
Rheology and dynamics of elastic waves in

fluid-saturated porous media with gas bubbles

A Thesis submitted by

Adham Abdul Wahab Ali ALI

For the award of

Doctor of Philosophy

2019



Abstract

Elastic wave propagation in fluid-saturated porous media presents significant prac-

tical and theoretical interest for science and engineering. In such media at least two

types of the waves can propagate: the Frenkel-Biot compressional waves of P1 and

P2 type. Usually the waves are modelled by partial differential equations (PDEs)

ranging from the classical wave equation to its nonlinear high-order extensions. A

popular extension of this kind is the Nikolaevsky equation (1989). In this thesis we

extend it further to included bubbles.

The thesis consists of seven chapters. Chapter 1 presents the literature review and

motivation. Chapter 2 gives general concepts from dynamics. In Chapter 3 for the

cases when there are no neutral modes, the wave decays exponentially quickly under

the linear dispersion relation (which dynamically expresses dissipation). The wave

dynamics depend on the grain rheology, which should take into account bubbles in

the fluid-saturated pores. We consider the standard linear solid rheological model to

include a special element representing a bubble. We derive the 2nd-order evolution

PDEs for the P1-wave governing the velocity of the solid matrix in the moving

reference frame. Then we derive the corresponding dispersion relation, and compare

it to the case without the bubbles. We observe that the increase of the radius and

number of the bubbles leads to the increase in the decay rate.

In Chapter 4 of the thesis we use the full rheological model, based on the model

by Nikolaevsky. The full model consists of three segments representing the solid



ii

continuum, fluid continuum and a bubble surrounded by the fluid. We derive the

4th-order PDE for the wave without the bubbles and 6th-order PDE for the wave

with the bubbles, and obtain the corresponding dispersion relations. We discover

that the increase of the radius of the bubbles leads to faster decay, while the increase

of the number of the bubbles leads to slower decay of the wave. This latter result

manifests the opposite trend to the one observed in the second part. We attribute this

result to the more complete and, therefore, more realistic structure of the rheological

model used.

In Chapter 5 of the thesis we evaluate the influence on the decay rate by the rheolog-

ical parameters and other parameters of the medium such as pressure and porosity.

Each of them has an appreciable effect on the decay rate, as detailed in the thesis. We

discover that the model gives complex wave velocity and/or wave growth, which in-

dicates limitations of the model applicability at extremely large amounts of bubbles.

However, we calculate some of acceptable values of the parameters. They belong to

finite-size cloud(s) of acceptable values in the multi-dimensional parametric space.

Full study of this space is a possible direction of future research.

In Chapter 6 we use the centre manifold theory to describe the dynamics of the elastic

wave for the special case when there is one neutral mode. After quickly falling onto

the centre manifold, the system then exhibits slow algebraic decay or tends to a

steady state depending on the initial conditions and the neutral wave number.

Finally, Chapter 7 gives the conclusions and suggestions for future work.
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1.3 Hysteresis loop (Özkaya et al., 2017) . . . . . . . . . . . . . . . . . . . 4

1.4 Rheological scheme for Maxwell model . . . . . . . . . . . . . . . . . . 5

1.5 Rheological scheme for Voigt-Kelvin model . . . . . . . . . . . . . . . 6

1.6 Rheological scheme for standard linear solid model . . . . . . . . . . . 7

1.7 Rheological scheme for Burgers model . . . . . . . . . . . . . . . . . . 8

1.8 Rheological scheme with internal oscillators (Nikolaevskiy, 1985) . . . 10

1.9 Rheological scheme with internal oscillators (Nikolaevskiy, 1989) . . . 11

1.10 Displacements occurring from a harmonic plane P-wave (top) and S-

wave (bottom) traveling horizontally across the page. S-wave propa-

gation is pure shear with no volume change, whereas P-waves involve

both a volume change and shearing (change in shape) in the material.

Strains are highly exaggerated compared to actual seismic strains in

the Earth (Shearer, 2010) . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.11 Effect of water saturation on the phase speed of the P1 wave at four

excitation frequencies: the air-water and oil-water systems (Lo et al.,

2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



LIST OF FIGURES xiii

1.12 Effect of water saturation on the attenuation coefficient of the P1

wave at four excitation frequencies: (a) air-water system, (b) oil-water

system (Lo et al., 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.13 Variations of phase velocities with varying degree of saturation for the

Massilon sandstone (Wei and Muraleetharan, 2002) . . . . . . . . . . . 16

1.14 Compressional and shear wave speeds (Buckingham, 1999) . . . . . . . 17

1.15 Velocities of P1- and P2-waves in porous medium with varying satu-

ration of the wetting phase S0 = 0.2, 0.4, 0.6, 0.8 : (a) velocity for the

P1-wave (vp1); (b) velocity for the P2-wave (vp2) (Lu et al., 2007) . . . 17

1.16 Compressional-wave velocity in the porous material, saturated with

one fluid, as a function of porosity (Beresnev, 2013) . . . . . . . . . . 18

2.1 Attraction of the trajectories to parabola y = x2 is system (2.6) (Robert-

s, 1989) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Three–branch rheological scheme from (Nikolaevskiy, 1989) . . . . . . 32

3.2 The modified rheological scheme relative to Figure 3.1. It shows the

position of the bubble-representing element $, which may generally

include spring, mass and friction piston (Nikolaevskiy and Strunin,

2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 A simplified rheological scheme including the bubble . . . . . . . . . . 35

3.4 Rheological scheme without gas bubble . . . . . . . . . . . . . . . . . 42

3.5 The decay rate by formula (3.49) for variant (a), k∗ = 0.25 1/m . . . . 49

3.6 The decay rate by formulas (3.49) and (3.51) for variant (a): n0 varies,

R0 = 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 The decay rate by formulas (3.49) and (3.51) for variant (a): R0 varies,

n0 = 4× 1010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 The decay rate by formula (3.49) for variant (b), k∗ = 0.25 1/m . . . . 51

3.9 The decay rate by formulas (3.49) and (3.51) for variant (b): n0 varies,

R0 = 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES xiv

3.10 The decay rate by formulas (3.49) and (3.51) for variant (b): R0 varies,

n0 = 4× 1010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Two–branch rheological scheme from (Nikolaevskiy, 1985) . . . . . . . 57

4.2 Rheological scheme including a gas bubble . . . . . . . . . . . . . . . . 62

4.3 Rheological scheme without gas bubble . . . . . . . . . . . . . . . . . 73

4.4 The decay rate by formula (4.90) for variant (a), k∗ = 0.25 1/m . . . . 80

4.5 The decay rate by formulas (4.90) and (4.92) for variant (a): n0 varies,

R0 = 5× 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 The decay rate by formulas (4.90) and (4.92) for variant (a): R0 varies,

n0 = 4× 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 The decay rate by formula (4.90) for variant (b), k∗ = 0.25 1/m . . . . 82

4.8 The decay rate by formulas (4.90) and (4.92) for variant (b): n0 varies,

R0 = 5× 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 The decay rate by formulas (4.90) and (4.92) for variant (b): R0 varies,

n0 = 4× 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 The decay rate by formula (4.90) for variant (c), for k∗ = 0.25 1/m . . 84

4.11 The decay rate by formulas (4.90) and (4.92) for variant (c): n0 varies,

R0 = 5× 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 The decay rate by formulas (4.90) and (4.92) for variant (c): R0 varies,

n0 = 4× 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.13 The decay rate by formula (4.90) for variant (a), k∗ = 0.52 1/m . . . . 85

4.14 The decay rate by formulas (4.90) and (4.92) for variant (a): n0 varies,

R0 = 5× 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.15 The decay rate by formulas (4.90) and (4.92) for variant (a): R0 varies,

n0 = 4× 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Rheological scheme including a gas bubble . . . . . . . . . . . . . . . . 89

5.2 The decay rate by formula (5.3) for rows 2 of Tables 5.1 and 5.2,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



LIST OF FIGURES xv

5.3 The decay rate by formula (5.3) for row 4 of Table 5.1 and row 10 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 The decay rate by formula (5.3) for row 3 of Table 5.1 and row 7 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 The decay rate by formula (5.3) for rows 1 of Tables 5.1 and 5.2,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 The decay rate by formula (5.3) for row 4 of Table 5.1 and row 13 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 The decay rate by formula (5.3) for row 1 of Table 5.1 and row 3 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 The decay rate by formula (5.3) for row 3 of Table 5.1 and row 8 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 The decay rate by formula (5.3) for row 2 of Table 5.1 and row 5 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 The decay rate by formula (5.3) for row 3 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 The decay rate by formula (5.3) for rows 1 of Tables 5.1 and 5.2,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 The decay rate by formula (5.3) for row 1 of Table 5.1 and row 3 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.13 The decay rate by formula (5.3) for row 4 of Table 5.1 and row 8 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.14 The decay rate by formula (5.3) for row 1 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.15 The decay rate by formula (5.4) for rows 1 of Tables 5.1 and 5.2,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.16 The decay rate by formula (5.4) for row 1 of Table 5.1 and row 2 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF FIGURES xvi

5.17 The decay rate by formula (5.4) for row 2 of Table 5.1 and row 9 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.18 The decay rate by formula (5.4) for row 2 of Table 5.1 and row 4 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.19 The decay rate by formula (5.4) for row 2 of Table 5.1 and row 3 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.20 The decay rate by formula (5.4) for row 2 of Table 5.1 and row 11 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.21 The decay rate by formula (5.4) for row 1 of Table 5.1 and row 16 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.22 The decay rate by formula (5.4) for rows 3 of Tables 5.1 and 5.2,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.23 The decay rate by formula (5.4) for row 3 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.24 The decay rate by formula (5.4) for row 1 of Table 5.1 and row 5 of

Table 5.2, k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.25 The attenuation curves by formula (5.3) for different values of p0,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.26 The attenuation curves by formula (5.3) for different values of m0,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.27 The attenuation curves by formula (5.3) for different values of kb,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.28 The attenuation curves by formula (5.3) for different values of β(s),

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.29 The attenuation curves by formula (5.3) for different values of β(L),

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.30 The attenuation curves by formula (5.3) for different values of ρ
(s)
0 ,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES xvii

5.31 The attenuation curves by formula (5.3) for different values of ρ
(L)
0 ,

k∗ = 0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.32 The attenuation curves by formula (5.3) for different values of `, k∗ =

0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.33 The attenuation curves by formula (5.3) for different values of ζ, k∗ =

0.25 1/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 The increment versus wave number for an active system (dashed line)

and passive system (the mode with N = 3 is shown as neutral as an

example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Rheological scheme representing a single grain (Nikolaevskiy, 1989) . . 114

