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Abstract: Moving in straight lines is a behaviour that enables organisms to search for food, move
away from threats, and ultimately seek suitable environments in which to survive and reproduce.
This study explores a vision-based technique for detecting a change in heading direction using the
Milky Way (MW), one of the navigational cues that are known to be used by night-active insects.
An algorithm is proposed that combines the YOLOv8m-seg model and normalised second central
moments to calculate the MW orientation angle. This method addresses many likely scenarios
where segmentation of the MW from the background by image thresholding or edge detection is
not applicable, such as when the moon is substantial or when anthropogenic light is present. The
proposed YOLOv8m-seg model achieves a segment mAP@0.5 of 84.7% on the validation dataset
using our own training dataset of MW images. To explore its potential role in autonomous system
applications, we compare night sky imagery and GPS heading data from a field trial in rural South
Australia. The comparison results show that for short-term navigation, the segmented MW image
can be used as a reliable orientation cue. There is a difference of roughly 5–10◦ between the proposed
method and GT as the path involves left or right 90◦ turns at certain locations.

Keywords: biomimetic; Milky Way; YOLOv8; instance segmentation; orientation

1. Introduction

Animals have evolved to be adapted to the environmental and ecological conditions
present on Earth. Their navigational sensory systems and behaviours are specifically tuned
to cues in the environment that can lead them to food or shelter or away from noxious
conditions or situations. Navigation is a fundamental behaviour for which there are a great
diversity of biological solutions, all based on sensory information available on our planet.

In this paper, we explore orientation using the Milky Way (MW), one of the navi-
gational cues used by night-active insects. Celestial navigation is used by technological
systems, although they have tended to rely on tracking individual stars and clusters of stars.
The MW is a different type of cue, visually represented as a band of stars and light spanning
almost a complete arc in the southern night sky. This difference in the appearance of the
MW compared to the positions of individual stars makes it interesting because it might
allow alternate or simpler imaging systems to be deployed on autonomous platforms.

The MW is a difficult visual target, and its appearance varies with latitude and time
of year. It is also prone to being washed out by light pollution, and it often has very
low contrast due to atmospheric effects. In addition, it is not visible during the day, and
is only partially visible in the Northern Hemisphere. On other planets, in orbit, and in
interplanetary space, the MW is likely to be substantially more visible, so this navigational
cue might be more useful well above Earth than on it.
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This study aims to use YOLOv8 object detection techniques to establish a viable
technological MW orientation detector, with the ultimate aim being to produce a viable
instrument. The use of YOLOv8 technology also produces the opportunity to explore how
the characteristics of the MW are encoded by the learning algorithm, potentially providing
insight into detection architectures that might exist within the insect brain. It is hoped that
in the future, this method will provide insight into the nature of simulated neural solutions
to real-world sensory challenges.

2. Background
2.1. Celestial Navigation by Insects and Other Animals

From the most primitive organisms expressing phototaxis to organisms that build
nests and hives, navigation is a critical behaviour. At the lowest level, navigation might
mean the ability to travel in straight lines for a limited period of time. At higher levels, pin-
point localisation might be required, possibly across hundreds or thousands of kilometers.
Straight-line navigation might be required to avoid retracing areas that have no resources or
to move away from threats or competitors. Animals have been shown to exploit a number
of sensory cues, including visual landmarks, Earth’s magnetic field, chemical plumes, wind,
or odometry, to steer their locomotion. Celestial cues have been shown to be used by some
species, including the position of the sun, the moon, and the orientation of the lunar or
solar polarisation pattern [1–3]. The MW is a special case amongst the celestial options for
orientation, since the method relies on the location of stars. The large extent of the MW and
comparatively low contrast makes it usable for low-resolution but high-sensitivity visual
systems, unlike individual stars.

