figure 3-10: Removal of the striploin from the hindquarter by cutting straight from 
between the lumbar junction and 1st sacral vertebrae. Original image source – (John the Butcher, 

2018) 
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This operation is a straight cut straight between the lumbar junction 

and 1st sacral vertebrae to remove the striploin from the hindquarter. 

This cut defines the anatomical cut plane of the Rump face of each 

striploin (see Figure 3-11). 

 

 

Figure 3-11: The cut line that removes the striploin (and tenderloin) from the hindquarter 
to define the rump face of the striploin at the collaborating processor’s facility. Original image 

source – (McDonald-Keating, 2021) 

 

6) Striploin Boning – Chine Sawing: After removing the 

tenderloin a bandsaw is used to cut the 13th rib extending 

from the striploin and then to cut the chine bone along the 

length of the striploin to separate this with the feature bones 

into easy-to-remove flat and button bones (see Figure 3-12). 
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Figure 3-12: Chine sawing to disconnect the chine and feather bones for easier removal of 
smaller bones. Original image source – (Adobe, 2021)  

 

 Through this process of chine sawing bones are released so that a 

table boner can remove bones (the 13th rib, the remainder of the chine 

bone along the chine edge, and several button bones and flat bones) with 

as little yield loss as possible. 

 

7) Striploin Boning – Table Boning: The striploin is then 

boned on the table to remove the rest of the bones 

underneath the striploin (see Figure 3-13).  

 

 

Figure 3-13: An illustration of the bones that are under the striploin after chine sawing. Original 
image source – (McDonald-Keating, 2021) 
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A brief study was conducted to investigate the cavities that are 

created on the medial surface (lean meat surface) upon table boning the 

striploin, and what the approximate positions and extent of these cavities 

were (see Appendix A.1: Cavities Created by Table Boning). A summary 

of this analysis revealed that post-chine sawing the striploin had 7 sets of 

button and flat bones in addition to those along the spine (see Figure 

3-14). When removed the button and flat bones left cavities in the lean 

meat surface of the striploin 10 - 20 mm deep spaced on average 55 mm 

from each other.  

 

 

Figure 3-14: An analysis of flat bones (F1, F2, …) and button bones (B1, B2, …) removed from the 
medial surface (lean) of the striploin prior to fat trimming. 

 

Fat Specifications and Trimming: 

 There are many fat thickness specifications used by processors to 

produce striploin products depending upon the market the product is sold 

to. The fat thickness specification chosen for this thesis was selected as 

12 mm as this was the most common customer requirement of the 

collaborating processor (C Anderson 2019, pers. comm., 13 November).  
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The processor provides products to customers according to the 

‘maximum fat thickness at any point’ method with the exception of 

‘bridging’ and ‘planing’ scenarios (C Anderson 2019, pers. comm., 13 

November). In the case whereby a customer identifies a beef striploin 

with a fat thickness of more than the maximum 12 mm fat thickness a ’fat 

claim’ against the processor may be actioned. In such a scenario, the 

processor is required to refund the cost of the entire striploin product to 

the customer (C Anderson 2019, pers. comm., 13 November). In order to 

reduce the number of fat claims that are lodged for reimbursement the 

processor instructs slicers to purposeful over-trim striploin products (C 

Anderson 2019, pers. comm., 13 November). The yield losses incurred 

from over-trimming this product is estimated to be significantly greater, 

though less visible, than fat claims. Until there is a mechanism of 

measuring the fat depth within a striploin there will not be the precision 

required to trim accurately to the desired fat thickness specification.  

 

The task definition of the ’fat trimming’ and the time taken to by 

slicers to complete are processor-specific constraints that are important to 

consider in the development of an automated fat trimming system. These 

processes will be documented for the collaborating processor and further 

analysed to provide these insights for system development in subsequent 

chapters. 

 

Summary of Processor-Specific Considerations 

 The key product specifications that inform the development and 

evaluation of the sensing system for automated trimming are summarised 

in Table 3-2. These processor-specific factors contribute to defining the 

scope of an automated system capable of fat trimming for this application 

in this processing facility. 
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Table 3-2: Key product constraints to consider for the development of an automated system 
capable of trimming to specifications. 

Product Specification Sensing System Considerations 

Fat Specification:  

Commonly 12 mm 

A maximum fat specification of 12 mm will be 

considered as per the typical customer 

requirements of the processor. Practically, 

this would be a perpendicular measurement 

from the fat-lean interface as opposed to 

vertically (as this would yield a measurement 

of the maximum fat depth)  

Trimming Standards:  

Avoid scores in the lean 

In addition to decreasing yield over-trimming 

fat may also significantly devalue the product 

if lean muscle is scored during trimming. 

Trimming Standards: 

Smooth trimming along the 

contour of underlying 

muscles 

A sensing mechanism/configuration needs to 

be considered to acquire enough fat depth 

measurements to generate a contour 

representative of underlying tissues 

throughout the striploin primal. 

Measurement Method: 

Maximum fat thickness at 

any point measured at the 

edges of cuts 

An under-trimming-related failure is clearly 

defined as fat thickness over the maximum 

specified at any point. Though, it should be 

highlighted that the nature of retailers 

portioning striploin means that only a limited 

number of edges (e.g., cross-sections / faces 

of steaks) will be seen. In addition to this, 

these cross-sections are likely only measured 

(and fat claimed) if large deviations from the 

fat specification are observed. This suggests 

that an ‘unspoken’ error tolerance exists in 

the practical application of specifications.  

Measurement Method: 

Fat depth accounts for 

‘bridging’ and ‘planing’ 

This introduces the need for some degree of 

path planning using fat depth measurements 

to optimise automated trimming for yield. 
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Cost of Failure:  

Fat Claims vs Loss of Yield 

Further investigation is required to quantify 

the cost of both failures (over-trimming and 

under-trimming) to determine what failure 

should be prioritised and to what degree. This 

will inform the performance evaluation.  

 

 

3.1.3 Chapter Aims 

 More processor-specific information is required to better define the 

considerations and capability scope for a suitable automated fat trimming 

system. The analyses to presented in this subsection address these 

knowledge gaps.  

 

Investigation 1: Product Variability & Processing Constraints 

There has been very little work conducted to quantifying the 

variabilities of the striploins presented for fat trimming, and the prior 

processes that create such variabilities. These variabilities are important 

to consider for developing an automated solution to ensure that the 

automated system is capable of servicing the range of striploins, or to 

define the scope for which the system can cater for. This has a significant 

impact on the following aspects of the automated fat trimming system: 

- The surface area of the striploin will determine the sensing 

area (and number of nodes) to be considered. 

- The sensing area will contribute towards defining the number 

of nodes, and the spacing within the nodes which will create a 

trade-off between the sensing time required (in total and per 

node) and the representativeness of sensor data to the 

striploin.  

- The temperature of striploin primals will determine ultrasound 

settings which are typically considered for calibration. 

- The significance, and likelihood, of product surface 

deformations (e.g. fat cover damage, fat delamination, etc.) 
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present in the fat and lean surfaces of striploins will determine 

the sensing orientation that would be best for ultrasound 

sensing. 

 

A survey of the physical attributes (dimensions, weight, 

temperature, surface deformations and fat cover damage) of untrimmed 

striploins will be conducted at the processor’s facility to better define the 

input variability of the system with respect to the overall dimensions and 

general characteristics of untrimmed striploins, and the processing 

methods that contribute to this.  

 

Investigation 2: Time Motion Study of Uniform Fat Trimming 

There is yet to be data collected defining the processing speed that 

is currently being adhered to within the fat trimming operation of beef 

striploin at the collaborating processor’s facility. This line speed is a 

constraint that needs to be considered in the development of a feasible 

automated system capable of striploin fat trimming in this processing 

plant. This has a significant impact on the following aspects of the 

automated fat trimming system: 

- The total time permitted for the entire system’s cycle time 

which assists to define the time (in total and per node) for 

sensing. This also then provides insight towards the trade-off 

between: the number of sensing nodes in the node mesh, the 

cycle time of the sensing process, and the response time of 

the sensor per measurement. 

 

Therefore, a time-motion study was conducted on slicers performing 

fat trimming at the processor’s facility to better define the response time 

of a sensor and the sensing cycle time of a system feasible for fat 

trimming system at this line speed. 
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Investigation 3: Subcutaneous Fat Characteristics 

Whilst Chapter 2 identified ultrasound to be the most promising 

technology for the application of measuring fat thickness on a beef 

striploin further investigation is required to determine the characteristics 

of which an appropriate ultrasound device can be selected using. This has 

a significant impact on the following aspects of the automated fat 

trimming system: 

- The range of fat thickness measurements that can be 

expected at the sensing nodes of striploins from the 

processor’s processing line. This will assist to define the 

minimum and maximum penetration depth of an appropriate 

ultrasound device.  

- The maximum gradient between fat thickness measurements 

that can be expected at the sensing nodes of striploins from 

the processor’s processing line. This will assist to define the 

cut path considerations for a robotic automated solution. 

- An evaluation of the fat distribution and the variability of fat 

distributed inter-striploin and intra-striploin will provide 

insight towards optimising the trade-off between 

measurement representativeness and sensing cycle time 

through the number of sensing nodes in the node mesh. 

 

An in-depth analysis of the subcutaneous fat profile of untrimmed 

striploins at the processor’s facility will be conducted to better define the 

context that the sensing system will be applied within.   

 

3.2 Product Variability & Processing Constraints 

This experiment quantified the product variability and the 

processing processes and constraints important for the collaborating 

processor.  
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3.2.1 Experimental Set-Up 

The processing steps that occur before the striploin primal is 

presented to the slicer impacts the size and dimensions of the primal. The 

processing steps presented are specific to defining the presentation of a 

beef striploin primal for fat trimming at the collaborating processor’s 

facility (P McDonald-Keating 2021, pers. comm., 20 July). An example of 

the overall shape and dimensions of a typical striploin at the collaborating 

processor’s processing line is illustrated in Figure 3-15. 

 

 

Figure 3-15: The anatomical cut lines determining the overall dimensions of the boneless beef 
striploin primal presented for fat trimming at collaborating processor’s facility illustrated on a LHS 

striploin. 

 

A survey was conducted to ascertain the typical dimensional 

variations of 100-day grain-fed beef striploin primals at the collaborating 

processor’s site on the late morning shift (11:30 AM – 1:00 PM) on the 

28th of April 2021. For this survey, twenty untrimmed beef striploin 

primals were acquired during a typical run at the processor’s facility. 
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Detailed information defining the characteristics of the striploins used in 

this survey is outlined in Appendix A.2: Dataset for Product Variability of 

Untrimmed Striploins. 

 

The length, width, and height of the primals were measured using a 

stainless-steel ruler, the weight was measured using digital scales in the 

processor’s facility, and the average temperature of the primal was 

measured using an infrared digital thermometer. A qualitative description 

of the fat cover over each striploin was reported, and each face of each 

striploin was photographed (see Figure 3-16).  

 

 

Figure 3-16: The set-up for the survey of the physical characteristics of untrimmed striploin 

primals. 

  

3.2.2 Experimental Analysis 

The dimension and weight measurements of the twenty untrimmed 

striploins surveyed were averaged (mean) with the calculation of 2 

standard deviations to define the variance of these characteristics to a 

95% confidence interval. This gave clarity in defining the percentage and 

variance of products that are not in scope for an automated system.  

 

According to MLA (2022), considerable fat cover damage is defined 

as areas of more than 10cm x 10cm that were void of fat. For the 

purposes of fat trimming, these affected areas were only considered 
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significant whereby this area was in a position that it may inhibit the 

capability to acquire a fat thickness measurement (e.g. the fat cover 

damage was on a location that was at least 20 mm from an edge).  As 

such, these instances were counted from observations of the fat cover on 

each striploin. Statistically, the expected probability was calculated to 

estimate the likelihood of fat tear-related damage being presented on 

striploins based on this sample dataset. 

 

3.2.3 Results 

The twenty (20) striploins surveyed were measured in length (spine 

edge), width (rump face cross-section), height (maximum at rump face) 

and weight (overall primal) and results were tabulated (see Table 3-3) 

with the five number summary plus the confidence interval bounds (± 

2SD) presented in Table 3-4. This analysis quantified the typical striploin 

(within a 95% confidence interval) presented for fat trimming being 388 – 

456 mm in length, 221 – 309 mm in width and 72 – 103 mm in height.  

 

Table 3-3: Measurements of the ‘typical’ untrimmed striploins acquired from the collaborating 
processor’s conveyor. 
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Table 3-4: Statistical summary of untrimmed striploin dimensions. 

 

  

Observations were also made regarding the shape of the twenty 

striploins. It was seen that the most perpendicular face to the spine edge 

of the striploin was the caudal/cranial edge with the cranial/rib edge being 

curved at the ventral/flank edge. This finding supports using the 

caudal/cranial edge and spine edge to reference the origin of the node 

mesh of the sensing system proposed in the third experiment of this 

chapter (Section 3.4). In addition to this, the temperature was made with 

a digital infrared thermometer which revealed the average surface 

temperature of the subcutaneous fat being 8.1 degrees Celsius. This 

temperature was considered in the experimentation procedure outlined in 

Chapter 5 and 6. 

 

Observations regarding the significance of fat cover damage were 

made from the twenty striploins within this dataset (see photographs 

taken of fat cover for each striploin in Appendix A.2: Dataset for Product 

Variability of Untrimmed Striploins). Two instances of significant fat cover 

damage were identified for the location of measurement for the 

prescribed node mesh. Using this sample size (twenty) the expected 

probability was calculated to be 10% for instances of fat tears affecting 

measurements for a fat trimming system. Furthermore, there was a 

pattern observed that fat tear damage typically occurred on the ventral 
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edge at approximately 100–200 mm from the caudal (rump) face as 

shown (see Figure 3-17).   

 

 

Figure 3-17: Illustration of fat tear damage found on two of the twenty surveyed striploins. 

 

 

3.2.4 Discussion 

The variability of the striploin primal presented to the slicer is a 

significant factor that influences the effectiveness of developing an 

automated fat trimming system. This variability has been characterized by 

differences in length, width, height, weight, and the condition of the fat 

cover. 

 

The striploin primal's length, width, height, and weight show a 

significant difference to the striploin characteristics presented in 
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Khodabandehloo’s (2018) preliminary study. The contrasting striploin 

characteristics supports the significance of bovine breeds, feeding regimes 

and processing methods that translate to significant differences within 

striploin dimensions, and inter-striploin variability within a typical 

processing run (see Table 3-5). The significant differences between 

preliminary work and the experimental survey presented within the 

results section of this subsection confirm the decision to conduct the 

survey using the particular striploins of the collaborating processor. 

 

Table 3-5: Comparison of typical striploin dimensions with preliminary work. 

Quantity Study Smallest Largest Range 

Length Khodabandehloo 470 mm 605 mm 135 mm 

Border 393 mm 451 mm 58 mm 

Width Khodabandehloo 200 mm 245 mm 45 mm 

Border 229 mm 309 mm 80 mm 

Height Khodabandehloo 90 mm 125 mm 35 mm 

Border 74 mm 105 mm 31 mm 

Primal Weight Khodabandehloo 15 kg (nominal) 

Border 8.30 kg (mean) 

 

 

This highlights the need for automation to be designed to 

accommodate for such a large deviation of striploin primals or that of the 

chosen processor. As shown in Table 3-5, the width and weight of the 

striploin primal exhibit the most variability, as indicated by the standard 

deviation values. Considering all striploins surveyed were from the same 

‘processing run’ (a term used to describe the carcases were from the 

same lot and roughly the same breeds and quality). For the trial 

conducted at the site of the collaborating process this was reported to be 

a processing run of mixed breed MSA 0-3 quality, and so there is little 

case for variability being assigned to breed or genetic deviations.  
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The variability in striploin boning, particularly in the precision of 

cuts, is noteworthy. Edges cut based on visual estimation (lateral/flank 

edge) exhibit more variability compared to those made along anatomical 

landmarks such as tissues and bones (medial/spine edge, caudal/rump 

face, cranial/rib face). This supports the argument that the variability of 

the width is due to human error due to approximation of cutting lines. In 

combination with the curvature of the cranial/rib face observed on the 

striploins surveyed, the decision to position of the origin location in 

reference to the medial / spine edge and the caudal / rump face has been 

supported. This enables a more consistent approach of acquiring 

measurements that can be registered between different striploins and 

striploin types (LHS / RHS). This method also provides a means of 

measuring a uniform mesh spacing without the complication of a node 

mesh significantly skewed to the orientation of the striploin.  

 

The condition of the fat cover also shows variability, with instances 

of fat cover damage observed in only a small number of striploins. This 

damage typically occurs on the ventral edge at approximately 100–200 

mm from the caudal (rump) face (see Figure 3-17). The expected 

probability for instances of fat tears affecting measurements for a fat 

trimming system was calculated to be 10%. Whilst this observation was 

used in Khodabandehloo’s (2018) preliminary study to recommend 

applying ultrasound sensing, the insignificance of this phenomena 

recontextualises the recommendation for this study. In the worst case, 

the general location of this fat cover damage may contribute towards 

recommending an altering of the node mesh to node place measurement 

nodes on this region or else omit this node from the mesh. In addition, 

and the lack of observations of fat delamination being unobservable in the 

striploins surveyed did not make a definitive case to conclude that sensing 

from the subcutaneous fat surface would yield ineffective results. Through 

studying the process of boning the striploin it was identified that the 

cavities created by table boning of the flat and button bones from the 
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striploin could impose issues when measuring from the lean surface with 

an ultrasound device. As such, the recommendation made in this study 

was not deemed completely valid and further preliminary testing will be 

conducted for the sensing orientation of systems presented in Chapter 5 

and 6.   

 

The average temperature of the striploin at the fat trimming 

operator table was 8.2 degrees Celsius. This temperature will be 

considered in the parameter settings of the ultrasound device to properly 

tune this correctly (see Chapter 5 and 6).  

 

3.3 Time Motion Study of Uniform Fat Trimming 

This section presents a time motion study that was conducted to 

define the processing speed benchmark for uniform fat trimming.  

 

3.3.1 Experimental Set-Up 

For the time-motion analysis of uniform fat trimming, slicers were 

observed on a typical run at the processor’s facility on 6 June, 2021. 

Through these observations, and the timing of slicers’ actions, the 

particular actions required to perform the task of uniform fat trimming, 

and the average processing time for the task, was defined (see Figure 

3-18). 

 



 

111 

 
Figure 3-18: A slicer performing uniform fat trimming of beef striploin at the collaborating 

processor's facility. 

 

3.3.2 Experimental Analysis 

The process of uniform fat trimming was documented as a series of 

sequential tasks performed by slicers during fat trimming. Several 

personnel (slicers, trainers and the leadership team) were consulted to 

confirm the tasks that consist of fat trimming as well as photographs were 

taken during observations. There were tasks conducted by slicers on the 

lean muscle surface that were considered supplementary to fat trimming 

and hence omitted from the time-motion study analysis conducted. These 

‘lean surface’ type tasks are described in Table 3-6. De-identified results 

were tabulated over four slicers trimming 25 striploins to ascertain the 

time taken for this operation. Mean processing time, and the 95% 

confidence interval / within 2 standard deviations (SD). 

  

3.3.3 Results 

The results of the time-motion analysis identified the following sub-

tasks performed by slicers to ‘finish’ the striploin (see Table 3-6).  
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Table 3-6: Motion analysis of fat trimming beef striploin 

 

 

The time taken to trim both the lean and fat surface separately was 

recorded for four unidentified slicers over 25 observations. The raw data 

of this time motion study has been included in an appendix (see Appendix 

A.3: Time-Motion Analysis of Striploin Fat Trimming). A summary of the 

timings of each slicer for only the fat trimming component of these 

observations is tabulated in Table 3-7 and presented as a box-and-

whisker plot to evaluate the spread of these individual measurements in 

Figure 3-19. The timing of the fat trimming tasks identified an average 

processing time of 27 seconds, with a 95% confidence interval for a 

processing time range of 12–42 seconds. During this survey it was 

observed that there were four slicers allocated for the fat trimming of beef 

striploin each positioned in a 1m x 1.5m workspace. This observation 

provides the space constraints of a feasible footprint for an automated 

system to adhere to. 

 



 

113 

Table 3-7: Summary of time recordings from fat trimming observations (n = 25) 

 

 

 

Figure 3-19: The fat trimming times from trimming observations (n = 25) presented in a box-and-
whisker plot. 

 

3.3.4 Discussion 

The time-motion analysis identified an average processing time of 

27 seconds for the fat trimming element of the slicers’ trimming tasks, 

with a 95% confidence interval for a processing time range of 12 – 42 

seconds. Quantifying this processing timing provides a benchmark for the 
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response time that a feasible sensing technology must be capable of. This 

response time will be considered in the preliminary investigations of 

Mode-A and Mode-B ultrasound systems developed in Chapter 5 and 6.  

 

The footprint of a workstation was measured to be 1.5m x 1m could 

be considered equivalent for a robot station, and perhaps initially this 

system could be installed in series with slicers who can continue to deal 

with peak loads by storing striploins could operate to similarly deal with 

peak loads. With four stations for fat trimming the number of units that 

may be installed could be reasonably presumed to be two (leaving two 

stations for manual trimming until breakdown frequency is evaluated). 

This provides an approximate limit for the number of units that could be 

installed for such a processing line, which further constrains the maximum 

cycle time of both units to achieve the line speed.   

 

3.4 Subcutaneous Fat Characteristics 

This section evaluates the subcutaneous fat distribution 

characteristics of a typical striploin to inform the requirements for a 

suitable sensing system for this application. 

 

3.4.1 Experimental Set-Up 

For this analysis, four striploins were selected from the processing 

line of the processor as samples to conduct the analyses presented in this 

investigation. The striploins acquired for this experiment had 

characteristics that aligned to those identified as a ‘typical’ striploin in the 

previous experiment in Section 3.2. The striploins were labelled with a 

number and orientation (Striploin 1R, 2R, 3L, 4L) where ‘L’ and ‘R’ 

denoted a LHS and RHS striploin respectively. The dimensions and 

weights of the striploins used in this experiment are shown in Table 3-8. 
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Table 3-8: A summary of the striploin dataset characteristics (dimensions & weight). 

 

 

To draw more insight into the fat characteristics, a node location 

convention was created to ensure that inter-striploin measurements could 

compared and intra-striploin patterns could be recognised. Since the 

spine and rump edges were most consistently cut square between 

striploins (identified in Section 3.2), the origin of the sensing mesh was 

measured in reference from the Caudal (Rump) face and Medial (Spine) 

edge. A permanent marker was used to mark the location of the origin of 

a sensing node mesh on the plastic wrapping of each striploin on the face 

of the subcutaneous fat. With the origin defined, a template created from 

clear plastic 10 mm x 10 mm grid was used to both align to the rump face 

and mark the measurement nodes array on each striploin (see Figure 

3-20). The final origin locations of each striploin are defined in Table 3-9. 

 

 

Figure 3-20: A clear, plastic grid was aligned with the origin and used to mark up the 25 mm X 50 

mm spacings to create the node mesh on each striploin. 
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The variability of striploin dimensions in the dataset meant that the 

origin placement varied slightly with placement being as to ensure as 

many nodes as possible in the mesh would be marked on the surface of 

the striploin. By defining the origin similarly and aligning the node mesh 

perpendicular to the Caudal face, which was generally cut perpendicular 

to the spine edge, this enabled the spatial relationship of fat depth to be 

evaluated across the entire striploin dataset despite variance in dimension 

(length and width) and orientation (LHS/RHS).  

 

Table 3-9: A summary of the measurement node mesh for the striploin dataset. 

 

 

 The chosen spacing of measurement nodes was predetermined to 

align with industry work being conducted simultaneously. The spacing 

used for this node mesh was 50 mm in the X direction (across the length 

/ medial-ventral anatomical plane of the striploin) and 25 mm in the Y 

direction (across the width / caudal-cranial anatomical plane of the 

striploin). This created a node array of measurements that could be 

spatially registered for evaluation between other striploins regardless of 

dimensions and type (both LHS and RHS). In addition to numbering each 

node (i,j) based upon its x and y coordinate the terminology of “point” (y) 

and “face” (x) was used (see Figure 3-21).  
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Figure 3-21: The location of the measurement nodes marked for each striploin illustrated 

on a RHS striploin. 

 

The plastic wrapping of the striploin was pierced using a stainless-

steel skewer and marked with black, food-grade gel on the surface of the 

fat to ensure these measurement points remained at the same location 

(see Figure 3-22). A sharp boning knife was used to make a cross-

sectional cut along the transverse plane of the striploin to expose the 

measurement nodes on each face (see Figure 3-23).  
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Figure 3-22: Marking the location of the measurement nodes on the striploin fat surface using 
food-grade gel. 

 

Figure 3-23: Plastic wrapping was cut to create the cross-section face to measure fat thickness at 
each of the nodes. 