6.3 The neutral modes N = 1, 2, and 3 of Eq. (6.10) . . . . . . . . . . . . 118

6.4 Settling of the inverse-square-root law for the neutral mode N = 1

from (6.11); the initial condition A1 = A2 = A3 = 1 + i . . . . . . . . . 120

6.5 Settling of the inverse-square-root law for the neutral mode N = 1

from (6.11); the initial condition A1 = 1.5 + 0.4i, A2 = 0.5 + 0.4i,

A3 = 0.5 + 0.3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Settling of the inverse square-root law for the neutral mode N = 2

from (6.20); the initial condition A1 = A2 = A3 = A4 = 1 + i . . . . . 122

6.7 Settling of the inverse square-root law for the neutral mode N = 2

from (6.20); the initial condition A1 = A2 = A3 = A4 = 0.4 + 0.4i . . . 122

6.8 The exponential decay (asymptotically) of A1 for the case N = 2 . . . 123

6.9 The exponential decay (asymptotically) of A3 for the case N = 2 . . . 123

6.10 Settling of the inverse-square-root law for the neutral mode N = 3

from (6.22); the initial condition A1 = A2 = A3 = A4 = A5 = A6 =

1 + i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.11 Settling of the inverse-square-root law for the neutral mode N = 3

from (6.22); the initial condition A1 = A2 = A3 = A4 = A5 = A6 =

0.05 + 0.04i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



LIST OF FIGURES xviii

6.12 The exponential decay (asymptotically) of real parts of A1, A2, A4

and A5 for the case N = 3 . . . . . . . . . . . . . . . . . . . . . . . . 126

6.13 The exponential decay (asymptotically) of imaginary parts of A1, A2,

A4 and A5 for the case N = 3 . . . . . . . . . . . . . . . . . . . . . . . 126

6.14 The stationary solution for the case N = 2 with the initial condition

A1 = A2 = A3 = A4 = 0.5 + 0.5i . . . . . . . . . . . . . . . . . . . . . 127

6.15 The stationary solution for the case N = 2 with the initial condition

A1 = 0.6 + 0.15i, A2 = 0.5 + 0.3i, A3 = 0.3 + 0.4i, A4 = 0.2 + 0.1i . . . 128

6.16 The stationary solution for the case N = 2 with the initial condition

A1 = A2 = A3 = A4 = 0.2 + 0.1i . . . . . . . . . . . . . . . . . . . . . 128

6.17 The stationary solution for the case N = 3 with the initial condition

A1 = A3 = A5 = 0.3 + 0.1i, A2 = A4 = A6 = 0.4 + 0.2i . . . . . . . . . 129

6.18 The stationary solution for the case N = 3 with the initial condition

A1 = A2 = A3 = A4 = A5 = A6 = 0.4 + 0.4i . . . . . . . . . . . . . . . 129

6.19 The stationary solution for the case N = 3 with the initial condition

A1 = A2 = A3 = A4 = A5 = A6 = 0.3 + 0.2i . . . . . . . . . . . . . . . 130

7.1 Three–branch rheological scheme including a gas bubble . . . . . . . . 133



List of Tables

5.1 The values of µ1, and µ2 . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 The values of E1, E2, E3, M1, M2, and M3 . . . . . . . . . . . . . . . 90

5.3 Numerical data for Figure 5.9 . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Numerical data for Figure 5.10 . . . . . . . . . . . . . . . . . . . . . . 98



Keywords

Elastic Granular Media, Rheology, Bubbles, Nonlinear Waves, Frenkel-Biot’s Waves,

Porous Media, Fluid.



Acronyms & Abbreviations

PDEs Partial Differential Equations

P-wave Primary wave

S-wave Shear wave

P1-wave Fast primary wave

P2-wave Slow primary wave

GSLS Generalized Standard Linear Solid

BZ Belousov-Zhabotinsky



Nomenclature

β(s) : Compressibility of solid, Pa−1

β(L) : Compressibility of water and gas, Pa−1

ρ
(s)
0 : Density of solid, kg/m3

ρ
(L)
0 : Density of water, kg/m3

ρ
(g)
0 : Density of gas, kg/m3

R0 : Bubble radius, m

ε : Small parameter

n0 : Number of bubbles, 1/m3

µ : Viscosity, Pa·s

` : Permeability, m2

Ei : Elastic moduli, Pa

Mi : Masses, kg/m

kb : Bulk modulus, Pa

p : Pressure, Pa

σ(ef) : Effective stress, Pa

φ : Volume gas content

m : Porosity

ζ : Adiabatic exponent

k : Wave number, 1/m

c : Wave velocity, m/s

v : Particle velocity, m/s

λ : Decay rate, 1/s



Chapter 1

Literature review and motivation

SUMMARY: This chapter gives a brief literature review of the wave propagation in

porous media including Biot’s theory and some related concepts. The rest of this

chapter goes to presenting the motivation. Next, we explain the purpose of the study.

Finally, the outline of this thesis is presented.

1.1 A review of wave propagation in porous media

The main purpose of this section is to give a brief review of propagation seismic wave

in fluid saturated and partially saturated porous media. We also describe basics of

stress-strain relations, in order to prepare the ground for deriving the constitutive

equation for the new rheological model used in this thesis.

1.1.1 Stress-strain relations in viscoelastic models

The propagation of seismic waves in a porous elastic solid is intimately linked to two

basic concepts: the stress and the strain (a measure of deformation per unit length).

Therefore, these waves are also called stress waves. Stress is the force applied to the
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elastic solid, and strain represents the resulting changes in shape and size. The unit

of stress is force per unit area. For the material that is stretched, the strain has

positive sign; for the material that is compressed, the strain has negative sign. Such

strain is sometimes called a normal strain, however there is another type of strain

which is called a shear strain and the corresponding stress is called a shear stress.

By the Hooke’s law the stress σ is related to the strain e by the linear relation

σ = Ee , (1.1)

where E is the elastic modulus called the Young’s modulus and has the same units

as stress (Holmes, 2009). A similar relation can be written for the shear strain and

stress

τ = Gγ , (1.2)

where G is the shear modulus. The stress-strain relations of a linear elastic material

can be identified by two constants, the Young’s modulus E and the Poisson’s ratio

υ which are connected by the following expressions (Vyalov, 2013),

E =
3KG

K +G
, υ =

K − 2G

2(K +G)
, (1.3)

where K is bulk modulus of elasticity.

The relation between stress and strain can be very complicated, therefore many sim-

plified models are introduced in rheology (Novotny, 1999). In general, materials can

be classified as elastic solids and viscous liquids (Ferry, 1980). A material that ex-

hibits both viscous and elastic characteristics is often called a viscoelastic material.

Rheological models, also called viscoelastic models or mechanical models are usually

used to illustrate the viscoelastic behavior and physical properties of the materials.

Viscoelastic models are very useful in many disciplines of science especially in biome-

chanics, for example, most of biological tissues have viscoelastic features (Fung, 2013;

Özkaya et al., 2017). We can build up the linear viscoelastic model by using different

combinations of elements of the linear elastic springs and the linear viscous dashpots
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that relate to stress-strain relations. The linear elastic and viscous deformation can

be represented (modelled) by the spring and dashpot elements, respectively, as illus-

trated in Figure 1.1. A purely linear elastic spring follows Hooke’s law (similar to

the linear relation between the stress and strain (1.1)). For the case of purely lin-

ear viscous material, the stress-strain relation (the constitutive law) in the dashpot

element follows the formula

σ = µ
de

dt
, (1.4)

where µ is the viscosity constant specified to the dashpot and has the unit N/m2, or

Pascal·Second=Pa·s. This means that the shear stress is proportional to the change

of the strain rate. At this point the main difference between elastic and viscoelastic

materials is that the constitutive equation of the viscoelastic material involves time

derivative(s) whereas for the elastic material it does not. For elastic materials, the

size and shape of the material can return to its original when the applied force is

removed and this is because the energy provided to deform the material is stored

elastically in the material (Özkaya et al., 2017). This shows that there is no energy

loss during the loading cycle. Therefore, the loading and unloading cycle for an

elastic material coincide as shown in Figure 1.2. For viscoelastic materials, some of

the energy is stored in the material and some of it is damped (dissipated) thermally.

Consequently, there is loss of energy during the loading and unloading cycle because

the Newton’s dashpot generates the resistance to activate the deformation (Kim,

2008). The area enclosed by the loading and unloading paths represents the energy

dissipated thermally and is known as the hysteresis, see Figure 1.3.

Figure 1.1: Rheological scheme for the linear: (a) elastic spring, (b) viscous dashpot .
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Figure 1.2: For an elastic material, loading and unloading paths coincide (Özkaya

et al., 2017) .

Figure 1.3: Hysteresis loop (Özkaya et al., 2017) .

The constitutive equation for a linear viscoelasticity can be presented either by a

differential equation or an integral equation. There are several models that are used

to describe the viscoelasticity of the materials. To make this review more concrete

we give some basic examples to express the linear viscoelastic materials providing

the details of the approach that we will use to obtain the governing equations for

more complex viscoelastic models (Lemaitre, 2001; Banks et al., 2011; Fung, 2013;

Findley and Davis, 2013; Zhi-jun et al., 2014; Skrzypek and Ganczarski, 2015).
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• Maxwell model

The Maxwell model is the simplest model for a viscoelastic material that con-

nects a purely viscous dashpot with a purely elastic spring as shown in Fig-

ure 1.4. In the Maxwell model, the stress goes down exponentially with time.

The equations of the model are

e = e1 + e2 , σ = σ1 = σ2 ,

σ1 = Ee1 , σ2 = µ
de2

dt
.

(1.5)

The system (1.5) gives the constitutive equation for the model

σ +
µ

E

dσ

dt
= µ

de

dt
. (1.6)

Figure 1.4: Rheological scheme for Maxwell model .

• Voigt-Kelvin model

The Kelvin-Voigt model is another simple model which consists of a single

elastic spring and a single viscous dashpot but in this case the two elements

are connected in parallel as shown in Figure 1.5. The model generates the

following equations

e = e1 = e2 , σ = σ1 + σ2 ,

σ1 = µ
de1

dt
, σ2 = Ee2 .

(1.7)

Therefore, the stress-strain equation of the model is

σ = Ee+ µ
de

dt
. (1.8)
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Figure 1.5: Rheological scheme for Voigt-Kelvin model .

• Standard linear solid model

Standard linear solid model is the combination of a Maxwell model in parallel

with an elastic spring element. This model is also called a Kelvin model. An

illustration is given in Figure 1.6. The governing equations of the model are

e = e2 = e1 + e3 ,

σ = E1e1 + E2e2 ,

E1e1 − µ
de3

dt
= 0 .

(1.9)

This is a more complex model and below we show the derivation in detail.

Differentiating the first and second equations of the system (1.9), we obtain

the following equations in matrix form,

E2 E1 0 0 0

0 0 0 E1 0

0 E1 0 0 −µ

−1 1 1 0 0

0 0 0 1 1





e

e1

e3

de1
dt

de3
dt


=



σ

dσ
dt
− E2

de
dt

0

0

de
dt


. (1.10)

Then solving system (1.10) for e yields

e =
−E2

1µ
de
dt
− E1E2µ

de
dt

+ E2
1σ + E1µ

dσ
dt

E2
1E2

. (1.11)
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Equation (1.11) leads to the constitutive law

σ + θ
dσ

dt
= E2e+ θ(E1 + E2)

de

dt
, (1.12)

where θ = µ/E1.

Figure 1.6: Rheological scheme for standard linear solid model .

• Burgers model

This model is even more complicated than the former three models. The Burg-

ers model is composed of the Maxwell model and the Kelvin-Voigt arranged in

a series as shown in Figure 1.7. Now we write the equations for its elements,

e = e1 + e2 + e3 ,

σ = E1e1 ,

σ = µ1
de2

dt
,

σ = E2e3 + µ2
de3

dt
.

(1.13)

Differentiating system (1.13) up to the second order, gives the following equa-

tions in matrix form,
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0 1 1 1 0 0 0 0 0 0

−1 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

0 E1 0 0 0 0 0 0 0 0

0 0 0 0 E1 0 0 0 0 0

0 0 0 0 0 0 0 E1 0 0

0 0 0 0 0 µ1 0 0 0 0

0 0 0 0 0 0 0 0 µ1 0

0 0 0 E2 0 0 µ2 0 0 0

0 0 0 0 0 0 E2 0 0 µ2





de
dt

e1

e2

e3

de1
dt

de2
dt

de3
dt

d2e1
dt2

d2e2
dt2

d2e1
dt2



=



e

0

d2e
dt2

σ

dσ
dt

d2σ
dt2

σ

dσ
dt

σ

dσ
dt



. (1.14)

Solving system (1.14) for de
dt

results in

de

dt
= −

[
E3

1E2µ
2
1µ2

d2e
dt2
− E2

1E2µ1

(
((E1 + E2)µ1 + E1µ2)dσ

dt
+ µ1µ2

d2σ
dt2

)
E3

1E
2
2µ

2
1

]
.