Although the behaviour of insects is the inspiration for this study, insect visual percep-
tion is substantially different from that of humans. It operates in a very different manner
than our visual system, and from the optics and electronics of conventional cameras. Insects
have evolved compound eyes that use extraordinary adaptations and specialisations to
meet the sensory requirements of operating in their environments [4,5]. The ability of
insects to resolve details under starlit conditions is the first challenge they face. Their
minute faceted optics and eye structures have adapted to capture enough light and pre-
serve enough detail to allow insects to operate at night. The means by which this has been
achieved is illustrated by examining two types of compound eyes, shown in Figure 1, ap-
position eyes and superposition eyes. In an apposition eye, each ommatidium is sheathed
with light-absorbing screening pigment, which prevents light from spilling over to photore-
ceptors in neighboring ommatidia, ensuring that each photoreceptor only receives light
from its corresponding lens. Apposition compound eyes are typically found in diurnal
insects, which have evolved to achieve high spatial resolution when light is sufficient,
such as dragonflies [6] and honeybees [7]. In superposition compound eyes, lenses are
not associated with specific photoreceptors, so light is accepted from possibly hundreds
of lenses, which improves light capture but reduces spatial resolution. This type of eye is
commonly seen in insects that are active at night and in low-light conditions [2,8]. Also, the
visual system of nocturnal insects typically engages in significant neural pooling through
lateral neural interconnections [9]. The critical observation that comes from this is that
the geometry and photoreceptor density of the eye does not define the spatial resolution,
which is likely to be lower than the external optical geometry may indicate.

The sky’s polarisation pattern and its use by biological systems has been widely
observed and researched in various species as the daytime celestial navigation cue [10,11].
With the aid of anatomical adaptations, some visual systems are able to perceive a clear blue
sky as a sizable polarisation pattern that is aligned with the sun’s relative angular location.
This perception is beneficial for a flying insect; without it, the sky would offer minimal
directional information, whether absolute or relative, especially when the sun is close to
the zenith, hidden by ground features, or blocked by clouds. The polarisation pattern
and the MW pattern have some similarities: they are both large, low-contrast structures
that will dominate in the sky when they are visible. Examples of these insects include the
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desert ant Cataglyphis [12] and the field cricket Gryllus campestris [13], both of which can
utilise celestial cues to keep their heading direction when they are walking, even if their
movement is disrupted along the yaw axis.

Figure 1. Left: apposition compound eyes; right: superposition compound eyes. The clear zone (CZ)
is labelled in superposition eyes. Figure adapted from Warrant et al. [14].

A moonless, clear night sky is significantly dimmer than full daylight, with light
intensity dropping from 10,000 lux during the daytime to just 0.0001 lux under such night-
time conditions [15]. Scarabaeus satyrus is a nocturnal dung beetle living in the savannas
of Southern Africa. They have been observed to navigate in straight lines at night while
transporting the balls of dung they have painstakingly created away from the source
to a suitable location for oviposition and burial. This behaviour is desirable to avoid
competition with members of the same species who would benefit from the reduced energy
and time use achieved by seizing another individual’s ball. When the moon and lunar sky
polarisation pattern are absent, Scarabaeus satyrus relies on the MW as a celestial directional
cue for the transition of the transit away from the source of the dung [2,16–18]. Evidence
indicates that they use the MW only as a short-term heading reference. Their studied
behavior requires a temporary sense of relative heading direction, and there is no evidence
of an MW almanac, clock, or other systems that would indicate that the behaviour is a
genuine celestial navigation system. The mechanism could be accurately described as the
MW being used as a celestial landmark. However, the distinction between a compass and a
landmark is not substantial considering the timeframe and the behavior of the beetle.

2.2. The Milky Way

The Milky Way (MW) is a large structure in comparison to other celestial bodies, and a
typical image of it is illustrated in Figure 2. The MW is not uniform, and contains variations
in brightness across its up to 30◦ wide span across the Southern night sky. Since the 1920s,
astronomers have known that this band represents an edge-on view of the Galaxy from
our location inside. Spiral galaxies, like the MW, are pinwheel-shaped and composed of
visually dense gas clouds, nebulae, and hundreds of billions of stars [19]. The MW Galaxy
has an approximate diameter of 87,400 light-years, and is 1000 light-years wide across the
spiral arms. Our solar system is situated in the Orion Spur, approximately 28,000 light-years
from the galactic center. The Great Rift, often referred to as the Dark Rift, is the name
given to a visually prominent dark structure in the MW, which is seen as dark areas within
a luminous band caused by interstellar clouds in cosmic dust, see Figure 3. The MW’s
luminosity varies across its span; thus, the visibility of the MW will depend on the time of
year and the observer’s location on Earth.
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(a) (b)
Figure 2. The Milky Way observed under a rural sky in South Australia. (a) The Milky Way captured
using a DSLR camera and (b) the Milky Way captured using a mobile phone.