 

The fat depth at each node was measured at each face using a 

stainless-steel ruler (see Figure 3-24). The fat depth measurements for all 

nodes were recorded and tabulated on Excel. Comments were also 

recorded for the instances of discrepancies and interesting phenomena 
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with regards to the interfaces seen within the cross-section of the 

striploin. The depth of fat is determined to be the distance from the fat 

surface to the fat-lean or fat-sinew interface measured perpendicular to 

the fat surface. The measurement axis of the ruler taken for a cross-

section / face is shown in Figure 3-25.  

 

 

Figure 3-24: Manual measurements of fat depth at each node were taken using a stainless-steel 
ruler aligned perpendicular to the fat surface at each face. 

 

Figure 3-25: The fat depth measurements (red arrow) at each node was measured perpendicular 
from the fat surface to the fat-lean or fat-sinew interface at a 25 mm pitch (for cross-sections at 

50 mm thick) illustrated on a RHS striploin. 
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One limitation of the measurement process is that there will always 

be a discrepancy between fat depth measurements taken prior to, and 

after, trimming. This is due to the product specifications measuring 

maximum fat depth radial from the fat-lean interface of the striploin, 

though without the capability of offsetting the trim tool perpendicular to 

the fat-lean surface there will be a misalignment of the pre-trim and post-

trim measurement planes. This is illustrated below for a method of 

measuring fat depth perpendicular from the fat surface (see Figure 3-26).  

 

 

Figure 3-26: The misalignment of measurement axes prior and post trimming illustrated 
on a RHS striploin is deemed insignificant in this analysis. 

 

The magnitude of measurement misalignment error (𝜃𝑒) between 

the fat thickness measurements, pre-trimming (𝐹𝑇𝑃𝑟𝑒) and post-trimming 

(𝐹𝑇𝑃𝑜𝑠𝑡), is dependent upon the difference in angle between the fat surface 

and fat-lean interface at each considered node and the desired fat trim 

specification (𝐹𝑇𝑃𝑜𝑠𝑡). This unavoidable error is visually illustrated in Figure 

3-27. 
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Figure 3-27: An illustration of the insignificant error between pre-trim (measured by a sensor) and 
post-trim (measured by quality assurance) that occurs due to misalignment of measurement axes. 

 

This error is expressed formulaically in Equation 3.1. 

 

Equation 3.1: Unavoidable misalignment error between sensor and post-trim fat depth 

𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟, 𝐸𝑀 = 𝐹𝑇𝑃𝑟𝑒 − 𝐹𝑇𝑃𝑜𝑠𝑡 cos(𝜃),  

 

where:  

𝐹𝑇𝑃𝑟𝑒  = target fat thickness pre-trim 

𝐹𝑇𝑃𝑜𝑠𝑡  = final fat thickness post-trim 

𝜃 = the angle difference between 𝐹𝑇𝑃𝑟𝑒 and 𝐹𝑇𝑃𝑜𝑠𝑡 

measurement axes (perpendicular to the fat surface) 

 

It should be noted that the ‘bridging’ definition used to accept or 

reject fat trim (see Section 2.1.3) substantially reduces the likelihood of a 

significant angular error due to omitting steep, intramuscular fat seams 

being considered the point of measurement against fat specifications. As 

such, an angular difference between the fat surface and fat-lean interface 

may be considered to be within the magnitude of ±30 degrees (30° < 𝜃 <
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30°). Using the formula above (see Equation 3.1), an approximation of 

this misalignment error for a 12 mm fat specification is calculated below. 

 

𝐸𝑀 = 12 − 12 cos(∓30°) 

𝐸𝑀 = 12 − 10.39 

𝐸𝑀 = 1.61 𝑚𝑚 

 

An error of 1.61 mm has been considered negligible compared to 

several more substantial errors that are present within such validation 

processes (e.g., human measurement, sensor measurements, 

deformation during trimming, etc.). As such, whilst it is important to 

acknowledge this error it is considered insignificant to the work conducted 

further in this research.  

 

3.4.2 Experimental Analysis 

A statistical analysis of the manually measured fat depth dataset 

(𝑓𝑀) of the untrimmed beef striploin was conducted to provide information 

important to define the operational context (e.g., required sensing depth, 

node spacing, etc.) to aid the development of a suitable sensing system 

and sensor performance matrix.  

 

Literature suggests investigation of the dataset distribution of this 

fat depth dataset (𝑓𝑀) using the Kolmogorov-Smirnov Test (K-S Test) to 

determine the most appropriate statistical measures to be identified 

(Jakob, 2021; Specht, 2020; Lall, 2015). In applying the K-S Test it was 

identified that this dataset was not dissimilar enough to a normally 

distributed dataset of the same characteristics to reject the null 

hypothesis of being normally distributed. The conclusion that this dataset 

is normally distributed is further supported by the kurtosis and skewness 

statistics shown in the results of this section. Therefore, mean-derived 

statistical measures (mean, standard deviation and confidence interval) 

were used for this analysis.  
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For this application it is critical to identify the range of fat depth to 

ensure that this can be considered in the selection of a sensor. This is 

calculated using the unfiltered dataset due to the insignificant skew 

introduced by outliers in this dataset (see Equation 3.2).  

 

Equation 3.2: Range of Fat Depth 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹𝑎𝑡 𝐷𝑒𝑝𝑡ℎ, 𝑅(𝑓𝑀) = 𝑀𝑎𝑥(𝑓𝑀) − 𝑀𝑖𝑛(𝑓𝑀), 

 

where:  

𝑓𝑀  = the total dataset of fat depth measurements acquired 

using a ruler (manual measurements) 

 

The addition of a spatial analysis of the fat depth distribution across 

the untrimmed striploin dataset will enable location-specific insights to be 

identified. This will inform conclusions that optimise the sensing mesh and 

cut path generation of an automated system. As such, the following node 

location and the coordinate system will be employed to enable a spatial 

description of each node as a unit volume (see Figure 3-28 & Figure 

3-29). 
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Figure 3-28: Unit volume for each measurement node illustrated on a RHS Striploin.  
Note: 1R had 8 x 9 & 2R had 9 x 9 node mesh (faces/columns X points/rows). 

 

 

Figure 3-29: Unit volume for each measurement node illustrated on a LHS Striploin.  
Note: 3L had 8 x 7 & 4L had 8 x 8 node mesh (faces/columns X points/rows). 

 

The striploin fat depth measurements for each node would be 

averaged across each type, RHS (1R & 2R), LHS (3L & 4L) and in entirety 

(1R, 2R, 3L, 4L), according to each node position (i, j). In the case 

whereby there are no measurement acquired from a striploin at a 

particular node (due to differing node meshes) the node was not 
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considered in the calculation of average fat depth. This will be calculated 

as shown in Equation 3.3. 

 

Equation 3.3: Calculations for average fat depth at each node (LHS, RHS & Combined) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑡 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 (𝑅𝐻𝑆 𝑆𝑡𝑟𝑖𝑝𝑙𝑜𝑖𝑛 𝐷𝑎𝑡𝑎𝑠𝑒𝑡),

𝐹𝑅𝐻𝑆𝑖,𝑗
̅̅ ̅̅ ̅̅ ̅̅ = ∑ ∑

𝐹1R𝑖,𝑗
 + 𝐹2R𝑖,𝑗

 

𝑛𝑖,𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 , 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑡 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 (𝐿𝐻𝑆 𝑆𝑡𝑟𝑖𝑝𝑙𝑜𝑖𝑛 𝐷𝑎𝑡𝑎𝑠𝑒𝑡),

𝐹𝐿𝐻𝑆𝑖,𝑗
̅̅ ̅̅ ̅̅ ̅̅ = ∑ ∑

𝐹3𝐿𝑖,𝑗
 + 𝐹4𝐿𝑖,𝑗

 

𝑛𝑖,𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 , 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑡 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑡𝑟𝑖𝑝𝑙𝑜𝑖𝑛 𝐷𝑎𝑡𝑎𝑠𝑒𝑡),

𝐹𝐶𝑖,𝑗
̅̅ ̅̅ ̅ = ∑ ∑

𝐹1R𝑖,𝑗
 + 𝐹2R𝑖,𝑗

+ 𝐹3𝐿𝑖,𝑗
 + 𝐹4𝐿𝑖,𝑗

 

𝑛𝑖,𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 , 

 

where:  

𝐹1R𝑖,𝑗
, 𝐹2R𝑖,𝑗

, 𝐹3L𝑖,𝑗
, 𝐹4𝐿𝑖,𝑗

  = the manual fat depth measurement 

matrices for each striploin (1R, 2R, 3L, 4L) with dimensions 

(n,m) 

𝑛𝑖,𝑗  = the number of measurements acquired for the striploin 

node (i,j) for each dataset (LHS, RHS, combined) 

 

Visualisations were developed to graphically evaluate the spatial 

relationship of fat depth across the striploin dataset fat depth 

measurements. The number of nodes were equal to or less than the fat 

specification (12 mm), as well as the respective distribution of fat 

throughout the striploin considering measures of mean-derived 

distribution measures. This will inform automation optimisation through 

defining the location of nodes that are most likely to not require sensing, 

or trimming, and the capability of estimating fat depth based upon spatial 

location of the node within the primal. 
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Evaluating the gradient of the change in fat depth across the 

striploin will provide insight into the mechanism of sensing and trimming 

for a production system. This would include considerations such as: the 

number, and location of, nodes (optimised for less nodes that are more 

descriptive to the fat profile) and the most appropriate trimming 

orientation (the gradient of fat depth introduces complexity within 

actuation and fixation). The nodes within the combined average fat depth 

matrix (𝐹𝐶𝑖,𝑗
̅̅ ̅̅ ̅) that is less than the fat specification (12 mm) will be 

overridden as 12 mm to then calculate the gradient of the trimming blade 

for automated trimming of this dataset (as there is no need to trim values 

of fat depth less than the fat specification of 12 mm). This will be denoted 

by a trimming cut path dataset, 𝑇𝐶𝑖,𝑗
, which was calculated by applying the 

filter as denoted in Equation 3.4.  

   

Equation 3.4: Filtering of combined average fat depth dataset (𝐹𝐶𝑖,𝑗
̅̅ ̅̅ ̅) for nodes with <12 

mm fat thickness to create the trimming cut path dataset (𝑇𝐶𝑖,𝑗
). 

[𝐹𝐶𝑖,𝑗
̅̅ ̅̅ ̅ > 12] =  {

1        𝑇𝐶𝑖,𝑗
=  𝐹𝐶𝑖,𝑗

̅̅ ̅̅ ̅

0        𝑇𝐶𝑖,𝑗
= 12    

} 

  

The forward gradient of fat thickness with respect to both width and 

length travelling out from the sensing mesh origin can be calculated using 

Equation 3.5. 

 

Equation 3.5: Forward Gradient of the trimming cut path dataset (𝑇𝐶𝑖,𝑗
). 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑖𝑚 𝐶𝑢𝑡 𝑃𝑎𝑡ℎ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡, ∇𝑇𝐶 =
𝜕𝑇𝐶

𝜕𝑥
𝑖̂ +

𝜕𝑇𝐶

𝜕𝑦
𝑗̂ , 

 

where:  

𝑇𝐶  = the trimming cut path position represented as a matrix 

of coordinates 
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The gradient was calculated between nodes in x and y directions 

independently for comparison, where ‘x’ is considered to be along the 

length of the striploin and ‘y’ is considered to be along the width 

(trimming from medial to lateral nodes). The forward gradient along the 

striploin length and width is illustrated in red and blue respectively in 

Figure 3-30. 

 

 

Figure 3-30: An illustration of gradient vectors calculated from average fat depth at each node of 

striploin datasets developed using a RHS striploin image. 

 

The scalar gradients of the trim cut path for each direction, 

individually, can be expressed formulaically (see Equation 3.6). 

 

Equation 3.6: Scalar Forward Gradient of the trimming cut path dataset (𝑇𝐶𝑖,𝑗
). 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑇𝑟𝑖𝑚 𝐶𝑢𝑡 𝑃𝑎𝑡ℎ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝐶𝑥
́ =

𝜕𝑇𝐶

𝜕𝑥
= ∑

𝑇𝐶𝑖+1
− 𝑇𝐶𝑖

∆𝑥

𝑛−1

𝑖=1

 , 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑇𝑟𝑖𝑚 𝐶𝑢𝑡 𝑃𝑎𝑡ℎ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑖𝑛 𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝐶𝑦
́ =

𝜕𝑇𝐶

𝜕𝑦
= ∑

𝑇𝐶𝑗+1
− 𝑇𝐶𝑗

∆𝑦
 

𝑚−1

𝑗=1

, 
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where:  

𝑇𝐶𝑖,𝑗
  = the trimming cut path position at the particular node 

(i,j) 

∆𝑥  = the average node spacings in the x direction (50 mm)  

∆𝑦  = the average node spacings in the y direction (25 mm)  

 

To practically consider the effect of fat thickness gradient in each 

direction (𝑇𝐶𝑥
́  , 𝑇𝐶𝑦

́ ), the gradient matrices were evaluated for maximum 

absolute gradient, maximum positive gradient and average absolute 

gradient. This is calculated, for both ‘x’ and ‘y’ components of 𝑇𝐶́, to 

compare, and provide insight towards, the trimming orientation of beef 

striploin. In practicality, difficulties arise in particular trimming scenarios 

as identified in previous trials delivered upon with industry 

(Khodabandehloo, 2019), such as: 

  

A) a large change in blade/trimming tool position (gradient): due to 

the potential of ‘scalloping’ and disfiguring the presentation of the 

striploin surface, 

B) a large, upward of position (positive gradient): due to the potential 

of the blade lifting the striploin upon rapidly changing orientation 

within the fat, 

C) the average change in position of the trimming tool: due to the 

additional programming complexities and the movement time of the 

robot. 

 

3.4.3 Results 

The analysis of the fat depth measurements using reference 

measurements was conducted for all measured nodes (n = 272) with 

additional tables and figures included in Appendix B: Dataset for Manual 

Fat Depth Measurements. The results of the K-S test for normality are 

presented in Table 3-10. These results indicate that there is a non-
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significant difference between this unfiltered dataset and the equivalent 

normal distribution dataset (D(272) = 0.062, p = 0.243), and so the 

dataset was determined to be normally distributed. 

 

Table 3-10: K-S Test results for manual fat depth measurements generated using an 
online K-S Test statistics tool (Statistics Kingdom, 2022) 

 

 

Unfiltered and outlier-filtered (+- 3SD from the mean) datasets 

were statistically evaluated to evaluate the effect of these outliers to the 

manual measurement dataset. These datasets are seen to be similar as 

shown in Table 3-11. 
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Table 3-11: Statistical summary of manual fat depth measurements (n = 272) 

Fat Depth of Striploins (n = 272) for Manual Dataset 

Statistical Measures Unfiltered 
Dataset 

Filtered Dataset 
(3SD) 

Minimum Fat Depth (Q0) 0 mm 0 mm 

25th percentile of Fat Depth (Q1) 11.0 mm 11.0 mm 

Median of Fat Depth (Q2) 15.5 mm 15.0 mm 

Mean of Fat Depth 16.0 mm 15.7 mm 

75th percentile of Fat Depth (Q3) 21.0 mm 21.0 mm 

Maximum Fat Depth (Q4) 44.0 mm 38.5 mm 

Interquartile Range (IQR) 10.0 mm 10.0 mm 

Standard Deviation (SD) 7.9 mm 6.8 mm 

Range (Max - Min) 44.0 mm 38.5 mm 

Lower Outlier Boundary (3SD)  -7.6 mm  -4.8 mm 

Upper Outlier Boundary (3SD)  39.5 mm  36.1 mm 

 

Three outliers (3SD) were identified within the unfiltered dataset (40 

mm, 40.5 mm and 44 mm); though the slightly positive skewed distribution 

(right tailed) was not particularly created from these outliers. Instead, the 

skewness of this dataset was primarily due to the significant number of 

measurements below the dataset mean. The unfiltered dataset was 

concluded to be representative of the fat depth measurements and therefore 

used for further analysis. The distribution of this dataset is illustrated in 

Figure 3-31 & Figure 3-32.  
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Figure 3-31: Histogram plot for the fat depth across measurement nodes. 

  

 

Figure 3-32: Distribution plot for the fat depth across measurement nodes. 

 

The histogram and distribution of the fat depth measurements 

(manual measurement) reflects a normally distributed dataset and 

highlights the significant distribution of measurements being centrally 

distributed at the mean (16 mm). This analysis quantifies the 

characteristic fat depth of the striploins that are to be presented for fat 

Reference Point (2SD): …Reference Point (-2SD): …

Reference Point 
(Mean): , 16.00 , 

0.051

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-10 -5 0 5 10 15 20 25 30 35 40

P
ro

b
ab

ili
ty

Fat Depth (mm)

Fat Depth Distribution (Manual Measurements) 



 

132 

trimming. For a 95% confidence interval, the subcutaneous fat depth of 0 

– 32 mm can be expected for an untrimmed striploin with the maximum 

depth being 44 mm. This is an important consideration for defining the 

range of a suitable sensor to measure fat depth of untrimmed striploin 

primals. 

 

The cumulative histogram illustrated in Figure 3-33 highlights that 

approximately 45% of all nodes measured for this analysis have less than 

12 mm of subcutaneous fat depth. If the trimming threshold was 

increased to 17 mm (since trimming at a depth of only 5 mm could be 

difficult for a slicer or robot) then the number of nodes required to be 

trimmed would be further reduced to 28% of those surveyed.  

 

 

Figure 3-33: Nodes requiring trimming for the fat trim specification of 12 mm. 

  

The spatial analysis the average fat depth for untrimmed striploin 

types, LHS & RHS, is illustrated separately (see Figure 3-34). These 

figures illustrate the locations of nodes that have 12 mm of less fat depth 

(coloured red) and hence do not require trimming or sensing. Note: The 

LHS striploin is vertically flipped to align to anatomical planes (caudal-

cranial, lateral-medial) of the RHS to visualise spatial patterns more easily 
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Figure 3-34: RHS & LHS striploin datasets highlighting unit volumes with 12 mm or less fat depth 

(highlighted red).. 

 

By combining all corresponding nodes of the total striploin dataset 

and mapping averaging fat thicknesses (e.g. average fat thickness for 

node i,j for all LHS and RHS striploins) this spatial fat distribution pattern 

is further emphasised (see Figure 3-35). The pattern illustrates that 
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measurement nodes within 50-75 mm of the striploin spine edge (both 

LHS and RHS) will typically not require trimming or sensing. This pattern 

illustrates the exception of a fat deposit approximately found 50 mm from 

the cranial face of the striploin. 

 

 

Figure 3-35: Combined striploin dataset highlighting unit volumes with 12 mm or less fat depth 
(highlighted red) illustrated on a RHS striploin primal. 

 

For each of these datasets (LHS, RHS and combined) the fat depth 

distribution dataset (normally distributed) can be spatially observed 

considering their respective mean and standard deviation (see Table 

3-12).  
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Table 3-12: Statistical summary of fat depth measurements for LHS, RHS and Combined 
Striploin Datasets 

 

 

These datasets are illustrated with the average fat depth highlighted 

red for unit volumes with less than or equal to their average and the 

atypically large average fat depths more than 1 standard deviation above 

the mean (the largest 32%) being highlighted green (see Figure 3-36 & 

Figure 3-37). These figures illustrate the large deviations of fat depth 

across the striploin. The LHS striploin in Figure 3-36 is vertically flipped to 

align to anatomical planes (caudal-cranial, lateral-medial) of the RHS to 

visualise spatial patterns more easily. 
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Figure 3-36: RHS (top) & LHS (bottom) striploin datasets highlighting large deviations of fat depth 
across the striploin.  
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Figure 3-37: Combined (RHS & LHS) striploin datasets highlighting large deviations of fat depth 
across the striploin. 

  

The forward gradient across the typical striploin using the cut path 

for the average fat depth of the combined striploin dataset is shown in 

Figure 3-38 and Figure 3-39. A summary of the gradient measures of 

each direction of cutting is shown in Table 3-13 which identifies significant 

gradient statistics for trimming along the striploin length (X) and width 

(Y). These gradient measures differ significantly for trimming cut paths 

along the length and width of the striploin. For trimming across the length 

(X direction) of the striploin it would be approximately half of the 

gradient, both on average and as a maximum, in comparison to trimming 

across the cross-section of the striploin. 
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Figure 3-38: Forward gradient of the tool cut path moving along the length of the striploin 
calculated with combined average fat thickness dataset. 

 

Figure 3-39: Forward gradient of the tool cut path moving along the width of the striploin 
calculated with combined average fat thickness dataset. 
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Table 3-13: Summary of Gradient Measures for Striploin Dataset 

 

 

 

3.4.4 Discussion 

The findings within the analyses presented on the subcutaneous fat 

distribution of beef striploins highlight several insights for informing the 

automation of fat trimming beef striploin.  

 

The striploin primal's length, width, height, and weight show 

considerable variability, with the width and weight exhibiting the most 

variability. This variability is largely due to human error in the 

approximation of cutting lines and the curvature of the cranial/rib face. 

This finding supports referencing the node mesh from the spine edge and 

the caudal cross-section to define the sensing mesh for the remainder of 

the research and is recommended in future work. This will provide a more 

accurate reference between the sensing nodes with respect to locations 

on the striploin and therefore enable node-by-node spatial relationships to 

be comparable in future work.  

 

The fat depth measurements, conducted for all measured nodes (n 

= 272), were identified to be normally distributed (at a 95% confidence 

level) without major outliers skewing the characteristics of the dataset. 

evaluated for normality using the K-S test at a 95% confidence level. This 

suggests that statistical analyses that derive from the mean may be 

adequate for characterising the fat distribution of a striploin by mean-

derived statistics for comparative evaluations. This is useful for the 
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application of developing fat depth models based upon typical fat depth 

characteristics. For example, perhaps interpolation by the mean may be 

used for developing an automated system for use in a different processing 

plant if the means can be compared. Additionally, this analysis has 

highlighted the typical range of fat depths that a sensing system will need 

to measure to. The mean fat depth was found to be 16 mm, with a 95% 

confidence interval indicating that the majority of measurements will be 

at fat depths between 0 – 32 mm. The deepest measured fat depth in this 

dataset (n = 272) was identified to be 44 mm. In contrast, literature 

suggests that the fat depth of an untrimmed beef striploin is 2 mm - 75 

mm though this investigation was conducted at a single processing plant 

which differs from the processing plant consulted for this thesis 

(Khodabandehloo, 2018). To ensure that the maximum range is designed 

for, the fat depth range for untrimmed beef striploin will be considered 0 

– 75 mm. This range is an important consideration in Chapter 5 and 6 for 

defining the depth penetration capabilities of a suitable ultrasound sensor 

to measure fat depth of untrimmed striploin primals. 

 

The analysis of fat depth characteristics revealed insights useful for 

the development of an automated fat trimming system. Overall, it was 

found that 45% of nodes are typically less than 12 mm in fat thickness 

with an average fat depth of 16 mm (72% of nodes). Such findings 

provide insight into the possibility of determining erroneous values that 

can occur through sensor malfunctions and therefore prevent instability in 

the control system in generating cut paths.  

 

The spatial patterns presented with reference to the anatomical 

location on the striploin provide insights towards the optimisation of the 

sensing and trimming node mesh and the cycle time of an automated 

system. The key anatomical patterns identified for striploin fat thickness 

datasets (shown in Figures 3-38 & 39) that inform practical optimisation 

strategies are provided below:  
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- Typically, nodes that were within 50 mm from the spine edge 

of the striploin exhibited a fat thickness of less than 12 mm. 

- As such, 22.2% of the node mesh may be omitted from the 

sensor node mesh. With generalised presumption that 4 mm 

error is unnoticeable the nodes within 75 mm from the spine 

edge can be omitted (33.3% of nodes).  

- A region of significant fat depth significantly higher than the 

mean of the distribution located at 50 – 200 mm from the 

caudal face and from past 75 mm from the spine edge to the 

flank edge. This area of interest travels from the flank edge 

into the striploin along a 45-degree cross-section between the 

caudal face and flank edge. An optimisation strategy would be 

to reduce the node spacing within this region (more nodes per 

area) and increase the spacing in other areas of the striploin 

that has a more uniform fat thickness distribution. This would 

enable the sensor node measure to better fit the striploin fat 

profile without increasing the number of nodes and extending 

the cycle time of the sensing routine. 

- The striploin tail has a significantly higher distribution of fat 

thickness that typically extends 50 mm from the flank edge. 

This fat thickness is consistent across the entire length except 

for the centre and the cranial face which spikes with large fat 

deposits. An optimisation strategy would be to reduce the 

node spacing in the centre to capture the fat profile in more 

resolution at the deep fat deposit and perhaps use a camera 

to measure fat thickness on the cranial face of the striploin. 

This would enable the sensor node measure to better fit the 

striploin fat profile at the area of large fat deposits without 

increasing the number of nodes and extending the cycle time 

of the sensing routine. 
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An even more substantial optimisation could be achieved if the fat 

thickness at the anatomical location of these nodes could be estimated 

without as many or any sensing nodes at all based on a heuristic model or 

estimate. The normally distributed fat depth dataset suggests that simple 

mean-derived heuristics may be employed to estimate fat depth but 

further work with a significantly large dataset is required to conclude on 

this hypothesis.  