(1.15)

Then the stress-strain equation of the Burgers model takes the form

σ +

(
µ1

E1

+
µ1

E2

+
µ2

E2

)
dσ

dt
+
µ1µ2

E1E2

d2σ

dt2
= µ1

de

dt
+
µ1µ2

E2

d2e

dt2
. (1.16)

Figure 1.7: Rheological scheme for Burgers model .
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1.1.2 Model of rheology with internal oscillators

This section gives a short introduction to the one-dimensional viscoelastic model

with internal oscillators. Typically, the rheological models combine an elastic spring

with a viscous dashpot. However, Nikolaevskiy (1985) in his analysis of seismic waves

considered the standard mechanical model with an internal oscillator. The structure

of the model is similar to the standard linear solid model but it also contains two

oscillating masses M1 and M2 attached to the elastic springs, see Figure 1.8. The

governing equations are

e = e2 = e1 + e3 ,

E1e1 = µ
de3

dt
,

M1
∂2e1

∂t2
+M2

∂2e2

∂t2
= σ − E1e1 − E2e2 .

(1.17)

Now we differentiate system (1.17) up to the third order and get the following equa-

tions in matrix form,

E2 E1 0 0 0 M1 0 0 0

0 0 0 E1 0 0 0 M1 0

0 E1 0 0 −µ 0 0 0 0

0 0 0 E1 0 0 −µ 0 0

0 0 0 0 0 E1 0 0 −µ

−1 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1





e

e1

e3

de1
dt

de3
dt

d2e1
dt2

d2e3
dt2

d3e1
dt3

d3e3
dt3



=



σ −M2
d2e
dt2

dσ
dt
− E2

de
dt
−M2

d3e
dt3

0

0

0

0

de
dt

d2e
dt2

d3e
dt3



.

(1.18)

Solving system (1.18) for e yields,

e = −

[
E1

(
M2

d2e
dt2

+ µde
dt
− σ

)
+ µ
(
E2

de
dt

+ (M1 +M2)d
3e
dt3
− dσ

dt

)
E1E2

]
. (1.19)
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Equation (1.19) leads to the constitutive law presented in (Nikolaevskiy, 1985),

σ + θ
dσ

dt
= E2e+ (E1 + E2)θ

de

dt
+M2

d2e

dt2
+ (M1 +M2)θ

d3e

dt3
, (1.20)

where θ = µ1/E1 .

Figure 1.8: Rheological scheme with internal oscillators (Nikolaevskiy, 1985) .

In 1989, Nikolaevskiy extended his model by connecting the rheological model p-

resented in Figure 1.8 and the Maxwell model in parallel (Nikolaevskiy, 1989), see

Figure 1.9. The resulting constitutive equation has the form(
a0 +

5∑
p=1

ap
Dp

Dtp

)
e =

(
b0 +

3∑
p=1

bp
Dp

Dtp

)
σ , (1.21)

where the mechanical parameters ai and bi are expressed as

a0 = E2, a1 = (E1 + E2)θ1 + (E2 + E3)θ2, a2 = E2

(M1

E1

+
M2

E2

+ θ1θ2

)
,

a3 = (M1 +M2)θ1 +
(
M1 +M2

E2 + E3

E1

)
θ2 , (1.22)

a4 =
M1 +M2

E1

+ θ1θ2E1, a5 =
M1 +M2

E1

θ2 ,

b0 = 0, b1 = θ1θ2 +
M1

E1

, b3 =
M1

E1

θ1, θ1 =
µ1

E1

, θ2 =
µ2

E3

.

In this study, we will use an extended viscoelastic model relative to the model of Niko-

laevskiy (1985, 1989) to take into account bubbles. In the new model, we will add
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one more mass attached to an elastic spring and a viscous dashpot in the fluid branch

in Figure 1.8. The new extended model will be discussed in more detail in Chapter 4.

Figure 1.9: Rheological scheme with internal oscillators (Nikolaevskiy, 1989) .

1.1.3 Biot’s theory for porous elastic solids

The problem of the wave propagation in porous media is important in various fields

of science and engineering. Over the recent years, researchers studied diverse phe-

nomena of this type in large-scale earthquakes, soil mechanics, acoustics, earthquake

engineering, and many other areas. In 1956, Biot (1956a,b) presented his important

work of wave propagation in a saturated porous medium for both low and higher

frequencies. Today, most studies in acoustics, geophysical and geological mechanics

rely on his theory. Biot identified the presence of three different wave types in fluid-

saturated porous media, namely two types of compressional waves, also called longi-

tudinal, dilatational, irrotational or primary waves (P-waves) with different speeds

and one type of rotational, shear wave or secondary wave (S-wave). Note that the

P- and S-waves are well known waves in seismology. The two compressional waves

are a fast compressional wave called P1-wave and a slow compressional wave called

P2-wave. Both compressional and shear elastic waves can move and propagate in

solid rocks. However, only compressional waves can propagate in fluids and gases.
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Figure 1.10 shows the particle motion for both P-wave and S-wave.

Biot (1962b,a) also derived the dynamical equations for the wave propagation in

poroelastic media fully saturated with a single-phase fluid using Lagrange’s equa-

tions. Many researchers re-derived the Biot’s equations using different mathematical

approaches, for example, homogenization for periodic structures (Lévy, 1979; Auri-

ault, 1980; Burridge and Keller, 1981) and volume averaging processes (Pride et al.,

1992). The Biot’s equations involve four basic assumptions (Müller et al., 2010):

first, the porous rock is isotropic and homogeneous; second, the porous rock is ful-

ly saturated with only one fluid; third, the motion between the solid and fluid is

governed by the Darcy’s law and fourth, the wavelength of the wave is larger than

the size of the biggest grains or pores. A seismic wave is an elastic wave; and the

elastic wave equation has been widely used to describe the wave propagation in a

porous media, such as earth rocks and human body (ultrasonic waves). The standard

form of the seismic wave equation in a homogeneous and isotropic medium can be

expressed in vector notation as

ρ0
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) , (1.23)

here ∇ is the gradient operator, ρ is the density, λ and µ are the Lame parameters

related to the Young’s modulus, and u is the displacement. Because the equation

is expressed in terms of the displacement of the material, it is also called the dis-

placement equation of motion (Bedford and Drumheller, 1994). Additionally, we can

write the P-wave equation as

∇2(∇ · u)− 1

α2

∂2(∇ · u)

∂t2
= 0 , (1.24)

where α is the P-wave velocity,

α =

√
λ+ 2µ

ρ
. (1.25)

Similarly, we can write the S-wave equation as

∇2(∇× u)− 1

β2

∂2(∇× u)

∂t2
= 0 , (1.26)
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where β is the velocity of the S-wave,

β =

√
µ

ρ
. (1.27)

(Müller et al., 2007; Shearer, 2010).

Figure 1.10: Displacements occurring from a harmonic plane P-wave (top) and S-wave

(bottom) traveling horizontally across the page. S-wave propagation is pure shear

with no volume change, whereas P-waves involve both a volume change and shearing

(change in shape) in the material. Strains are highly exaggerated compared to actual

seismic strains in the Earth (Shearer, 2010) .

Wave propagation in porous media and related Biot theory of deformation are ex-

tensively discussed in a number of papers and books (for example, Berryman, 1981;

Nikolaevskiy, 1990; Tuncay and Corapcioglu, 1996; Wei and Muraleetharan, 2002;

Lo et al., 2005; Nikolaevskiy, 2005; Kurzeja and Steeb, 2012; Beresnev, 2013; Cheng,

2014; Beresnev, 2016; Merxhani, 2016; Wang, 2017; Ciarletta et al., 2018; Agreste

et al., 2019; Ali and Strunin, 2019). The propagating P2-wave in a fluid saturated

porous medium has caught many scientists’ interest since it was predicted by Biot

(1956a,b). The P2-wave has first been observed experimentally in a laboratory

by Plona (1980). This type of wave has a strongly dissipative behaviour (energy

losses), and therefore is difficult to observe (Tuncay and Corapcioglu, 1996). Tun-
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cay and Corapcioglu (1996), Wei and Muraleetharan (2002) and Lo et al. (2005)

determined the minimum velocity of the P2-wave at fully saturated media. The for-

mer three studies documented that the wave velocity is gently declining from low to

high wetting saturation until it reaches the minimum. However, Santos et al. (1990)

and Lu et al. (2007) reported the opposite behavior, therefore further research is

necessary to get a clear answer in this regard.

Yang et al. (2014) showed that the dispersion of velocity and attenuation of the fast

(P1) wave are both affected by the viscoelasticity of the medium, but has almost no

effect on the slow (P2) wave. In addition, they proved that the dominant frequency

of the P1-wave shifts linearly toward lower frequencies due to the conditions of low

permeability and low porosity; this plays a significant role in exploration for gas and

oil. Lo et al. (2005) stated that the speed of the P1-wave in the oil-water saturat-

ed medium is higher than the air-water saturated medium and increases with the

increasing of the water saturation. Moreover, they illustrated that the P1-wave is

significantly affected by the saturating continuum, which can be oil or air, see Fig-

ures 1.11 and 1.12. The results of some experiments (Gardner, 2000) showed that the

P2-wave velocity of the seismic waves for gassy soil which propagated at frequencies

below resonance is (∼ 200 m/s), while, at higher frequencies, they propagated at the

P1-wave velocity (∼ 1500 m/s). According to Toksöz et al. (1976) the velocity of

the P-wave is higher when the rock is saturated with water than when it is dry or

saturated with gas. Sharma and Saini (2012) considered the waves propagation in

porous solid containing two viscous fluids with the existence of bound liquid film.

The solution of the mathematical model for the propagation of harmonic waves pro-

vided the velocities of four attenuated waves in the medium. One of these waves is

S-wave and the others are P-waves.
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Figure 1.11: Effect of water saturation on the phase speed of the P1 wave at four

excitation frequencies: the air-water and oil-water systems (Lo et al., 2005) .

Figure 1.12: Effect of water saturation on the attenuation coefficient of the P1 wave

at four excitation frequencies: (a) air-water system, (b) oil-water system (Lo et al.,

2005) .

Still further, Tuncay and Corapcioglu (1996), Buckingham (1999), and Wei and

Muraleetharan (2002) compared the phase velocities of the P- and S-waves, as a

function of saturation. They showed that an increase in the degree of saturation leads
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to decrease in the velocity of P1- and S-waves. A similar behavior is observed for the

P2-wave, however, the velocity of P1- and P2-waves start to rapidly increase when

the degree of saturation reaches 100% for the P1-wave and 85% for the P2-wave until

the medium becomes fully saturated, see Figures 1.13 and 1.14. In contrast, Lu et al.

(2007) presented quite different results for the P1- and the P2-waves. For P1-wave

they demonstrated that the velocity decreases with increase in saturation at first,

but when the saturation approaches 40%, it increases with increase in saturation.

For P2-wave the velocity increases with increase in saturation, see Figure 1.15.

Figure 1.13: Variations of phase velocities with varying degree of saturation for the

Massilon sandstone (Wei and Muraleetharan, 2002) .
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Figure 1.14: Compressional and shear wave speeds (Buckingham, 1999) .

Figure 1.15: Velocities of P1- and P2-waves in porous medium with varying saturation

of the wetting phase S0 = 0.2, 0.4, 0.6, 0.8 : (a) velocity for the P1-wave (vp1); (b)

velocity for the P2-wave (vp2) (Lu et al., 2007) .

Beresnev (2013) compared the phase velocity of P1- and P2-waves as a function of

porosity. Figure 1.16 illustrates the influence of porosity on the phase velocity of

P-wave.



1.2 Motivation 18

Figure 1.16: Compressional-wave velocity in the porous material, saturated with one

fluid, as a function of porosity (Beresnev, 2013) .

1.2 Motivation

This section discusses the factors that motivate this research and the main objectives

of the study.