Figure 3. A 360◦ panoramic picture assembled from several photographs that cover the Milky Way’s
northern and southern celestial spheres. Image: Licenced under a Creative Commons Attribution-
Share Alike 4.0 International licence by the European Southern Observatory (ESO).

Despite being low in contrast, the MW subtends a much larger visual angle than any
other star, constellation, or planet, and its shape is composed of both a high density of
stars and a low-spatial-frequency luminous structure. A camera with suitable sensitivity
to light needs only a very low angular resolution to detect the MW. We have previously
demonstrated, through motion blur filters applied to real and synthetic images, that the
imaging of the Milky Way is largely unaffected by motion blur [20].

2.3. Celestial Application of Deep Learning

With the development of computer vision technology in recent years, various advanced
approaches have been exploited. To date, few studies on deep learning (DL)-based models
for celestial navigation have been performed. Fortunately, DL techniques for visual object
detection are a fundamental aspect of computer vision and have been widely studied.
DL-based object detectors are classified into two categories, one-stage object detectors and
two-stage object detectors. A two-stage detector is one that first generates a pre-selected
box, called a region proposal (RP), and which then focuses on the region of interest (ROI).
Further candidate regions are classified using convolutional neural networks (CNNs). The
well-known two-stage detector approaches include RCNN [21], Fast RCNN [22], Faster
RCNN [23], Mask RCNN [24], etc. In contrast, one-stage object detector models do not
require the use of an RP stage, which is much simpler and more efficient compared to a
two-stage object detector. Examples of single-stage models include YOLO (You Only Look
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Once) [25], SSD [26], DSSD [27], etc. The YOLO algorithm is a CNN-based object detection
framework which has been widely explored and implemented in the computer vision
field. Various versions of YOLO have been introduced for object recognition, including
YOLOv2 [28], YOLOv5 [29], and YOLOv8 [30], etc.

Also, deep learning-based image recognition for navigation is a similar problem that
has been attracting a considerable amount of interest. For instance, Pan et al. proposed
a deep learning-based fine-grained recognition model named RMA (ResNet-Multiscale-
Attention) to achieve visual recognition of different types of navigation marks for sea
transportation [31]. Additionally, Wang et al. [32] proposed a visual navigation framework
for drogue detection and position tracking to achieve the aerial recovery of unmanned
aerial vehicles (UAVs). In addition to Earth observation (EO) navigation applications, there
are also some studies in the field of space exploration that use DL-based vision-relative
methods for navigation and landing [33–35].

2.4. Contribution of This Study

This paper proposes an MW detection and orientation algorithm that utilises a deep
neural network, YOLOv8, for segmenting the MW shape. This research consists of the
following tasks:

• Constructing a Milky Way object detection and image segmentation dataset.
• Accurately localising the MW by using YOLOv8-seg models and calculating the

moving angle to determine its orientation.
• Developing a new model that combines the proposed YOLOv8-seg and normalised

second central moments to calculate the MW orientation angle. This method addresses
situations where the image thresholding method is not applicable for MW region
detection, such as on full moon nights or during artificial light interference.

3. Methods

Previously, we demonstrated a conventional computer vision method based on object
detection and segmentation, with edge detection that could extract the angle of the orienta-
tion of the MW [36]. This method was suited to conditions under which the MW could be
cleanly segmented in a night sky, sans distractors such as trees and distant glow over cities
that would confuse the segmentation process.

We also tested the MW orientation algorithm on both real and synthetic images. We
showed that a useful characteristic of the MW as an orientation reference was its visual
resilience to motion blur compared to stars. Motion blur is a substantial problem for
long-exposure images on moving platforms subject to rotational vibration [20].