 

The gradient measures, which differ significantly for trimming cut 

paths along the length and width of the striploin, clearly indicate that the 

least complex orientation of trimming is along the X axis (lengthwise). 

The average gradient changes mean that a more complex cut path is 

required in the widthwise direction. The maximum gradient, which is twice 

as complex when travelling across the faces, poses challenges in robotics 

due to the potential of lifting of the primal (prone to occurring with steep 

positive gradients) or the inability to manipulate the tool within the meat 

without deviating from the generated cut path through deforming the 

striploin. As such, with the findings presented (see Table 3-13), it was 

recommended that trimming lengthwise be advantageous for 

considerations of the tool cut path gradient. This would further ensure 

that the automated trimming system is capable to perform without the 

limitation of the cutting tool being dextrous enough to cut into sudden, 

deep pockets of subcutaneous fat.  

 

3.5 Conclusion 

The research conducted in this chapter has provided significant insights 

into the key parameters and characteristics that need to be considered for 

developing an automated fat trimming system for beef striploins:  

- The physical characteristics (dimensions, weight, shape, fat 

cover), and variability of these dimensions, for a typical 

striploin presented to Slicers through the processes 

implemented by the collaborating processor. 
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- The processing constraints (time, space) to be considered for 

the process of fat trimming beef striploin. 

- The range and spatial distribution of subcutaneous fat tissues 

across beef striploins to be considered for defining the sensing 

node mesh and trimming cut path of an automated system. 

 

The striploin’s dimensions and weight ranges and variability inform the 

definition of the work volume and payload requirements of an automated 

system. This processing cut path variability that occurs largely due to 

human error in the boning process causing curvature of the cranial/rib 

face and variation of the flank edge identifies the caudal/rump face and 

the spine edge being most consistently cut. This finding supports 

referencing the node mesh from the spine edge and the caudal cross-

section to define the sensing mesh for the remainder of the research and 

is recommended in future work. This will provide a more accurate 

reference between the sensing nodes with respect to locations on the 

striploin and therefore enable spatial relationships to be implemented to 

optimise the sensing node mesh and robotic cut path development.  

 

The condition of the fat cover also shows variability, with instances of 

fat cover damage observed in some striploins. However, the expected 

probability for instances of fat tears affecting measurements for a fat 

trimming system was calculated to be only 10%, which was considered 

insignificant to the sensing node mesh. As a result, for this study the 

subcutaneous fat surface will still be considered for ultrasound sensing in 

contrast to the recommendation from Khodabandehloo (2018). 

 

The time-motion analysis identified an average processing time of 27 

seconds for the fat trimming element of the Slicers’ trimming tasks, with 

a 95% confidence interval for a processing time range of 12 – 42 

seconds. Further, only 2 units could be reasonably installed for fat 

trimming due to the limited number of fat trimming stations available, all 
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with the approximate footprint of 1x1.5m. These constraints further 

inform that the total cycle time (sensing and trimming) of a feasible 

automated system will need to be between one to half of the processing 

line speed. This timing provides a guideline for the response time that an 

automated system should aim for when completing automated fat 

trimming operation. With the presumption of operating at the same speed 

as a human operator, this constraint defines the cycle time to 

approximately 27 – 54 seconds per striploin. This provides an estimate for 

which to aim towards for both sensing and trimming to be completed 

within and gives an appropriate benchmark for determining response time 

of a suitable sensor (see Chapter 4) and an appropriate number of nodes 

in the sensing mesh of a feasible automated system. 

 

Due to the requirement to apply ‘bridging’ and ‘planing’ techniques to 

suitably trim striploin to specification a path-planning sensing approach is 

required. This highlights the importance of using a sensing node mesh to 

define a cut path as opposed to simply generating a cut depth at each 

node independently. This highlights the importance of optimising the 

sensor node mesh to balance the need of completing the sensing cycle as 

soon as possible (dependent upon the sensor response time and the 

number of nodes in the mesh) whilst representing the fat profile as 

precisely as possible to provide the best capability to trim to a maximum 

fat specification of 12 mm on a continuous path.  

 

The analysis of the subcutaneous fat depth of beef striploin has 

revealed several key characteristics that have significant implications for 

the development of a suitable sensing system and an automated system 

for uniform fat trimming. The fat depth measurements were identified to 

be normally distributed, with a mean fat depth of 16 mm and a 95% 

confidence interval indicating that the majority of measurements will be 

at fat depths between 0 – 32 mm. The deepest measured fat depth was 
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identified to be 44 mm – hence this will be considered for the penetration 

depth range of a suitable ultrasound sensor.  

 

With further insights from applying sensing to acquire fat depth 

measurements, and further analysis of fat distribution, an optimisation of 

node locations are likely to contribute towards automation optimisation. A 

probabilistic approach, based upon spatial relationships of fat depth 

distribution across the striploin would enable many nodes to be omitted 

from the sensing and trimming processes of the automated system. The 

normality of fat distribution, and the spatial patterns observed suggest 

that through further analysis spatial modelling may assist or enhance fat 

depth estimations alongside, or in replacement, of sensing techniques as 

well as the capability to apply generalised cut path and fat depth 

learnings between processors through a comparison of mean fat depth of 

‘typical’ striploins.  

 

The gradient measures indicate that the least complex orientation of 

trimming is along the X axis (lengthwise). As such it is suggested that the 

trimming orientation, and therefore if sensing is to occur just in front of 

the trimming, the sensing process should also be measured lengthwise.  

 

In conclusion, the findings of this chapter provide a comprehensive 

understanding of the key parameters and characteristics that need to be 

considered for developing an automated fat trimming system. The 

insights gained from this study contribute towards the broader objective 

of developing an automated system capable of trimming excess fat on 

beef striploins, informed by a thorough analysis of fat characteristics and 

industry standards. This chapter contributes towards the following chapter 

to describe the parameters to be considered within a sensor performance 

metric to define feasibly ultrasonic sensors for development within 

sensing systems presented in Chapter 5 and 6. 
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CHAPTER 4: SENSOR PERFORMANCE METRICS 

USING CT BENCHMARKING 

 

This chapter outlines the development undertaken to enable 

computed-tomography technology to be used for the application of 

measuring the fat depth of a beef striploin primal. The output of the CT 

analysis is the estimation of the ‘gold standard’ for which more practical 

sensors may be evaluated against. In addition to providing benchmarking, 

CT imaging measurements were utilised to evaluate the fat depth of beef 

striploin primals prior to trimming to inform the operating range required 

of a sensor for this application. 

 

The output of this chapter is a weighted performance evaluation 

matrix to define the minimum feasible requirements and best possible 

performance for a sensing system capable for integration within an 

automated beef striploin fat trimming system. This performance 

evaluation matrix identifies the key performance metrics deemed most 

appropriate to the application of beef striploin fat trimming is presented 

as well as their significance to evaluating an appropriate sensing system 

(denoted by a metric weighting).  

 

4.1 Introduction 

To benchmark these performance metrics a sensing system was 

developed using CT imaging that was capable of acquiring the 

measurements that could inform automated trimming. Aligned to 

literature, this investigation enables the approximation of what is possible 

using the ‘gold standard’ of medical-grade sensing and, in conjunction 

with considering the context of this application, provides insight into how 

a suitable sensing system may perform with respect to these metrics 

(Merriam, 2005; Cook, Shirazi & Gardner, 2016; Cook & Anderson, 2017, 

Morton, 2020; Four Dimensional Digital Imaging Inc, 2021). This 
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evaluation will also define the significance of each of these metrics to 

inform a suitable sensing system will be investigated.  

 

4.1.1 Performance Metrics   

Within literature it is common for a sensor evaluation framework to 

be applied in order to evaluate the performance of a sensor for a 

particular application (Coravos et al., 2020; Kuorilehto, Hännikäinen & 

Hämäläinen, 2008). To design such a framework, the key metrics that are 

of high importance for the particular application, and context the sensor is 

used, needs to be identified (Border, 2016). Once these performance 

metrics are defined weightings can be associated with these to ensure 

that each metric is considered proportional to their importance (Zhao, 

Song & Xin, 2011; Rieger & Majchrzak, 2016).  

 

The selection and prioritisation of performance metrics for sensor 

evaluation are highly application-specific. To effectively assess sensor 

performance in the context of automated beef striploin fat trimming, it is 

crucial to consider the unique requirements of this application (Niesten et 

al., 2019; Brooke, 2016). The relevant performance metrics will be 

identified, substantiated by literature, and then used to establish a 

tailored evaluation framework for this specific application (Drury et al., 

2022; Song et al., 2022). 

 

The tolerances and numerical targets of the metrics for an 

evaluation framework must be defined within the context of the specific 

application  The flexible and non-homogenous nature of meat products 

means that ‘true’ reference measurements are difficult to define. As such, 

to better define these performance metrics a ‘gold standard’ sensing 

system is appropriate to provide a measurement of the best available 

performance per consensus as a reference (Versi, 1992; Goldsack, 2020). 

This approach is typically used within literature to define the performance 

metrics, and thus the performance of sensors, in comparison to the 
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sensor that has consensus to provide the best performance (Godfrey et 

al., 2015; Müller et al., 2017). For the application of sensing tissue 

interfaces within red meat processing the ‘gold standard’ sensing 

technology is considered to be medical grade CT imaging (Meat & 

Livestock Australia, 2022).  

 

4.1.2 Chapter Aims 

The aim of this chapter was investigated through the two research 

questions posed to focus this chapter to address the various 

considerations within the objective. 

 

1) What is the ‘gold standard’ performance for sensing fat depth 

using CT imaging according to the performance metrics considered 

important for developing a fat trimming automated system? 

 

2) Considering performance metrics, context-derived weightings, 

and ‘gold standard’ benchmarks, how can a sensor performance 

evaluation matrix be created for the context of automated fat trimming?  

 

4.2 Experimental Setup  

This section provides the data collection and data analysis methods 

implemented to benchmark a medical-grade CT imaging system. This 

sub-section includes the methods for CT imaging of striploins, the 

registration of nodes between CT and manual measurements, and the 

calculation of error between the CT and manual measurements.  

 

Experiment Samples: The same samples (Striploin 1R, 2R, 3L & 

4L) were used as those selected for the analyses presented within 

Chapter 3. These 4 striploins deemed to be ‘typical’ as their dimensions 

and characteristics were within 2SD of the survey conducted in Chapter 3 

(see Table 4-1). 
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Table 4-1: Comparison of striploin dataset with ‘typical’ striploin characteristics. 

 

 

Node Marking: The nodes were marked on the plastic of the 

striploin fat surface as shown in Chapter 3 before CT imaging (see Figure 

3-21).  

 

Fat Depth Measurements using CT Imaging: A Siemens Somato 

GoUp CT machine was used to acquire the reference measurements for 

this experiment. Striploins were stored in a refrigerated trailer before and 

after CT scanning and were not unwrapped or cooled during the scanning 

process which took approximately 10 minutes including preparation. A 

simple rig was used to allow the striploins to lay flat on a board to prevent 

the deformation of this fat profile during scanning. The striploins were 

aligned using the laser sight of the CT to ensure that the cross-sectional 

images of the CT were close-to perpendicular (see Figure 4-1). This plane 

alignment simplified the visualisation of the fat profile throughout the 

striploin and assist in providing a means of calibrating images.  
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Figure 4-1: The laser lines of the CT imaging system were used to align to the front edge of the 
striploin (rump / cranial face) to align nodes to appear on similar cross-sectional images. 

 

In preliminary CT imaging trials it was found that this alignment 

method was not accurate enough to use to determine the position of 

nodes within CT images without additional aids. Medical-grade CT 

markers which consisted of 2.1 mm ball bearings embedded within 

adhesive tags were attached to the nodes of the striploin prior to scanning 

(see Figure 4-2). In doing so, the position of these nodes was able to be 

visualised in 3D space within CT images (see Figure 4-3).  
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Figure 4-2: The adhesive CT markers were attached on the plastic at the locations of the 

prescribed measurement nodes. 

 

 

Figure 4-3: Screenshot of CT images illustrating CT markers highlighting measurement 
node locations shown on Striploin 1. 
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Although the CT markers provided referencing positions (nodes) to 

be identified these caused image distortion commonly referred to as 

artifacting. Thes CT markers affected image clarity and the ability to 

clearly identify the fat surface to measure from (see Figure 4-4). To avoid 

artifacting issues a nearby image was chosen to measure from. As each 

image is a 0.6 mm slice it was deemed that offsetting a few images would 

be an acceptable compromise. In this analysis the maximum number of 

images offset to avoid artifacting was 4, and hence a maximum offset of 

2.4 mm from each measurement node (see Figure 4-5). 

 

 

Figure 4-4: CT markers illuminating the position of measurement nodes though causing artifacting 

within CT images. 

 

 

Figure 4-5: An example of offsetting by 2 images (e.g., from Image #87 to #85) to remove 

artifacting in an image for Striploin 1. 
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The collection of images within the CT scan of each striploin were 

uploaded to the Siemens cloud repository (called Asteris Omni). The pixel 

per mm calibration of these images was conducted by correlating an 

image and physical measurement. The known width of the plastic board 

the striploin was scanned on was used. Measurements were made using 

the ‘ruler’ software tool at the locations of the visualised measurement 

nodes and tabulated in Microsoft Excel (see Figure 4-6). 

 

 

Figure 4-6: An illustration of the fat thickness measurements acquired from CT images acquired 
for rows (1 - 9) on face 1 of striploin 2R. 

 

Fat Depth Measurements using a Ruler: The process of 

acquiring fat thickness measurements through a manual process using a 

stainless-steel ruler is outlined in Chapter 3.  CT imaging was conducted 

prior to manual measurements whereby the striploin was sealed in plastic 

wrapping. After CT imaging each striploin was carefully unwrapped to 

ensure the accurate preservation of the node locations. When the CT 

markers were removed, at the same location (marked by the permanent 

marker on the plastic), a stainless-steel skewer was used to pierce the 

plastic slightly to mark the striploin surface (see Figure 4-7). This enabled 

the registration of points between the manual measurements and the 
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location of the CT markers in CT images by then using black, food-grade 

dye ink to mark these nodes for manual measurement. 

 

 

Figure 4-7: Method for registering nodes between CT imaging (using CT markers) and manual 
measurements. 

 

4.3 Experimental Analysis 

The assessment of CT imaging for beef striploin fat trimming 

focuses on identified performance metrics (accuracy, precision, 

reliability), excluding those metrics observable only upon implementation 

(operating range and response time). This benchmarking approach 

facilitates a standardised evaluation of CT imaging as a sensor, compared 

to manual measurements, and serves as a model for evaluating other 

sensing technologies. 

 

The following performance metrics for this application are proposed 

and defined from drawing on the literature (Lewis & Groth, 2022). 
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Accuracy & Precision: Accuracy is a performance metric that 

refers to how closely the sensor's measurements correspond to the true 

value of the quantity being measured, whilst precision refers to the 

consistency of the sensor's measurements over time. These performance 

metrics are typically considered most important for sensor evaluations 

across literature (De Ponte Müller, 2017). The system’s capability to trim 

and to leave a uniform fat thickness as outlined in the fat specification is 

dependent upon acquiring accurate measurements of fat depth along the 

striploin. The outcome of trimming to leave a uniform fat thickness of 12 

mm is required by industry, yet there is no acceptable error tolerance that 

has been identified within literature or standard industry practice (AUS-

MEAT Limited, 2005).  

 

Two methods of analysing the difference between reference and 

sensor datasets are commonly cited within literature (Tomazevic, Likar & 

Pernus 2004; Shcherbina et al., 2016). This may be through a statistical 

comparison between means of the 2 datasets (reference and sensor 

measurements), or else through the analysis of error (determining the 

corresponding error between values within these datasets). The latter 

analysis method best aligns with the aims of this thesis as it enables a 

more in-depth analysis of evaluating sensor biases and systematic 

differences as opposed to an evaluation predominantly focused upon 

dataset correlations and describes the sensing system output in a form 

more important for the overall system functionality (measurement error). 

Literature evaluating sensor performance with similar research aims to 

this investigation reflect the choice of this analysis method (Tomazevic, 

Likar & Pernus 2004; Shcherbina et al., 2016; Kollman et al., 2005; 

Fischer et al., 2021). This is further reflected in literature through 

research that highlights the pitfalls of evaluating correlations of datasets 

as an alternative to applying descriptive statistics on the differences 

between sensor and reference measurements (Kollman et al., 2005; 

Rodbard, 2014). This also ensures that the distinction is made that 
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despite CT imaging being the “gold standard” in fat depth measurement, 

it is not used to provide the reference measurements of which the final 

system is judged. In actuality, the reference values, and how specification 

is confirmed by the Quality Assurance (QA) process and the customer, is 

the manual method (using a stainless-steel ruler). As such, the better 

method for comparing all sensors for this application is through defining 

the error between the reference value (ruler) and the sensor (in this case, 

CT imaging). Therefore, this analysis will rely upon calculating the 

measurement error (𝐸𝑀−𝑆) between ruler (manual measurement) and CT 

fat depth measurements. This is expressed formulaically in a generalised 

notation to be used with all evaluated sensing technologies of CT (Chapter 

4), B-Mode ultrasound (Chapter 5) and A-Mode ultrasound (Chapter 6) 

and shown in Equation 4.1.  

 

Equation 4.1: Error between CT and manual fat depth measurements (CT – manual) 

𝐸𝑟𝑟𝑜𝑟, 𝐸𝑀−𝑆  =  𝑓𝑀 − 𝑓𝑆 

 

where:  

𝑓𝑀  = the fat thickness measurement acquired manually using 

a ruler (considered the reference measurement). 

𝑓𝑆  = the fat depth measurement acquired using the sensor to 

be evaluated (considered the estimated measurement) 

 

The inclusion of dataset outliers, and their significance to the 

distribution of the dataset, was considered and informed whether they 

should be filtered. If these were deemed to be considerably influencing 

the dataset, they were removed using the 1.5IQR filtering method, also 

known as Tukey’s Method (Hoaglin, Iglewicz & Tukey, 1986). In literature 

this statistical method is seen to be used as a means of outlier 

identification for non-gaussian data (normally distributed data) similar to 

the dataset presented in this chapter and those preceding (Durai & 

Shamili, 2022; Dash et al., 2023; Carling, 2000). The method for 



 

157 

identifying outliers between reference and observed measurement errors 

is used by Carling (2000). The following set of equations were used to 

identify and remove outliers from the error dataset across all statistical 

evaluations in this research (see Equation 4.2). 

 

Equation 4.2: Identifying outliers within the error dataset (E). 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ≤   𝑄1(𝐸) − 1.5 ∗ 𝐼𝑄𝑅(𝐸) 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ≥   𝑄3(𝐸) + 1.5 ∗ 𝐼𝑄𝑅(𝐸) 

 

where:  

𝑄1(𝐸)  = the first quartile (25th percentile) value of the error 

measurement dataset (𝐸𝑖) and considered the lower bound / 

minimum value of this trimmed dataset  

𝑄3(𝐸)  = the third quartile (75th percentile) value of the error 

measurement dataset (𝐸𝑖) and considered the upper bound / 

maximum value of this trimmed dataset  

𝐼𝑄𝑅(𝐸)  = the difference between the first (25th percentile) 

and the third quartile (75th percentile) values 

 

Whilst a number of statistical analyses were considered in order to 

gain an understanding of the error between CT and ruler measurements, 

only a few metrics were used to evaluate sensor performance in terms of 

accuracy and precision. As suggested in the literature, measurement error 

datasets typically do not follow a parametric or normal distribution and 

display the characteristic of homoscedasticity and hence this assumption 

is usually violated within statistical analysis methods (Kollman, 2005; 

Rodbard, 2014; Álvarez et al., 2019; Falbriard et al., 2018; Anderson, 

Moore & Cohn, 2000). As such, non-parametric statistical methods that 

account for non-normality, skewed distributions and heteroscedasticity 

(variance of residuals in a regression model isn't constant across all 

values of the independent variable) should typically be considered when 

expressing statistical measures of accuracy and precision. The literature 
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suggests the most representative, and easy-to-compare, statistical 

descriptors are median or median-derived (median difference, median 

absolute difference, average median error, etc.) as this is applicable for 

both unskewed and skewed datasets (Kollman, 2005; Nam, 2016; ). For 

this application, the polarity of error is a critical component of the analysis 

due to the significantly different consequences of error in the positive 

from the negative direction. This is similar to research conducted by 

Klonoff (2004), which supports describing positive and negative errors 

separately whereby there are differing consequences of an erroneous 

measurement based upon an underestimate or overestimate. Therefore, 

aligned with literature (Shcherbina et al., 2016; Falbriard et al., 2018) the 

evaluation of CT imaging, and all other sensor evaluation analyses, will 

provide median error as a measure of accuracy and interquartile range as 

a measure of precision. Therefore, the following statistical measures were 

used to describe sensors’ performance for accuracy and precision. For the 

evaluations conducted to benchmark the performance of CT, the error 

dataset relates to the difference between manual and CT measurements 

(𝐸𝑀−𝐶𝑇), though the equations presented below are generalised for the 

evaluation framework that will be applied to other sensors. As such these 

equations will be denoted as the error dataset (𝐸). 

 

Accuracy Metric Calculation: 

- Median Error (𝐸𝑀𝑒𝑑): is a measure of central tendency that 

describes the median of the difference between the reference 

measurement (ruler) and the sensor measurement. It is a useful 

measure of the performance of a prediction model when dealing 

with datasets that are skewed data or include outliers (see 

Equation 4.3).  

 

Equation 4.3: Statistical descriptor of the accuracy performance metric (median error). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 ≡  𝑀𝑒𝑑𝑖𝑎𝑛(𝐸) 
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Precision Metric Calculation: 

- Interquartile Range (𝐼𝑄𝑅(𝐸)): is a measure of spread or 

dispersion of a set of data and calculated as the difference 

between the upper quartile, Q3 (75th percentile) and the lower 

quartile, Q1 (25th percentile) of the dataset. It is a useful 

measure of the performance of a prediction model when dealing 

with datasets that are skewed data or include outliers (see 

Equation 4.4). 

 

Equation 4.4: Statistical descriptor of the precision performance metric (IQR of error). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 ≡  𝐼𝑄𝑅(𝐸) 

 

Reliability: Reliability refers to the ability of the sensor to produce 

valid measurements consistently over an extended period of time or 

operating conditions. In many cases, this becomes more important in 

spatial applications whereby missing data points introduce complexities 

for spatial modelling or measurement critical applications (De Ponte 

Müller, 2017). Reliability differs from metrics that describe error, such as 

precision and accuracy, and instead describes the likelihood of the sensor 

acquiring a complete set of measurements. According to Cai et al. (2018), 

this is commonly referred to in literature as data completeness 

(expressed as a “miss rate” probability). The chosen application of beef 

striploin fat trimming requires a spatial map to be generated for a cut 

path to be planned to use. The likelihood of acquiring a complete set of 

measurements is an important consideration for automating striploin fat 

trimming due to the necessity to trim with minimal time. The reliability of 

a sensor, overall or at particular locations, could inform an overall 

evaluation of a sensor and the location, or number of, sensing nodes and 

therefore is an important factor of consideration. 

 

With respect to reliability, data completeness is expressed as a miss 

rate probability for the sensor’s capability to acquire measurements for 
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the total nodes surveyed. The Miss Rate (PM) will provide a measure of 

reliability in terms of how likely it is that a node will not be measured by 

the sensor. This will provide a means of quantifying sensor-related 

failures whereby no measurement is acquired. Typically, this is defined as 

a value between 0 and 1 and can be expressed as an expected probability 

or percentage likelihood (Cai et al., 2018; Hodan et al., 2018; Zhang et 

al.,2021). This is expressed as a percentage in Equation 4.5).  

 

Equation 4.5: Statistical descriptor of the reliability performance metric (Miss Rate). 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 ≡  𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒,  𝑃𝑀 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒, 𝑃𝑀 =
𝑁𝑀

𝑁𝑇
∗ 100%, 𝑤ℎ𝑒𝑟𝑒 0% <  𝑃𝑀 < 100% 

 

where:  

𝑁𝑀  = the number of measurements “missed” measurements 

𝑁𝑇  = the total number of measurement nodes investigated 

 

Operating Range & Linearity: The operating range refers to the 

minimum and maximum values that the sensor can acquire 

measurements for. Literature typically suggests that the operating range, 

and the accuracy across the operating range, are key considerations in 

evaluating the performance of the sensor (De Ponte Müller, 2017; Lui et 

al., 2019; Islam & Mukhopadhyay, 2019). These considerations must be 

made in the context of the application for which the sensor will be applied 

within, beef striploin fat trimming.  The system’s capability to provide 

comprehensive fat depth information is dependent upon the operating 

range, and the accuracy across the operating range, of the sensor. As 

identified in Chapter 3, the maximum range of fat depth expected to 

measure will be considered to be the largest of the two. As such, the 

operating range of fat depth measurements is considered 75 mm.   
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Literature suggests that when evaluating the operating range of the 

sensor, the detecting range and the accuracy across the detecting range 

should be considered (De Ponte Müller, 2017). As such datasheets should 

be first consulted to ensure that the technical specifications of the sensor 

can detect for the range required by the application. For CT imaging there 

is significant research indicating that the depth of measurement is 

typically feasible for a human body (Lain, 2017; Fong, 2022). Though this 

is significantly larger than the fat thickness of beef striploin, this will be 

cross-examined within the statistical analysis presented within the results 

section. This will be by considering the following constraint to conclude on 

the feasibility of the sensor’s operating range for this application. 

