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Abstract

This paper studies the effect of loading eccentricity and pile spacing on the ultimate lateral soil resistance of twin-piles using finite
element limit analysis and analytical upper bound plasticity methods. Two kinematic mechanisms corresponding to the failure modes
produced by the advanced finite element simulations are postulated with different eccentricity and pile spacing cases. Comparisons have
shown excellent agreements between the two approaches. A series of parametric studies are then subsequently performed. Numerical
results have shown that loading eccentricity considerably affects ultimate lateral soil resistance, leading to a maximum reduction of
50%. In addition, the curve of normalised pile resistance versus pile spacing ratio is dissimilar to that without considering the effect
of loading eccentricity. The proposed solutions and failure mechanisms in this study will provide a deepened insight on the performance
of twin-pile group under eccentric loads.
� 2021 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Piles; Twin-pile group; Lateral soil resistance; Clays; Numerical limit analyses; Analytical upper bound plasticity calculations; Loading
eccentricity
1. Introduction

The design of pile foundation requires accurate evalua-
tion of the ultimate lateral resistance on pile and pile
groups subjected to external loads. Many researchers have
investigated the response of individual piles to lateral load-
ing or movement based on full-scale tests or physical mod-
ellings (see e.g., Matlock 1970; Reese and Welch 1975; Pan
https://doi.org/10.1016/j.sandf.2022.101126
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et al. 2000; Zhao and Wang 2018; Ueda et al. 2019), ana-
lytical calculations (see e.g., Poulos 1971; Murff and
Hamilton 1993; Zhang et al. 2013; Yu et al. 2015, 2017)
and numerical analyses (see e.g., Brown and Shie 1991;
Hazzar et al. 2017; Teramoto et al. 2018; Zhao et al. 2019).

It is commonly accepted that the ultimate soil resistance
per unit length pu on an isolated pile increases with depth
till it reaches a maximum value at acritical depth, beyond
which the soil resistance remains constant where the col-
lapse is confined to a horizontally plastic flow type. For
this, the ultimate soil resistance is uniformly mobilised
along the pile length, and therefore only a two-
dimensional plane-strain horizontal section of the pile shaft
needs to be considered. To consider the more realistic flow-
Japanese Geotechnical Society.
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around soil resistance, some researchers have provided
analytical solutions within the framework of rigid-plastic
limit analysis. Randolph and Houlsby (1984) presented
two-dimensional lower and upper-bound plasticity solu-
tions and derived the exact solution for rough piles. Later,
other researchers (see e.g., Murff et al. 1989; Christensen
and Niewald 1992; Martin and Randolph 2006; Klar and
Osman 2008) proposed several improved solutions to Ran-
dolph and Houlsby’s solution, by taking account for lower
pile-soil adhesions (adhesion factor ranges from 0 to 1). So
far, the combined upper-bound mechanism presented by
Martin and Randolph (2006) was recognized as the best
solution for a whole range of pile-soil adhesions.

While the ultimate soil resistance of individual piles in
clay was well established, rather limited studies have been
conducted with respect to the pile group that is commonly
used in practice. To consider the group effects, a number of
experimental investigations on pile groups were performed
by several researchers, including full-scale lateral load tests
(e.g. Matlock et al. 1980; Brown et al. 1987, 1988; Rollins
et al. 2006), model tests (e.g. Cox et al. 1984;
Chandrasekaran et al 2009; Su et al. 2016) and centrifuge
model tests (e.g. McVay et al. 1994, 1996, 1998; Ilyas
et al. 2004).

Owing to the complexity of fully instrumented lateral
load tests as well as budget limitation, a comprehensive
investigation with extensive parameters may be prohibitive.
As a result, mathematical tools such as using advanced
finite elements and limit analysis methods have become
useful alternatives. In recent years, Georgiadis et al.
(2013a) utilised such approaches to investigate the ultimate
lateral soil resistance of the twin-pile group. They then
established a relationship between the pile capacity and
the pile spacing that accounts for the effect of loading direc-
tion (Georgiadis et al. 2013b). Later, other researches
extended the solutions of ultimate soil resistance to the
cases of a row of piles (Georgiadis et al. 2013c), tripod piles
(Zhao et al. 2017a), tetrapod piles (Zhao et al. 2017b) and
other square pile group configurations (Pham et al. 2019;
Sheil, 2021). Georgiadis et al. (2020) and Zhao and Gao
(2019) further investigated the effect of torsion on the
undrained lateral soil resistance of individual pile and tri-
pod piles, respectively.