1.2.1 Nikolaevskiy equation

In recent years, the theory of wave propagation in fluid saturated porous media de-

veloped very rapidly thanks to the efforts of both theorists and applied modellers. An

important equation for such waves, which generated a widespread interest to redistri-

bution of energy over the wave spectrum, is the Nikolaevskiy equation (1989). Based

on the rheological model represented in Figure 1.9, Nikolaevskiy (1989) derived the

following one-dimensional partial differential equation for the nonlinear longitudinal
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seismic waves,

∂v

∂t
+ v

∂v

∂x
=

5∑
p=1

Ap+1
∂p+1v

∂xp+1
, (1.28)

where v is the velocity of the solid matrix and the coefficients Ap+1 are constants

linked to mechanical parameters of the system. The terms in Eq.(1.28) account for

the effects of nonlinearity, dissipation and dispersion. By interpretation of Niko-

laevskiy (1989), the linear part of Eq. (1.28) describes the dominant frequency in the

bounded interval of the oscillation spectrum. Later on, Nikolaevskiy (2008) investi-

gated the effect of global dissipation of the wave described by the damped version of

Eq. (1.28),

∂v

∂t
+ v

∂v

∂x
+ ςv =

5∑
p=1

Ap+1
∂p+1v

∂xp+1
. (1.29)

In addition to the elastic/seismic systems, the Nikolaevskiy equation was also linked

to Rayleigh-Benard convection (Bernoff, 1994), reaction-diffusion systems (Tanaka,

2004; Strunin, 2009; Strunin and Mohammed, 2015). The initial focus within the

equation continuing up to the present time, was on the formation and stability of

patterns such as stationary rolls, which emerge as a result of linear instability of a

spatially uniform state (Beresnev and Nikolaevskiy, 1993; Tribelsky and Velarde,

1996; Matthews and Cox, 2000; Cox and Matthews, 2007; Tribelsky, 2008; Simbawa

et al., 2010). Further attention was given to more complex dynamics, especially

chaos (Tribelsky and Tsuboi, 1996; Tanaka, 2004; Poon, 2009; Tanaka and Okamu-

ra, 2010). In a broader context of earth sciences (Regenauer Lieb et al., 2013), the

equation presents an interesting case of multiscale mode coupling. Strunin (2014)

suggested an interpretation of dominant frequency, based on the λ(k)-curve lying

entirely below zero but having a local maximum. He argued that any positive sec-

tion of the λ(k)-curve would imply self-excitation of motion of the medium, which

is impossible because of the absence of internal energy source. He pointed out that

a local maximum below the zero level would allow slower decay of certain frequency

and this frequency dominates over other frequencies. So far, interest to the equation
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was largely due to its capacity to generate self-excited structures, for example rolls.

However, solid matrices formed by rocks is an essentially passive system due to the

absence of energy supply from inside the system. In other words, rocks cannot self-

start moving from the rest, therefore only decaying dynamics have physical sense.

For more details, see (Strunin, 2014). The absence of internal sources of energy in the

rheological model is obvious from Figures 1.8 and 1.9. As we see from these figures

there is no internal energy source in the models. Conversely, there is dissipation gen-

erated by the friction pistons. In this study, our main goal is to derive Nikolaevskiy

type equations describing the propagation of elastic waves in fluid-saturated porous

media including gas bubbles.

1.2.2 Aim and scope of the thesis

In this study our main goal is to explore the dynamics of the seismic waves in the

granular medium with gas bubbles. We will explore two different rheological models:

the first model is based on the standard linear solid model; the second model is based

on the model from (Nikolaevskiy, 1985, 1989). We will derive the 2nd-, 4th- and 6th-

order partial differential equations (PDEs) describing the velocity of the solid matrix

in the moving reference frame. The equations are linearized to yield the decay rate

λ of the wave as a function of the wave number k. Then we will compare the decay

rate for the cases with and without the bubbles. Also, we will study the influence of

the bubble-related physical parameters, including radius and density, on the decay

rate. Lastly, for the special case when there is one neutral mode, we will use the

centre manifold theory to describe the dynamics.
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1.2.3 Outline of the thesis

This thesis is composed of seven chapters as follows:

Chapter 1: This chapter gives the literature review of elastic waves and motivation.

Also, we outline the aims of the current study.

Chapter 2: As a background, we present some basic concepts from dynamics used

in the current study.

Chapter 3: We use an extended rheological model relative to the standard linear

solid model to derive the 2nd-order PDEs to describe the P-waves with and without

bubbles.

Chapter 4: We use an extended rheological model relative to the model of Niko-

laevskiy to derive the 4th- and 6th-order PDEs for the waves with and without

bubbles.

Chapter 5: This chapter evaluates the decay rates of the wave with the bubbles,

based on the literature values of the physical and mechanical parameters of the medi-

um.

Chapter 6: We describe the dynamics of the wave with one neutral mode using the

centre manifold theory. We conduct direct computations of the dynamical system

for the modes to confirm the results.

Chapter 7: We conclude the thesis by the summery of the main results and present

an outlook for future work.

1.3 Concluding remarks

This chapter gave a brief literature review on the wave propagation in porous media

and the Biot’s theory. The chapter then discussed the motivation for this study

including the objectives and specific tasks. Finally, we presented the outline of this

thesis.



Chapter 2

General concepts from dynamics

SUMMARY: In this chapter, we describe some basic concepts from dynamics that

are used in this thesis.

2.1 Dissipative and conservative systems

Dissipative and conservative dynamical systems are relevant to many interesting and

important phenomena in physics, chemistry, and biology. In a dissipative system the

energy or phase volume is not preserved but continually decrease (Mukherjee and

Poria, 2012; Cimellaro and Marasco, 2018). In contrast, in a conservative system

or Hamiltonian system the total energy is preserved (constant) along the trajecto-

ries. Generally, a system is called conservative if the divergence of its vector field

is zero while, it is dissipative if its vector field has negative divergence (Mukher-

jee and Poria, 2012; Layek, 2015). The study of dissipative systems is motivated

by the fact that many important dynamical and physical systems often depend on

input-output properties related to the dissipation and transport of energy. Many

important phenomena in physical systems are naturally dissipative. It is dissipative

system that is considered in our dissertation. Further classification of dynamical
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systems is connected to linearity and nonlinearity. The linear systems whose stored

energy remains unchanged or decreases are called Positive Real systems while for

the nonlinear systems we usually use the term dissipative in general (Lozano et al.,

2013). The dissipative systems exchange energy with its surroundings by the balance

between the energy income and outcome (Johnson et al., 2016). The notion of dissi-

pativity arises in physical contexts associated with friction, viscosity, or other forms

of dissipation of energy (Wayne, 2012; Strogatz, 2018). All characteristics of open

systems that are relevant to analysis and synthesis are based on dissipative systems.

Some examples of dissipative dynamical systems are thermodynamic systems, the

Belousov-Zhabotinsky (BZ) reaction (polymer systems), mechanical systems with

friction, electrical circuits, etc. (Willems, 2007; Socolar, 2007; Hara, 2014). From

preceding discussion we recall that the dissipative systems are characterized by the

presence of attractors and repellers in the phase space as opposed to conservative

systems which do not have attractors (Hadjidemetriou and Voyatzis, 2011).

2.2 Active and passive systems and oscillations

Dissipative systems can be classified into two types: passive and active systems. A

system is said to be passive if it does not have any energy sources (Landa, 2013).

However, a system is called active if it contains a constant or varying energy source.

From the definition above, we can see that the active systems are able to present oscil-

latory dynamics in the form of self-excited oscillations. Therefore, in active systems

self-oscillations are expressed as limit cycles in the phase space. Notably, limit cycle

oscillations play a significant role in natural science especially in biology. Nowadays,

many biological rhythms can be described by a limit cycle such as circadian rhythm-

s, Calcium oscillations, cell cycle, etc. (Gonze and Kaufman, 2015). The concept of

self-oscillations was first introduced by Andronov et al. (2013, first edition 1937). In

an autonomous system, he defined self-oscillations as the oscillations satisfying the
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following conditions:

1. The amplitude of the oscillations is determined by the properties of the system

and not by the initial conditions.

2. The inner forces of the system excite and maintain these oscillations.

In this case the system is called self-oscillating system. For more details on the

concept and history of self-oscillations, see (Pechenkin, 2002; Ginoux, 2015; Ginoux

and Poincaré, 2017).

The system that does not depend on an initial impulse is called a soft-excitation

system, on the other hand, the system is called a hard-excitation system when the

self-oscillation arises spontaneously only from an initial impulse of certain ampli-

tude (Rabinovich and Trubetskov, 2012; Borisov and Zverev, 2016).

Of course, the oscillatory dynamic is not the only possible outcome of nonlinear

differential equations. The nonlinear dynamical systems can be subdivided into

three groups: bistable, excitable, and oscillatory (Mikhailov, 2012; Mikhailov and

Loskutov, 2013). The main feature of a bistable system is the existence of two

different stable equilibrium states. Excitability is a well known phenomenon and it

has applications in various fields. An excitable system has a unique stable attractor

or fixed point, but it has two ways of returning to the steady state–monotonic and

non-monotonic. For small perturbations away from the equilibrium, the return is

monotonic. However, for perturbations beyond a certain threshold amplitude, the

return is non-monotonic, and many undergo a large excursion before returning to

rest. For the current study, we aim at analyzing the passive system featuring the

propagating linear elastic waves in fluid-saturated granular media based on different

viscoelastic models.
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2.3 Centre manifold theory

This section elaborates the concept of centre manifold and the associated theory

following Roberts (1989) and the book of Carr (2012). In the current study it will

be used to investigate the dynamics of the neutral mode of seismic wave described

by the Nikolaevskiy equation.

2.3.1 Preliminaries

Consider the system

dx

dt
= Ax+ f(x, y) ,

dy

dt
= By + g(x, y) ,

(2.1)

where x ∈ Rn, y ∈ Rm and A and B are constant matrices such that all the eigen-

values of A are pure imaginary, while all the eigenvalues of B are negative real part.

Definition 1: A curve, y = h(x) defined for |x| small, is called an invariant manifold

for the system (2.1), if the solution (x(t), y(t)) of (2.1) evaluated at (x0, h(x0)) lies

on the curve y = h(x), that is, y(t) = h(x(t)).

Definition 2: Let y = h(x) be a smooth invariant manifold of the system (2.1).

Then h(x) is called a centre manifold of the origin if h(0) = 0, h′(0) = 0. Here, h′ is

the Jacobian matrix of h.

If f and g are both zero, then

• The system (2.1) has two invariant manifolds, x = 0 and y = 0. The invariant

manifold x = 0 is stable manifold, while the invariant manifold y = 0 is centre

manifold.
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• The solutions of the system (2.1) tend exponentially fast, as t→∞, to solutions

of
dx

dt
= Ax .

In the centre manifold theory the modes are exponentially quickly attracted to the

surface (manifold) and then they evolve slowly. This explains how the center manifold

may reduce the dimensionality of the dynamical systems. Now we present the ana-

logue of some results of the centre manifold theory when f and g are non-zero (Watt

and Roberts, 1995; Carr, 2012). These results enable us to solve the centre manifold

of the system.

Theorem 1: Let y = h(x) is a centre manifold for the system (2.1) such that

|x| is small and h is C2. The evolution on the centre manifold is governed by the

n-dimensional system
dy

dt
= Au+ f(u, h(u)) , (2.2)

where u is a new variable to determine the location of the system on the centre

manifold. The following theorem contains the information needed to determine the

asymptotic behaviour of small solutions of the system (2.1).

Theorem 2:

1. If the zero solution of the system (2.2) is stable, asymptotically stable, or

unstable, then the zero solution of the system (2.1) is stable, asymptotically

stable, or unstable.