Therefore, the sensor is deemed feasible if the technical datasheet 

indicates that its minimum and maximum measurement (operating range) 

surpasses that expected of the reference fat depth dataset. Through the 

evaluation presented in Chapter 3 the minimum and maximum fat depth 

expected for this application is 0 mm and 75 mm respectively. As such, 

the following equation shows the minimum requirements for any sensor 

to be deemed feasible for this application (see Equation 4.6).  

 

Equation 4.6: The operating range constraints of a feasible sensor. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑀𝑖𝑛 ≤   0 𝑚𝑚 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑀𝑎𝑥 ≥   75 𝑚𝑚 

 

Upon concluding upon a sensor’s capability to acquire 

measurements the linearity of these measurements can be evaluated. To 

evaluate the sensor linearity across the operating range a statistical, 

linear regression analysis of the fat depth measurement error was 

undertaken as per numerous literature papers (Liu et al., 2020; Liu et al., 

2019). This was calculated as the determination of coefficient value, 𝑅2, 

which is seen to be a statistical measure of linearity. As such, literature 

suggests evaluating the residual plot’s correlation to visualise 

homoscedasticity as well as statistically describe this with a linear 



 

162 

regression line (𝑅2). According to Lui (2019), this is calculated as shown 

in Equation 4.7. 

 

As a benchmark of linearity, CT imaging is concluded upon with the 

following measures:  

 

Equation 4.7: Statistical descriptor of the linearity performance metric (𝑅2) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 ≡  𝑅2 =  1 −  ∑
(𝑓𝑅𝑖

− 𝑓𝑆𝑖
)

(𝑓𝑆𝑖
− 𝑓𝑆̅ )

2

𝑛

𝑖=1

2

, 0 ≤ 𝑅2 ≤ 1 

 

where:  

𝑓𝑅𝑖
  = all values (𝑖) of the fat thickness dataset acquired using 

a ruler 

𝑓𝑆𝑖
  = all values (𝑖) of the fat thickness dataset acquired using 

the applied sensor 

𝑓𝑆̅  = the mean of the values (𝑖) of the fat thickness dataset 

acquired using the applied sensor 

 

Response Time: The response time performance metric refers to 

the time it takes for the sensor to acquire a measurement. Literature for 

systems required to respond or actuate quickly typically consider 

response time an important factor that determines sensor performance 

(De Ponte Müller, 2017). The line speed of the processing plant 

determines the time constraints of the fat trimming processing task, and 

hence the sensors and sensing strategies that are viable to be 

implemented at these speeds. This constraint defines the suitability of a 

sensor, and sensing strategy, and informs considerations such as: 

- Real-time vs non-real-time 

- direct (e.g., numerical values) vs indirect sensing (e.g., images 

to later ascertain measurements through further processing) 

- a small vs large number of nodes in the sensing mesh  
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As highlighted in previous analyses the typical time taken by 

personnel trimming fat from striploins is approximately 27 seconds on 

average (see Section 3.3). There are several integration contingencies 

that may be employed to adhere to this line speed (such as multiple 

parallel or in-series systems) depending on the magnitude of the 

response time. As such the response time will be considered an important 

performance metric in order to evaluate the suitability of a sensor and 

sensing strategy for this application.  

 

There are a number of processes that need to be considered in the 

estimation of the time required to acquire a fat depth measurement for a 

final system. As such an approximate estimate will be provided from the 

observations and conclusions made from the development of this system 

as an opinion of feasibility for the application of beef striploin fat 

trimming. Through the evaluation presented in Chapter 3 the average 

response time of the system was identified at an approximate average of 

27 seconds. As previously stated, a feasible time may be up to a number 

of magnitudes larger than this depending upon the yield improvement of 

the automated system. With the presumption that the trimming tool will 

trim slightly behind the sensor, and hence not add significant time to the 

cycle time of the system. It may be concluded that for a proposed 90 

second trimming cycle time (a multiple of ‘3’ longer than manual 

processing), the time allocated for sensing (considering some time for 

fixation/location of the striploin and trimming), the sensing portion of the 

automation may be 60 seconds. The following equation shows the 

minimum requirements for any sensor to be deemed feasible for this 

application (see Equation 4.8).  

 

Equation 4.8: The response time constraint of a feasible sensor. 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒, 𝑇𝑅  ≤   15 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
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4.4 Results 

Through evaluating the CT and ruler measurements of four 

striploins (two each of LHS and RHS) a total data set of 272 nodes were 

considered in this investigation (see additional figures and tables in 

Appendix C: Computed-Tomography Error Dataset Measurements. 

 

The error measurement dataset (𝐸) was calculated to create a 

means of evaluating the distribution of error between the ruler (𝑓𝑅) and 

CT (𝑓𝐶𝑇) fat thickness measurements. The comparison between the 

unfiltered and filtered error dataset is presented in Figure 4-8. 

 

 

Figure 4-8: Statistical Summary of error measurement datasets (unfiltered vs filtered). 

 

The key statistical measures are presented for the unfiltered 

dataset, and the filtered dataset (see Table 4-2). It should be noted that 

the filtered dataset was created from the unfiltered dataset by removing 
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all values identified as outliers using the 1.5IQR method presented in 

Equation 4.2. 

 

Table 4-2: Statistical summary of error dataset (E) between ruler and CT measurements (n = 272) 

Statistics 

Unfiltered 

Dataset 

Filtered 

Dataset 

Minimum of Error Dataset, 𝑄0(𝐸) -6.7 mm -3.5 mm 
25th percentile of Error Dataset, 𝑄1(𝐸) -0.1 mm 0.0 mm 

Median of Error Dataset, 𝑄2(𝐸) 1.2 mm 1.2 mm 

Mean of Error Dataset, (𝐸̅) 1.0 mm 1.0 mm 
75th percentile of Error Dataset, 𝑄3(𝐸) 2.4 mm 2.4 mm 

Maximum of Error Dataset, 𝑄4(𝐸) 7.1 mm 5.9 mm 

Interquartile Range of Error Dataset, 𝐼𝑄𝑅(𝐸) 2.5 mm 2.4 mm 

Standard Deviation of Error Dataset, 𝑆𝐷(𝐸) 2.1 mm 1.7 mm 

Range of Error Dataset, 𝑅𝑎𝑛𝑔𝑒(𝐸) 13.8 mm 9.4 mm 

Lower Outlier of Dataset, 𝑄1(𝐸) − 1.5𝐼𝑄𝑅(𝐸) -3.8 mm -3.6 mm 

Upper Outlier of Dataset, 𝑄3(𝐸) + 1.5𝐼𝑄𝑅(𝐸) 6.1 mm 5.9 mm 

 

Six lower and four upper bound outliers were identified in this dataset and 

removed for the creation of the filtered dataset: 

Lower Outliers (≤  −3.8 𝑚𝑚): -6.7, -6.6, -6.1, -4.9, -4.5, -3.9 

Upper Outliers (≥  +6.1 𝑚𝑚): 7.1, 6.9, 6.4, 6.2, 

 

With only a very slight reduction of IQR (precision) of 0.1 mm due 

to the impact of outliers causing the spread to be further towards 

negative errors (CT over-estimating fat measurements), the effect of 

outliers was deemed negligible and so the unfiltered dataset was 

concluded to be representative of the fat depth measurements and 

therefore used for further analysis. 

 

The error dataset was plotted on a histogram using bin widths of 1 

mm, with excess bins being used to group lower and upper bound outliers 

(see Figure 4-9). This error distribution is not normally distributed, and is 

negatively skewed, showing a bias for CT imaging to typically measure fat 

depth less than the ruler quite consistently. The largely distributed, 

central peak supports that there are no underlying subgroups trends.   
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Figure 4-9: Error distribution of unfiltered data showing a non-normal distribution. 

 

For this dataset the error of the CT imaging measurements 

compared to the manual measurements (𝐸) was calculated to be 1.0 mm 

and 1.2 mm for the average and median error respectively. This 

measurement error quantifies the combined discrepancies for the process 

of aligning nodes for CT and manual measurement comparisons. This 

statistic describes the imprecision of node alignment, the inaccuracies of 

human error including the precision tolerance of using a 0.5 mm 

resolution ruler, and the deformation of the striploin handling between CT 

imaging and manual measurements.  

 

As a benchmark of accuracy and precision, CT imaging is concluded 

upon with the following measures:  

 

Accuracy:  Median of Error, 𝑬𝑴𝑫𝑵    = +1.2 mm 

Precision:  Interquartile Range of Error, 𝑰𝑸𝑹(𝑬)  = 2.5 mm 
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Firstly, it should be noted that CT imaging was able to measure at 

any depth required within this analysis. For this subset of striploins, the 

minimum range and maximum ranges were found to be 0 mm and 44 

mm respectively. The measurement error across the range of 

measurements acquired is described in Figure 4-10.  

 

 

Figure 4-10: The Computed-Tomography (CT) vs actual (Ruler) measurement plot 

 

The closeness of the correlation of determination (𝑅2) value of this 

linear regression to ‘1’ indicates that spread of residual errors is narrow, 

and in general, the predicted and actual measurements are quite similar 

across the entire measurement error dataset. This is further reflected in 

the similarity of the outliers with other measurements within the dataset. 

A further analysis of heteroscedasticity is visualised in Figure 4-11 & 

Figure 4-12 which shows insignificant variation of error across the range 

of measurements (reference values). This analysis provides a conclusion 

upon the strong homoscedasticity error along the range of reference 

values of this dataset (𝐸).  
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Figure 4-11: Residual error plot of CT-Ruler dataset (in mm) 

 

 

Figure 4-12: Residual relative error plot of CT-Ruler dataset (%) 

 

As a benchmark of operating range, CT imaging is concluded upon 

with the following measures:  
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Range Requirements: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑀𝑖𝑛 ≤   0 𝑚𝑚, ∴  𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑀𝑖𝑛 ≤ 75 𝑚𝑚, ∴  𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

 

Linearity: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 ≡  𝑅2 = 0.93 

 

There was only one instance whereby a manual fat depth 

measurement could not be taken after a CT image was taken. This was 

due to deformation of the meat between the sensor and physical 

measurements and not a limitation of CT imaging technology. As such, it 

was considered that no ‘missed’ measurements occurred and therefore 

the miss rate (𝑃𝑀) for CT imaging was concluded to be 0%.   

 

As a benchmark of reliability, CT imaging is concluded upon with the 

following measures:  

 

Reliability: 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒, 𝑃𝑀   =
0

272
 ∗  100% =  0% 

 

The process of acquiring CT images of the striploins took 

approximately 10 minutes to perform though this included loading and 

precisely positioning the striploin in the CT (due to localisation 

requirements), running initialisation scans to identify the correct scanning 

parameters for the striploin (no pre-sets were made). The procedure was 

restricted to have all images uploaded to the cloud which took, on 

average, 5 - 7 days to complete and provide access to CT images.  
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4.5 Discussion 

This section applies the results towards the specification of the 

weightings of, and the thresholds for ranking performance within, metrics 

to evaluate the performance of a sensor for the application of uniform fat 

trimming of beef striploin. 

 

Accuracy & Precision: Acquiring accurate and precise fat depth 

measurements is crucial to enable the capability of the system to produce 

a trimmed striploin to fat specification. Though both performance metrics 

are important, there are several factors to be considered for deducing the 

weighting of these performance metrics. 

 

A highly accurate but low precision sensor will provide a trimmed 

striploin that is close to 12 mm specification on average yet with low 

controllability. A highly precise yet low accuracy sensor will provide a 

trimmed striploin that is not close to 12 mm specification on average yet 

with high controllability. In a practical sense the processing plants, who 

would be the interested parties of such a system, have financial incentive 

to desire a controllable output moreso than an accurate output (within 

reason). The controllability of such a system enables the more precise 

tuning of how much error this system trims to.  

 

For example, consider 2 systems with the following outputs:  

i) System A provides +2 mm of error (average) with a variance of 

error of ± 8 mm 

ii) System B provides +8 mm of error (average) with a variance of 

error of ± 2 mm  

 

By creating offsets within the control algorithm of this system to be 

added to the measurements acquired of -2 mm and -8 mm to Systems A 

and B respectively we can reduce the average error to approximately 0 

mm. Though, due to the variance of error, System A will vary between + 
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8 mm and - 8 mm (16 mm) and System B will vary between +2 mm and 

- 2 mm (4 mm). Thus, if we set the target of the control system to trim at 

12 mm, the output of each system will vary for each system significantly:  

i) System A output will provide a trimmed fat depth of 4 mm to 20 

mm 

ii) System B output will provide a trimmed fat depth of 10 mm to 

14 mm 

 

As such, due to the highly non-uniform trimming, there are 

instances in the trimmed striploin that largely vary from the fat 

specification. This large variation is significantly more easily detectable, 

due to being visibly apparent, as opposed to a striploin provided with a 

larger average error spread over the primal. In addition to this, the 

capability to control the average error precisely (e.g. less variance of 

error) enables the capability of a processor to fine tune the average error 

of the striploin. This is where this system can contribute significantly to 

the industry whereby a precise, yet inaccurate trimming performance, can 

lead to significant profit margins for this product.  

 

For example, let’s assume that an error of +8 mm (20 mm fat 

depth for a 12 mm specification) is deemed visibly erroneous to a 

customer and hence would create a scenario, or significantly increase the 

likelihood, of a fat claim being lodged. For System A, this would mean 

that this would just meet specification though sensing used to produce a 

striploin with an average error of 0 mm (hence a target fat depth at 12 

mm). In comparison for System B, the average error could be increased 

to 6 mm (hence a target fat depth at 18 mm) and could similarly meet fat 

specifications as System A with significant additional economic benefit 

(see Table 4-3). At an average error of +6 mm over a typical striploin, for 

a throughput of 1,100 head per day over a 50-week operation, this 

controllable under-trimming could substantiate to a value-add of $182.4 

million per year to processors across Australia. 
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Table 4-3: Estimation of the value for a controllable error of +6 mm (under-trimming) for a typical 
beef striploin product. 

Estimation of Yield Losses Reduction using Visualisation 

Statistical Measures System A System B 

Overall Ave Error (𝑚𝑚)a 0 6 

Average Surface Area per Striploin (𝑚𝑚2) b 113,495 

Average Volume of Under-trim (𝑚𝑚3) c 0 680,970 

Average Volume of Under-trim (𝑐𝑚3) 0 681 

Density of Beef Fat (𝑔/ 𝑐𝑚3) d 1.0195 

Mass of Under-trim (𝑔) 0 694 

Average Weight Gain due to Under-Trim (𝑘𝑔) 0 0.694 

Value of Fat on Striploin ($ / 𝑘𝑔) e 22.6 

Value Fat as Tallow ($ / 𝑘𝑔) f 0.67 

Net Value Difference ($ / 𝑘𝑔) 21.93 

Net Value Add ($ / 𝑠𝑡𝑟𝑖𝑝𝑙𝑜𝑖𝑛) $0.00 $15.22 

Relative Net Value Add to Striploin (%)g 0.00% 9.68% 

Net Value Add Difference ($ / 𝒔𝒕𝒓𝒊𝒑𝒍𝒐𝒊𝒏)  $15.22 

Annual Striploins at processor h 114,400 

Annual Value-Add to processor (𝑚𝑖𝑙𝑙𝑖𝑜𝑛) $0 $1.74 

Value-Add for processor (𝒎𝒊𝒍𝒍𝒊𝒐𝒏)  $1.74 

Annual striploins Australia (𝑚𝑖𝑙𝑙𝑖𝑜𝑛) i 12.036 

Annual Value-Add to Australia (𝒎𝒊𝒍𝒍𝒊𝒐𝒏) $0.00 $183.15 

 

These calculations were made with the following assumptions:  

a) System A is considered the base case with 0 mm of average error (average) 

in comparison to System B with +6 mm (under-trimming) of average error 

b) The average surface area of striploins was calculated considering the average 

length and width of striploins used within this analysis (Length = 429.5 mm 

and Width = 264.5 mm)  

c) The average volume of fat was calculated considering by multiplying the 

average error with the average surface error of striploins 
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d) The average density of fat was calculated between 1.006 - 1.033 g/cm3, and 

therefore “Density of Beef Fat (g / cm3)” is considered to be 1.0195 (Pan & 

Singh, 2001) 

e) According to meat wholesaler MOCO Food Services, Beef City Black boneless 

striploin sells for $28.20/kg as of March 2023 (Moco Food Services, 2023). 

Hence, it is assumed that MOCO sells at a 20% mark-up, hence buys it from 

the processor for approximately $22.60 / kg. This constant variable is used for 

the parameter referred to as “Value of Fat on Striploin ($/kg)” 

f) According to MLA (2020c), tallow sold for $963/tonne ($0.963/kg) as of 2020. 

It is unknown if this price can be demanded by processors or wholesales; 

there is also likely a significant volumetric loss in the process of melting solid 

fat into tallow, and there are also additional processing and heating costs 

involved to do so. As such, a conservative estimate of 30% losses from this 

value can be considered, as such, 0.647. This constant variable is used for the 

parameter referred to as “Value of Fat as Tallow ($/kg)” 

g) This was calculated by considering the net weight retained due to under-

trimming divided by the average weight of striploins used within this analysis 

(Weight = 7.172 kg). This provided the parameter of “Net Value Add to 

Striploin (%)”. 

h) Considering the throughput of a large processor to be 1,100 head per day 

(Goodwin, 2018). Hence, considering 2 striploins per head (2,200 striploins / 

day), operating for 5 weekdays (11,000 striploins / week), operating for 50 

weeks per year (550,000 striploins / year) 

i) According to MLA (2022c), even at the lowest annual project in the past 36 

years the projected slaughter for 2022 is 6.018 million head (12.036 million 

striploins) 

 

The table above presents an approximation of the additional yield 

that is calculations, and assumptions, used to ascertain the additional 

yield for striploin fat trimming application for a system optimised for yield 

with a precision of ± 2 mm (System B) in comparison to a system with a 

precision of ± 8 mm (System A).  

 

In conclusion, the performance metric of precision is most desirable 

in comparison to accuracy, yet both are important for evaluating a sensor 
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for this application. As such, the weighting of accuracy will be considered 

3 / 5, whilst precision is determined to be 5 / 5.  

 

To determine a weighting for the accuracy and precision 

performance metric the performance of medical-grade CT imaging should 

be considered the ‘gold standard’. Therefore, a sensing system that 

exhibits a median error of 1.2 mm or less and an IQR of error of 2.5 mm 

or less will achieve a score of 5 for accuracy and precision respectively. 

 

Whilst the specification exists as a maximum fat thickness 

definition, in practice, there is a tolerance of error that is commonly 

accepted by the customer, though this has not been agreed upon or 

defined. Without such data, it may be reasonable to assume that an error 

of 10 mm may be easily perceivable to customers, and hence, likely to be 

interrogated with a ruler to identify a product defect. Hence, equally 

spaced thresholds were created to develop a Likert scale to define the 

rating of a sensor for the metric of accuracy. This is shown in Table 4-4.  

 

Table 4-4: Thresholds for ranking sensor accuracy. 

 

Metric 

 

Weight 
Performance Rank 

0 

Fail 
1 

Fair 
2 

Average 

3 

Good 

4 

Excellent 
5 

Exceptional 

Accuracy 

(𝐸𝑀𝐷𝑁) 
3 

>10 mm ≤10 mm ≤ 7.8 mm ≤ 5.6 mm ≤  3.4 mm ≤ 1.2 mm 

 

The IQR of the error dataset represents the middle 50% of errors 

values in the dataset. It was considered that intervals of the gold 

standard IQR (2.5 mm) was appropriate as it was decided that an IQR of 

a multiple of three of CT would be an appropriate / “average” 

performance of a sensor. As such, the following table was created to rate 

a sensor performance for precision (see Table 4-5).  
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Table 4-5: Thresholds for ranking sensor precision. 

 

Metric 

 

Weight 
Performance Rank 

0 

Fail 
1 

Fair 
2 

Average 

3 

Good 

4 

Excellent 
5 

Exceptional 

Precision 

(𝐼𝑄𝑅(𝐸)) 5 
>12.5 mm 

≤12.5 
mm 

≤ 10 mm 
≤ 7.5 
mm 

≤  5 mm ≤ 2.5 mm 

 

 

It should be noted that the rating of “exceptional” is reserved for a 

sensor that performs equal or better than the gold standard of CT 

imaging. The ‘0’ ranking is a failure and therefore any sensor that is 

determined within this ranking will cease to be considered a feasible 

option for this application due to its incapacity to acquire measurements 

with the accuracy and precision required for this application. 

 

Measurement Range: It can be concluded from previous literature 

and analyses (presented in Chapter 3) that the measurement range of 0 

mm to 75 mm is necessary, and hence will be considered as a 

prerequisite requirement prior to developing the sensing system with the 

chosen sensor. As such, the linearity of the sensor will be considered for 

evaluating the performance of the sensor. The linearity of the sensor, 

described as the coefficient of determination (𝑅2) plotted for the sensor 

measurement and reference measurements plot, will be used to rank 

feasible performances (0 - 5). The R-Squared value of ‘1’ suggests a 

perfectly linear correlation between sensor and actual measurements; the 

gold standard benchmark using CT imaging was calculated at 0.93 

indicating a high linearity. In practice, the characteristic of linearity 

provides a measure of accuracy at a particular fat depth range which is a 

valuable metric for interpolating results and identifying inconsistencies 

with sensor interpretation. Though useful, this does not constitute failure 
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of a sensor independently as a performance metric. A ‘good’ coefficient of 

determination is subjective to many factors including sample size and 

biases, though it was determined that a value of ‘0.5’ would be a ‘fair’ 

linear correlation between sensor and actual measurements. The 

thresholds for the linearity metric Likert scale were created between the 

‘fair’ (0.5) and exceptional/gold standard (0.93) coefficient of 

determination values. 

 

The performance metric of range was considered important enough 

to consider as this property enables the adjustment of error to be offset 

uniformly throughout the range of the sensor with a constant offset more 

accurately. From the analysis undertaken in Chapter 3 (mean = 16 mm, 

SD = 7.9 mm), 95% (2SD) of fat depth measurements were between 

approximately 0 - 30.6 mm although there was a maximum measurement 

of 44 mm. This narrow distribution exemplifies that for this application 

linearity is less important than that whereby fat depth measurements are 

more spread across the range, hence linearity evaluated across the range 

of fat depth measurements of the reference dataset has less of an 

informative description for sensor performance. Also, the smaller the 

measurement range, the less a sensor’s description of linearity matters as 

this approaches a similar description of measurement accuracy. Thus, 

whilst considering the measurement range performance metric is 

important, this is accounted for in the feasibility evaluation of 

Measurement Range (ranking of ‘0’). For this application which has a high 

central distribution accuracy would take more of a weighting than 

linearity, as such measurement range was considered slightly less 

important and therefore weighted as a 2 / 5 (see Table 4-6). 
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Table 4-6: Thresholds for ranking sensor linearity. 

 

Metric 

 

Weight 
Performance Rank 

0 

Poor 
1 

Fair 
2 

Average 

3 

Good 

4 

Excellent 
5 

Exceptional 

Linearity 

(𝑅2) 2 
< 0.5 ≥ 0.5 ≥ 0.6 ≥ 0.7 ≥  0.8 ≥ 0.93 

 

Reliability: In respect to reliability, the performance of CT imaging 

was faultless, without a single missed measurement being observed over 

the 272 nodes measured. As such a rating, and allowing for a small 

amount of deviation, it was considered that 𝑃𝑀 ≤ 1 % would be considered 

the gold standard (ranking of ‘5’). To identify the maximum value of 𝑃𝑀 to 

be considered infeasible, the significance of a “missed” measurement 

must be considered within the context of this application. For every 

missed measurement there is a cost of time loss and substantial error 

that is introduced to the system due to the need to interpolate the missed 

measurement, or otherwise, a smaller number of measurement nodes 

that can provide an accurate estimation of the fat depth profile across the 

entire striploin. This creates a critical problem to consider due to the high 

cost to the system of such a missed measurement. Though, lots of 

measurements that are low quality (not accurate/precise) is less valuable 

than less measurements that are of high quality (accurate/precise). As 

such, it is reasonable to consider reliability to be weighted as less 

important than these metrics. As such, the weighting of reliability was 

considered to be 3 / 5.  