It is noted that the effect of loading eccentricity was not
studied in the above-mentioned works. When the horizon-
tal load does not pass through the geometrical center of the
pile group, the effect of loading eccentricity on the ultimate
lateral soil resistance cannot simply be neglected. To fill
this gap, the limiting lateral resistance of twin-pile group
under a general eccentric load is determined in this paper
by using two-dimensional plane-strain analytical and
numerical limit analyses. Based on the failure contours
identified via numerical simulations, two kinematic mecha-
nisms were constructed as the basis for the subsequent ana-
lytical upper bound calculations. The analytical upper
bound solutions were validated via numerical upper and
lower-bound limit analysis methods, while the effect of
2

the pile spacing is investigated with the upper bound
method only. In order to gain deeper insight on the govern-
ing failure mode due the effect of loading eccentricity and
different pile group geometries, a series of numerical inves-
tigations for various pile spacing are presented in the
paper.
2. Numerical limit analyses

Finite element limit analysis (FELA) is a powerful com-
putational technique that combines the technique of finite
element discretisation for handling complex geotechnical
problems and the classical limit theorems of upper and
lower bound analyses. Finite element upper- and lower-
bound limit analyses provide quasi-rigorous bounds that
bracket the exact solutions from below and above, and they
shall always be introduced as a pair. The difference between
lower and upper bounds can offer a measure of the dis-
crestisation error in the result and can be narrowed to a
rather limited interval by using more elements.

The formulations used in FELA algorithms historically
stem from the pioneering work of Lysmer (1970),
Anderheggen and Knopfel (1972) and Sloan (1988, 1989)
who used linear programming and discontinuous stress or
velocity field to solve the stability problems. With the
development of the method for numerical implementation
and the optimisation algorithm, FELA algorithm has
evolved significantly with incorporation of nonlinear opti-
misation technique in Lyamin and Sloan (2002a, 2002b)
and Krabbenhoft et al. (2005, 2007). Their used efficient
stress-based (lower bound) and velocity-based (upper
bound) element formulations in the FELA framework with
second-order cone programming and adaptive meshing
technique, which are available in the software program
OptumG2. Both formulations lead to convex mathematical
programs, which can be integrated in the form as follows:

maximise k

subject to Ar ¼ p0 þ kp

f i rð Þ 6 0; i ¼ 1; :::;Nf g
ð1Þ

where k is the load multiplier, r is the vector of stress vari-
ables, A is the matrix of equality constraint coefficients, p0
and p are the vectors of prescribed and optimisable forces
respectively, fi is the yield function for stress set i, and N

is the number of stress nodes. The technique has been suc-
cessfully applied to a number of geotechnical stability
problems (Shiau and Smith 2006, Shiau et al. 2008, Shiau
et al. 2016, Shiau and Al-Asadi 2020). More details of
the computational formulations of FELA in OptumG2
can be found in Krabbenhoft et al. (2017).
2.1. Finite element model and material properties

A two-dimensional plane-strain numerical model
used to study the effect of loading eccentricity on the lateral
resistance of the twin-pile group in undrained
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elastic-perfectly plastic soil medium is presented in Fig. 1.
The problem comprises the soil domain and two infinitely
long rough piles of diameter D = 1 m with center-to-
center spacing s. An eccentric load F was applied at a dis-
tance of e from the center point of twin-pile group, in
which two individual piles were connected by a rigid cap.
The direction of the lateral load is perpendicular to the
pile-to-pile axis.

Fig. 2 presents a model domain of the twin-pile problem
for using OptumG2.it is expectedly led to quasi-rigorous
bounds on the exact solution. Two-dimensional triangle
elements with upper bound and lower bound element for-
mulations were used to discretise both the soil domain
and the pile sections. The upper and lower bound elements
are constructed directly based on the upper and lower
bound principles and it is expected that quasi-rigorous
bounds on the exact solution can be achieved. Five adap-
tive iterations are adopted for mesh refinement with the
number of element increasing from 100 to 20000. All
boundaries were fixed along both the normal and shear
directions, and positioned far enough from the center of
the pile group to eliminate boundary effects. Several pilot
analyses would suggest that the dimension of the two-
dimensional model be 10D for the side boundaries and
20D for the top and bottom boundaries. The two piles
are regarded as linear elastic material while the soil is con-
sidered as an elastoplastic Tresca material.

The material parameters in this study are to follow
Georgiadis et al. (2013a): undrained shear strength of soil
material su = 100 kPa, Young’s modulus of soil material
Eu = 2 � 104 kPa, Poisson’s ratio of soil material
vu = 0.495, Young’s modulus of pile material Ep = 2.9
� 107 kPa, and Poisson’s ratio of pile material
vp = 0.1. As the analyses are theoretically based on the
plastic bounding theorems with the assumption of small
strains, the ultimate load would not be influenced by
the initial stresses or deformations. Hence, the choice of
the stiffness parameters does not affect the stability out-
comes (Sloan 2013).