However, segmentation of the MW from the background is a substantial issue in
an environment with multiple light sources, particularly near the horizon. Therefore, in
this paper, to reduce the impact of backgrounds (artificial lights, moonlight, etc.) on MW
extraction, the YOLOv8 network was proposed for obtaining regions of interest in MW
images. This paper explains the use of a deep learning model, YOLOv8, for the purpose of
detecting MW, even in conditions such as a full moon night. The aim of this approach is to
reduce the image to an angle that represents the orientation of the MW, which might then
be input to a navigation system. The proposed method in this paper, the MW orientation
algorithm (MWOA), comprises the steps illustrated in Figure 4.

• Data generation and collection: The dataset utilised for training purposes is explained
in Section 4.

• Model selection, training, and evaluation: Upon obtaining and labelling the images,
the YOLOv8 model is trained on the prepared dataset. The trained model’s per-
formance is evaluated in metrics, which provide a measure of how well the model
performs in MW detection, in Section 5.1.1.

• Orientation Estimation: This step deploys the trained model to process the test images,
generates the predicted MW binary images, and calculates the angle.
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Figure 4. An overview of the proposed methodology.

3.1. YOLOv8 Model

YOLOv8 [30] is capable of handling multiple vision tasks, including object detection,
segmentation, pose estimation, tracking, and classification. YOLOv8 is presented in five
different model sizes: YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l
(large), and YOLOv8x (extra-large). The backbone of YOLOv8 is similar to YOLOv5,
with some changes: the C3 module is replaced with a C2f module, and the head part is
changed to a decoupled head structure. Moreover, the YOLOv8 model changes from an
anchor-based to an anchor-free model, which decreases the number of box predictions
and increases the Non-Maximum Suppression (NMS). YOLOv8 also provides an instance
semantic segmentation model, which is a step further than the object detection model called
YOLOv8-Seg. There are five YOLOv8 segmentation models: YOLOv8n-seg, YOLOv8s-
seg, YOLOv8m-seg, YOLOv8l-seg, and YOLOv8x-seg. In this paper, experiments were
conducted on YOLOv8s-seg and YOLOv8m-seg to find the Milky Way and extract the
MW’s shape.

3.2. Orientation Estimation

Once the Milky Way area in the night sky images has been predicted by using the
proposed YOLOv8-seg model, an object mask (binary image I(x, y)) can been generated;
then, the normalised second central moments are utilised to calculate angular infor-
mation for the extracted area of interest in the MW region. The coordinates of the
centroid (x̄, ȳ) are determined by finding the mean of the pixel coordinates in the x and y
directions, respectively.

x̄ =
1
N

N

∑
i=1

xi (1)

ȳ =
1
N

N

∑
i=1

yi (2)

where N represents the total number of pixels within the region, while xi and yi indicate
the x and y coordinates of the i-th pixel within the region.

The MW orientation is obtained using the calculated second-order central moments.
The central moment (µ) represents the coordinates of the mean. The normalised second
central moments for the region (µxx, µyy, µxy) can be computed as follows:
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µxx =
∑i x2

i
N

+
1

12
(3)

µyy =
∑i y2

i
N

+
1

12
(4)

µxy =
∑i xiyi

N
(5)

where the number of pixels in the region is denoted by N, and x and y represent the
pixel coordinates within the region relative to the centroid. The normalised second central
moment of a pixel with unit length is represented by 1

12

num =

µyy − µxx +
√(

µyy − µxx
)2

+ 4µ2
xy, if µyy > µxx

2µxy, otherwise
(6)

den =

2µxy, if µyy > µxx

µxx − µyy +
√(

µxx − µyy
)2

+ 4µ2
xy, otherwise

(7)

For the orientation of the MW region, Orientation is the direction (angle) calculated
based on the normalised second central moments of the region (MW shape).

Orientation =
180
π

atan
( num

den

)
(8)

4. Data Collection

Preparing an appropriate dataset is an important factor for ensuring the accuracy of
deep learning model performance. Our dataset contains a diverse range of night images
containing the MW, including synthetic images, real night images captured by a car-based
PI HD camera, and real night sky images from an all sky camera [37]. The dataset contains
735 images. Figure 5 shows some images from the dataset.