2. If the zero solution of the system (2.2) is stable. Let (x(t), y(t)) be a solution

of the system (2.1) with small (x(0), y(0)). Then there exists a solution u(t)

of (2.2), as t→∞, such that

x(t) = u(t) + o(e−γt) ,

y(t) = h(u(t)) + o(e−γt) ,
(2.3)
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where γ > 0 is a constant. Let we substitute y(t) = h(x(t)) into the second equation

in system (2.1), to obtain

h′(x)[Ax+ f(x, h(x))] = Bh(x) + g(x, h(x)) . (2.4)

The equation (2.4) together with the conditions h(0) = 0, h′(0) = 0 is the system

to be solved for the centre manifold. In the next theorem we show that the centre

manifold can be approximated to any degree of accuracy. Let function φ : Rn −→ Rm

which are C1 in a neighborhood of the origin define

M(φ(x)) = φ′(x)[Ax+ f(x, φ(x))]−Bφ(x)− g(x, φ(x)) .

Theorem 3: Let φ : Rn −→ Rm be a C1 function of a neighborhood of the origin

such that φ(0) = 0 and φ′(0) = 0. If M(φ(x)) = o(|x|q), as x→ 0 where q > 0, then

|h(x)− φ(x)| = o(|x|q), as x→ 0.

2.3.2 Examples

To illustrate the use of the above theorems we give the following examples.

Example 1: Consider the system (Carr, 2012)

dx

dt
= xy + ax3 + by2x ,

dy

dt
= −y + cx2 + dx2y .

(2.5)

By theorem 1, the centre manifold of the system (2.5) is y = h(x). To approximate

h using the second equation of the system we get

M(φ(x)) = φ′(x)[xφ(x) + ax3 + bxφ2(x)] + φ(x)− cx2 − dx2φ(x) .

If φ(x) = cx2, M(φ(x)) = o(x4) then by theorem 3, h(x) = cx2 + o(x4). Hence, by

theorem 2 the equation which governs the flux is

du

dt
= uh(u) + au3 + buh2(u) = (a+ c)u3 + o(u5) .
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Then the zero solution of system (2.5) is asymptotically stable if a + c < 0 and

unstable if a + c > 0. If a + c = 0, then we have to get a better approximation

to h. Suppose a+c = 0. Let φ(x) = cx2 + ψ(x), where ψ(x) = o(x4). Thus,

M(φ(x)) = ψ(x)−cdx4+o(x6). Therefore, if φ(x) = cx2+cdx4 then M(φ(x)) = o(x6)

so that by theorem 3, h(x) = cx2 + cdx4 + o(x6). The equation that governs the

solution is
du

dt
= uh(u) + au3 + buh2(u) = (cd+ bc2)u5 + o(u7) .

The zero solution of system (2.5) is asymptotically stable if cd+bc2 < 0, and unstable

if cd+ bc2 > 0. If cd+ bc2 = 0, then we have to obtain a better approximation to h.

Example 2: Consider the system (Roberts, 1989)

dx

dt
= −xy ,

dy

dt
= −y + x2 − 2y2 .

(2.6)

The linearized state of the system (2.6), dx/dt = 0, dy/dt = −y, is characterised by

the zero eigenvalue for the slow variable x and the negative eigenvalue, -1, for the

fast variable y. According to Roberts (1989) it can be shown that all trajectories of

system (2.6) are attracted to the parabola

y = x2 (2.7)

called the centre manifold, Figure 2.1. If it was not for the nonlinear perturbative

terms x2 − 2y2, the variable y would quickly fall onto the equilibrium state y = 0

(the analogue to quickly decaying vertical non-uniformities under diffusion) while x

would stay in the neutral state x = const (analogue of the neutral state of constant

concentration). For the full system (2.6) the trajectories drop onto the manifold or

attractor, Eq. (2.7), on which the perturbation, x2 − 2y2 is comparable to the linear

term,−y. On the manifold the motion is slow and described by dx/dt = −xy , where

y = x2 so that
dx

dt
= x3 (2.8)



2.4 Concluding remarks 29

On the manifold the variable y depends on t via x to which it is connected by

Eq. (2.7).

Figure 2.1: Attraction of the trajectories to parabola y = x2 is system (2.6) (Roberts,

1989) .

2.4 Concluding remarks

This chapter discussed essential concepts of the current work. These include dissipa-

tive and conservative systems, active and passive systems and oscillations, and then

centre manifold theory.



Chapter 3

Simple rheology and decay rate for

P1 waves in porous granular media

with gas bubbles

SUMMARY: In this chapter we study the effect of using different rheological models

when describing Frenkel-Biot elastic waves of P1-type in porous media. Two rheo-

logical models are considered – one with the bubbles and the other without. The

bubble-including model consists of segments representing the solid continuum and

bubbles inside the fluid, while the bubble-free model is represented by the standard

solid-fluid rheological model. We derive the dispersion relations for the wave equa-

tions in their linear forms and analyzed the decay rate, λ, versus the wave number, k.

We compare the λ(k)-dependence for the two rheologies under consideration using

typical values of the mechanical parameters of the model. We observe, in particular,

that an increase of the radius and the number of the bubbles leads to an increase in

the decay rate.
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3.1 Introduction

The problem of elastic wave propagation through the liquid-saturated granular medi-

um containing gas bubbles was studied in many theoretical works started by (Sil-

berman, 1957; Wijngaarden, 1968, 1972; Nakoryakov et al., 1972). The gas bubbles

represent one of the key physical factors in liquid-saturated porous systems, and nat-

urally attract significant attention from the researchers in mechanics and physics. Of

particular interest, due to their geophysical and industrial applications and because

of theoretical importance, are the wave phenomena in such media and the influ-

ence on the wave characteristics by the interaction between the bubbles, fluid and

solid (Anderson and Hampton, 1980; Commander and Prosperetti, 1989; Watanabe

and Prosperetti, 1994; Matsumoto and Kameda, 1996; Dunin and Nikolaevskiy, 2005;

Kudryashov and Sinelshchikov, 2014; Ali and Strunin, 2019; Thiessen and Cheviakov,

2019). These studies showed that the presence of the bubbles substantially affects

the properties of the waves such as the velocity and attenuation.

This chapter studies the influence of different rheologies including the bubbles on

the wave attenuation in the liquid-saturated porous media. We will use an extended

stress-strain relation relative to the standard linear solid model to take into account

the bubbles in modelling the P-type waves. Dunin et al. (2006) used the simple

stress-strain relation, σ = Ee, in such modelling, while Nikolaevskiy (1989, 2008)

used a considerably complicated stress-strain relation that involves higher-order time

derivatives of the stress σ and strain e. This relation is the result of the rheological

model shown in Figure 3.1. Eventually it leads to a higher-order partial differential

equation with respect to the velocity of the solid matrix. However, the original

rheological model (Nikolaevskiy, 1989) does not include gas bubbles. Nikolaevskiy

and Strunin (2012) pointed out the place in this model that the bubbles should take,

see Figure 3.2.

In the present work we aim to include the bubble into the rheological model and de-
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rive the P-wave equations, where the coefficients will depend on the bubble-related

parameters. We will investigate the influence of the bubble-related parameters, in-

cluding their radius and concentration, on the decay rate.

Figure 3.1: Three–branch rheological scheme from (Nikolaevskiy, 1989) .

Figure 3.2: The modified rheological scheme relative to Figure 3.1. It shows the

position of the bubble-representing element $, which may generally include spring,

mass and friction piston (Nikolaevskiy and Strunin, 2012) .
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3.2 Basic equations of motion

3.2.1 Conservation of mass and momentum

For a one-dimensional case the momentum and mass balance equations (Nikolaevskiy,

1990) are

∂

∂t
(1−m)ρ(s)v +

∂

∂x
(1−m)ρ(s)vv =

∂

∂x
σ − (1−m)

∂p

∂x
− I ,

∂

∂t
mρ(f)u+

∂

∂x
mρ(f)uu = −m∂p

∂x
+ I ,

∂

∂t
(1−m)ρ(s) +

∂

∂x
(1−m)ρ(s)v = 0 ,

∂

∂t
mρ(f) +

∂

∂x
mρ(f)u = 0 ,

(3.1)

where, the subscripts s and f label the solid and gas-liquid mixture respectively, ρ, v,

and u are the corresponding densities and mass velocities, m is the porosity, σ is the

true stress, p is the pore pressure, and I is the interfacial viscous force approximated

by

I = δm(v − u), δ =
µ(f)m

`
,

where µ(f) is the gas-liquid mixture viscosity and ` is the intrinsic permeability.

Now we add to the system (3.1) the equation of the dynamics of a bubble (Dontsov

et al., 1987)

R
∂2

∂t2
R +

3

2

(
∂

∂t
R

)2

+
4µ

ρ(L)

(
1

R
+
m

4`
R

)
∂

∂t
R = (pg − p)/ρ(L) , (3.2)

where R is the bubble radius, p is the pressure in the liquid, pg = p0(R0/R)χ is the

gas pressure inside the bubble (here χ = 3ς, ς is the adiabatic exponent), ρ(L) is the

density of the liquid without the bubbles, and µ is the viscosity of the liquid without

the bubbles. The density equations for the solid and liquid without gas are

ρ(s) = ρ
(s)
0 (1− β(s)σ) , (3.3)
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ρ(L) = ρ
(L)
0 (1 + β(L)p) . (3.4)

The mean density of the gas-liquid mixture is

ρ(f) = (1− φ)ρ(L) + φρ(g), (3.5)

where

φ = (4π/3)R3n0 .

Here σ is the stress, φ is the volume gas content and n0 is the number density of the

bubbles per unit volume. In Eq. (3.5) we can neglect the density of the gas ρ(g) due

to the low gas content. The change in φ is due to the change in the bubble radius

R. Then Eq. (3.5) becomes

ρ(f) = ρ
(L)
0 (1 + β(L)p)

(
1− 4π

3
R3

0n0

)
. (3.6)

Similarly to Dunin et al. (2006) we also assume that the pore pressure p is equal to

the pressure in the liquid far from the bubble.

3.2.2 Rheological model

In this section we consider a simplified rheological model compared to Figure 3.1 and

Figure 3.2. It includes three elastic springs with the elastic moduli E1, E2, and E3,

and one dashpot with viscosity µ as shown in Figure 3.3. Applying the Newton’s

law, this model generates the following equations

e = e2 = e1 + e3 + e4 ,

E3e3 − µ
de4

dt
= 0 ,

E1e1 − E3e3 = 0 ,

E1e1 + E2e2 = σ .

(3.7)
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Using system (3.7) we arrive at the following matrix system

E2 E1 0 0 0 0 0

0 0 0 0 E1 0 0

0 0 E3 0 0 0 −µ

−1 1 1 1 0 0 0

0 0 0 0 1 1 1

0 E1 −E3 0 0 0 0

0 0 0 0 E1 −E3 0





e

e1

e3

e4

de1
dt

de3
dt

de4
dt


=



σ

dσ
dt
− E2

de
dt

0

0

de
dt

0

0


. (3.8)

Solving system (3.8) for e we get

e =
−((E1 + E3)E2 + E1E3)µde

dt
+ E1E3σ + (E1 + E3)µdσ

dt

E1E2E3

. (3.9)

Equation (3.9) leads to the following stress-strain relation

σ + b1
dσ

dt
= E2e+ a1

de

dt
, (3.10)

where a1 = ((E1 + E3)E2 + E1E3)θ, b1 = (E1 + E3)θ, and θ = µ/E1E3 .

Figure 3.3: A simplified rheological scheme including the bubble .

The system of equations (3.1)- (3.10) is closed by the relation between the deforma-

tion e and the velocity of the solid v,

De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
=
∂v

∂x
. (3.11)
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3.3 Propagation of P1-waves including gas bub-

bles

We consider the slowly varying wave in space and time. Accordingly we use the

running coordinate system with simultaneous scale change,

ξ = ε(x− ct) , τ =
1

2
ε2 t ,

∂

∂x
= ε

∂

∂ξ
,

∂

∂t
= ε

(
1

2
ε
∂

∂τ
− c ∂

∂ξ

)
,

(3.12)

where ε is the small parameter. Thus, the constitutive law (3.10) transforms into

the following form

σ + b1 ε

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)
σ = E2e+ a1 ε

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)
e . (3.13)

Now, we seek the unknown functions as power series

v = εv1 + ε2v2 + ... , u = εu1 + ε2u2 + ... ,

σ = σ0 + εσ1 + ε2σ2... , p = p0 + εp1 + ε2p2... ,

m = m0 + εm1 + ε2m2... , e = e0 + εe1 + ε2e2... ,

φ = φ0 + εφ1 + ε2φ2... , R = R0(1 + εR1 + ε2R2...) .