Owing to the fact that the capped twin-pile always trans-
late laterally as a rigid body, the eccentric load applied on
the pile cap can be distributed proportionally to the center
Fig. 1. Problem definition: Twin-pile su

3

of the two piles in simulations (Fig. 2). The forces imposed
on every piles can be calculated as functions of F, e and s:

F l ¼ F 0:5� e=sð Þ ð2Þ
F r ¼ F 0:5þ e=sð Þ ð3Þ
where Fl is the force distributed to the left-hand side (LHS)
of the piles and Fr is the force distributed to the right-hand
side (RHS) of the piles. It is noted that Eqs. (2) and (3)
were obtained by considering the force and moment equi-
librium conditions. According to the computational algo-
rithms implemented in OptumG2, the forces imposed (Fl

and Fr) were set as multiplier loads, which are amplified
until a state of incipient collapse is attained during the pro-
cess of analysis. The factor by which the multiplier load is
to be amplified till a collapse state is referred to as the col-
lapse multiplier. The ultimate load is obtained by multiply-
ing the initially prescribed load with the collapse multiplier.
This is actually one of the appealing advantage of finite ele-
ment limit analysis in dealing with geotechnical structure
problems. It is possible to compute the limit load directly
without having to perform a step-by-step elastoplastic
analysis (Sloan 2013). In addition, the calculated limit
loads were all presented in the normalised form (average
pile resistance factor Np = F/2suD), which eliminates the
dependency of the outcomes on the soil strength parameter
and the pile geometry.

2.2. The ultimate pile resistance factor Np

Fig. 3 shows the ultimate pile resistance factor Np

against normalised eccentricity e/s (ratio of eccentricity to
pile spacing). Therein, three representative pile spacing
cases (s/D = 1.2, 1.8 and 2.5) are presented for the
upper-bound finite-element limit analysis. Numerical
results have shown that the average pile resistance gener-
ally decreases as the eccentricity increases, except that the
eccentricity is extremely small, where a horizontal section
of maximum capacity is presented. One possible reason
for this phenomenon could be due to the unchanged shape
of failure surfaces with such low eccentricities. Note that
the response is similar to the twin-pile mode presented in
Georgiadis et al. (2013a).
bjected to an eccentric lateral load.



Fig. 2. Geometry of the two dimensional twin-pile model.
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For the case of s/D = 1.2 (see Fig. 3(a)), numerical
results have shown that the decrease of Np can be divided
into two stages (stages A and B) based on the slope of curve
segments. Variation of the stages can be further identified
by considering different failure modes associated with var-
ious e/s. As the power dissipation in soil mass provides a
good indicator of the intensity of plastic deformation, the
contour plot of internal power dissipation is always used
to reveal the mode of collapse despite that the actual values
of the contour are not important in such a perfectly plastic
material model. Fig. 4 presents two typical finite-element
meshes and power dissipation contours for the cases of e/
s = 0.25 and 0.5. This represents two distinct failure modes
(modes A and B) corresponding to stages A and B, respec-
tively. As the eccentricity is small, the two piles move in the
same direction at a rate that is approximately equal, and
the effect of the loading eccentricity can be negligible.
When the eccentricity increase beyond e = 0.02 s (stage
A in Fig. 3(a)), the force imposed on the RHS pile is obvi-
ously larger than the force on the LHS pile, which renders
most of the resistance with soils mobilised associated with
the RHS pile. In addition to this, the soil movement
involved in the twin-pile system is mostly controlled by
the RHS pile. As a result, a lopsided failure mode (mode
A) develops (see Fig. 4(a)), in which the LHS pile is
excluded by the exterior slip surface. As the eccentricity
ratio e/s > 0.37 (stage B in Fig. 3(a)), the failure mode
changes to mode B, where two piles tend to move in the
opposite direction under the influence of increasing eccen-
tricity. This is demonstrated in Fig. 4(b).

As for the case of s/D = 1.8 (Fig. 3(b)), it is observed
that the curve of Np with e/s transforms to a single-
segment descent type. As eccentricity increases, after a
short horizontal section of maximum Np, the decrease of
Np undergoes only one stage (stage A), which corresponds
to the failure mode A. When the normalised pile spacing s/
D increases to 2.5 (see Fig. 3(c)), pile-to-pile interaction
effects become trivial, and the failure mode generally
4

degenerates to the well-known single-pile failure mode for
most e/s (Randolph and Houlsby 1984, Martin and
Randolph 2006).

Four representative failure modes (from the observation
of power dissipation contours) are identified across wide
ranges of e/s and s/D. Two of them were reported and
well-defined in previous literatures (single-pile mode and
twin-pile mode) and the other two are newly presented
(mode A and mode B) in this paper. This new finding pro-
vides reasonable explanations for the variation in Fig. 3 and
therefore lead to the establishment of kinematic mecha-
nisms in the following analytical upper bound calculations.