 

Whilst CT imaging shows an incredible reliability (capturing every 

measurement at each node), it should be noted that literature shows 

successful trimming solutions that use as few as one fat depth 

measurement to trim subcutaneous fat in pork (see Chapter 2). In 
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conjunction with the narrow distribution of fat depth measurements 

presented in Chapter 3, the ‘failure’ threshold for reliability would 

primarily be centred around a percentage whereby there is a considerable 

likelihood that too much time would pass before getting one, or a few, 

measurements from the interrogated nodes. As such, it was defined that 

a system that ‘missed’ 75% of measurements of the nodes surveyed may 

the cut-off for an infeasible system as this would be a measurement of 4 

points to get 1 valid reading. As such, this was used to establish the 

thresholds for the ratings for the reliability performance metric (see Table 

4-7). 

Table 4-7: Thresholds for ranking sensor reliability. 

 

Metric 

 

Weight 
Performance Rank 

0 

Fail 
1 

Fair 
2 

Average 

3 

Good 

4 

Excellent 
5 

Gold 
Standard 

Reliability 

(𝑃𝑀) 

5  
 > 75% 

 
 ≤ 75% 

 
 ≤ 50% 

 
≤ 25% 

 
≤ 10% 

 
≤ 1% 

 

 

Response Time: It can be concluded from previous literature and 

analyses (presented in Chapter 3) that the response time of less than 15 

seconds is necessary, and hence will be considered as a prerequisite 

requirement prior to developing the sensing system with the chosen 

sensor. As such, any response time faster than this can be used to 

evaluate the performance of the sensor. The determination of a feasible, 

and a fair to outstanding rank can only be based upon observations of the 

sensing system and foresight into how this system may be built in its final 

stages to enable it to perform according to time constraints. Whilst CT 

imaging has provided a benchmark for other performance metrics the 

benchmark for response time is dependent upon time constraints of the 

task of fat trimming. With the processing time of approximately 27 



 

179 

seconds per striploin, and with an average number of nodes being 

approximately 8 rows and 8 columns, a reasonable observation could be 

made that a robot could position sensors at all, or most nodes, take a 

measurement and then start slicing the striploin with multiple cutter 

assemblies to process this striploin in the cycle time required. Whilst the 

exact configuration of sensors, tools and robots are yet to be defined, it is 

possible to identify that for this to be plausible the sensing process at 

each node needs to take less time than 1 seconds for each node. As such, 

the infeasible ranking (‘0’) is considered for this sensing process taking 

longer than 15 seconds, which is scaled up to less than 1 second for an 

“exceptional” rating.  

 

Similar to reliability, response time is a metric that measures the 

system’s capability to measure more nodes for a given time. As such, this 

would be weighted less important than accuracy and precision for the 

similar reason that quality data at less nodes is more important than 

quantity of data over more nodes. Though, when compared to reliability, 

response time has less uncertainty than reliability, and therefore less 

important for a sensor to perform well in. In addition to this, it could be 

argued that a configuration with additional sensors would resolve the 

issue of increasing the number of measurements moreso, and more 

predictably, in a scenario of longer response time in comparison to less 

reliable sensors. As such, a sensor that performed comparatively better in 

reliability than response time would be more important, and therefore, 

the weighting of this performance metric is considered to be ‘2’ (see Table 

4-8). The thresholds of these performance ranks are chosen within 

multiples that enable a magnitude of sensing nodes to be measured 

within the absolute ideal (< 1 sec) and feasible (15 sec). For example, 

considering the maximum sensing time as 15 seconds, fail is no 

measurements (response time >15 second, fair would be 1 (response 

time <15 sec), average would be 2 (response time <7.5 sec), good would 

be 3 (response time <5 sec), excellent would be 6 (response time <2.5 
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sec), exceptional would be 15 (response time <1 sec). This approximation 

could be scaled to a magnitude depending upon the number of sensors 

used in the configuration. 

 

Table 4-8: Thresholds for ranking sensor response time. 

 

Metric 

 

Weight 
Performance Rank 

0 

Fail 
1 

Fair 

2 

Average 

3 

Good 

4 

Excellent 
5 

Exceptional 

Response 
Time 

(𝑇𝑅) 

2  
 >  15 

sec 

 
 ≤ 15 
sec 

 
≤ 7.5 sec 

 
 ≤ 5 sec 

 
 ≤ 2.5 sec 

 
≤ 1 sec 
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Through the analyses presented in Chapter 3 and Chapter 4 the following sensor performance matrix was 

defined (see Table 4-9). This framework will be applied in the subsequent chapters by analysing the 

measurements acquired by sensors to identify their quantities for the selected performance metrics to then be 

evaluated considering the metric ranking and weighting to conclude on a sensor performance score. 

 

Table 4-9: Performance evaluation framework for evaluating sensors for automated fat trimming of beef striploin. 

Performance 
Metric 

Quantity Performance Rank Metric 
Weighting 

Metric 
Score  

FAIL/POOR 

0 

FAIR 

1 

AVERAGE 

2 

GOOD 

3 

EXCELLENT 

4 

EXCEPTIONAL 

5 

Accuracy 

(𝐸𝑀𝐷𝑁) 
-- > 10 mm ≤ 10 mm ≤ 7.8 mm ≤  5.6 mm ≤  3.4 mm ≤ 1.2 mm 3 -- 

Precision 

(𝐼𝑄𝑅(𝐸)) 
-- > 12.5 mm ≤  12.5 mm ≤ 9.5 mm ≤  6.5 mm ≤  4.5 mm ≤  2.5 mm 5 -- 

Linearity 

(𝑅2) 
-- < 0.5 ≥ 0.5 ≥ 0.6 ≥ 0.71 ≥ 0.82 ≥ 0.93 2 -- 

Reliability 

(𝑃𝑀) 
-- > 75% ≤ 75% ≤ 50% ≤ 25% ≤ 10% ≤ 1% 3 -- 

Response Time 

(𝑇𝑅) 
-- >  15 sec ≤ 15 sec ≤ 7.5sec ≤ 3 sec ≤ 2 sec ≤ 1 sec 2 -- 

Sensor Performance Score / 75 
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4.6 Conclusion 

The analyses presented within this chapter provide a means of 

defining the metrics, and their corresponding weightings, for integration 

into a framework to evaluate and compare sensors for the specific task of 

uniform fat trimming of beef striploin. These metrics are:  

- Accuracy (Weighting: 3): statistically determined as the median 

of the error between the sensor and manual measurement 

dataset. 

- Precision (Weighting: 3): statistically determined as the IQR of 

the error between the sensor and manual measurement dataset. 

- Linearity (Weighting: 2): statistically determined as R-squared 

value of the regression line for the sensor (y) vs reference (x) 

measurement plot. 

- Reliability (Weighting: 3): statistically determined as the 

percentage of “missed” measurements by the sensor.  

- Response Time (Weighting: 2): estimated through observation of 

the developed sensing system for evaluation.  

 

This framework, with thresholds determined in consideration to the 

gold standard of fat depth measurements (medical-CT imaging), will be 

applied to independently evaluate Mode B and Mode A ultrasonic sensors 

presented in Chapters 5 and 6 respectively. Through the uniform 

application of this evaluation framework a side-by-side comparison will be 

presented to recommend which sensor is most suitable for this 

application. 
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CHAPTER 5: ANALYSIS OF B-MODE ULTRASOUND 

SENSING SYSTEM 

 

This chapter focuses on the development and evaluation of B-Mode 

ultrasound technology for measuring the fat depth of a beef striploin 

primal. The objective is to assess the capability of Mode-B ultrasound to 

be employed in an automated system for uniform fat trimming of beef 

striploin through the application of the sensor evaluation framework 

developed in Chapter 4. The findings presented in this chapter contribute 

to the understanding of the potential of B-Mode ultrasound technologies 

and inform the design and optimization of future automated fat trimming 

systems. 

 

5.1 Introduction 

Through the literature review presented in Chapter 2 ultrasound 

was identified as the most promising, proven sensing technology for 

measuring fat thickness on a beef striploin. This chapter presents the 

development of a B-Mode ultrasound system in alignment with the key 

design considerations outlined in previous chapters. The performance of 

this system is evaluated using the sensor performance evaluation 

framework presented in Chapter 4. 

 

In comparison to A-Mode, B-Mode ultrasound offers a more 

comprehensive view of internal tissues which can be beneficial in 

applications where a more detailed tissue structure is desired. In the 

context of measuring fat thickness and automatic fat trimming systems, 

B-Mode ultrasound can also provide a two-dimensional image of the area 

being evaluated, allowing for a better spatial understanding of the 

distribution of fat tissue. Additional to this, there is more certainty of 

acquiring a measurement to the correct interface due to the ability to 

locate this interface in a larger window that is easier to interpret visually. 
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This can be particularly useful in automated systems where precision and 

detailed information about tissue layout is required for optimal, more 

‘certain’ measurements. 

 

Commonly, ultrasound has been used for the measurement of 

subcutaneous fat depth over the rib, lumbar, and rump, and that of the 

longissimus muscle area (Houghton & Turlington, 1992; Pathak, Singh & 

Sanjay, 2011). Halim et al (2013) presents a comprehensive list of 

twenty-seven research papers that have explored the use of ultrasound 

as a fat measurement sensor between the period of 1990 and 2012. 

Within the review of literature conducted by Halim et al. (2013), research 

has predominantly favoured B-Mode ultrasound with ten of the eleven 

studies highlighted being using B-Mode (91%) compared to A-Mode (9%). 

Discussions regarding the context of using B-Mode ultrasound within an 

automated fat trimming are presented at the conclusion of this chapter. 

 

5.1.1 Chapter Aims 

The aims of this chapter were to develop and evaluate a B-Mode 

ultrasound system capable of measuring fat thickness and implemented 

within the context of an automated system.   

 

Key design considerations that were highlighted in previous 

explorative work presented in Chapter 3 & 4 were implemented in the 

design of this system to provide insights towards how a B-Mode 

ultrasound sensing system may be developed. The performance of this 

system was evaluated through applying the sensor performance 

evaluation framework to conclude on its performance and compare with 

another sensing technology (A-Mode).  
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5.2 Experimental Setup 

This section presents the methods employed for the data collection 

of acquiring sensor and manual fat depth measurements as well as the 

data analysis method implemented to evaluate the performance of the 

sensor according to the sensor evaluation framework developed in 

Chapter 4.  

 

5.2.1 Preliminary Investigation into Sensor Feasibility  

According to analyses summarised in previous chapters (Chapter 3 

& 4), it has been identified that the following parameters define a feasible 

sensor for measurement of fat depth for the context of automated beef 

striploin trimming. As such, preliminary analyses (see Methods section) 

were conducted to confirm the feasibility of the chosen sensor prior to the 

development of a fat depth measurement system. This includes 

evaluating:  

- The sensor range / penetration depth of the ultrasound 

- Sensor Response Time 

- Fat Depth Measurements (in practice) 

 

According to past work presented in Chapter 3, the sensing 

configuration chosen for this investigation was measuring from the 

surface of the subcutaneous fat to the fat-lean interface. Three B-Mode 

ultrasound systems were evaluated before selecting the final, most 

promising system. The two with the most promise after preliminary 

evaluations were conducted were: ReproScan Flexx and the Butterfly iQ+ 

(see Figure 5-1). These B-Mode ultrasound imaging systems provided a 

means of acquiring greyscale images for further analysis to determine fat 

depth at each node surveyed. The details for accessing product 

information and datasheets of these two systems are provided in 

Appendix D: B-Mode Ultrasound Device Datasheets.  
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Figure 5-1: B-Mode ultrasound systems evaluated in preliminary trials: ReproScan Flexx (top) and 
Butterfly iQ+ (bottom). Sources – (ReproScan, 2023; Butterfly, 2023a). 

 

In comparison, both probes were developed for vastly different 

applications and therefore had distinct advantages. The ReproScan Flexx 

unit is an ultrasound device developed for on-the-go veterinary 

examinations of animals. One such advantage of the ReproScan Flexx unit 

was that through external hardware the image provided on the screen of 

the unit could be acquired into a laptop as a live webcam input. This 

enabled real-time machine vision to be applied to the acquired greyscale 

images using pixel value filters to identify interfaces and measure depth 

automatically (see Figure 5-2). Despite this, it struggled to consistently 

provide images that had clearly discernible tissue interface features in it 

(see Figure 5-3). It was ascertained that the ‘grainy’ image in addition to 

the image quality lost in the conversion from analogue to digital hardware 

affected the capability of providing clear images from this device. 
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Figure 5-2: Machine vision algorithms applied to ReproScan Flexx system for automated fat depth 
measurement. 

 

Figure 5-3: Four examples of encountering difficulties discerning tissues on the ReproScan Flexx. 

 

As such, the Butterfly iQ+ device was trialled which provided 

images with more clarity and tissue discernability. This was the 

predominant basis for selecting the Butterfly iQ+ probe for this 

application.  
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The probe of the Butterfly iQ+ has 9000 capacitive micromachined 

ultrasonic transducers (CMUT) arranged in a 2D array with an adjustable 

frequency range of 1 – 10MHz and penetration depth between 10 – 300 

mm (Butterfly, 2023a). The probe components are shown in Figure 5-4.  

 

 

Figure 5-4: Butterfly iQ+ probe components. Source – (Butterfly, 2023b) 

 

A rubber standoff was purchased to ensure that contact on the non-

planar surface of the striploin was achieved more consistently. In addition 

to better contact producing images that provided more discernible tissue 

interfaces, this standoff provided a 5 mm offset from the surface of the 

subcutaneous fat which provided a means of measuring nearer to the 

required minimum fat depth (see Figure 5-5 & Figure 5-6). In conjunction 

with this standoff, several food-safe lubricants were trialled for use before 

selecting extra virgin olive oil as the lubricant. 
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Figure 5-5: Photo of the Butterfly iQ+ with ultrasonic standoff attachment. 

 

 

Figure 5-6: Improvement of tissue discernibility within an image taken at the same node on a 

striploin using ultrasonic standoff with Butterfly iQ+. 

 

This probe and software package was used in-conjunction with an 

iPad mini (5th generation) to provide computational processing to the 

probe as well as save the images to the Butterfly network cloud where 

measurements could be taken (see Figure 5-7). For an automated system 

integration, a Wi-Fi communication from the iPad into a laptop could be 

created to enable the live feed to be used as a webcam for further 

machine vision processing. 
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Figure 5-7: A screenshot of the user-interface for acquiring measurements from saved 

images stored on the Butterfly cloud. 

 

The Butterfly iQ+ software system also enabled the tuning of 

parameters to ensure tissue echo, and its depth, could be measured. 

These parameters were set within preset configurations classified as 

medical practitioner applications (e.g. Abdomen, Cardiac, Soft Tissue, 

etc.). The presets defined the ultrasound frequency and penetration 

depth, focus/gain, transducer configuration and visualisation mode (Mode 

B was selected). Of all presets the most appropriate was “Nerve” which 

set a penetration focus of 30 mm depth.  This aligned with the average 

fat depth of the striploin, which after the 5 mm thick standoff, provided 

the best focus for detecting superficial tissue interfaces near the surface 

of the striploin. The probe also calibrated itself based upon an on-board 

air temperature sensor that considered the temperature of the medium.  

 

Sensing Range: The sensing orientation chosen for this 

experiment was from the fat surface. The delamination of fat layers that 
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were cited by previous research leading to measurements from the lean 

surface was not observed in surveys presented in Chapter 3 and hence, 

this was identified to be less prominent and risky than the interfaces seen 

in the lean muscle of striploins. The measurement depth would be 

significantly less through the fat as opposed to the lean meat of up to a 

penetration depth of 103 mm required (97.5% confidence interval) as 

opposed to a depth of an absolute maximum fat depth of 75 mm. The 

trade-off between penetration depth and image clarity was a more 

important consideration for B-Mode as opposed to A-Mode due to the 

subjectivity of image interpretation.  

 

The relationship between ultrasound penetration depth and the 

soundwave frequency is informed by the penetration depth decreasing as 

the frequency increases. This is because higher frequencies have shorter 

wavelengths, leading to more interactions with the medium and thus 

greater attenuation. Typically, the rule of thumb to calculate the 

penetration depth of a particular frequency of sound in a given medium is 

500𝜆 (Johnson & Wales University, 2019). Using the equations below the 

minimum frequency of ultrasound for the given depth is defined as shown 

in Equation 5.1).  

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑃 = 500𝜆, 

 

Considering:  

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 𝜆 =
𝑣𝑊

𝑓
, 

 

𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑝𝑡ℎ, 𝐷𝑃 = 500 (
𝑣𝑊

𝑓
), 

 

Equation 5.1: Rule of Thumb for Penetration Depth.  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 500 (
𝑣𝑊

𝐷𝑃
), 
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where:  

𝑣𝑊  = velocity of soundwave through medium 

𝐷𝑃  = effective penetration depth (in metres) 

 

Considering a maximum penetration depth of 75 mm (0.075m), and 

the velocity of soundwave propagation through subcutaneous fat of 1,450 

m/s (Johnson & Wales University, 2019) the appropriate frequency is 

determined as follows: 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 500 (
1450

0.075
), 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 9.67 𝑀𝐻𝑧, 

 

The B-Mode ultrasound probe transmits 1 - 10MHz soundwaves 

(having a selectable preset of less than 9.67 MHz), and hence was 

determined to provide the penetration depth required for this application 

within the chosen configuration. 

 

Sensor Response Time: The response of this ultrasound device 

was measured to be less than 1 second to acquire the measurements of 

the B-Mode ultrasound into the iPad with only a small amount of latency 

for connection to a laptop. For machine vision to be applied to acquire a 

measurement value and provide this to a robot operating system would 

be a response time of approximately 3 seconds.  

 

Fat Depth Measurements: In general, prior to the selection of B-

Mode ultrasound system three systems were evaluated in preliminary 

trials to confirm that this sensor was the most capable of providing fat 

depth readings. This was conducted through a number of preliminary 

trials to test that measurement data was indicative of fat depth measured 

in beef striploin primals. During these preliminary trials, testing 
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methodology contained in this chapter was developed and applied for 2 

striploins which showed ultrasound measurements aligned with manual 

ruler-derived measurements. Furthermore, ‘calibration cubes’ were 

created by cutting an interface into cubes of beef dripping at known, 

varying depths to ensure that these interfaces could be seen and to check 

the penetration depth of the settings used for the experiments (see Figure 

5-8, Figure 5-9 & Figure 5-10). 

 

 

Figure 5-8: Creation of phantom tissue interfaces at known depths within beef fat for preliminary 
testing. 
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Figure 5-9: Preliminary experiments validating Butterfly iQ+ tissue depth measurements. 

 

 

Figure 5-10: A preliminary experiment showing the tissue measurement of a 10 mm deep tissue 
interface created on side III of the calibration cube showing 15 mm deep (10 mm deep + 5 mm 

standoff thickness). 
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5.2.2 Experimentation 

Experiment Samples: The same samples used in Chapter 4 

(striploin 1R, 2R, 3L & 4L) were used in this analysis as well as an 

additional two striploins that were made available by the collaborating 

processor. Therefore, a total of six striploins were used in this experiment 

(LHS: 3 & RHS: 3) which equated to 358 nodes measurements in total. 

These six striploins deemed to be ‘typical’ of the untrimmed striploin as 

their overall characteristics (dimensions and weight) were comparable 

with those surveyed in Section 3.2. 

 

Node Marking: The nodes were marked on the plastic of the 

striploin fat surface as shown in Chapter 3 before CT imaging. Upon 

returning the striploins to the refrigerated trailer they had the CT markers 

on them (see Figure 5-11).  

 

 

 

Figure 5-11: Experimental set-up for B-Mode ultrasound sensing experiment. 

 

A stainless-steel was used to poke holes through the plastic to score 

the node on the surface subcutaneous fat. Upon doing so, the striploin 

measurement nodes are transferred from the plastic wrapping to the 

striploin surface. The spacing used for this node mesh was 50 mm in the 
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X direction (across the length / medial-lateral anatomical plane of the 

striploin) and 25 mm in the Y direction (across the width / caudal-cranial 

anatomical plane of the striploin) shown in Figure 5-12. 

 

 

Figure 5-12: Marking nodes through plastic wrapping using a stainless-steel skewer. 

 

Fat Depth Measurements using B-Mode Ultrasound: Literature 

suggests the clear link between temperature and soundwave propagation 

through lean muscle and subcutaneous fat (Diaz-Almanza et al., 2021). 

To account for this all sensor measurements were taken at a controlled 

temperature of 8 degrees Celsius in a refrigerated trailer to ensure a 

similar temperature to that of the processing line.  

 

The probe and the striploins were left in the temperature-controlled 

room for long enough to ensure that the probe, and hence the 

temperature adjustment on the probe, was to that of the striploin and 

environment.  After this, the striploin was carefully unwrapped from the 

plastic wrapping and the Butterfly iQ+ ultrasound probe was placed on 

each node to acquire ultrasound images. The orientation of the Butterfly 

iQ+ probe was carefully aligned to ensure that the centre of the probe 

was aligned to the node so that the centre of the image may be evaluated 

for precise measurements at the nodes. This was done visually by aligning 



 

197 

both of the blue lines marked on both sides of the probe (indicating the 

middle of the probe) with the measurement node to acquire images. The 

image was then analysed on Butterfly Cloud software with measurement 

tools (see Figure 5-13).  

 

For all of the measurements the standoff and olive oil was used with 

a single attempt to acquire an image at each node. In some cases the 

shape of the probe head (with the standoff) and the chasms in the fat 

surface caused difficulties in acquiring a sound image due to lack of 

surface contact between the transducer array and the subcutaneous fat 

(see Figure 5-14). In the case whereby the lack of contact of the 

ultrasound transducers prevented the acquisition of a discernible image, 

this node was counted as a ‘missed reading’. 

 

 

Figure 5-13: Illustration of using B-Mode ultrasound to measure fat depth. 

 

 

Figure 5-14: An example where the ultrasound could not get a reading due to air gap separation 
with the surface of the fat. 
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Fat Depth Measurements using a Ruler: The process of 

acquiring fat thickness measurements through a manual process using a 

stainless-steel ruler is outlined in Chapter 3. It is important to note that 

the B-Mode ultrasound imaging was conducted prior to manual 

measurements to ensure that there was no deformation causing 

soundwave backscattering. Upon ultrasound imaging, these nodes were 

marked with black, food-grade dye, cut into cross-sections and measured 

at the cross-section face.  

 

A dissection of the striploin was made across the cross-sectional 

face of the striploin at each 50 mm face. A stainless-steel ruler was then 

used to record manual fat depth at each node which was recorded in an 

Excel spreadsheet for later analysis. A photograph of each cross-section, 

and each node, was acquired to provide a cross-referenceable record and 

qualitative data of the fat depth measurements (see Figure 5-15).  

 

 

Figure 5-15: Manual measurements of fat depth at each node: qualitative (left) and quantitative 
(right) 

 

5.3 Experimental Analysis 

This B-Mode ultrasound sensing system was evaluated against the 

sensor performance evaluation framework developed in Chapter 4 (see 

Table 4-9). This will be evaluated by considering the error between the 

manual and B-Mode ultrasound measurements that were interpreted from 

the greyscale images. As such, the following equation can be considered 

to calculate error (see Equation 5.2). 
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Equation 5.2: Error between B-Mode ultrasound and manual fat depth measurements. 

𝐸𝑟𝑟𝑜𝑟, 𝐸𝑀−𝑈𝑆𝐵
 =  𝑓𝑀 − 𝑓𝑈𝑆𝐵

 

 

where:  

𝑓𝑀  = the fat thickness measurement acquired manually using 

a ruler (considered the reference value); 

𝑓𝑈𝑆𝐵
  = the fat depth measurement acquired using the B-Mode 

ultrasound sensor (considered the estimated value); 

 

 As outlined in Chapter 4 the performance metrics were calculated 

using the equations specified below:  

- Accuracy: Median of Error dataset (see Equation 4.3). 

- Precision: IQR of Error dataset (see Equation 4.4). 

- Linearity: Coefficient of Determination (see Equation 4.5). 

- Reliability: The ‘Miss Rate’ of the sensor (see Equation 4.7). 

- Response Time: The time required to acquire a measurement. 

 For reliability, the total number of nodes were considered as the 

number of nodes that there was a measurable lean muscle presented. In 

some cases, there were nodes where the striploin did not have a lean 

muscle interface that was measurable. Therefore, at the nodes that there 

was the capability of ultrasound measurement, and the device provided 

an error value this was considered a ‘missed’ instance. Typically, these 

readings displayed an image without any recognisable tissue interface 

reflections or predominantly displayed ultrasound reflection errors (see 

Figure 5-16). In preliminary trials two cases of ‘no value’ or ‘missed’ 

measurements were identified:  

- Case 1: No contact between the ultrasound probe head and the 

subcutaneous fat surface due to surface contours (illustrated in 

the left image in Figure 5-16).  

- Case 2: No interface was discernible in ultrasound image due to 

the absence of soundwave echo received by the ultrasound 

transducer (illustrated in the right image in Figure 5-16).  
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Figure 5-16: Example of the two "No read" / "Missed" measurements for a B-Mode ultrasound. 