Figure 5. Some images from the dataset used: 1st column: Synthesised night sky images with
surroundings; 2nd column: Mallala night real sky images; 3rd columns: Stellarium sky images;
4th column: Mount Burnett Observatory live sky camera images.
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4.1. Synthetic Generation of Images

The MW’s visibility is limited in some regions due to anthropogenic light, which is
also a problem for optical astronomy in these locations. Also, capturing good night sky
images with proper exposure to show the Milky Way clearly is quite a challenge [38]. To
address this data collection issue, we utilised Stellarium (version 0.22.2) to produce some
simulated MW images.

The open-source desktop planetarium software Stellarium was developed by enthu-
siasts to simulate the specific celestial sphere according to the entered time and location
parameters [39]. The following configurations in Stellarium were used in this study: date,
position, Milky Way brightness/saturation, light pollution level (LP), and more. The light
pollution levels LP3 (rural sky) and LP4 (rural/suburban transition) were chosen when
generating the synthetic MW images [40]. The default MW brightness/saturation configu-
ration (brightness: 1, saturation: 1) was applied to each simulated test image. This software
also provided MW shape information by increasing the brightness/saturation of the MW
area, and can be used as a reference to determine and annotate the MW in real night images
which always have low contrast and low intensity. In order to prepare a diverse deep
learning dataset, simulated images with different sky parameter settings were used, and
the dataset also contained night images with a range of landscapes.

4.2. Field Image Acquisition

Data acquisition was achieved using a system that included a single-board computer
(SBC) for storage, triggering, and networking to a cloud server, and a standard OEM
camera, which was installed on the roof of the test vehicle, as illustrated in Figure 6. A
field trial was undertaken to obtain a dataset of real night sky images by driving within a
chosen low-population-density area, located among the wheat fields near Mallala, South
Australia. The image capture equipment was a Raspberry Pi HD camera coupled with
a 6 mm wide-angle camera lens (CS-Mount). The initial images were taken when the
vehicle was not moving, but with the engine running, leading to an inevitable amount
of motion. After we had acquired enough stationary images, we proceeded to gather a
set of moving images by driving the vehicle at around 40 km/h. This allowed us to test
the optical equipment under both engine vibrations, which are high-frequency, and road
vibrations, which are lower-frequency. The vehicle’s route included a series of 90-degree
turns and mostly consisted of unpaved roads. More images were taken while the vehicle
was not in motion and the engine was turned off. This helped to gather reference data
without significant motion blur. Further details are included in Table 1. All images within
the dataset were taken in high definition (3280 × 2464 pixels) and with exposure times of
10 s, 20 s, and 30 s.

Figure 7 shows some of the real night images in our dataset and some simulated
images taken at the same location, date, and time with the real night images of the MW
area, but with more brightness, which is adjustable. The simulated images can be used as
reference images for dataset annotation.

Table 1. Information about the data acquisition system, Mallala, South Australia.

Items Specification

Location Mallala, South Australia, Australia
Speed 0–40 km/h

Camera Pi HD camera
Exposure 10–30 s
Computer Raspberry Pi 4B
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Figure 6. Car-based image acquisition system.

Figure 7. Top row: real night sky images captured from the Mallala trip; bottom row: the simulated
sky images were generated when the same date and location were selected and the MW brightness
configuration was increased (Stellarium setting: MW brightness = 3, LP = 4).

4.3. Live Sky Camera

Additional real night sky images included in the dataset were sourced from a live
sky camera situated at Mount Burnett Observatory in Australia [37], the all sky camera.
Table 2 provides further details regarding the live sky camera. Figure 8 shows some of the
real night sky images captured from Mount Burnett Observatory used in our dataset, and
some simulated images taken at the same location, date, and time but with increased MW
area brightness, which is adjustable.

Table 2. Information about the all sky camera.

Item Specification

Location Mt Burnett, Victoria, Australia
Latitude 37.9725 S

Longitude 145.4955 E
Camera ASI224MC

Exposure 30 s
Computer Raspberry Pi 3B+
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Figure 8. Top row: the real night sky images captured from Mount Burnett Observatory; bottom
row: the simulated sky images were generated when the same date and location was selected and
the MW brightness configuration was increased (Stellarium setting: MW brightness = 5, LP = 4).