3. Analytical upper bound solutions

The analytical approach, for predicting the bearing
capacity of twin-pile groups, employed in this study is
based on the upper bound theorem of limit analysis, which
is a common-seen mathematical treatment of geotechnical
stability problems (Georgiadis et al. 2013a, 2013b, 2013c;
Yu et al. 2015, 2017). Similar to the traditional limit equi-
librium method, the analytical upper bound requires a
prior assumption of failure mechanism. The method
assumes the soil to be perfectly plastic with an associated
flow rule. For a ‘‘displaced” field, the upper bound solu-
tion is determined by equating the power expended by
the external loads to the power dissipated internally by
the plastic deformations. Therefore, it is significant to con-
struct a correct kinematic mechanism that gives the accu-
rate estimation of the upper bound solution.

Referring to the collapse modes observed previously in
FELAs, four kinematic mechanisms will be presented in
this section. First two mechanisms (the single-pile mecha-
nism and the twin-pile mechanism) have been defined in
the previous studies (Martin and Randolph 2006;
Georgiadis et al. 2013a), while the other two mechanisms
are newly proposed for eccentrically loaded cases: the first
new kinematic mechanism gives the optimal upper bound



Fig. 3. Variations of the average pile resistance factor Np with the
normalised eccentricity e/s for (a) s/D = 1.2, (b) s/D = 1.8 and (c) s/
D = 2.5. Results from FELA-UB.
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solution for certain spacing cases with small eccentricities,
while the second gives the optimum solution for greater
eccentricities.
5

3.1. Existing mechanism for single piles

For large-spaced pile groups, the ultimate soil resistance
is equivalent to a single-pile solution. The kinematic mech-
anism of such a single pile response has been well-presented
by Martin and Randolph (2006). The deformation pattern
has fourfold symmetry, so only one quarter of the mecha-
nism is shown in Fig. 5. Four separate regions can be iden-
tified according to the different shear flow patterns. Two of
them behave as in rigidity: the region ABC moves rigidly
with the pile while the region HXI entirely rotates around
the point O. The other two regions (CAGFED and
AHIFG) are plastically deforming parts in which the veloc-
ities are determined by the velocity jump along the discon-
tinuities at the region boundaries. Two geometrical
parameters k and b are introduced to define the mechanism
and obtain the minimum values for the lateral bearing
capacities of single piles. The derivation of the energy dis-
sipations can be found in Martin and Randolph (2006).

3.2. Existing mechanism for two side-by-side piles

Georgiadis et al. (2013a) constructed upper bound
velocity fields based on the displacement finite element
results for a group of two side-by-side piles that are hori-
zontally loaded in clay. The proposed mechanism covers
the cases with extremely small eccentricity, and it corre-
sponds to the ‘‘twin-pile mode” that was identified in the
FELAs. This mechanism is shown in Fig. 6, and is consid-
ered as an extension of the single-pile mechanism proposed
by Martin and Randolph (2006). It is noted that the veloc-
ity flow pattern in the outer portion of the mechanism
inherits the feature of the single-pile mechanism. While,
for the inner part, the rigid (H’I’X’) and the deforming
regions (C’D’E’F’G’A’ and A’G’F’I’H’) extend to an
inclined velocity discontinuity (X’I’F’E’) rather than to
the x-axis. This discontinuity allows the shift of the flow
direction that is necessary to satisfy the velocity boundary
condition at the plane of symmetry (y-axis). More details
about the mechanism can be found in Georgiadis et al.
(2013a).

Subsequently, two new kinematic mechanisms (mecha-
nism A and B) are presented for more practical eccentri-
cally loaded cases. The features of the mechanisms are
fully controlled by a set of geometrical parameters, satisfy-
ing the boundary conditions of the problem and the plastic
flow rule of the material. As the x-axis represents a plane of
symmetry with respect to the geometry of the mechanisms
and a plane of anti-symmetry with respect to the velocity
fields, only half of the mechanisms are considered. This is
discussed in the next section.

3.3. Kinematic mechanism A

Mechanism A, shown in Fig. 7, is a variation of the
mechanism described in Georgiadis et al. (2013a) for a
group of two side-by-side piles. It consists of one rigid



Fig. 4. Failure modes from finite-element limit analysis for s/D = 1.2: (a1) finite meshes for e/s = 0.25; (a2) power dissipation contour for e/s = 0.25; (b1)
finite mesh for e/s = 0.5; (b2) power dissipation contour for e/s = 0.5.