 

During the preliminary investigation this sensor was deemed 

capable to measure at a response time appropriate for this application 

(𝑇𝑅 ≤   15 𝑠𝑒𝑐) and was determined to be less than 3 seconds during 

measurement observations. 

 

 

5.4 Results 

Through evaluating the B-Mode ultrasound and ruler measurements 

of 6 striploins (RHS: 3, LHS: 3) a total data set of 358 nodes were 

considered in this investigation. 

 

The error measurement dataset (𝐸) was calculated to create a 

means of evaluating the distribution of error between the ruler (𝑓𝑅) and B-

Mode ultrasound (𝑓𝑈𝑆𝐵
) fat thickness measurements. Key statistical 

measures are presented for the unfiltered dataset, and the 1.5 IQR 

filtered dataset (see Table 5-1).  
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Table 5-1: Statistical summary of error dataset (E) between ruler and Mode B ultrasound 
measurements (n = 358) 

Statistics 

Unfiltered 

Dataset 

Filtered 

Dataset 

Minimum of Error Dataset, 𝑄0(𝐸) -8.6 mm -8.6 mm 

25th percentile of Error Dataset, 𝑄1(𝐸) 1.0 mm 0.8 mm 

Median of Error Dataset, 𝑄2(𝐸) 4.5 mm 4.0 mm 

Mean of Error Dataset, (𝐸̅) 6.5 mm 5.2 mm 

75th percentile of Error Dataset, 𝑄3(𝐸) 11.0 mm 10.0 mm 

Maximum of Error Dataset, 𝑄4(𝐸) 36.0 mm 19.0 mm 

Interquartile Range of Error Dataset, 𝐼𝑄𝑅(𝐸) 10 mm 9.3 mm 

Standard Deviation of Error Dataset, 𝑆𝐷(𝐸) 7.9 mm 6.3 mm 

Range of Error Dataset, 𝑅𝑎𝑛𝑔𝑒(𝐸) 44.6 mm 27.6 mm 

Lower Outlier of Error, 𝑄1(𝐸) − 1.5𝐼𝑄𝑅(𝐸) -10.5 mm -9.9 mm 

Upper Outlier of Error, 𝑄3(𝐸) + 1.5𝐼𝑄𝑅(𝐸) 19.5 mm 17.9 mm 

 

Zero lower and twenty-five upper bound outliers were identified in 

this dataset and removed for the creation of the filtered dataset. Filtering 

the outliers from this dataset, and comparing it to the unfiltered dataset, 

the general trends and error characteristics were quite similar though 

these outliers had increased the spread of error at a higher positive value 

(median, average, IQR). This is shown in in Figure 5-17.  

 

 

Figure 5-17: Statistical Summary of error measurement datasets (unfiltered vs filtered). 
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Considering the unfiltered dataset is statistically representative the 

resulting B-Mode ultrasound accuracy and precision metrics were 

identified as:  

 

Accuracy:  Median of Error, 𝑬𝑴𝑫𝑵    = +4.5 mm 

Precision:  Interquartile Range of Error, 𝑰𝑸𝑹(𝑬)  = 10.0 mm 

 

Due to the impact of large, positive outliers a slight decrease in 

precision of 0.7 mm (larger IQR) and accuracy of 1.3 mm (higher median 

error). These outliers caused the spread of error to be further towards 

positive errors (under-estimating the fat depth measurements). For the 

purposes of evaluating the accuracy (median) and precision (IQR), the 

effect of outliers was deemed to not to be substantial, though suggested 

that the sensor or the interpretation of ultrasound images may have been 

biased.  

 

The unfiltered dataset was plotted on a histogram using bin widths 

of 4 mm, with excess bins being used to group lower and upper bound 

outliers (see Figure 5-18). 

 

 

Figure 5-18: Error distribution of unfiltered data showing a non-normal distribution. 
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This error distribution is not normally distributed, and instead is 

positively skewed, showing a bias for B-Mode ultrasound to provide an 

under-estimation of fat depth. The central peak at -0.6 to 3.4 mm error 

supports that there are no underlying subgroup trends in the dataset 

except for the positive outliers highlighted previously.   

 

The measurement error across the range of measurements acquired 

is described in Figure 5-19. An immediate observation derived from the 

scatterplot is that whilst B-Mode ultrasound was observed to measure fat 

depth between the range required (0 – 75 mm) in preliminary testing, it 

did not provide accurate measurements across the operating range. The 

value of the correlation of determination (𝑅2) indicates that spread of 

residual errors is wide, and in general, do not depict strong linear 

correlation. The predicted and actual measurements are quite dissimilar 

across the entire measurement error dataset (see Figure 5-20 & Figure 

5-21). It was observed that this was predominantly occurring at larger 

measurements of fat depth. A significant bias was observed in 

measurements between 10 to 20 mm even in the instance where the fat 

depth was a lot larger. The significant variation of error throughout the 

range of reference measurements indicates strong heteroscedasticity.  
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Figure 5-19: The B-Mode ultrasound (USB) vs actual (Ruler) measurement plot. 

 

 

Figure 5-20: Residual error plot of USB-Ruler Dataset (in mm) 
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Figure 5-21: Residual relative error plot of USB-Ruler Dataset (%) 

 

As a benchmark of linearity across the operating range, B-Mode 

ultrasound is concluded upon with the following measures:  

 

Range Requirements: 

Found to be feasible in preliminary analyses. 

 

Linearity:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 ≡  𝑅2 = 0.10 

 

There were a number of instances whereby the B-Mode ultrasound 

returned an image that the tissue interface was indiscernible within. From 

the 410 nodes of potential measurements, 52 nodes did not have a 

measurement acquired. As such, the miss rate (𝑃𝑀) for B-Mode ultrasound 

was concluded to be as follows:  

 

Reliability: 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒, 𝑃𝑀   =
52

410
 ∗  100% =  12.7% 
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It was identified that the response time of the B-Mode ultrasound 

system to return a measurement to a robotic control system would be 

approximately less than 3 seconds.  

 

Response Time: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒, 𝑇𝑅   ≤ 3 𝑠𝑒𝑐𝑜𝑛𝑑 

 

 

5.5 Discussion 

An analysis of B-Mode ultrasound results highlights the predominant 

distribution of error around zero which indicates that the sensor returned 

sensible measurements, though skewed with positive error (median error 

= 4.5 mm). The large spread of error (IQR of error = 10.0 mm) illustrates 

the imprecision of this sensor to provide measurements that closely 

represent manual measurements.  

 

The presence of twenty-five, upper-bound outliers (>19.5 mm), in 

the absence of any lower-bound, negative errors, skewed the data 

towards higher positive error values. Although the elimination of these 

outliers did reduce the overall inaccuracy (median error reduced from 4.5 

mm to 4.0 mm) and imprecision (IQR of error reduced from 10.0 mm to 

9.3 mm), similar overall error trends were observed in both the outlier-

filtered (+-1.5IQR) and unfiltered datasets. These outliers were significant 

enough to illustrate a second peak in the error distribution histogram plot 

(see Figure 5-18) and highlight systemic bias to underestimate the fat 

depth at measurement nodes (Note: Error = Manual – Sensor 

measurement; hence positive error is underestimation of fat depth). The 

cause for this bias is either due to the sensor to produce clear ultrasound 

images, the incorrect interpretation of these images, and or, the 

ultrasound wave reflection of internal tissues within the subcutaneous fat 

of striploin primal product. Through extensive preliminary 
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experimentation with the Butterfly iQ+ that included cross-referencing 

tissue depth measurements with known, artificial interfaces cut into beef 

lard (melted beef fat) the consistency, quality and depth calibration of 

these images have been confirmed. The interpretation of images was 

quite simple, and even though post-examination of looking for a tissue at 

a known depth (manually measured) many images didn’t show any 

indication of the fat-lean interface tissue. It is probable that a large 

proportion of positive errors was a measurement to an interface that was 

significantly shallower than the actual tissue interface due to fat 

delamination. Whilst delamination of the subcutaneous fat was evaluated 

in the product survey conducted in Chapter 3 it is suspected that the 

significance of this phenomenon within the internal product was 

significantly more than that observed, and perhaps the capability to 

visually identify delamination phenomena was overestimated (note: a 

fraction of a millimetre air gap within a fat layer will reflect soundwaves 

and appear as a tissue interface). This would also explain why this 

phenomenon was not evident in preliminary trials using beef lard which is 

rendered (melted) in a way to form a solidified beef fat product that does 

not contain fat layers. This would also explain a lot of the positive bias of 

the errors produced by this sensing system (median = 4.5 mm), as well 

as the poor heteroscedasticity and linearity observed for this sensing 

system (R^2 = 0.1). It should be noted that this error was not due to 

human misinterpretation error, but the lack of deeper interfaces visibly 

present in the image due to the inability of soundwaves to pass through 

the air gap of the fat layer and therefore illustrated to be the deepest 

interface on the image. 

 

B-Mode ultrasound technology provided more information at each 

node through the representation of tissue measurements as an image as 

opposed to A-Mode which provided a numerical value. Though there is a 

degree of certainty that can be received through an image (e.g., seeing a 

continuous ‘line’ that would perhaps represent a tissue interface), 
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importantly the distinction between the fat-lean interface and an air 

pocket within the subcutaneous fat layers cannot be easily distinguished. 

The reliability performance metric (reliability = 12.7%) is likely to have 

been artificially inflated due to the perceived correctness of the fat-lean 

tissue interface identifiable within an image, when in reality, this 

assumption was incorrect due to this tissue interface being air pocket of a 

fat layer. The perceived attractiveness of this technology to provide more 

certainty in the information reported at each node was not seen to 

translate to a better performance.  

 

Though the decision to measure from the surface of the 

subcutaneous fat was sound based upon known parameters prior to the 

development of this system, the findings of these results suggest an 

alternative sensing configuration due to the issues of fat delamination. 

Instead, this sensing system should be applied measuring from the lean 

surface of the striploin, at a lower frequency setting, to avoid such biases 

caused by the delamination of subcutaneous fat layers of the beef 

striploin. Whilst it is believed that there will be false detections of intra-

muscular and inter-muscular tissue interfaces, the images collected in this 

study highlight that these are typically very different, and discrete, when 

compared to the continuous fat-lean interface (as opposed to air within 

fat layers mistakenly identified). 

 

The performance of B-Mode ultrasound in comparison to CT imaging 

is shown in Table 5-2. As expected, B-Mode ultrasound performed 

significantly worse in all performance metrics when compared to the gold 

standard of CT imaging except for response time. This comparison 

highlights that B-Mode ultrasound is approximately a magnitude of four 

times as inaccurate and imprecise as CT imaging, with a significantly 

disproportionate performance in linearity and reliability. Despite this, the 

response time of less than 3 seconds indicates the satisfaction of the 

response time metric that makes this a feasible technology for the 
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application of beef striploin fat trimming. In summary, the performance of 

this sensing system is defined below through applying the performance 

evaluation framework developed in Chapter 4 (see Table 5-3). 

 

Table 5-2: Comparison of fat measurements using B-Mode ultrasound and medical-CT imaging. 

Performance 
Metric 

Sensors for Fat Depth Measurement 

Medical-CT Imaging B-Mode Ultrasound 

Accuracy 

(𝐸𝑀𝐷𝑁) +1.2 mm +4.5 mm 

Precision 

( 𝐼𝑄𝑅(𝐸) ) 2.5 mm 10 mm 

Linearity 

( 𝑅2) 
0.93 0.1 

Reliability 

(𝑃𝑀)  0 % 12.7 % 

Response Time 

(𝑇𝑅)  10 min < 3 sec 
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Table 5-3: Sensor performance evaluation framework applied to B-Mode ultrasound sensing system. 

Performance 
Metric 

Quantity Performance Rank Metric 
Weighting 

Metric 
Score  

FAIL/POOR 

0 

FAIR 

1 

AVERAGE 

2 

GOOD 

3 

EXCELLENT 

4 

EXCEPTIONAL 

5 

Accuracy 

(𝐸𝑀𝐷𝑁) 
4.5 mm > 10 mm ≤ 10 mm ≤ 7.8 mm ≤  5.6 mm ≤  3.4 mm ≤ 1.2 mm 3 9 

Precision 

(𝐼𝑄𝑅(𝐸)) 
10.0 mm > 12.5 mm ≤  12.5 mm ≤ 9.5 mm ≤  6.5 mm ≤  4.5 mm ≤  2.5 mm 5 5 

Linearity 

(𝑅2) 
0.1 < 0.5 ≥ 0.5 ≥ 0.6 ≥ 0.71 ≥ 0.82 ≥ 0.93 2 0 

Reliability 

(𝑃𝑀) 
12.7% > 75% ≤ 75% ≤ 50% ≤ 25% ≤ 10% ≤ 1% 3 9 

Response Time 

(𝑇𝑅) 
< 3 sec >  15 sec ≤ 15 sec ≤ 7.5sec ≤ 3 sec ≤ 2 sec ≤ 1 sec 2 6 

B-Mode Ultrasound Sensor Performance Score 29 / 75 
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In general, when considering the weightings of these performance 

metrics, the B-Mode ultrasound sensing system is most significantly 

penalised for precision (5/25) and linearity (0/10), with “good” scores for 

accuracy (9/15), reliability (9/15), response time (6/10). The overall 

score of 29 / 75 will be used in the comparison between B-Mode and A-

Mode ultrasound sensing systems in Chapter 7. 

 

In terms of progression towards integration within an automated fat 

trimming system it is first recommended that the configuration to sense 

from the lean / medial surface of the striploin is trailed and evaluated 

using this framework. Pending the results of this evaluation, the 

ultrasound images acquired by the Butterfly iQ+ device can be sent to a 

laptop for image analysis to determine the depth of the tissue interface to 

then communicate this numerical value to a robotic trimming system to 

inform an automated cut path. 

 

5.6 Conclusion 

The analyses presented within this chapter provide a means of 

evaluating the use of B-Mode ultrasound technology as sensing system for 

automated fat trimming of beef striploin. This system was developed 

considering insights gained from Chapter 3 and 4 and evaluated using the 

performance evaluation framework presented in Chapter 4 that 

considered key performance metrics, weighted by importance, based 

predominantly upon the gold standard of CT imaging technologies for fat 

depth measurement. The B-Mode ultrasound sensing system achieved a 

29 / 75 performance rating which will be compared to the A-Mode 

ultrasound system in Chapter 7. The key future recommendation being 

using the ultrasound sensor to measure from the medial surface of the 

striploin to avoid measurement issues arising from the delamination of fat 

layers on the beef striploin.   



 

212 

CHAPTER 6: ANALYSIS OF A-MODE ULTRASOUND 

SENSING SYSTEM 

 

This chapter focuses on the development and evaluation of A-Mode 

ultrasound technology for measuring the fat depth of a beef striploin 

primal. The objective is to assess the capability of A-Mode ultrasound to 

be employed in an automated system for uniform fat trimming of beef 

striploin. By applying the sensor evaluation framework developed in 

Chapter 4, this chapter concluded upon the effectiveness of A-Mode 

ultrasound as a sensing modality for this application. The findings 

presented in this chapter contribute to the understanding of the potential 

of A-Mode ultrasound technologies and inform the design and optimization 

of future automated fat trimming systems. 

 

6.1 Introduction 

This section presents fundamental principles and practical 

considerations of A-Mode ultrasound, highlights the key design 

considerations outlined in the analyses of previous chapters (Chapter 3 

and 4), and presents the aims for the chapter. 

 

A-mode ultrasound has been the longest used ultrasound 

technology in the beef industry, used for over 40 years to measure 

subcutaneous fat depth assisting in automated meat processing systems 

(Pathak, Singh & Sanjay, 2011). Numerous recent studies comparing A-

Mode and B-Mode ultrasound suggest that the difference in accuracy of 

both modes for subcutaneous fat depth measurements is insignificant in 

most cases (Wagner et al., 2019; Wagner et al., 2020).  

 

Whilst B-Mode ultrasound can provide clarity through additional 

information (presented in nearby pixels of an image), the ambiguity of 

which tissue is being measured cannot be negated completely from A-
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Mode. The uncertainty of measuring the correct tissue interface is an 

inherent risk that accompanies the simplicity of this ultrasonic sensing 

technology, and the degree of this impact will be highlighted within this 

analysis.  

 

6.1.1 Chapter Aims 

The aims of this chapter were to develop and evaluate an A-Mode 

ultrasound system capable of measuring fat thickness and implemented 

within the context of an automated system.   

 

Key design considerations that were highlighted in previous 

explorative work presented in Chapter 3 & 4 will be implemented in the 

design of this system to provide insights towards how a A-Mode 

ultrasound sensing system may be developed. The performance of this 

system was evaluated through applying the sensor performance 

evaluation framework to conclude on its performance and compare with 

another sensing technology (B-Mode).  

 

6.2 Experimental Setup 

This section presents the preliminary analysis of the selected 

ultrasound sensor to demonstrate the feasibility of the chosen A-Mode 

ultrasound sensor considering insights from past analyses. This section 

outlines the methods employed for the data collection of acquiring sensor 

and manual fat depth measurements as well as the data analysis method 

implemented to evaluate the performance of the sensor according to the 

sensor evaluation framework developed in Chapter 4.  

 

6.2.1 Preliminary Investigation into Sensor Feasibility  

According to analyses summarised in previous chapters (Chapter 3 

& 4), it has been identified that the following parameters define a feasible 

sensor for measurement of fat depth for the context of automated beef 

striploin trimming:  
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- The sensor range / penetration depth of the ultrasound 

- Sensor Response Time 

- Fat Depth Measurements (in practice) 

 

As such, preliminary analyses within this section were conducted to 

confirm the feasibility of the chosen sensor prior to the development of a 

fat depth measurement system.  

 

As outlined in Chapter 3, the work conducted alongside industry 

was using ultrasound to measure from the lean muscle surface of the 

striploin (Khodabandehloo, 2018). The A-Mode ultrasound system 

evaluated utilised a 1 MHz A-Mode ultrasonic probe (classified) as shown 

in Figure 6-1. 

 

 

 

Figure 6-1: A-Mode ultrasound probe integrated into the fat depth sensing system. 

 

The probe was integrated into a A-Mode measurement system in 

previous work conducted alongside industry through research into the 

feasibility of automated striploin fat trimming (AMPC, 2018). The system 

used hardware to interpret ultrasound signals into measurements to be 

serially communicated into a laptop application that provides a graphical 
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interface for presenting A-Mode measurement information (see Figure 6-2 

& Figure 6-3).  

 

 

Figure 6-2: A diagram illustrating the A-Mode ultrasound system hardware. Source: 
Khodabandehloo, 2021). 

 

 

Figure 6-3: The software interface of the A-Mode ultrasound system. 

 

The system software also enabled the tuning of parameters to 

ensure that the most likely tissue echo, and its depth, could be measured. 

These parameters included: 

- offset to first peak (an offset used to ignore echoes that are too 

close to the ultrasonic transducer to be considered the fat-lean 

interface) 
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- threshold (a parameter that defines the amplitude of the echo 

that can be considered a tissue as opposed to signal 

disturbances) 

- hysteresis (an offset used to differentiate between tissues close 

to each other and produce similarly distanced echoes) 

- min. peak distance (an offset used to set the expected distance 

for which echoes are expected to be measured with the 

ultrasonic transducer) 

- meat temperature (temperature is considered to more accurately 

estimate tissue depth based upon slight variations in soundwave 

speed through the lean muscle)  

 

Sensing Range: The sensing orientation chosen for this 

experiment was from the lean surface to the fat lean interface. This 

decision was based upon the decision of industry research and 

development due to the presence of delamination in fat layers within the 

subcutaneous fat tissues that would introduce measurement error due to 

air bubbles disrupting ultrasound wave propagation (AMPC, 2018). The A-

Mode ultrasound measurement was taken upon locating the probe onto 

the lean meat surface at each measurement node. From the striploins 

surveyed the maximum height of the striploin primals was seen to be 103 

mm (within 97.5% confidence interval). As previously outlined in Chapter 

5, the relationship between ultrasound penetration depth and the 

soundwave frequency can be described below.  

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 500 (
𝑣𝑊

𝐷𝑃
), 

 

Considering the maximum depth of penetration as 103 mm 

(0.103m), and the velocity of soundwave propagation through 

subcutaneous fat as 1,450 m/s (Johnson & Wales University, 2019): 
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 500 (
1450

0.103
), 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝐷𝑒𝑝𝑡ℎ , 𝑓𝐷 ≤ 7.04 𝑀𝐻𝑧, 

 

 The A-Mode ultrasound probe transmits 1 MHz soundwaves (less 

than 7.04 MHz), and hence was determined to provide the penetration 

depth required for this application within the chosen configuration. 

 

Sensor Response Time: The response of this ultrasound device 

was measured to be less than 1 second to acquire the measurements of 

the A-Mode ultrasound into a laptop (and robot operating system), and so 

this was considered feasible for this consideration. 

 

Fat Depth Measurements: In general, prior to development all 

sensors were evaluated in preliminary trials to confirm that the sensor 

was able to provide fat depth readings. This was conducted through a 

number of preliminary trials at the premises of the University of Southern 

Queensland to test that measurement data was indicative of fat depth 

measured in beef striploin primals. During these preliminary trials the 

methodology of this chapter was formed and applied for 4 striploins which 

showed ultrasound measurements aligned with manual ruler-derived 

measurements. 

 

6.2.2 Experimentation 

Experiment Samples: A random selection of sixteen LHS and four 

RHS striploin primals (#1 – 16) deemed to be ‘typical’ of the collaborating 

processor untrimmed striploins were chosen for this experiment (see 

Table 6-1). These were taken from the processing line on a typical 

production run of the collaborating processor and temporarily stored on a 

bench prior to sensing.   
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Table 6-1: Striploin dataset for the analysis of A-Mode ultrasound sensing. 

 

  

Node Marking: A stainless steel plate, referred to as the ‘striploin 

plate’, was designed and manufactured from 5 mm thick 316L stainless 

steel plate to be integrated with a food-grade compatible robotic system 

(see Figure 6-4). The striploin plate was designed with 22 mm slots to 

ensure the ultrasonic probe (20 mm in diameter) could be protruded 

through the plate and into the lean (medial) surface of the striploin. These 

slots were spaced at 37 mm (centre-to-centre) which was found to 

provide measurement nodes at a close proximity whilst restricting plate 

deflection under the striploin weight which would complicate programming 

precise positioning of the ultrasound probe. The first iteration of this 

‘striploin plate’ was made with holes, though the use of slots enabled 

adjustment of measurement nodes lengthwise if needed during 

prototyping. 
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Figure 6-4: The 'striploin plate' developed for locating the striploin in the workspace of the robot 
arm. 

The measurement node spacing lengthwise was chosen to be 50 

mm to balance cycle time and measurement node mesh resolution. The 

spacing for this node mesh was 50 mm in the X direction (across the 

length / medial-lateral anatomical plane of the striploin) and 37 mm in 

the Y direction (across the width / caudal-cranial anatomical plane of the 

striploin). The origin of the measurement node mesh was determined by 

the first nylon bolt hole (in the X direction) and the first slot (in the Y 

direction) with reference to the striploin located against the nylon bolts 

that were assembled on the striploin plate. The position of these 

measurement nodes is shown in Figure 6-5. The robotic system that was 

used to position the sensors to acquire measurements at the 

measurement nodes is shown in Figure 6-6. 
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Figure 6-5: The measurement node locations in reference to the nylon bolts used for locating the 
striploin on the ‘striploin plate’. 

 

 

Figure 6-6: The experimental setup inside the collaborating processor’s facility using a manipulator 
arm robot to position sensors at measurement nodes. 
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In addition to numbering each node (i, j), based upon its x and y 

coordinate the terminology of “point” (y) and “face” (x) was used. Due to 

the large fat deposits along the tail of the striploin (flank / ventral edge) it 

was decided that measurement nodes at these locations were not too 

important or crucial. As such, this edge was aligned to the nylon bolts 

running lengthwise along the plate which had a 48 mm distance from this 

edge to the first row of measurement nodes. No cross-sectional face 

(rump / rib) was prescribed to be aligned to the nylon bolts running 

widthwise along this plate. For this measurement node mesh a ‘typical’ 

striploin of 388 – 456 mm in length and 221 – 309 mm in width (as 

defined in Chapter 3) would have approximately a measurement node 

mesh of 4 x 7 (28 nodes) and 7 x 8 (56 nodes) respectively. 

 

Literature suggests the clear link between temperature and 

soundwave propagation through lean muscle and subcutaneous fat (Diaz-

Almanza, 2021). Therefore, the experiments were conducted within the 

processor’s facility (near the processing line), which ensured that a 

temperature-controlled environment was adhered to. In addition to this, 

there was no need for plastic wrapping of the striploins which were 

sourced minutes before the trial from the processing line and would not 

be susceptible to moulding the shape of the vacuum bag.  