4.4. Image Annotation

The dataset was manually annotated with LabelMe (4.5.7) software. During the label
task for segmentation, the location of the MW area was manually marked in polygon
regions, with each polygon consisting of 10–30 points, as shown in Figure 9. The LabelMe
annotation tool generates a .json file for each image. The difficult point in the annotation
processing is that the night sky images are dim and low-contrast, which means the MW
shape is hard to annotate.

Figure 9. Example annotation images of Milky Way object detection and instance segmentation. The
bottom-right image is a synthetic image with a landscape background, and part of the MW is hidden
by trees.

Since the transitional edge between the MW and the sky area is hard to distinguish, the
annotation was performed by only one person to maintain consistency. We used simulated
images to ensure the accuracy of our annotations. By using Stellarium, we could set the
same date and location as in the dataset image, and then compare the simulated image
to determine the MW shape. The increased brightness of the MW area in the simulated
images was often used as a reference while annotating. However, manual labelling of the
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MW shape can affect accuracy. As mentioned above, Figure 7 shows some examples of real
night images and simulated images in our dataset.

The dataset was then divided into training, validation, and test sets at a ratio of
7:1.5:1.5. Table 3 provides the details of these sets. The format for the object detection and
segmentation datasets was YOLO.

Table 3. MW object detection and segmentation dataset construction.

Dataset Ratio Number Dataset Format (Segmentation)

Training set 7 513 YOLO

Validation set 1.5 111 YOLO

Test set 1.5 111 YOLO

5. Results
5.1. Milky Way Detection Using YOLOv8

A YOLOv8-seg model was trained on our MW dataset using transfer learning. We
initialised the segmentation models with pre-trained weights on the COCO-Seg dataset,
which included 80 pre-trained classes, and fine-tuned it on our MW dataset. Table 4 shows
the parameters of YOLOv8m-seg used during the training of the model for detecting the
Milky Way.

Table 4. The hyperparameters for training the MW detection method.

Training Hyperparameters Details

Epoch 200
Image size 640
Batch size 8

Learning rate 0.01

5.1.1. Object Detection Evaluation

To quantitatively evaluate the performance of the proposed object detection approach,
the evaluation criteria (recall, precision, and the mean Average Precision (mAP)) were
calculated as follows:

Recall =
TP

(TP + FN)
. (9)

Precision =
TP

(TP + FP)
. (10)

AP =
∫ 1

0
Pi(ri)d(ri) (11)

mAP =
∑N

i=1 AP
N

(12)

where TP is the true positive, FP is the false positive, and FN is the false negative. Average
Precision (AP) was calculated for each class. N is the total number of classes. Pi(ri) is the
precision at recall ri. A loss map of the proposed YOLOv8 segmentation model is shown in
Figure 10.

FM = 2 · Recall × Precision
(Recall + Precision)

. (13)
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Figure 10. A loss map of the proposed model (YOLOv8m-seg).

The FM score is defined as the harmonic mean (F-Measure) of the precision and recall
values, which measure the matching weight for the predicted observations and the ground
truth positives. A Mask F1 curve of the proposed YOLOv8m-seg model is shown in
Figure 11. Figure 12 presents MW detection results with the proposed model for some
field images.

Figure 11. A MaskF1 curve of the proposed model (YOLOv8m-seg).

Considering the different sizes of the YOLOv8 segmentation models, a comparison
with some models of other sizes is shown in Table 5.

Table 5. A comparison of different scales and parameters of YOLOv8-Seg models.

Model Weights Batch Epoch Mask (mAP0.5) Mask (mAP@0.5:0.95)

YOLOv8

YOLOv8m-seg 8 100 0.995 0.847
YOLOv8m-seg 8 200 0.995 0.847
YOLOv8s-seg 8 100 0.995 0.852
YOLOv8s-seg 8 200 0.995 0.853
YOLOv8s-seg 12 200 0.995 0.852

Table 6 shows the results of training different sized YOLOv8-seg models with the
dataset containing 500 simulated night sky images, and Table 7 shows the results of training
the YOLOv8m-seg model with the dataset that includes 200 simulated night sky images,
100 all sky camera night images, and 135 Mallala trip night sky images.