Fig. 5. Kinematic mechanism for single pile (Martin and Randolph,
2006).
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region (CX’’X’A) translating along the same direction as
the RHS pile with velocity v0, a rigid body HXI which
rotates around point O and several plastically deforming
regions (CAGFED, AHIFG and CE’X’’). Five optimisa-
tion parameters are adopted to describe this mechanism
viz. the angles b1, b2, h, d and the normalised radius k of
the evolute of the RHS pile. Note that the RHS part of
the mechanism (on the RHS of the plane CT) is essentially
based on the Martin-Randolph’s mechanism. The only
6

difference lies on the position of the apex (C) of the rigid
body CX’’X’A. As it can be seen in Fig. 7, the plane CT
presents at an angle x to the y-axis plane, where the angle
x decreases linearly with increasing pile spacing. This can
be expressed as shown in Eq. (4).

x ¼ p
4

sl=D� s=D
sl=D� 1

forD 6 s 6 sl ð4Þ

where sl represents the upper limit pile spacing ratio for the
current mechanism obtained from the numerical results.

According to the geometry of the mechanism described
in Fig. 7 and Fig. 8, the velocities v and the relative veloc-
ities Dv within the regions and discontinuities in the right
part of mechanism are presented by the following
equations:

Region CAGFED- discontinuities AC and CDE.

v ¼ v0sinb1

DvAC ¼ v0cosb1 andDvCDE ¼ v0sinb1 ð5Þ
Region AHIFG- discontinuities AH and AGF.

v ¼ v0
sinðqþ KÞ

k

DvAH ¼ v0
cosq
k

andDvAGF ¼ v0
sinðb1 þ KÞ

k
� sinb1

� �
ð6Þ

where K ¼ arccosk



Fig. 6. Kinematic mechanism for two side-by-side piles (Georgiadis et al. 2013a).

Fig. 7. Kinematic mechanism A. R denotes the pile radius.

Fig. 8. Geometrical details of the RHS part of mechanism A.
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Region HXI- discontinuity HX.

v ¼ v0
cosb2

kR
r andDvHX ¼ v0

cosb2

k
ð7Þ

The power dissipation calculations based on the velocity
field presented above are similar to those stated in
Georgiadis et al. (2013a), and they are not repeated here.

The velocity field pattern in region CE’X’’, presented in
Fig. 9, is derived from the mechanism proposed by
Georgiadis et al. (2013b). The velocities associated with
7

this region are constant along each radius r’ and are per-
pendicular to the line connecting point O’ and the point
at the outer discontinuity CE’. The magnitude of the veloc-
ities v and the velocity jumps Dv within this region and
adjacent discontinuities (CX’’ and CE’) are given as:

v ¼ DvCE0

¼ v0
cosd

cosðd� hÞ
sind� sinðdþ hÞcosh
sind� sinðdþ hÞcosh0 andDvCX 00

¼ v0
sinh

cosðd� hÞ ð8Þ

Considering the restriction in the geometry of region
CE’X’’, an additional relationship (Eq. (9)) among param-
eters b1, h and d is always satisfied during the process of
optimisation. The internal power dissipations within this
region and associated discontinuities are briefly presented
in Appendix.

kRcosx
sinðb1 � xÞ tanxþ cotdþ sind� sinðdþ hÞ

sindsinh

� �
þ R� s ¼ 0

ð9Þ
For closely spaced twin-pile group (such as s/D = 1.2),

mechanism A becomes inapplicable when the eccentricity
is greater. Hence, another mechanism corresponding to lar-
ger eccentricity case is investigated in the next section.



Fig. 9. Details of the geometry and velocities within slip fan CE’X’’.
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3.4. Kinematic mechanism B

Comparing to mechanism A, mechanism B has one rigid
region (E’T’X’H’) trapping to the LHS pile (see in Fig. 10).
Similarly, mechanism B is described by the same set of
parameters, as introduced in mechanism A: the angles b1,
b2, h, d and the normalised radius k. The rotation angle
x in mechanism B is also connected with the pile spacing,
and can be calculated by Eq. (4).

The velocities and power dissipation calculations in the
RHS portion of the mechanism are same with those in
mechanism A, whereas the velocities v and the relative
velocities Dv in the rest portions of the mechanism are
determined as follows:

Region CE’O’H’G’- discontinuities CE’, CH’ and E’H’.
Fig. 10. Kinematic

8

v ¼ DvCE0

¼ - v0
sin arcsin sinðb1�xÞ

k � x
h i

cosðdþ hÞ

� sind� sinðdþ hÞcosh
sind� sinðdþ hÞcosh0 ð10Þ

DvCH 0 ¼ v0
cos dþ hþ arcsin sinðb1�xÞ

k � x
h i

cosðdþ hÞ ð11Þ

DvE0H 0 ¼ v0
sin arcsin

sinðb1�xÞ
k �x

� �
cosðdþhÞ

sind�sinðdþhÞcosh
sind�sinðdþhÞ

�cot dþ arcsin sinðb1�xÞ
k � x

h i ð12Þ

Notice that the velocity field pattern in CE’O’H’G’ is
compatible with that in region CE’X’’, which has been
introduced in mechanism A.