 

During the fat depth measurement process the red dot of the LiDAR 

(Light Detection and Ranging) sensor mounted above the striploin was 

used to mark the location of the node measurement on the subcutaneous 

fat using black, food-grade gel. These markings were used later to align 

the node location of the A-Mode ultrasound measurements with manual 

measurements (see Figure 6-7).  
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Figure 6-7: Marking measurement nodes using laser dot to cross-reference manual and ultrasound 
(A-Mode) measurements. 

 

Fat Depth Measurements using A-Mode Ultrasound: A 304 

stainless steel bracket assembly was designed with CAD software and 

manufactured to locate the A-Mode ultrasound probe and a LiDAR 

distance measurement sensor along the same axis using a manipulator 

arm robot. Of this assembly, the key bracket referred to the ‘C-Arm’, was 

designed to enable both sensors (A-Mode ultrasound and LiDAR) to align 

measurement axes to ascertain the fat depth at the particular node (see 

Figure 6-8 & Figure 6-9). This was manufactured from 5 mm stainless 

steel 304 plate.  
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Figure 6-8: C-Arm bracket designed for positioning ultrasound sensor at nodes on the striploin 
plate. 

 

 

Figure 6-9: LiDAR and ultrasound sensors assembled onto the C-Arm bracket. 

 

Two sets of sensor pairs (LiDAR and ultrasound probe) were 

attached to the C-Arm and used simultaneously to enable a larger amount 

of measurement nodes to be measured within the constraints of the robot 

reach. These were mounted on positions on the C-Arm to measure the 

following simultaneously as shown in Figure 6-10. 
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Figure 6-10: Sensing configuration using 2 sets of ultrasound probes (A-Mode) and LiDAR to 

ascertain fat thickness. 

 

Using this configuration, at each node the position of the surface of 

the subcutaneous fat (referred to as ‘fat height’) was calculated by 

considering the distance measurement from the LiDAR sensor to the 

subcutaneous fat and the known height of the LiDAR sensor above the 

striploin plate when the measurement was acquired (illustrated in Figure 

6-11). This method provided a simple means of ascertaining the fat 

height at each node with the LiDAR sensor. The ultrasound measurement 

provided the measurement from the lean surface of the striploin to the 

fat-lean interface of the striploin (referred to as ‘meat height’). Through 

calculating the differential distance between the meat height and fat 

height the fat depth, or fat thickness, could be ascertained. This is 

illustrated in Figure 6-12. 
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Figure 6-11: An illustration of the calculation of fat height (FH) using the LiDAR sensor. 

 

 

Figure 6-12: An illustration of the calculation of fat depth using the LiDAR and ultrasound sensors 

in this configuration. 
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The precise positioning of the sensing axes of the sensors mounted 

on the C-Arm was conducted through defining node positions in 3-

dimensional space with a 6-axis manipulator arm robot (ABB IRB140). 

These node points were taught within the robot program precisely in 3D 

space using stainless steel rulers, laser sights and spirit levels to ensure 

alignment errors were not introduced in measurements (see Figure 6-13).  

 

 

Figure 6-13: The measurement node locations were precisely taught into the robot coordinate 
system in 3D space using laser levels.  

 

Upon a programmatic trigger, the ultrasound measurements were 

acquired within the device software and displayed graphically on a laptop 

application. Preliminary trials using the ultrasound sensor with numerous 

striploin samples identified the following parameter settings enabled this 

sensor to work most consistently and accurately:   

- offset to first peak: 20 

- threshold: 6 

- hysteresis: 6 

- min. peak distance: 3 

- meat temperature: 8 
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The software filtered for the largest measurement result and 

returned this measurement as this would provide a means of filtering for 

reflections caused by tissue variances within the lean muscle. It is 

assumed that the largest measurement result links to the echo reflection 

of ultrasound wave at the fat-lean interface. As illustrated in Figure 6-14, 

this method has the possibility to introduce errors to fat depth estimations 

when a delamination in the subcutaneous fat of the striploin returns a 

strong echo (due to an air gap). As highlighted in Chapter 3, the 

phenomenon of air gaps within the subcutaneous fat layers were found to 

be uncommon in the striploins surveyed in this experiment. 

 

 

Figure 6-14: An illustration of the scenario whereby the chosen filtering method of the A-Mode 

ultrasound measurements would, and would not, work to accurately estimate fat depth.  

 

This distance measurement (MH), as well as the calculated fat 

height measurement derived using the LiDAR sensor measurement (FH), 

was recorded within a sensing matrix of the robot indexed to store these 

measurements in2-dimensional matrices corresponding to the physical 

node position (i, j). Each measurement was returned to the TeachPendant 
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as the robot was progressed through each measurement node (see Figure 

6-15). 

 

 

Figure 6-15: Measurements displayed using the robot movement program. 

 

At the conclusion of each sensing cycle, the fat thickness (FTH) 

matrix was calculated using values stored within the meat height (MH) 

and fat height (FH) matrices before these matrices were exported as a 

comma-separated-value (“.csv”) file that was transferred to a laptop 

through a wired ethernet connection.  

 

Fat Depth Measurements using a Ruler: The process of 

acquiring fat thickness measurements through a manual process using a 

stainless-steel ruler was similar to that outlined in Chapter 3.  

 

After A-Mode ultrasound measurements were acquired and saved in 

a file a dissection of the striploin was made across the cross-sectional face 

of the striploin at each 50 mm face. A stainless-steel ruler was then used 

to record manual fat depth at each node which was recorded in an Excel 

spreadsheet for post-experiment analysis. A plastic 10 x 10 mm grid was 

placed against each of these cross-sectional faces to provide a cross-
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referenceable record of the fat depth at each node and photographed for 

each face (see Figure 6-16).  

 

 

Figure 6-16: Each cross-section was photographed with a plastic grid to provide cross-
referenceable measurements. 

 

6.3 Experimental Analysis 

This A-Mode ultrasound sensing system was evaluated against the 

sensor performance evaluation framework developed in Chapter 4 (see 

Table 4-9). Though, due to the configuration of the ultrasound providing 

meat height (MH) values, which were then used to calculate fat depth, the 

error between manual and ultrasound measurements of meat height (MH) 

were considered. In preliminary trials LiDAR was seen to be highly 

consistent and a well-proven technology. Hence the following equation 

was used to calculate error for this analysis (see Equation 6.1). 

 

Equation 6.1: Calculation of Error for A-Mode ultrasound considering meat height. 

𝐸𝑟𝑟𝑜𝑟, 𝐸𝑀−𝑈𝑆𝐴
 =  𝑀𝐻𝑀 − 𝑀𝐻𝑈𝑆𝐴

 

 

where:  

𝑀𝐻𝑀   = the height of the fat-lean interface measurement 

acquired manually using a ruler (considered the reference 

value) 
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𝑀𝐻𝑈𝑆𝐴
 = the depth measurement acquired using the A-Mode 

ultrasound sensor (considered the estimated value) 

 

 As outlined in Chapter 4 the performance metrics were calculated 

using the equations specified below:  

- Accuracy: Median of Error dataset (see Equation 4.3). 

- Precision: IQR of Error dataset (see Equation 4.4). 

- Linearity: Coefficient of Determination (see Equation 4.5). 

- Reliability: The ‘Miss Rate’ of the sensor (see Equation 4.7). 

- Response Time: The time required to acquire a measurement. 

 

 For reliability, the total number of nodes were considered as the 

number of nodes that  lean muscle was measured. In some cases, there 

were no parts of the striploin over a node, where the striploin did not 

have a lean muscle interface measurable. Therefore, at the nodes that 

there was the capability of ultrasound measurement, and the device 

provided an error value this was considered a ‘missed’ instance. In 

preliminary trials it was identified that the following values that were 

returned by the ultrasound system were typically error values (11-12, 13-

17, 24-28). As such, these values will be defined as ‘no value’ missed 

measurements. 

 

During the preliminary investigation this sensor was deemed 

capable to measure at a response time less than 3 seconds, appropriate 

for this application (𝑇𝑅 ≤   15 𝑠𝑒𝑐). 

 

 

 

 

 

 



 

231 

6.4 Results 

 

Through evaluating the A-Mode ultrasound and ruler measurements of 

16 striploins (RHS: 4, LHS: 12) a total data set of 477 nodes were 

measured. 

 

 The error measurement dataset (𝐸) was calculated to create a 

means of evaluating the distribution of error between the ruler (𝑓𝑅) and A-

Mode ultrasound (𝑓𝑈𝑆−𝐴) fat thickness measurements. Key statistical 

measures are presented for the unfiltered dataset, and the 1.5 IQR 

filtered dataset (see Table 6-2). 

 

Table 6-2: Statistical summary of error dataset (E) between ruler and USA measurements (n = 
216) 

Statistics 
Unfiltered 
Dataset 

Filtered 
Dataset 

Minimum of Error Dataset, 𝑄0(𝐸) -21.7 mm -21.7 mm 

25th percentile of Error Dataset, 𝑄1(𝐸) -0.8 mm -0.8 mm 

Median of Error Dataset, 𝑄2(𝐸) 1.7 mm 1.6 mm 

Mean of Error Dataset, (𝐸̅) 3.6 mm 1.8 mm 

75th percentile of Error Dataset, 𝑄3(𝐸) 3.2 mm 2.9 mm 

Maximum of Error Dataset, 𝑄4(𝐸) 62.8 mm 30.9 mm 

Interquartile Range of Error Dataset, 𝐼𝑄𝑅(𝐸) 3.9 mm 3.7 mm 

Standard Deviation of Error Dataset, 𝑆𝐷(𝐸) 10.6 mm 6.1 mm 

Range of Error Dataset, 𝑅𝑎𝑛𝑔𝑒(𝐸) 84.5 mm 52.6 mm 

Lower Outlier of Error, 𝑄1(𝐸) − 1.5𝐼𝑄𝑅(𝐸) -6.7 mm -6.5 mm 

Upper Outlier of Error, 𝑄3(𝐸) + 1.5𝐼𝑄𝑅(𝐸) 9.1 mm 8.8 mm 

 

 Seven lower bound and 19 upper bound outliers were identified in 

this dataset and removed for the creation of the filtered dataset: 

Lower Outliers (≤  −6.7 𝑚𝑚): -7.7, -12.4, -21.7, -17.1, -11.5, -7.2, -13.4 

Upper Outliers (≥  9.1 𝑚𝑚): 62.8, 43.8, 30.9, 41.4, 38.5, 37.1, 29.7, 17.0, 

46.3, 21.5, 46.3, 28.9, 12.8, 10.9, 28.4, 20.7, 28.8, 9.5, 49.1, 

 

Filtering the outliers from this dataset, and comparing it to the 

unfiltered dataset, the general trends and error characteristics differed 
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significantly around the mean, though were similarly around the median 

(see Figure 6-17). 

 

 

Figure 6-17: Statistical summary of error measurement datasets (unfiltered vs filtered) 

 

With only a very slight reduction of IQR (precision) of 0.4 mm due 

to the impact of outliers (mostly upper-bound outliers) causing the spread 

to be further towards positive errors (A-Mode ultrasound under-

estimating the meat height, and therefore through calculations, over-

estimating fat depth measurements). For the purposes of evaluating the 

accuracy (median) and precision (IQR), the effect of outliers was deemed 

negligible. As such, the unfiltered dataset was concluded to be 

representative of the fat depth measurements and therefore used for 

further analysis. Though, for optimisation of the use of A-Mode ultrasound 

this should be considered further. This reiterates the decision of using 

median error as opposed to average error to compare sensors for this 

thesis. 
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The unfiltered dataset was plotted on a histogram using bin widths 

of 1.5 mm, with excess bins being used to group lower and upper bound 

outliers (see Figure 6-18). 

 

 

Figure 6-18: Error distribution of unfiltered data showing a non-normal distribution. 

 

As supported within literature, this error distribution is not normally 

distributed, and is negatively skewed, showing a bias for A-Mode 

ultrasound to measure meat height less than the ruler quite consistently, 

and thus would provide an over-estimation of fat depth. The central peak 

at +2 to 3 mm error supports that there are no underlying subgroups 

trends in the dataset except for the positive outliers highlighted 

previously.   

 

For this dataset the error of the A-Mode ultrasound measurements 

compared to the manual measurements (𝐸𝑅−𝑈𝑆𝐴
) was calculated to be 3.6 

mm and 1.7 mm for the average and median error respectively. The large 
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change in the average of error from 3.6 to 1.7 mm (change of 1.9 mm) in 

comparison to the median from 1.7 to 1.6 mm identifies the large amount 

of bias created by the sensor, or the filtering applied to acquire a 

measurement from the A-Mode ultrasound system. 

 

As a benchmark of accuracy and precision, A-Mode ultrasound is 

concluded upon with the following measures:  

 

Accuracy:  Median of Error, 𝑬𝑴𝑫𝑵    = +1.7 mm 

Precision:  Interquartile Range of Error, 𝑰𝑸𝑹(𝑬)  = 3.9 mm 

 

 

The measurement error across the range of measurements acquired 

is illustrated in Figure 6-19. Firstly, it can be seen that A-Mode ultrasound 

was able to measure at any depth required within this analysis. For this 

subset of striploins, the minimum range and maximum ranges were found 

to be 18 mm and 83 mm respectively. 

 

 

Figure 6-19: The A-Mode ultrasound (USA) vs actual (Ruler) measurement plot. 
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The correlation of determination (𝑅2) value of this linear regression 

for the error dataset is vastly different when error outliers are removed: 

0.55 to 0.96 (see Figure 6-19). This illustrates that the majority of the A-

Mode measurements closely align with the manual measurements, though 

the few outliers significantly weight the trendline towards 

underestimation. Additionally, that there are a few clusters of datapoints 

that have a high modality in the sensor measurement that are 

significantly dissimilar to the reference (manual) measurement. This 

occurs when A-Mode ultrasound measurements are at approximately 20 

mm, and 33 to 38 mm. 

 

A further analysis of heteroscedasticity is visualised within Figure 

6-20 & Figure 6-21 which both show a slight to moderate increase in 

variation of error across the range of reference measurements. Though 

error in general does not substantially increase, the error magnifies with a 

positive linear correlation the larger the measurement for outlier error 

measurements. These are trends that indicate a systemic underestimation 

of measurements and will be further discussed in the following 

subsection.  

 



 

236 

 

Figure 6-20: Residual Error Plot of USA-Ruler Dataset (in mm) 

 

Figure 6-21: Residual Relative Error Plot of USA-Ruler Dataset (%) 

 

As a benchmark of linearity in the measurement range, A-Mode 

ultrasound was found to exhibit the following performance:  
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Range Requirements: 

Found to be feasible in preliminary analyses. 

 

Linearity:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 ≡  𝑅2 = 0.55 

 

 

There were a number of instances whereby the A-Mode ultrasound 

returned an error value identified in preliminary trials as 11-12, 13-17, 

24-28. From the 477 nodes of potential measurements, 261 nodes did not 

have a measurement acquired. As such, the miss rate (𝑃𝑀) for A-Mode 

ultrasound was concluded to be as follows:  

 

As a benchmark of reliability, A-Mode ultrasound is concluded upon 

with the following measures:  

 

Reliability: 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒, 𝑃𝑀   =
261

477
 ∗  100% =  55% 

 

As previously presented, it was identified that the response time of 

the A-Mode ultrasound system was approximately less than 1 second.  

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒, 𝑇𝑅  ≤   1 𝑠𝑒𝑐𝑜𝑛𝑑 

 

6.5 Discussion 

An analysis of A-Mode ultrasound results highlight the narrow 

distribution of error around zero which indicates that the sensor returned 

accurate measurements on average, though slightly skewed with positive 

error (median error = 1.7 mm). The narrow spread of error (IQR of error 

= 3.9 mm) illustrates the quite high precision of this sensor to provide 

measurements that closely represent manual measurements.  
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The presence of nineteen upper-bound outliers (>9.1 mm), with 

only seven lower-bound outliers (-6.7 mm), insignificantly skewed the 

data towards higher positive error values. Although the elimination of 

these outliers did very slightly reduce the overall inaccuracy (median 

error reduced from 1.7 mm to 1.6 mm) and imprecision (IQR of error 

reduced from 3.9 mm to 3.7 mm), the difference in overall trends were 

between outlier-filtered (+-1.5 IQR) and unfiltered datasets was 

negligible. Upon further analysis of these outliers, it was identified that 

there were likely ‘error’ values returned by the A-Mode ultrasound 

labelled at approximately 20 mm, and 33 to 38 mm. Though the further 

optimisation of these prototype systems is out of scope for this work it 

may be that by classifying any A-Mode ultrasound measurement less than 

24 mm as an “error value” would remove 5 of the 19 upper-bound 

outliers and increase the accuracy, precision, and linearity (𝑅2 = 0.55), 

though decrease the reliability (reliability = 55%) of this A-Mode 

ultrasound system. It is possible that the significant, though few, outliers 

were either stray measurements that incidentally measured intra-

muscular fat tissue or even error codes of the device (due to the high 

modality of few readings). 

 

The A-Mode ultrasound technology provided less information at 

each node (a single numerical value), though with a significantly faster 

response time is likely to provide measurements at more node locations. 

This is advantageous for a fat trimming system as it provides a capability 

to better represent the fat depth in finer resolution across the striploin 

with high fat depth variability. Though less information is provided at each 

node using A-Mode ultrasound, there is a degree of certainty that can be 

ascertained through considering the spatial and biological relationships of 

fat depth across the beef striploin. The implementation of interpolation to 

estimate fat depth at various “missed” measurement nodes is a powerful 

technique that is recommended for further investigation. 
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It is important to recognise that these performance metrics should 

not be considered in absolute terms, but relatively to the performance of 

the gold standard (medical-CT imaging) considered for this application. A 

comparison of the A-mode ultrasound results against the gold standard is 

shown in Table 6-3. A-Mode ultrasound performed comparatively similar 

to the gold standard in a number of performance metrics. This 

comparison highlights that A-Mode ultrasound is approximately 42% less 

accurate and 56% less precise as CT imaging, with a significantly 

disproportionate performance in linearity and reliability. Despite this, the 

response time of less than 1 second indicates the satisfaction of the 

response time metric that makes this a feasible technology for the 

application of beef striploin fat trimming. In summary, the performance of 

this sensing system is defined below through applying the performance 

evaluation framework developed in Chapter 4 (see Table 6-4). 

 

Table 6-3: Comparison of fat measurements using A-Mode ultrasound and medical-CT imaging. 

Performance 
Metric 

Sensors for Fat Depth Measurement 

Medical-CT Imaging A-Mode Ultrasound 

Accuracy 

(𝐸𝑀𝐷𝑁) +1.2 mm +1.7 mm 

Precision 

( 𝐼𝑄𝑅(𝐸) ) 2.5 mm 3.9 mm 

Linearity 

( 𝑅2) 0.93 0.55 

Reliability 

(𝑃𝑀)  0 % 55 % 

Response Time 

(𝑇𝑅)  10 min < 1 sec 
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Table 6-4: Sensor performance evaluation framework applied to A-Mode ultrasound sensing system. 

Performance 
Metric 

Quantity Performance Rank Metric 
Weighting 

Metric 
Score  

FAIL/POOR 

0 

FAIR 

1 

AVERAGE 

2 

GOOD 

3 

EXCELLENT 

4 

EXCEPTIONAL 

5 

Accuracy 

(𝐸𝑀𝐷𝑁) 
1.7 mm > 10 mm ≤ 10 mm ≤ 7.8 mm ≤  5.6 mm ≤  3.4 mm ≤ 1.2 mm 3 12 

Precision 

(𝐼𝑄𝑅(𝐸)) 
3.9 mm > 12.5 mm ≤  12.5 mm ≤ 9.5 mm ≤  6.5 mm ≤  4.5 mm ≤  2.5 mm 5 20 

Linearity 

(𝑅2) 
0.55 < 0.5 ≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.93 2 2 

Reliability 

(𝑃𝑀) 
55% > 75% ≤ 75% ≤ 50% ≤ 25% ≤ 10% ≤ 1% 3 3 

Response Time 

(𝑇𝑅) 
< 1 sec >  15 sec ≤ 15 sec ≤ 7.5sec ≤ 3 sec ≤ 2 sec ≤ 1 sec 2 10 

A-Mode Ultrasound Sensor Performance Score 47 / 75 
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In general, when considering the weightings of these performance 

metrics, the A-Mode ultrasound sensing system is most significantly 

penalised for reliability (3/15) and linearity (2/10), with “excellent” scores 

for accuracy (12/15), precision (20/25), and “exceptional” for response 

time (10/10). The overall score of 45/75 will be used in the comparison 

between B-Mode and A-Mode ultrasound sensing systems in Chapter 7. 

 

In terms of progression towards integration within an automated fat 

trimming system it is concluded that this sensing system is capable for fat 

depth measurement to a high degree of accuracy and precision, and this 

chapter has outlined a means of integrating this sensing system into an 

automated trimming system (see Section 6.2). 

 

6.6 Conclusion 

The analyses presented within this chapter provide a means of 

evaluating the use of A-Mode ultrasound technology as sensing system for 

automated fat trimming of beef striploin. This system was developed 

considering insights gained from Chapter 3 and 4 and evaluated using the 

performance evaluation framework presented in Chapter 4 that 

considered key performance metrics, weighted by importance, based 

predominantly upon the gold standard of CT imaging technologies for fat 

depth measurement. The A-Mode ultrasound sensing system achieved a 

49 / 75 performance rating which will be compared to the B-Mode 

ultrasound system in Chapter 7. The key future recommendation being 

the implementation of filtering and fat depth interpolation based upon 

spatial and biological relationships of tissues within the beef striploin.   
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CHAPTER 7: CONCLUSION 

 

This chapter concludes upon the processes and methodologies 

employed to develop, evaluate and implement a system to measure or 

estimate the fat depth of a beef striploin primal. The results of each 

system are compared and recommendations upon the most promising 

technology and technique for implementation upon automated beef 

striploin fat trimming is provided. A reflection is provided upon further 

work, both particular to beef striploin fat trimming and alternative tasks in 

the red meat processing industry. 

 

7.1 Achievement Against Research Objectives 

The research presented in this thesis provided the following insights 

and conclusions upon the research objectives. 

 

7.1.1 Review of Sensing Technologies for Uniform in Fat Trimming. 

 

Objective 1: To identify the most feasible sensing technologies for 

the application of automated uniform fat trimming of beef striploin 

through conducting a literature review (see Chapter 2). 

 

The objective of identifying the most feasible sensing technologies for 

the application of automated uniform fat trimming of beef striploin is met 

through a literature review that recommends ultrasound as the most 

promising technology for this task. The recommendations were based on 

criteria considered fundamental to the automated fat trimming system 

with assigned weightings. 

 

The literature review identified two ultrasound-derived sensing 

systems (B-Mode and A-Mode) to be tested for measuring fat depth. The 

literature review also identified gaps in knowledge related to the 
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benchmarking and evaluation of sensing technologies for this application 

and the key processing requirements and product considerations of the 

uniform fat trimming process. This review emphasizes the need for 

further examination of the process and the beef striploin primal to define 

the performance requirements at a more detailed level. This 

understanding will guide the development of a methodology to assess and 

compare the performance of these ultrasound sensors, which are outlined 

in detail in Chapter 4. 

 

Furthermore, the review establishes medical CT, as shown in the 

research assessing X-ray technologies for red meat processing, as the 

'gold standard' in sensing systems. This provides a benchmark for the 

optimal sensing performance and a basis for evaluating the performance 

of practical technologies like ultrasound. Therefore, the literature review 

effectively answers the objective by identifying ultrasound as the most 

feasible technology and outlining steps for its development and evaluation 

in the context of automated uniform fat trimming of beef striploin. 

 

7.1.2 Provide insights from the analysis of striploin characteristics 

and trimming task. 

 

Objective 2: To define the key parameters that inform the system 

capabilities for the task of uniform fat trimming of beef striploin through 

analysing fat characteristics and industry standards.  

 

The striploin primal's dimensions, particularly width and weight, 

vary considerably due to human error in approximation and the cranial/rib 

face curvature, impacting the system's sensing capabilities. Moreover, the 

condition of the fat cover also varies, but with a 10% probability of fat 

tears affecting system measurements, this factor is considered 

insignificant. 
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The average processing time for fat trimming is 27 seconds, serving 

as a critical benchmark for an automated system's response time. 

Furthermore, the analysis identifies that non-real-time 'bridging' and 

'planing' techniques are required, suggesting that sensing is required for 

path planning the trajectory of the trimming blade. 

 

Analysis of the subcutaneous fat depth uncovers important 

characteristics for developing a suitable sensing system. The mean fat 

depth is 16 mm, with most measurements falling between 0 - 32 mm. 

These insights help to define the penetration depth range of an ultrasound 

sensor. 