Biomimetics 2024, 9, 620 13 of 20

Table 6. The results of training the YOLOv8-seg model; dataset: all simulated (500).

Model Weights Batch Epoch Mask (mAP0.5) Mask (mAP@0.5:0.95)

YOLOv8

YOLOv8m-seg 8 100 0.995 0.841
YOLOv8m-seg 8 200 0.995 0.844
YOLOv8m-seg 8 300 0.995 0.839
YOLOv8s-seg 12 100 0.995 0.838

Table 7. The results of training the YOLOv8-seg model; dataset: simulated (200) + all sky camera
(100) + Mallala (135).

Model Weights Batch Epoch Mask (mAP0.5) Mask (mAP@0.5:0.95)

YOLOv8 YOLOv8m-seg 8 100 0.995 0.85
YOLOv8m-seg 8 200 0.995 0.863

Figure 12. The result of the proposed model for MW detection.

5.1.2. Error/Invalid Results

Under low-light conditions, like the night time in rural areas, extending the exposure
time is a way to capture sufficient light, but it simultaneously exacerbates the amount of
blur. Figure 13 was taken from the vehicle-based data acquisition system in Mallala. As we
can see, the moon and the car light were interfering light sources.

Therefore, during MW image capture, there may be some images with noise that are
not valid for MW detection. Figure 14 shows some invalid night sky images captured
during the trial. All of these images could not be used for MW detection due to disruptions
in image details caused by hardware and environmental conditions. For example, the
first row of Figure 14 demonstrates images impacted by car lights and moonlight. In
the second row, when the car turns, the moon can be seen as a bright curved light due
to the long camera exposure times. The third row shows additional images affected by
various disturbances.
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Figure 13. Vehicle-based data acquisition system on mission.

Figure 14. Some invalid images. Top row: bright moon and car lights; second row: high blur and car
rotating; third row: some other types of invalid images.

Figure 15 illustrates two images that cannot be used for angular calculations. Because
of the long exposure time, Figure 15a was captured during rotation, which caused vibration
and blur effects in MW detection. Figure 15b shows the predictive MW region, which is
affected and divided by the power line.
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(a) rotating, high blur

(b) power line

Figure 15. Examples of error results.

5.2. Angle Calculation

Figure 16 shows the GPS locations from the metadata while the night sky images were
acquired; the trip duration was around 3 h.

(a) (b)

Figure 16. GPS map. (a) Map of locations with points from metadata and (b) map of locations with
connecting line.

Quantitative Comparison

Figure 17 shows the angular change comparison results between the proposed method,
MW orientation algorithm (MWOA), and GPS data (GT) for the trial in Mallala on 25 July
2023. In order to show the comparison results in a short distance, we separated the
whole trip dataset, which was obtained over around 3 h, into segments, each sub-dataset
containing at least one 90◦ rotation.
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(a) GPS map
(b) Result comparison

(c) GPS map
(d) Result comparison

(e) GPS map
(f) Result comparison

(g) GPS map
(h) Result comparison

Figure 17. Angular accuracy calculated with MWOA for certain sections of the road. The green
coloured dot on the GPS maps indicates the starting point.
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In Figure 17a, the GPS route from the metadata is illustrated, the green dot indicating
the starting point and the blue line denoting the driving route, which were selected between
the start time of 8:28 p.m. and the end time of 8:45 p.m. Figure 17b shows the angular
change comparison results between the proposed method (blue line) and the ground truth
(red line).

The ground truth orientation angles calculated from the GPS data closely align with the
angles calculated from the MWOA. We observed a difference of roughly 5–10◦ between the
proposed method and GT for both left and right turns at certain locations. At some points
along the road, the maximum amplitude difference between angles becomes roughly 10◦.
However, the MWOA responds well to orientation changes and direction calculations along
straight paths. Angle differences may occur for various reasons, such as light pollution
caused by car lights and moonlight, as well as the impact of motion blur on image details.
This observation is clearly visible in the graphs, with the starting point indicated on the map.
The deviations in MWOA angular accuracy might be due to limitations in the hardware and
long exposure time, which might cause the MW region detection to not be same, leading to
errors during dynamic movement.