Rigid body E’T’X’H’- discontinuities E’T’ and H’X’.

v ¼ DvE0T 0 ¼ - v0
sin arcsin

sinðb1�xÞ
k �x

� �
cosðdþhÞ

sind�sinðdþhÞcosh
sind�sinðdþhÞ

�csc dþ arcsin sinðb1�xÞ
k � x

h i ð13Þ

andDvH 0X 0 ¼ DvE0T 0 þ v0

where the velocity in region E’T’X’H’ is always along the
negative direction of y-axis.

In addition, the geometrical feature of the rigid body
E’T’X’H’ leads to Eq. (15), which further imposes an addi-
tional restriction in the optimisation procedure, correlating
the basic parameter b1 with the angles h and d.

R tan 1
2
arcsin sinðb1�xÞ

k � x
2

h i
þ cot arcsin sinðb1�xÞ

k

h in o

� sind�sinðdþhÞ
sinh � sin dþ arcsin sinðb1�xÞ

k � x
h i

� s ¼ 0
ð15Þ

where R denotes the pile radius. More details of the power
dissipation calculations for the LHS portion of the mecha-
nism can be found in Appendix.
mechanism B.
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3.5. Optimisation procedure

As the only external force in this two-dimensional plane-
strain problem is the eccentric force imposed on the twin-
pile group, the average resistance factor can be calculated
through Eq. (16).
Fig. 11. Optimisation procedure

9

Np ¼ DW p

ðe=sþ 0:5Þv0suD ð16Þ

where DWp is the total power dissipated by the stress in
half of the twin-pile model.

Following Chen (1992), an optimisation procedure was
designed to seek the least upper bound to the undrained
resistance factor Np. See Fig. 11 for the procedure. The
of the upper bound to Np.



(a)

(b)

(c)

Fig. 12. Comparison of analytically calculated pile resistance factors
(Analytical-UB) and upper bound and lower bound finite element limit
analyses results (FELA-UB and FELA-LB) for different pile spacing
ratios: (a) s/D = 1.2, (b) s/D = 1.8 and (c) s/D = 2.5.
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optimisation uses random search to look for the minimum
of Np and performs the minimisation procedure until the
band widths of search variables are less than the predefined
values. For a twin-pile group of given values of pile spacing
s, pile diameter D and loading eccentricity e, variables in
the minimisation process include the angles b1, b2, h, d
and the normalised radius k for both mechanism A and
mechanism B (see Figs. 5 and 8). In the process of search-
ing for a minimum value of Np, the relationships among
the variables are to be satisfied (Eqs. (9) and (15)), and
the optimisation is performed until the band width is less
than 0.01 for angles b1, b2, h, d, whilst it is 0.001 for nor-
malised radius k.

4. Results and discussion

4.1. Comparison of results

Fig. 12 shows a comparison of the resistance factors Np

between the different methods of analysis (i.e. analytical
upper bound analysis and numerical upper and lower
bound limit analyses). Three normalised pile spacing ratios
are presented for s/D = 1.2, 1.8 and 2.5. Excellent agree-
ment is observed between the two numerical bounds across
the whole range of eccentricities. The difference is extre-
mely small ranging from 0.6% to 2.0%. On the other hand,
it can also be seen from Fig. 12 that the analytically calcu-
lated solutions are in very good agreement with the numer-
ical results. The difference increases slightly when the
eccentricity becomes larger for the special case of a closely
spaced pile group (s/D = 1.2), but is always within 7%. It
should be noted that the gap among the results obtained
from different analyses is generally acceptable, even though
it can be further narrowed down by optimizing the kine-
matic velocity field in the analytical calculations, or by
using more elements in the numerical simulations. Such a
comparison also proves that the mechanisms proposed in
this study are capable of predicting the variation of the soil
resistance with the eccentricity. The presented upper bound
analytical solutions are considered to provide reliable
approximations of the ultimate resistance for eccentric
loading problems.

4.2. Eccentricity reduction factor GN

To further quantify the effect of eccentricity on Np, an
eccentricity reduction factor GN is introduced as follows:

GN ¼ Np a; s; e > 0ð Þ
Np a; s; e ¼ 0ð Þ ð17Þ

where Np (a, s, e > 0) denotes the Np when loading eccen-
tricity exists and Np (a, s, e = 0) denotes the Np when load-
ing eccentricity equals zero.