 

Spatial relationships of fat depth distribution across the striploin 

could assist in the optimization of node locations, indicating that many 

nodes could be omitted from the automated system's sensing and 

trimming processes. Key spatial insights presented in Chapter 3 show that 

there are various locations that have very little fat thickness (typically up 

to 50 – 75 mm along the spine edge) that likely don’t require as high a 

sensing resolution than other areas (or sensing in general). There are 

other areas of the striploin that show high fat variability (50 – 200 mm 

from the caudal face and from past 75 mm from the spine edge to the 

flank edge) that suggest a small node mesh spacing for a higher 

resolution to trim closer to the fat-lean interface. The fat distribution's 

normality and observed spatial patterns suggest spatial modelling could 

enhance fat depth estimations and apply generalised cut path and fat 

depth learnings across processors. Finally, due to the gradient of fat 

thickness on the striploin it was identified that the least complex 

orientation for trimming is along length of the striploin. 

 

This foundation aids the description of parameters for a sensor 

performance metric, ultimately informing the development of feasible 

ultrasonic sensors within sensing systems. 
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7.1.3 Establishment of sensor performance evaluation metric 

specific to uniform fat trimming automation.  

 

Objective 3: To establish a framework for evaluating sensor 

performance that outlines the process of ranking sensors against metrics 

important for the automation of beef striploin fat trimming (see Chapter 

4). 

 

The section presents a clear framework to evaluate sensor 

performance for automated beef striploin fat trimming. This framework 

outlines a set of key metrics - Accuracy, Precision, Linearity, Reliability, 

and Response Time - each with specific weightings reflecting their 

importance to the system's performance. 

 

Accuracy and Precision, both with a weighting of 3, assess the 

deviation between the sensor's measurements and the manual 

measurements, while Linearity, with a weighting of 2, examines the 

degree to which the sensor's measurements correspond with the 

reference measurements. Reliability, also weighted at 3, evaluates the 

proportion of measurements missed by the sensor. Finally, Response 

Time, weighted at 2, gauges the sensor's speed by observing the 

developed sensing system. These metrics and their corresponding 

weightings collectively provide a comprehensive set of criteria to measure 

the performance of sensors in an automated beef striploin fat trimming 

system. Using medical-CT imaging as the gold standard, this framework 

sets the thresholds for each metric. 

 

The framework was applied to evaluate the candidate sensing 

technologies with reference to this gold standard. This consistent 

application of the evaluation framework facilitated the means of a direct 

comparison between the sensors, guiding the selection of the most 

suitable sensor for this specific application. 
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7.1.4 Development of ultrasound systems to evaluate performance 

for automation implementation.  

 

Objective 4: To develop, implement and evaluate novel ultrasound 

sensing systems capable of integration into an automated system to 

measure fat depth across an untrimmed beef striploin. 

 

Insights gained from analysing the untrimmed beef striploin primal, 

the final specifications of the striploin product and the trimming sub-tasks 

and timing were used to define a means of ascertaining the feasibility of a 

sensor prior to development. Preliminary experiments were performed 

with each sensor to determine the best configuration for the sensor with 

respect to the striploin to achieve their best against the evaluation 

criteria. 

 

7.1.5 Evaluation of systems to conclude upon the technologies’ 

appropriateness for this application.  

 

Objective 5: To conclude upon evaluations of sensing systems and 

provide recommendations to inform the development of practical sensing 

systems for integration into an automated system capable of uniform fat 

trimming of beef striploin. 

 

The preceding chapters of this dissertation have provided a 

comprehensive and in-depth analysis of two distinct ultrasound 

technologies, A-Mode and B-Mode, and their viability as sensors for 

automated fat trimming in bovine striploin using the developed 

performance evaluation framework (see Table 7-1).  
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Table 7-1: Comparative evaluation of A-Mode & B-Mode ultrasound systems. 

Performance 
Metric 

Importance 
Weighting 

Sensors Evaluated 

B-Mode Ultrasound A-Mode Ultrasound 

Accuracy 

(𝐸𝑀𝐷𝑁) 3 

+4.5 mm 
 

[SCORE = 9] 

+1.7 mm 
 

[SCORE = 12] 

Precision 

( 𝐼𝑄𝑅(𝐸) ) 5 

10 mm 

 
[SCORE = 5] 

3.9 mm 

 
[SCORE = 20] 

Linearity 

( 𝑅2) 2 

0.1 

 

[SCORE = 0] 

0.55 

 

[SCORE = 2] 

Reliability 

(𝑃𝑀)  3 
12.7 % 

 

[SCORE = 9] 

55 % 
 

[SCORE = 3] 

Response Time 

(𝑇𝑅)  2 
< 3 sec 

 
[SCORE = 6] 

< 1 sec 

 
[SCORE = 10] 

Sensor Score ( / 75) 29 47 

 

 

Through this comparison it was identified that A-Mode was 

performed better than the B-Mode ultrasound sensing system overall with 

an overall score of 47 as opposed to 29. In comparison to B-Mode, A-

Mode performed 2 ranks better in precision, and response time, one rank 

better in accuracy and linearity, but 2 ranks worse in reliability. Whilst 

both error datasets showed positive error compared to reference 

measurements to underestimate fat depth, B-Mode had significantly 

higher median and IQR in addition to indications of systemic error due 

likely to fat delamination within the striploin.   
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In principle, B-Mode ultrasound was hypothesised to perform better 

than A-Mode due to the capability to provide certainty through providing 

greyscale images to discern tissue interfaces for measurement. Whilst B-

Mode ultrasound did perform significantly better in the reliability 

performance metric, 55% in comparison to 12.7%, due to the imitation of 

delaminated fat layers as the fat-lean interface, this did not assist. It is 

very likely that the false confidence of tissue discernment deflated the 

actual number of “missed” measurements, and therefore inflated the 

reliability performance and deflated the accuracy and precision 

performance of B-Mode ultrasound. This was not due to human 

misinterpretation error, but the lack of deeper interfaces visibly present in 

the image due to the inability of soundwaves to pass through the air gap 

of the fat layer and therefore illustrated to be the deepest interface on the 

image. 

 

Despite yielding less information at each node, though this analysis 

found this not to be useful, the significantly faster response time and the 

ability to provide measurements at more node locations present a distinct 

advantage. The fat variability identified in Chapter 3 supports the notion 

that the increased number of nodes is valuable, if possible, for 

representing the fat depth contour across the untrimmed beef striploin.  

 

In terms of integration into an automated fat trimming system, both 

technologies present unique challenges and opportunities. For B-Mode the 

recommendation is to trial a configuration sensing from the lean surface 

of the striploin, aiming to circumvent issues related to fat delamination. 

Conversely, A-Mode shows promise for immediate integration given its 

high degree of accuracy, precision, and response time. 

 

The two sensing technologies represent different strategies in the 

trade-off between providing richer data (B-Mode) and speedier, more 

precise measurements (A-Mode). With a different measurement 
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configuration to that employed in this research (from the lean surface), B-

Mode offers potential for more detailed understanding of the fat layer. 

Though, this could be at the expense of efficiency and overall 

effectiveness in a real-world, fast-paced meat processing environment. 

Furthermore, the data complexity may increase the probability of 

measurement errors and the difficulty of interpretation. On the contrary, 

A-Mode, despite providing less information at each node, delivers 

measurements with higher speed and precision. The capacity of this 

technology to effectively capture the fat depth variability across the 

striploin, combined with its quick response time, make it particularly 

suited for an environment where high-throughput and precision are 

paramount. In addition, the relatively straightforward data produced by 

A-Mode could be more readily utilized with less need for complex 

interpretation or high computational resources. 

 

It can be concluded that A-Mode ultrasound technology exhibits 

superior potential for the application of automated fat trimming. Its 

inherent strengths in accuracy, precision, and response time, coupled with 

the relative simplicity of data interpretation, provide a robust basis for its 

integration into an automated system. While it may not offer the richness 

of data inherent to B-Mode, it decisively compensates by delivering high-

performance metrics where they matter most in this specific application - 

speed, accuracy, and precision. Thus, as we progress towards more 

efficient and precise meat processing methods, A-Mode ultrasound 

technology indeed stands as a promising tool for automated fat trimming. 

 

Future research for further development of an automated fat 

trimming system should focus on further enhancing the efficiency of A-

Mode technology, with potential avenues of exploration including the 

implementation of advanced filtering techniques and fat depth 

interpolation based on spatial and biological tissue relationships within the 

beef striploin. 
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7.2 Recommendations for Future Work 

A number of recommendations are provided to further investigate 

the development of an automated striploin fat trimming system. These 

recommendations are centred around two areas: sensing and automation 

implementation insights. 

 

7.2.1 Sensing of Subcutaneous Fat Depth Measurements 

The recommendations for future work regarding the evaluation and 

development of the sensing technologies to measure the subcutaneous fat 

depth of beef striploin are: 

 

B-Mode Ultrasound: An independent evaluation was conducted in 

Chapter 3 to evaluate the claim made by Khodabandehloo (2018) that fat 

cover damage caused by processors’ downward hide puller mechanism 

would yield measuring from the fat surface with ultrasound unfeasible. 

This evaluation found that fat cover damage affected only 10% of 

striploins, and of those affected, the location of damage was at a location 

not critical for measurement (on the flank edge / tail). Despite this, 

findings presented in Chapter 5 show that B-Mode ultrasound struggled to 

acquire images with discernible fat-lean interface locations that accurate 

measurement could be taken from. It was identified that delamination of 

the subcutaneous fat layers of the striploin may have introduced 

ultrasound barriers (air gaps) that prevented penetration of soundwaves 

to acquire discernible images to be acquired. Through this research it has 

been suggested that B-Mode ultrasound will likely yield better results 

through sensing from the lean meat/muscle surface of the striploin and 

therefore a different orientation to that considered in this research is 

recommended. 

 

Evaluating other Sensing Technologies: It is considered that 

force, spectroscopy, and rapid-CT imaging would be potential candidates 

for this application. These technologies were out of scope for this research 
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and, as with all conclusions devised considering only every desktop 

research, it is suggested they be developed using insights from this thesis 

(particularly Chapter 3) and evaluated in practice using the performance 

evaluation framework developed in this research. It is recommended that 

future work should be undertaken to developed other sensing systems for 

this application to be evaluated with the performance evaluation metric 

developed within this research.  

 

Rapid CT imaging (such as systems offered by DMRI and RapiScan) 

should be investigated further. Whilst research has been conducted to 

identify subcutaneous fat depth using CT imaging, for the application to 

be feasible for beef striploin fat trimming a focus on integrating into 

automation systems and operating this machine safely in a configuration 

that is capable of sensing at line speed is required.  Throughout this 

research access to these machines was tried but unsuccessful, therefore 

only medical-grade CT was considered for evaluation.  

 

Since beginning this research substantial more research has been 

conducted in the field of spectroscopy for fat depth measurements. It is 

suggested that further desktop research should be conducted on this 

technology and perhaps a prototype system be developed and assessed 

using the performance evaluation metric develop and applied within this 

research.  

 

7.2.2 Automation of Uniform Fat Trimming of Beef Striploin 

Further work is recommended to be undertaken to further progress 

the capabilities of an automated system for uniform fat trimming using A-

Mode ultrasound sensing. 

 

A-Mode Ultrasound Sensing Parameter Optimisation: With 

further development both ultrasound sensing systems can perform better 

than that shown in this research. The constraint of time and budget within 
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the PhD was the limiting factor, hence the scope of development was for a 

proof-of-concept system without focusing on optimisation of the 

performance. Post-trials of results presented in Chapter 6 a better 

parameter setting within the laptop software settings was identified that 

would enable more reliable node measurements (e.g. less “missed” 

nodes). These settings will be implemented to improve the reliability of 

the sensor, likely to the magnitude of approximately 10 - 20% 

improvement (40% – 50% reliability). 

 

In addition to this, the insight from Chapter 3 and Chapter 6 

highlighted the optimisation of thresholds to remove error outliers of meat 

height measurements (used to calculate fat depth), and improve accuracy 

and precision at the cost of reliability. For example, applying the filter to 

ignore all sensor values less than 25 mm would remove 5 outliers and 1 

correctly measured datapoint. It is likely that there is a balance for this 

filter threshold that will be most ideal for an automated system with 

commercial constraints.  

 

Path Planning Optimisation: Further work will be conducted 

considering the findings of Chapter 3 and Chapter 6 to provide a means of 

optimising the path for both the sensing path and cutting path of the 

automated system. The spatial patterns of the “missed” measurement 

nodes provide an insight into the nodes which are least likely to yield an 

informative result, and therefore, may be omitted from the cycle to 

reduce time spend on locations that have a low probability of receiving a 

measurement. Additionally, the spatial patterns of fat height, meat height 

and fat depth will be considered to tweak the filters applied to determine 

erroneous values as well as the interpolation of the measurements at 

these nodes. For example, applying the filter to ignore all sensor values 

less than 25 mm would remove 5 outliers and 1 correctly measured 

datapoint. It is likely that there is a balance for this filter threshold that 

will be most ideal for an automated system with commercial constraints. 
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Integration for Cutting: For a practical application it is vital to 

consider the integration of this sensing technique with an automated 

cutting control system. The scope of this research was on the sensing 

with only general evaluation and consideration given for how these 

sensors would lend themselves for integration within an automated 

system. Whilst identifying and planning a cut path is the initial step, the 

actuation of the cut path is another challenge that needs to be considered 

as characteristics of flex, forces and fixation will affect the trimming 

accuracy and the final fat trim remaining on the striploin. The deviations 

during this process may also assist to further inform and refine the 

thresholds of the performance evaluation framework developed in this 

work.  

 

Methods to Restraining Fat During Trimming: As previously 

mentioned, the cut path is only a part of the issue for automated fat 

trimming. As such, work is currently being conducted to develop a 

restrainer to prevent the trimming tool to deviate from the cut path due 

to reaction, shearing forces at the point of cutting and flexion of the fat 

during trimming. The automated system presented in Chapter 6 is being 

further developed within industry-sponsored R&D provided by AMPC. 
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APPENDICES 

 

Appendix A: Product & Process Analysis 

 

A.1: Cavities Created by Table Boning 

This appendix includes a summary of the analysis conducted to 

ascertain the typical cavities that are created in the boning of a 100-day 

grain-fed beef striploin primals at the collaborating processor’s facility. 

 

 A beef striploin was taken from the processing line immediately 

after chine sawing to evaluate the cavities of the bones that needed to be 

removed during the table boning process prior to fat trimming. A boning 

knife was used to carefully remove all bones (button bones and flat 

bones) from the lean muscle surface of the striploin whilst leaving as 

much lean muscle on the striploin as possible (see Figure A- 1: Location 

of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) in a 

boneless striploin & Figure A- 2: Removal of button bones (B1, B2, ..., 

B6) and flat bones (F1, F2, ..., F6) from a boneless striploin).  
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Figure A- 1: Location of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) in a boneless 
striploin 
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Figure A- 2: Removal of button bones (B1, B2, ..., B6) and flat bones (F1, F2, ..., F6) from a 
boneless striploin 

 

The seven button bones (B1, B2, B3, B4, B5, B6, B7) and flat bones 

(F1, F2, F3, F4, F5, F6, F7) were removed were photographed and 

measured for maximum length and width to approximate the area of the 

cavity (see Figure A- 3: Close-Up images of button bones & flat bones.). 

The depth of each cavity that remained after deboning the striploin was 

also measured with a stainless steel ruler (see Figure A- 4: Measurement 

of Cavities after removing Button Bones & Flat Bones.). 

 



 

292 

 

Figure A- 3: Close-Up images of button bones & flat bones. 

 

 

 

 

 

 

 

 

Figure A- 4: Measurement of Cavities after removing Button Bones & Flat Bones. 

 

 

Table A- 1: Measurement of Flat Bone Dimensions & Table A- 2: 

Measurement of Button Bone Dimensions outline the area of the bone 



 

293 

cavities in the striploin for flat bones and button bones respectively. The 

depth of the cavities ranged from 10 – 20 mm with the average depth 

being 15 mm.   

 

Table A- 1: Measurement of Flat Bone Dimensions 

Flat Bone # Max Width (mm) Max Length (mm) 

1 25 15 

2 62 56 

3 56 92 

4 60 105 

5 62 105 

6 63 100 

7 48 50 

 

Table A- 2: Measurement of Button Bone Dimensions 

Button Bone # Max Width (mm) Max Length (mm) 

1 22 15 

2 30 22 

3 36 30 

4 35 32 

5 25 30 

6 37 21 

7 42 20 
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A.2: Dataset for Product Variability of Untrimmed Striploins 

This appendix includes a summary of the analysis conducted to 

ascertain the typical dimensions and weights of an untrimmed 100-day 

grain-fed beef striploin primals at the collaborating processor’s facility.  

 

 Twenty striploins were taken from the processing line conveyor of a 

typical processing run immediately before fat trimming on the 28th of 

April, 2021. The following table shows the carcase characteristics of the 

striploins that were surveyed in this analysis. The following descriptions 

apply to the striploins that were reported on in Table A- 3: Striploin 

dataset characteristics captured by processor. (C Anderson 2021, pers. 

comm., 29 April).: 

- All carcases were from the same lot (approximately a 200km 

radius in geographical location), slaughtered the day prior 

(27/04/2021), were RFID labelled, assigned a body number and 

these carcases entered the boning room between 11:23AM – 

11:51AM on the experimentation date (28/04/2021). 

- All carcases were declared to have conformed to standards (this 

column has been removed from dataset) 

- The steers were 139-day grain-fed steers (nominally termed 

‘100-day’ grain-fed) slaughtered on the 27th of April, 2021.  

- The feedlot fed steers a mixture of vegetable oil, molasses, 

forage silage, cereal hay, barley (C Anderson 2021, pers. comm., 

29 April).  

- All carcasses were from male bovine and determined to be: 

o mostly <18 months old (dentition = 0, n = 14)  

o some <30 months old (dentition = 2, n = 5) 

o one > 42 months old (dentition = 4, n = 1) 

- The following codes were used to classify the cattle breed of the 

carcase: 

o CHAR Charolais  

o SG  Santa Gertrudis  
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o MANSP Mandalong Special  

o BRAFD Braford  

o BRANG Brangus  

o HFD Hereford  

o SIM Simmental  

o ANG Angus  

o LIM Limousin  

- Striploin primals were collected from the processor’s conveyor 

prior to ‘finishing’ by a slicer and returned to the line after 

measurements were acquired. 
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Table A- 3: Striploin dataset characteristics captured by processor. 
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The photographs in Figure A- 5: Striploin dataset (n=20) observed for fat cover damage. were used to 

observations of fat cover. Of the observed striploin dataset (n = 20), two striploins exhibited a 10cm x 10cm 

area of fat cover damage.  

 

 

Figure A- 5: Striploin dataset (n=20) observed for fat cover damage. 
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A.3: Time-Motion Analysis of Striploin Fat Trimming 

This appendix includes the results of the time-motion analysis 

conducted on the afternoon shift of the 5th of June 2023 at the 

collaborating processor’s facility. The time to trim the entire striploin, 

separated into trimming the lean (medial) side and fat components, for 4 

unidentified slicers over 25 observations. The raw data recorded in this 

Time-Motion study is presented in Table A- 4: Slicers' times for fat 

trimming as recorded in the Time-Motion Study. Only the ‘Trimming Fat’ 

component was considered for the analysis presented in the main body of 

the thesis. 

 

Table A- 4: Slicers' times for fat trimming as recorded in the Time-Motion Study 
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Appendix B: Dataset for Manual Fat Depth Measurements 

 

This appendix includes the measurements and calculations used in 

the calculation of results presented in Chapter 3.  

 

B.1: Fat Depth Measurements (LHS & RHS) 

The manual (ruler) fat depth measurements of the striploins used in 

this analysis is tabulated below. 

 

Average RHS Striploin Fat Depth Dataset: 

Table B- 1: Average Fat Depth for RHS Striploins (1R & 2R) 

presents the average fat depth calculated from combining the RHS 

striploin dataset: 1R & 2R. It should be noted that most of these averages 

were calculated using 2 measurements in total (one from each striploin). 

The highlighted nodes in this dataset were calculated with only 1 

measurement as shown below: 

- Red: 1 measurement to calculate average (1R) 

 

Table B- 1: Average Fat Depth for RHS Striploins (1R & 2R) 
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Average LHS Striploin Fat Depth Dataset: 

Table B- 2: Average Fat Depth for LHS Striploins (3L & 4L) presents 

the average fat depth calculated from combining the LHS striploin 

dataset: 3L & 4L. It should be noted that most of these averages were 

calculated using 2 measurements in total (one from each striploin). The 

highlighted nodes in this dataset were calculated with only 1 

measurement as shown below: 

- Red: 1 measurement to calculate average (3L) 

- Yellow: 1 measurement to calculate average (4L) 

 

Table B- 2: Average Fat Depth for LHS Striploins (3L & 4L) 

 

 

Average Combined (LHS & RHS) Striploin Fat Depth Dataset: 

Table B- 3: Average Fat Depth for Combined Striploin Dataset (1R, 

2R, 3L, 4L) presents the average fat depth calculated from combining all 

data from the striploin dataset: 1R, 2R, 3L & 4L. It should be noted that 

most of these averages were calculated using 4 measurements in total 

(one from each striploin). The highlighted nodes in this dataset were 

calculated with less than 4 as shown below: 

- Red: 1 measurement to calculate average (2R) 

- Yellow: 2 measurements to calculate average (1R & 2R) 



 

301 

- Grey: 3 measurements to calculate average (1R, 2R, 4L) 

- Green: 3 measurements to calculate average (1R, 2R, 3L) 

 

Table B- 3: Average Fat Depth for Combined Striploin Dataset (1R, 2R, 3L, 4L) 

 

  

B.2: Trim Cut Path for Combined (LHS & RHS) Striploin Dataset 

Table B- 4: Cut Path Position for Combined Striploin Dataset (1R, 

2R, 3L, 4L) presents the average fat depth of the combined striploin 

dataset filtered to make the minimum coordinate the fat specification of 

12 mm (highlighted in green). 
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Table B- 4: Cut Path Position for Combined Striploin Dataset (1R, 2R, 3L, 4L) 

 

 

B.3: Gradient of Fat Depth Measurements 

The forward gradient calculated using the raw manual (ruler) fat 

depth measurements of the striploins used in this analysis is tabulated in 

Table B- 5: Gradient in the Y Direction (along striploin width) of the 

trimming cut path. & Table B- 6: Gradient in the X Direction (along 

striploin length) of the trimming cut path. and visualised in Figure B- 1: 

The average fat depth of the striploin dataset (Fc) illustrating the gradient 

across the length (Faces) in the 'X' direction. & Figure B- 2: The average 

fat depth of the striploin dataset (Fc) illustrating the gradient across the 

width (points) in the 'Y' direction.. 
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Table B- 5: Gradient in the Y Direction (along striploin width) of the trimming cut path. 
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Table B- 6: Gradient in the X Direction (along striploin length) of the trimming cut path. 
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Figure B- 1: The average fat depth of the striploin dataset (Fc) illustrating the gradient across the length (Faces) in the 'X' direction. 

 



 

306 

 
Figure B- 2: The average fat depth of the striploin dataset (Fc) illustrating the gradient across the width (points) in the 'Y' direction. 
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Appendix C: Computed-Tomography Error Dataset Measurements 

 

This appendix includes the manual and CT measurements for the striploin dataset (1R, 2R, 3L and 4L) used 

to calculate the error dataset used for results presented in Chapter 4. These are:  

- Striploin 1R (see Table C- 1: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 1R) 

- Striploin 2R (see Table C- 2: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 2R) 

- Striploin 3L (see Table C- 3: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 3L) 

- Striploin 4L (see Table C- 4: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 4L) 

 

Table C- 1: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 1R 
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Table C- 2: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 2R 

 

 

Table C- 3: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 3L 

 

 

Table C- 4: Raw Data for Calculating Error Dataset (E = Ruler - CT) for Striploin 4L 
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Appendix D: B-Mode Ultrasound Device Datasheets 

 

This appendix includes the datasheets of the ultrasound sensors 

evaluated in Chapter for this application. 

 

D.1:  B-Mode Ultrasound: ReproScan Flexx  

In the preliminary analysis of Chapter 5 in determining the 

feasibility of the ultrasound for the application this sensor was found 

inappropriate for use at its current configuration (probe head shape). The 

following links are useful for accessing more information on this device:  

- Product Specifications: https://repro-scan.com/products/flexx/  

- Product PDFs (downloadable): https://repro-scan.com/pdfs/  

 

D.2:  B-Mode Ultrasound System (Butterfly iQ+) 

This B-Mode ultrasound was developed and evaluated as shown in 

Chapter 5. The following links are useful for accessing more information 

on this device:  

- Product Specifications: 

https://support.butterflynetwork.com/hc/en-

us/articles/16910421132187-System-Specifications  

- User Manual:  

https://support.butterflynetwork.com/hc/en-

us/articles/16910421132187-System-Specifications  

 

 

 

 

https://repro-scan.com/products/flexx/
https://repro-scan.com/pdfs/
https://support.butterflynetwork.com/hc/en-us/articles/16910421132187-System-Specifications
https://support.butterflynetwork.com/hc/en-us/articles/16910421132187-System-Specifications
https://support.butterflynetwork.com/hc/en-us/articles/16910421132187-System-Specifications
https://support.butterflynetwork.com/hc/en-us/articles/16910421132187-System-Specifications