(3.14)
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3.3.1 First approximation

Using Eqs. (3.14), we collect the linear terms∼ ε in Eqs. (3.1), (3.2), (3.11) and (3.13)

to get

ρ
(s)
0 c

∂m1

∂ξ
− (1−m0)c

∂ρ
(s)
1

∂ξ
+ (1−m0)ρ

(s)
0

∂v1

∂ξ
= −1

2
(1−m0)

∂ρ
(s)
0

∂τ
,

−m0c
∂ρ

(f)
1

∂ξ
− ρ(f)

0 c
∂m1

∂ξ
+m0ρ

(f)
0

∂u1

∂ξ
= −1

2
m0

∂ρ
(f)
0

∂τ
,

−(1−m0)ρ
(s)
0 c

∂v1

∂ξ
=
∂σ1

∂ξ
− (1−m0)

∂p1

∂ξ
,

−m0ρ
(f)
0 c

∂u1

∂ξ
= −m0

∂p1

∂ξ
, µc

[
4

R0

+
m0R0

`

]
∂R0

∂ξ
= (p0 χR1 + p1) ,

1

2

∂e0

∂τ
− c∂e1

∂ξ
+ v1

∂e0

∂ξ
=
∂v1

∂ξ
, σ1 − E2 e1 = −a1c

∂e0

∂ξ
+ b1c

∂σ0

∂ξ
.

(3.15)

Further,

ρ
(s)
1 = −ρ(s)

0 β(s)σ1 ,

ρ
(f)
1 = ρ

(L)
0

(
β(L)κ1p1 − 4πn0κ2R

3
0R1

)
,

ρ
(f)
0 = κ1κ2ρ

(L)
0 ,

(3.16)

where

κ1 = 1− 4π

3
R3

0 n0 , κ2 = 1 + β(L)p .

Inserting Eqs. (3.16) into the system (3.15) gives the following integrals,

(1−m0)ρ
(s)
0 v1 + c(1−m0)ρ

(s)
0 β(s)σ1 + cρ

(s)
0 m1 = 0 ,

m0ρ
(L)
0 κ1κ2u1 − cρ(L)

0 κ1κ2m1 − cm0κ1ρ
(L)
0 β(L)p1 + 4cκ2ρ

(L)
0 π n0m0R

3
0 R1 = 0 ,

c(1−m0)ρ
(s)
0 v1 + σ1 − (1−m0)p1 = 0 , cκ1κ2m0ρ

(L)
0 u1 −m0p1 = 0 ,

ce1 + v1 = 0, σ1 − E2 e1 = 0, p1 + p0 χR1 = 0 .

(3.17)
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Now we have seven equations with seven unknowns: v1, u1, p1, σ1, m1, R1, and e1.

In order to find the velocity of the wave from the system (3.17) we require that

det(anm) = 0 , (3.18)

where

a11 = c(1−m0)ρ(s)
o , a12 = 0 , a13 = (1−m0) , a14 = 1 , a15 = 0 , a16 = 0 , a17 = 0 ,

a21 = 0 , a22 = cκ1κ2m0ρ
(L)
0 , a23 = −m0 , a24 = 0 , a25 = 0 , a26 = 0 , a27 = 0 ,

a31 = (1−m0) , a32 = 0 , a33 = 0 , a34 = cβs(1−m0) , a35 = c , a36 = 0 , a37 = 0 ,

a41 = 0 , a42 = κ1κ2m0 , a43 = −cκ1β
(L)m0 , a44 = 0 , a45 = −cκ1κ2 ,m0noR0 ,

a46 = 4cκ2π , a47 = 0 , a51 = 1 , a52 = 0 , a53 = 0 , a54 = 0 , a55 = 0 , a56 = 0 , a57 = c ,

a61 = 0 , a62 = 0 , a63 = 0 , a64 = 1 , a65 = 0 , a66 = 0 , a67 = −E2 ,

a71 = 0 , a72 = 0 , a73 = 1 , a74 = 0 , a75 = 0 , a76 = χp0 , a77 = 0 .

This gives

c4
[
m0(1−m0)ρ

(s)
0 ρ

(L)
0

(
κ1χβ

(L)p0 + 4κ2πn0R
3
0

)]
−c2

[
ρ

(L)
0

(
κ1χp0(κ2(1− E2β

(s))(−1 +m0)2 + E2β
(L)m0) + 4E2κ2πm0n0R

3
0

)
+χ(1−m0)m0p0ρ

(s)
0

]
+ E2χm0p0 = 0 .

(3.19)

From equation (3.19) we find the velocity of the wave with the bubbles,

c2 =
−β1 ±

√
β2

1 − 4α1γ1

2α1

, (3.20)

where

α1 = m0(1−m0)ρ
(s)
0 ρ

(L)
0

(
κ1χβ

(L)p0 + 4κ2πn0R
3
0

)
,

β1 = −
[
ρ

(L)
0

(
κ1χp0(κ2(1− E2β

(s))(−1 +m0)2 + E2β
(L)m0)

+4E2κ2πm0n0R
3
0

)
+ χ(1−m0)m0p0ρ

(s)
0 )
]
,

γ1 = E2m0χp0 .
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Thus, all the variables are expressed through any one selected variable, for example,

the velocity v1. From the last three equations of system (3.17), we have

e1 = −v1

c
, σ1 = −E2

v1

c
, p1 = −p0 χR1 . (3.21)

Substituting of σ1, and p1 into the remaining equations of the system (3.17), we

obtain

(1−m0)ρ
(s)
0 v1 − E2(1−m0)ρ

(s)
0 β(s)v1 + cρ

(s)
0 m1 = 0 . (3.22)

m0u1 − cm1 +

(
p0 χβ

(L)

κ2

+
4π n0R

3
0

κ1

)
cm0R1 = 0 . (3.23)

c(1−m0)ρ
(s)
0 v1 −

E2

c
v1 + (1−m0)p0 χR1 = 0 . (3.24)

cκ1κ2m0ρ
(L)
0 u1 +m0p0 χR1 = 0 . (3.25)

Equation (3.22) gives

m1 = −(1−m0)(1− E2β
(s))

v1

c
. (3.26)

Then from Eq. (3.24) we get

R1 = −

(
c2(1−m0)ρ

(s)
0 − E2

(1−m0)p0 χ

)
v1

c
. (3.27)

Substituting Eq. (3.27) into the value of p1 from Eq. (3.21), leads to

p1 =

(
c2(1−m0)ρ

(s)
0 − E2

(1−m0)

)
v1

c
. (3.28)

Moreover, we derive the proportionality between v1 and u1 as

u1 =

(
c(1−m0)ρ

(s)
0 − E2

c

κ1κ2ρ
(L)
0 (1−m0)

)
v1

c
. (3.29)
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3.3.2 Second approximation

In the second approximation for the full system we have

∂

∂ξ

(
(1−m0)v2 + c(1−m0)β(s)σ2 + cm2

)
= Λ(s) ,

∂

∂ξ

(
m0u2 −

[
m2 +

m0β
(L)p2

κ2

− 4πm0 n0R
3
0(R2 +R2

1)

κ1

+
4πm0 n0R

3
0 p0 χβ

(L)R2
1

κ1κ2

]
c

)
= Λ(L) ,

∂

∂ξ

(
c(1−m0)ρ

(s)
0 v2 + σ2 − (1−m0)p2

)
= Σ1 ,

∂

∂ξ

(
cκ1κ2m0ρ

(L)
0 u2 −m0p2

)
= Σ2 ,

∂

∂ξ
(p1 + p0 χR1) =

∂Γ

∂ξ
,

∂

∂ξ
(ce2 + v2) = F ,

∂

∂ξ
(σ2 − E2 e2) =

∂T

∂ξ
,

(3.30)

where

Λ(s) =
1

2

∂

∂τ

[
(m1 + (1−m0)β(s)σ1)

]
,

Λ(L) = −1

2

∂

∂τ

[
κ1

(
m1κ2 +m0β

(L)p1

)
− 4πn0κ2R

3
0R1

]
,

Σ1 = (1−m0)ρ
(s)
0

1

2

∂v1

∂τ
, Σ2 = m0ρ

(f)
0

1

2

∂u1

∂τ
,

Γ = µc

(
4 +

m0R
2
0

`

)
∂R1

∂ξ
, F = − 1

2c

∂v1

∂τ
,

T = −a1c
∂e1

∂ξ
+ b1c

∂σ1

∂ξ
.

The determinant of the left-hand side of the system (3.30) coincides with the deter-

minant of (3.18), which equals zero. Therefore, a non-zero solution for v2 exists only

if the following compatibility condition takes place,

det(bnm) = 0 , (3.31)

where

b11 =
∂T

∂ξ
, b12 = 0 , a13 = 0 , b14 = 1 , b15 = 0 , b16 = 0 , b17 = −E2 ,
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b21 = Σ1 , b22 = 0 , b23 = (1−m0) , b24 = 1 , b25 = 0 , b26 = 0 , b27 = 0 ,

b31 = Σ2 , b32 = cκ1κ2m0ρ
(L)
0 , a33 = −mo , b34 = 0 , b35 = 0 , b36 = 0 , b37 = 0 ,

b41 =
∂Γ

∂ξ
, b42 = 0 , b43 = 1 , b44 = 0 , b45 = 0 , b46 = χp0 , b47 = 0 ,

b51 = F , b52 = 0 , b53 = 0 , b54 = 0 , b55 = 0 , b56 = 0 , b57 = c ,

b61 = Λ(s) , b62 = 0 , b63 = 0 , b64 = c(1−m0)β(s) , b65 = c , b66 = 0 , b67 = 0 ,

b71 = Λ(L) , b72 = m0 , b73 = −cβ
(L)m0

κ2

, b74 = 0 ,

b75 = −c , b76 =
4cπm0n0R

3
0

κ1

, b77 = 0 .

This gives the evolution equation for v ∼= v1

χ
(
cΣ2 +

(
E2F − c

(
Σ1 + Σ2 −

∂T

∂ξ

))
m0

)
p0 + c2

[
− 4κ2πm0

(
E2F − c

(
Σ1

− ∂T

∂ξ
+
∂Γ

∂ξ

)
+ c

∂Γ

∂ξ
m0

)
noR

3
0 + κ1χp0

((
− E2F − c

(∂T
∂ξ
− Σ1

))
β(L)m0

− κ2(1−m0)
((
E2F + c

∂T

∂ξ

)
β(s)(−1 +m0) + Λ(L) + Λ(s)

))]
ρ

(L)
0 = 0 .

(3.32)

We re-write equation (3.32) in terms of v and re-arrange with the help of Mathematica

software,

1

2

[
c(1−m0)ρ

(s)
0 g1 +cg2 +c2κ1κ2χp0ρ

(L)
0 ((1−m0)2 −g3)− E2g4

] ∂v
∂τ

+c2 [g4(a1 − b1E2)− 4g5]
∂2v

∂ξ2
+ cg6

∂vv

∂ξ
= 0 ,

(3.33)

where

g1 = cm0

(
− χp0 + c2ρ

(L)
0 (κ1χp0β

(L) + 4κ2πn0R
3
0)
)
,

g2 = χp0m0

(
c(1−m0)ρ

(s)
0 −

E2

c

)
,

g3 = κ1κ2(1−m0)2(1− E2β
(s))− (c2(1−m0)ρ

(s)
0 − E2)(κ1m0ρ

(L)
0 + 4κ2πn0R

3
0) ,

g4 = p0 χm0 + c2ρ
(L)
0

(
κ1p0 χ

(
κ2β

(s)(−1 +m0)2 − β(L)m0

)
− 4πn0m0κ2R

3
0

)
,

g5 = c2πn0m0κ2R
3
0ρ

(L)
0 µ

(
4 +

m0R
2
0

`

)(c2(1−m0)ρ
(s)
0 − E2

p0 χ

)
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and g6 is the nonlinearity coefficient, which we do not present here because our

further analysis focuses on the linear part of equation (3.33).