Fig. 13 shows the variations of the eccentricity reduction
factor GN against normalised eccentricity ratio e/s for three
10



Fig. 13. Variations of the eccentricity reduction factor GN with e/s for
different spacing ratios.
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typical pile spacings ratios s/D. As eccentricity increases,
GN generally decreases from unity to around 0.5 for all
spacing ratios. Variations of GN are directly associated with
the transformation of failure modes, although they are not
much sensitive to the pile spacing. The produced reduction
factors in Fig. 13 are useful for practitioners to evaluate the
level of reduction in lateral capacity of the twin-pile group
due to the presence of loading eccentricity.
4.3. Effect of pile spacing with loading eccentricity

A series of parametric analyses were subsequently con-
ducted to investigate how the pile spacing affects the aver-
age pile resistance factor when the loading eccentricity
ratio is greater than zero. Shown in Fig. 14 are two sets
of results obtained from analytical upper bound analysis
Fig. 14. Variations of the average pile resistance factor Np with the
normalised pile spacing s/D for different eccentricities. Results from
Analytical-UB (scattered symbols) and FELA-UB (lines).

11
and upper bound of FELAs. In analytical upper bound
analysis, the ranges of the pile spacing suitable for different
mechanisms are determined by observing the failure modes
with the aid of FELA analysis. It is worth noting that the
presence of eccentricity significantly affects how the spacing
influences the ultimate resistance. When e/s > 0, Np gener-
ally decreases with the increase in s/D, and it reaches a min-
imum value for s/D > 2.0. This behavior trend is totally
different from the case without considering the effect of
eccentricity (e/s = 0), as reported in Georgiadis et al.
(2013a). In addition, the analytical upper bound solutions
are in good agreement with the numerical FELA results.
The study has concluded that the analytical upper bound
solutions can also be confidently used to predict the varia-
tion of Np across the whole range of values of s/D, pro-
vided that the postulated mechanism type is correct.

The failure mechanism studies also conclude that the
applicable spacing ratios for the failure mechanisms are
varied for different values of eccentricity. When e/s is very
small such as e/s = 0.1 to 0.3, mechanism A gives the best
prediction for the pile spacing s/D < 2.0. While for
e/s = 0.4 and 0.5, mechanism B is a more suitable choice
to predict the Np for very small spacing ratios(s/D < 1.3),
and mechanism A is used for the pile spacing between
1.3D and 2.0D. For the pile spacing greater than 2.0D,
the well-defined single-pile mechanism (Martin and
Randolph 2006) always gives the optimal estimations in
all eccentricity cases investigated.

5. Conclusion

This paper has successfully adopted both finite element
limit analysis methods and analytical upper bound plastic-
ity method to investigate the effect of the loading eccentric-
ity and pile spacing on the ultimate lateral resistance of the
twin-pile group. Two governing failure mechanisms (mech-
anisms A and B), associated with different eccentricities
and pile spacings, were identified using the rigorous numer-
ical simulations. The two mechanism were then used to
establish the framework of analytical upper bound limit
analysis. Coupled with the mechanisms introduced by pre-
vious researchers, the present kinematic mechanisms form
the basis for the derivation of analytical upper bound solu-
tions. These solutions were subsequently compared to the
numerical limit analysis results. Excellent agreement is
found between the two methods.

Parametric analyses have also suggested that the behav-
ior trend of Np- s/D curve is totally dissimilar when consid-
ering the loading eccentricity. A considerable reduction in
the ultimate pile lateral resistance was found as the eccen-
tricity increases. A non-negligible reduction of 50% for
rough piles in soft clay was reported. The solutions and
mechanisms proposed in this study are particularly valu-
able for design applications considering loading
eccentricity.

It is to be noted that the present two-dimensional plane
strain analyses performed in this study focus on the maxi-
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mum resistance that may develop along the pile length. The
aim pf this paper was not to study the distribution of the
soil resistance with depth. Thus, the solutions presented
are independent of the pile length and they generally corre-
spond to the deeper part of the twin-pile group where the
soil is assumed to flow horizontally around the pile shaft.
Future work may involve a full 3D analysis with both load-
ing eccentricity and pile length being considered.
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Appendix A. Power dissipation calculations in the

mechanisms

The dissipation along the velocity discontinuities is.

sf

Z
L
Dvj jdL ð18Þ

and within the plastically deforming regions is.

su

Z
A

_eij
�� ��dA ð19Þ

where Dv is the velocity jump along the discontinuity, _eij is
the shear strain rate in the region, su is the undrained soil
shear strength and sf represents the ultimate shear stress
along the discontinuity (equal to su for rough piles, as con-
sidered in this study). Some necessary details about mech-
anism A and B are given in the following, and the rest of
the power dissipation calculations can be found in
Georgiadis et al. (2013a, 2013b).
A.1. Kinematic mechanism A

The power dissipated within the plastically deforming
region CE’X’’ and adjacent discontinuities is calculated
as the follows:

Discontinuity CX’’.