Figure 18 shows the result when the car is not moving. The lines indicate three
different locations during the trip with stationary periods. The results imply that the
MWOA provides reliable MW detection and direction information when there is not much
disturbance caused by movement; even the moonlight and car lights are presented in this
real night scenario.

Figure 18. Angle calculation for certain locations of the map while the vehicle is not moving.

6. Discussion

The hardware used for this study was essentially hobby-grade. This caused long
exposure times and substantial optical distortion. It would be useful to capture more
imagery; however, the MW is not visible everywhere. The MW is best viewed far from
population centres, creating challenges when attempting to capture enough data for deep
learning training datasets. There are also a range of different atmospheric conditions that
would ideally be photographed for training data. Complete coverage of the space of all
phenomena would require thousands of images from unique scenarios. This would be
an exorbitant use of resources, showing why deep learning solutions are at their best
when a dataset has been created and classified by a large number of observers. In this
study, the simulated generation of data appears to have performed as envisaged, leading
to considerations of what might be involved in adding atmospheric effects and terrain
features to the simulator’s output.



Biomimetics 2024, 9, 620 18 of 20

Some examples of changes in the detected shape of the MW when the car is turning
can be seen in Figure 15a, which presents an image affected by this scenario. Tall and
overhead infrastructure at the site interfere with the boundary of the MW. Figure 15b shows
the predicted MW region, which was affected by the power lines. It is notable that the
well-demonstrated terrestrial animal model for MW orientation, the dung beetle, lives in
treeless and relatively flat environments. Many of these problems would not exist in the
aerial domain, and none of these problems would exist at high altitude.

The MW object in the night sky does not have a distinct brightness boundary with
the sky, as it fades away at the edges. Therefore, annotation of the MW shape was relative
to the annotator’s judgment. It is hard to annotate the exact shape of the MW due its
smoky shape. To maintain consistency in annotation, the annotations were carried out by
one person.

The hardware setup used for the data capture was mounted on a car. The vibration
and the movement of the car might have interfered with the image stability, adding motion
blur noise to the images. The headlights of the car were set to the lowest beam angle during
image capture. However, the reflected light seemed to appear in some captured images.
The addition of dust and mist provides material for the scattering of light from below the
sensor horizon down into the camera. Most of the images were unaffected by the car light,
but some were severely affected (e.g., Figure 13). We manually removed these images from
our dataset during the data preprocessing stage. When the car was turning, the other bright
objects in the sky, such as the moon and bright stars, created curved light trajectories on the
images, making them unusable for the experiments.

This method has not been developed or tested for partial occlusion, and has not been
engineered for graceful degradation when the MW is partially or fully occluded. The dung
beetle has exhibited a number of orientation behaviours under different circumstances,
including a lunar reference and the Milky Way, in various combinations of conditions [1,17].
In exoatmospheric and high-altitude environments, the MW is reliably present. On Earth,
it is one of many possible direction cues, subtracting moonless nights from the range of
conditions in which celestial orientation is not possible.

7. Conclusions

In this work, an MW shape detection algorithm based on YOLOv8m-seg was used to
reduce the interference of other light sources in the MW compass task. The YOLOv8m-Seg
network with our own training dataset achieved a segment mAP@0.5 of 84.7% on the
validation set. Combined with the proposed YOLOv8m-seg model and angle calculation
method, the new model effectively reduced the influence of complex backgrounds. The
moving angle calculation comparison with the GT data from the field trial in Mallala
shows that for short-term navigation, the segmented MW image can be used as a reliable
orientation cue. Future research will continue to optimise the YOLOv8m-Seg model to
improve its segmentation accuracy for MW detection.
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Abbreviations
The following abbreviations are used in this manuscript:

MW Milky Way
ESO European Southern Observatory
DL deep learning
ROI region of interest
RP region proposal
CNNs convolutional neural networks
YOLO You Only Look Once
RMA ResNet-Multiscale-Attention
UAV unmanned aerial vehicle
EO Earth observation
MWOA Milky Way orientation algorithm
NMS Non-Maximum Suppression
LP light pollution
SBC single-board computer
mAP mean Average Precision
TP true positive
FP false positive
AP Average Precision
GT ground truth
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