Finally, we re-write the wave equation (3.33) as

A1
∂v

∂τ
+ A2

∂2v

∂ξ2
+ AN

∂vv

∂ξ
= 0 , (3.34)

where

A1 =
1

2

[
c(1−m0)ρ

(s)
0 g1 +cg2 +c2κ1κ2χp0ρ

(L)
0 ((1−m0)2 −g3)− E2g4

]
,

A2 = c2 [g4(a1 − b1E2)− 4g5] , AN = cg6 .

3.4 P1-waves without gas bubbles

3.4.1 Rheological model

By removing one elastic spring segment, which represents the gas bubble, from the

rheological model in Figure 3.3 we get Figure 3.4, for which we derive the following

constitutive law (Findley and Davis, 2013),

σ + b1
dσ

dt
= E2e+ a1

de

dt
, (3.35)

where a1 = (E1 +E2)θ, b1 = θ, θ = µ/E1. This equation was discussed in detail in

Chapter 1.

Figure 3.4: Rheological scheme without gas bubble .
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3.4.2 The equations of dynamics

In the case without the bubbles, the equations of motion reduce to the six equations

∂

∂t
(1−m)ρ(s) +

∂

∂x
(1−m)ρ(s)v = 0 ,

∂

∂t
mρ(L) +

∂

∂x
mρ(L)u = 0 ,

∂

∂t
(1−m)ρ(s)v +

∂

∂x
(1−m)ρ(s)vv =

∂σ

∂x
− (1−m)

∂p

∂x
− I ,

∂

∂t
mρ(L)u+

∂

∂x
mρ(L)uu = −m∂p

∂x
+ I ,

σ + b1
dσ

dt
= E2e+ a1

de

dt
,

De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
=
∂v

∂x
.

(3.36)

The density equation (3.3) for the solid remains unchanged, but for the gas-liquid

mixture we neglect the volume gas content φ in equation (3.5),

ρ(f) = ρ(L) = ρ
(L)
0 (1 + β(L)p) . (3.37)

3.4.3 First approximation

The linear terms in the order ∼ ε in system (3.36)

c(1−m0)ρ
(s)
0 v1 + σ1 − (1−m0)p1 = 0 ,

m0u1 − cm1 − cm0β
(L)p1 = 0 ,

(1−m0)v1 + c(1−m0)β(s)σ1 + cm1 = 0 , cm0ρ
(L)
0 u1 −m0p1 = 0 ,

σ1 − E2 e1 = 0 , ce1 + v1 = 0 .

(3.38)

In system (3.38), to find the velocity c we require

det(anm) = 0 , (3.39)
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where

a11 = c(1−m0)ρ
(s)
0 , a12 = 0 , a13 = (1−m0) , a14 = 1 , a15 = 0 , a16 = 0 ,

a21 = 0 , a22 = m0 , a23 = −cβ(L)m0 , a24 = 0 , a25 = −c , a26 = 0 ,

a31 = (1−m0) , a32 = 0 , a33 = 0 , a34 = cβ(s)(1−m0) , a35 = c , a36 = 0 ,

a41 = 0 , a42 = cmoρ
(L)
0 , a43 = −m0 , a44 = 0 , a45 = 0 , a46 = 0 ,

a51 = 0 , a52 = 0 , a53 = 0 , a54 = 1 , a55 = 0 , a56 = −E2 ,

a61 = 1 , a62 = 0 , a63 = 0 , a64 = 0 , a65 = 0 , a66 = c .

This gives

c4ρ
(s)
0 ρ

(L)
0 β(s)(1−m0)m0 − c2

(
ρ

(L)
0

(
(1− E2β

(s))(−1 +m0)2 + E2β
(L)m0

)
+ ρ

(s)
0 m0(1−m0)

)
+ E2m0 = 0 .

(3.40)

Equation (3.40) gives the velocity of the wave without the bubbles,

c2 =
−β2 ±

√
β2

2 − 4α2γ2

2α2

, (3.41)

where

α2 = ρ
(s)
0 ρ

(L)
0 β(s)(1−m0)m0 ,

β2 = −
(
ρ

(L)
0

(
(1− E2β

(s))(−1 +m0)2 + E2β
(L)m0

)
+ ρ

(s)
0 m0(1−m0)

)
,

γ2 = E2m0 .

The terms for e1, σ1, p1, and m1 remain the same, while the proportionality between

v1 and u1 becomes

u1 =

(
c(1−m0)ρ

(s)
0 − E2

c

ρ
(L)
0 (1−m0)

)
v1

c
. (3.42)
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3.4.4 Second approximation

Collecting the quadratic terms∼ ε2 in system (3.36) gives

∂

∂ξ
(σ2 − E2 e2) =

∂T

∂ξ
,

∂

∂ξ
(ce2 + v2) = F .

c(1−m0)ρ
(s)
0

∂v2

∂ξ
+
∂σ2

∂ξ
− (1−m0)

∂p2

∂ξ
= Σ1 ,

(cm0ρ
(L)
0

∂u2

∂ξ
−m0

∂p2

∂ξ
) = Σ2 , (1−m0)

∂v2

∂ξ
+ c(1−m0)β(s)∂σ2

∂ξ
+ c

∂m2

∂ξ
= Λ(s) ,

m0
∂u2

∂ξ
− c∂m2

∂ξ
− cm0β

(L)∂p2

∂ξ
= Λ(L) ,

(3.43)

where the formulas of F , Σ1, and Λ(s) are the same, while the formulas for Σ2, Λ(L),

and T are changed to

Σ2 = m0ρ
(L)
0

1

2

∂u1

∂τ
,

Λ(L) = −1

2

∂

∂τ

(
m1 +m0β

(L)p1

)
,

T = −a1c
∂e1

∂ξ
+ b1c

∂σ1

∂ξ
.

In analogy to Eq. (3.31), the compatibility condition for the system (3.43) has the

form

det(bnm) = 0 , (3.44)

where

b11 =
∂T

∂ξ
, b12 = 0 , b13 = 0 , b14 = 1 , b15 = 0 , b16 = −E2 ,

b21 = F , b22 = 0 , b23 = 0 , b24 = 0 , b25 = 0 , b26 = c ,

b31 = Σ1 , b32 = 0 , b33 = (1−m0) , b34 = 1 , b35 = 0 , b36 = 0 ,

b41 = Σ2 , b42 = cmoρ
(L)
0 , b43 = −m0 , b44 = 0 , b45 = 0 , b46 = 0 ,

b51 = Λ(s) , b52 = 0 , b53 = 0 , b54 = cβ(s)(1−m0) , b55 = c , b56 = 0 ,

b61 = Λ(L) , b62 = m0 , b63 = −cβ(L)m0 , b64 = 0 , b65 = −c , b66 = 0 .
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Then the evolution equation for v ∼= v1 is

cΣ2 +

(
E2F − c

(
Σ1 + Σ2 −

∂T

∂ξ

))
m0

+c2

((
−E2F − c

(
∂T

∂ξ
− Σ1

))
β(L)m0

−(1−m0)

((
E2F + c

∂T

∂ξ

)
βs(−1 +m0) + Λ(L) + Λ(s)

))
ρ

(L)
0 = 0 .

(3.45)

Now, we re-write equation (3.45) in terms of v and re-arrange,

1

2

(
f1 + f2 −(f3 + f4 +E2f5)

)∂v
∂τ

+ c2 f5 (a1 − b1E2)
∂2v

∂ξ2
+ cf6

∂vv

∂ξ
= 0 , (3.46)

where

f1 = cm2
0

(
c(1−m0)ρ

(s)
0 −

E2

c

)
,

f2 = c2m0(1−m0)2ρ
(L)
0 ,

f3 = c2m0ρ
(L)
0

(
(1−m0)2(1− E2β

(s))−m0β
(L)(c2(1−m0)ρ

(s)
0 − E2))

)
,

f4 = c2m2
0ρ

(s)
0 (1−m0)(1− c2ρ

(L)
0 β(L)) ,

f5 = m0

(
m0 + c2ρ

(L)
0 (β(s)(−1 +m0)2 −m0β

(L))
)
,

and f6 is the nonlinearity coefficient. The above equation then becomes

B1
∂v

∂τ
+B2

∂2v

∂ξ2
+BN

∂vv

∂ξ
= 0 , (3.47)

where

B1 =
1

2

(
f1 + f2 −(f3 + f4 + E2f5)

)
,

B2 = c2 f5 (a1 − b1E2) , BN = cf6 .

3.5 Linearized model

In this section we consider the linearized version of the models (3.34) and (3.47).

Our main interest is its dissipative part responsible for decay (attenuation) of the

wave.



3.5 Linearized model 47

3.5.1 Evaluation of the parameters and the wave velocity

From (Dunin and Nikolaevskiy, 2005; Dunin et al., 2006; Mikhailov, 2010), the values

of the parameters are: densities, ρ
(L)
0 = 1000 kg/m3 for water, ρ(g) = 2 kg/m3 for gas,

ρ
(s)
0 = 2500 kg/m3 for solid; porosity m0 = 0.25; compressibility β(L) = 2×10−9 Pa−1

for water, β(L) = 2.4×10−6 Pa−1 for gas, β(s) = 2×10−10 Pa−1 for solid; steady pres-

sure p0 = 103 Pa; bubble radius R0 = 10−4 m; volume gas content φ0 = 10−3; viscos-

ity µ = 10−3 Pa·s; adiabatic exponent ζ = 1.4, and permeability ` = 1.8× 10−11 m2.

Using the data from (Nikolaevskiy, 1985; Nikolaevskiy and Stepanova, 2005; Niko-

laevskiy and Strunin, 2012; Nikolaevskiy, 2016), the values of the parameters of the

rheological model in Figure 3.3 are

(a) E1 = 1/β(L) = 4× 105 Pa , E2 = c2ρ0 = 2× 107 Pa ,

E3 = 3χ p0 = 4× 107 Pa ,

where we used, just for the purpose of evaluating of Ei and Mi, the typical velocity

c ∼ 100 m/s and the linear size of the oscillator Ls = 0.3 cm from (Nikolaevskiy,

1985; Vilchinska et al., 1985).

We will also explore the values of Ei obtained by a different method, namely by using

the formula c2ρ for all three phases, with ρ being the density of the liquid, solid and

gas, respectively,

(b) E1 = c2ρ(L) = 1000× 104 Pa , E2 = c2ρ(s) = 2500× 104 Pa ,

E3 = c2ρ(g) = 2× 104 Pa .

According to Biot (1956a,b), the equation (3.20) gives the velocity of P-waves with

the bubbles: for the P1-wave c ≈ 103 m/s and c ≈ 116 m/s for the both variants (a)

and (b) respectively; for the P2-wave c ≈ 3 m/s for the both variants (a) and (b).

We see that the velocity of P2-wave is indeed smaller than the velocity of P1-wave.

The results of equation (3.41) gives the velocity of P-waves without the bubbles. For

the P1-wave using the variants (a) and (b) gives c ≈ 1050 m/s, while for the P2-wave
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c ≈ 70 m/s and c ≈ 78 m/s for the both variants (a) and (b) respectively. These

results confirm that the presence of gas bubbles significantly decreases the P-waves

velocities (Gubaidullin et al., 2017; Ali and Strunin, 2019).

Furthermore, we observed that the velocity (3.41) of the P-waves without the bubbles

is almost the same as the velocity of P-waves with the bubbles (3.20) when we set

(n0 = 0 and R0 = 0) for the both variants (a) and (b).