DCX 00 ¼ suDvCX 00
kRcosx

sinðb1 � xÞsind ð20Þ

Discontinuities CE’.
12
DCE0 ¼ suv0
kRcosxcosd sind�sinðdþhÞcosh½ �

sinðb1�xÞsinhcosðd�hÞ

�
2arctan

tanh
2
sindþsinðdþhÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2d�sin2ðdþhÞ
p

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2d�sin2ðdþhÞ

p
ð21Þ

Region CE’X’’.
The shear strain rate within this region in polar coordi-

nates (q’, u’) (Fig. 9) is.

_cCE0
X } ¼ vCE0

X }cosðu0 � h
0 Þ

q0 � 1

q0
@½vCE0

X }sinðu0 � h
0 Þ�

@u0 ð22Þ

where vCE0
X } is the velocity in region CE’X’’.

The internal power dissipation in CE’X’’ is calculated
as:

DCE0X 00 ¼ su _cCE0X 00q0dq0du0 ð23Þ
In addition, the relationship between u’ and h’ is.

u0 ¼ arcsin
L1sinh

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1 þM2

1 � 2L1M1cosh
0

q ¼ arcsinN 1 ð24Þ

where

L1 ¼ kRcosx
sinðb1 � xÞsinh ð25Þ

M1 ¼ sinðdþ hÞ
sind

kRcosx
sinðb1 � xÞsinh ð26Þ

Therefore

du0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2

1

q

� L1cosh
0ðL2

1 þM2
1Þ � L2

1M1ð1þ cos2h0Þ
ðL2

1 þM2
1 � 2L1M1cosh

0Þ32
dh0 ð27Þ

Substituting Eqs. (22) and (27) into Eq. (23) leads to:

DCE0X 00 ¼ suvCE0X 00
Rh
0

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1
þM2

1
�2L1M1cosh

0p

0

½cos arcsinN 1 � h0ð Þ

þ sin dþhð Þsinh0
sind�sin dþhð Þcosh0 sin arcsinN 1 � h0ð Þ�dq0dh0

ð28Þ
A.2. Kinematic mechanism B

The total dissipation for the LHS part of mechanism B
includes the power dissipated within one plastically
deforming region (CE’O’H’G’) and several discontinuities
(CH’, E’H’, H’X’, E’T’ and CE’).

Discontinuity CH’.

DCH 0 ¼ suDvCH 0L0 ð29Þ
where



Z. Zhao et al. Soils and Foundations 62 (2022) 101126
L0 ¼ R cot arcsin
sinðb1 � xÞ

k

� ��

þtan
1

2
arcsin

sinðb1 � xÞ
k

� x
2

� �	
ð30Þ

Discontinuity E’H’

DE0H 0 ¼ suDvE0H 0L0

sind� sinðdþ hÞ
sinh

ð31Þ

Discontinuity H’X’

DH 0X 0 ¼ suDvH 0X 0Rtan
1

2
arcsin

sinðb1 � xÞ
k

� x
2

� �
ð32Þ

Discontinuity E’T’

DE0T 0 ¼ suDvE0T 0
L0sin dþ arcsin sinðb1�xÞ

k � x
h i

sind�sinðdþhÞ
sinh

þRtan 1
2
arcsin sinðb1�xÞ

k � x
2

h i
8><
>:

9>=
>;

ð33Þ
Discontinuity CE’

DCE0 ¼ suv0L0sind
sinðdþhÞcosh�sind½ �sin arcsin

sinðb1�xÞ
k �x

� �
sinhcosðdþhÞ

�
2arctan

tanh
2
sindþsinðdþhÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2d�sin2ðdþhÞ
p

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2d�sin2ðdþhÞ

p
ð34Þ

Region CE’O’H’G’

DCE
0
O
0
H

0
G
0

¼ suvCE0
O
0
H

0
G
0
R h
0

R r0
0

�
2ffiffiffiffiffiffiffiffi
1�N2

2

p L2r
02cosh

0 þL2
2
M2sin

2h
0

r03 � 1

� �

�cosðh0 � arcsinN 2Þ
þ sinðdþhÞsinh0

sind�sinðdþhÞcosh0 sinðh
0 � arcsinN 2Þgdq0

dh
0

ð35Þ
where

L2 ¼ sind
sinh

L0 ð36Þ

M2 ¼ � sinðdþ hÞ
sinh

L0 ð37Þ

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
2 þM2

2 þ 2L2M2cosh
0

q
ð38Þ

N 2 ¼ L2sinh
0

r0
ð39Þ

vCE0
O
0
H

0
G
0 is the velocity within the region CE’O’H’G’, and

the definition of q’ and u’ refers to that in region CE’X’’
(Fig. 9).
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