3.5.2 Dispersion (dissipation) relation

In this section we are again interested in the effect of the bubbles on the wave

dissipation. Therefore, we consider the linearized wave equations (3.34) and (3.47).

The linearized form of Eq. (3.34) can be written as

∂v

∂τ
= −A2

A1

∂2v

∂ξ2
. (3.48)

Now using the Fourier modes v ∼ exp(λt+ ikx), we get the dissipation relation

λ(k) =
A2

A1

k2 , (3.49)

where λ is the decay rate and k is the wave number. For the case without the bubbles

the linearized form of equation (3.47) is

∂v

∂τ
= −B2

B1

∂2v

∂ξ2
. (3.50)

Then the dissipation relation is

λ(k) =
B2

B1

k2 . (3.51)
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Figure 3.5: The decay rate by formula (3.49) for variant (a), k∗ = 0.25 1/m .

The plot in Figure 3.5 shows the decay rate at fixed k∗ = 0.25 1/m Nikolaevskiy

(1989) againstR0 and n0. As mentioned earlier, the decay rate is significantly affected

by the increase in R0 and becomes large in absolute value; this is because the bubbles

affect the system through the pressure p1 = −p0 χR1. As for n0, one should disregard

the region of small n0 in Figure 3.5 where the equations of continuum mechanics cease

to be valid. This is because the used assumption that each bubble is embedded in

its own fluid particle (see Eq. (3.2)) is no longer inapplicable due to the large size of

the particle.
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Figure 3.6: The decay rate by formulas (3.49) and (3.51) for variant (a): n0 varies,
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Figure 3.7: The decay rate by formulas (3.49) and (3.51) for variant (a): R0 varies,

n0 = 4× 1010 .
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Figures 3.6 and 3.7 compare the decay curves of the wave with the bubbles and the

wave without the bubbles. The dashed line describes the case without the bubbles

and the solid lines correspond to the wave with the bubbles. Figure 3.6 is for varying

n0 and fixed R0. Figure 3.7 is for varying R0 and fixed n0. We clearly see that

the curves lie entirely below zero, which means that the wave decays and the decay

rate depends on the number and radius of the bubbles. This result agrees with

the conception emphasized in Strunin (2014); Strunin and Ali (2016) about the

essentially dissipative nature of the freely propagating elastic wave. Similar results

are obtained for variants (b) as shown in Figures 3.8–3.10.
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Figure 3.8: The decay rate by formula (3.49) for variant (b), k∗ = 0.25 1/m .
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Figure 3.9: The decay rate by formulas (3.49) and (3.51) for variant (b): n0 varies,
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Figure 3.10: The decay rate by formulas (3.49) and (3.51) for variant (b): R0 varies,
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3.6 Concluding remarks

We studied the effect of the rheology including bubbles on the Frenkel-Biot P1-

waves in porous rocks. Using two-segment rheology, we derived the P1-type wave

equations with and without the bubbles describing the velocity of the solid matrix

in the medium. We compared the linearized versions of the equations in terms of

the decay rate λ(k) of the Fourier modes. For the both cases with and without the

bubbles, the λ(k)-curve lies entirely below zero. We discovered that |λ(k)| increases

with the increase of the radius and the number of the bubbles.



Chapter 4

Complex rheology and decay rate

for P1 waves in porous granular

media with gas bubbles

SUMMARY: We investigate the effect of more complex rheological models for P1-

waves, including and excluding the bubbles, in comparison to Chapter 3. For the

wave with the bubbles the model consists of three segments representing the solid

continuum, fluid continuum and a bubble surrounded by the fluid. We derive the

Nikolaevskiy-type equations describing the velocity of the solid matrix in the moving

reference system. The equations are linearized to yield the decay rate λ as a function

of the wave number k. We compare the λ(k)-dependence for the cases with and

without the bubbles, using typical values of the input mechanical parameters. For

the both cases, the λ(k)-curve lies entirely below zero, which is in line with the notion

of the elastic wave being an essentially passive system. We discover that the increase

of the radius of the bubbles leads to faster decay, while the increase in the number

of the bubbles leads to slower decay of the elastic wave.
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4.1 Introduction

This chapter studies the influence of different rheologies with the bubbles, on the

wave attenuation in the liquid-saturated porous media. We will use an extended

stress-strain relation relative to the model of Nikolaevskiy to take into account the

bubbles in modelling the P-type waves.

Liu et al. (1976) demonstrated that rheology based on the scheme often referred

to as Generalized Standard Linear Solid (GSLS) helps to better describe measured

characteristics of seismic waves in earth continuum. The importance of complex

multi-component GSLS was acknowledged by Bohlen (2002) who employed the rhe-

ology with many Maxwell bodies connected in parallel. Nikolaevskiy (1989) used

complex stress-strain relations in a fluid-saturated grain, where the solid matrix and

fluid are in contact. This resulted, in the final analysis, in the nonlinear higher-order

partial differential equation of the form

∂v

∂t
+ v

∂v

∂x
=

5∑
p=1

εp−1Ap+1
∂p+1v

∂xp+1
, (4.1)

where v is the velocity of the solid matrix, ε is the small parameter reflecting slow

evolution of the wave (this is discussed below) and Ap+1 are the coefficients linked to

mechanical parameters of the system. From the standpoint of wave dynamics, the

even derivatives in Eq. (4.1) are responsible for the dissipation and odd derivatives

for the dispersion effects. Equation (4.1) assumes the form of the Korteweg–de Vries–

Burgers equation if the index p goes from just 1 and 2. But with the range of p going

further as shown, the equation manifests an extension of this classical equation to

include high-order spatial derivatives. As explained below, this extension results

from the complex rheology of the system.

Experimental evidence indicates that the presence of gas bubbles changes the charac-

teristics of the wave (Wijngaarden, 1968, 1972; Anderson and Hampton, 1980; Dunin

and Nikolaevskiy, 2005). Typically, in rocks saturated with fluids, the P1-wave is
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the only observable wave (Nikolaevskiy, 2008). However, the presence of gas, even

in small proportion can affect the wave type (Nikolaevskiy and Strunin, 2012), so

that, P2-wave may also be visible. Dunin et al. (2006) studied the effect of gas bub-

bles on linear P1- and P2-waves, and derived the dispersion relation connecting the

frequency and wave number. Of special interest was the transformation of the wave

type due to the bubbles. They found that the transformation was due to the change

in the motion of the liquid in the porous space. Instead of the overflow between

the pours incurring large Darcy friction, which is characteristic of the P2-waves, the

liquid may be displaced into the volume released when a bubble is compressed. In

this case the oscillations of the porous matrix and of the bubbles occur in phase and,

as a result, the decay of the P2-wave diminishes due to the reduction in the Darcy

friction. As far as the rheology is concerned, Dunin et al. (2006) used a rather simple

stress-strain relation, σ = Ee, in standard notations. Various aspects of the wave

propagation in multifluid and bubbly flows were studied in (Brunner and Spetzler,

2001; Collier et al., 2006; Tisato et al., 2015; Papageorgiou and Chapman, 2015). For

example, Collier et al. (2006) explored the influence of the gas bubbles on attenua-

tion in volcanic magma, where the bubbles grow not only due to gas expansion, but

also due to the exsolution of volatiles, such as water, from the melt into the bubbles.

In our present study we do not consider such kind of thermodynamic disequilibrium

conditions.

As we mentioned before, the rheological model used in (Nikolaevskiy, 1985, 1989),

despite containing several Maxwell bodies, did not include an element representing

gas bubble. In the present chapter we include the bubble element into the two-branch

rheological model relative to the model of Nikolaevskiy (1985), see Figure 4.1, and

then derive and analyze the equation of the type (4.1), where the coefficients Ap

depend on the bubble-related parameters. The resulting equation will describe the

decay (or attenuation) of the freely propagating seismic wave. We will investigate the

influence of the bubble-related parameters, including their radius and concentration,
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on the decay rate.

Figure 4.1: Two–branch rheological scheme from (Nikolaevskiy, 1985) .

During its propagation the seismic wave decays due to the viscous friction both within

individual phases, e.g. fluid, and between the phases. The decay may be described

in terms of the decay rate in time as in (Nikolaevskiy, 1989), or decay rate in space

via the attenuation factor as in (Dunin et al., 2006). These descriptions are closely

connected and just correspond to different realizations of the wave, that is the wave

propagation under different initial and/or boundary conditions. To illustrate this,

let us represent a Fourier modes of the linear wave as exp(iξ1), where ξ1 = wt+kx, w

is the frequency and k the wave number connected with each other via the dispersion

relation. Writing this relation in the form w = w(k) with k being real-valued, we

can find the corresponding complex-valued w. Its imaginary part determines how

fast the wave decays in time. Physically this situation corresponds to the wave in

an unbounded medium, which decays as time goes. Alternatively, one may write

down the dispersion relation as k = k(w) and consider the real-valued frequency w

as the argument, whereas the wave number k becomes complex-valued. Imaginary

part of k governs the decay of the wave in space. From physical standpoint this

realization can be associated with the wave which propagates, say, from the surface

into underground. The decay of such a wave against the distance is characterized by

the attenuation factor.
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Importantly, the dynamics of the fluid in porous media may exhibit boundary layers.

They form when the frequency of the seismic wave is relatively high. This contrasts

the low-frequency waves where the viscous forces dominate throughout the fluid vol-

ume so that inertial effects may be neglected. However, at high frequencies the

inertial effects dominate in the bulk of the fluid, while the viscous friction concen-

trates within narrow boundary layers near solid walls due to the no-slip conditions.

Allowing for the boundary layers in the analysis significantly affects the frequency

dependence of the attenuation of the wave. Namely the low- and high-frequency

branches of the attenuation curve become asymmetric. Masson et al. (2006) con-

firmed this effect by numerical computations of the governing mechanics equations.

The model that we use in our present chapter is one-dimensional with all the functions

depending on t and one coordinate x along the direction of the wave propagation.

Thus, instead of analyzing the structure of the boundary layers, we adopt the simple

Newton’s law for the momentum exchange between the fluid and the solid, stat-

ing proportionality of the viscous friction to the difference between their respective

velocities.

In our study of the wave decay we choose to analyze the decay in time, that is

the w = w(k) form of the dispersion relation. We will execute a procedure similar

to Nikolaevskiy (2008), where one-dimensional (x-dependent) dynamics are consid-

ered, and all the functions of interest are decomposed into series in small parameter ε

characterizing slow evolution of the wave in space and time. Introducing the running

variable ξ and using ε to scale the distance x and time t,

ξ = ε(x− ct) , τ = (ε2/2)t ,

we seek the velocity of the solid matrix in the form

v = εv1 + ε2v2 + . . . .

We will show, in line with Nikolaevskiy (2008), that the complex rheology generates

higher-order time derivatives (Nikolaevskiy, 1989). They, in turn, translate into
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high-order derivatives in ξ in the resulting equation (4.1) because

∂

∂t
= (ε2/2)

∂

∂τ
− εc ∂

∂ξ
≈ −εc ∂

∂ξ
.

Once derived, equation (4.1) gives the dispersion relation, which is the main point

of interest in this work. Our focus is on the dissipation controlled by the even x-

derivatives. Therefore, we will study a truncated form of equation (4.1),

∂v

∂t
+ v

∂v

∂ξ
= A2

∂2v

∂ξ2
+ ε2A4

∂4v

∂ξ4
+ ε4A6

∂6v

∂ξ6
. (4.2)

It is convenient to seek the Fourier modes in the form v ∼ exp(λt+ikx). Substituting

these into Eq. (4.2) gives

λ = −A2k
2 + ε2A4k

4 − ε4A6k
6 (4.3)

with k being the wave number associated with the scaled length ξ. When analyzing

Eq. (4.3) we remember that k is not allowed to be too large, otherwise the assumption

of the slow variation of the wave in space will be violated. As we noted, the slowness

is facilitated by the smallness of ε. Therefore, in Eq. (4.3) the term ε2A4k
4 should

be treated just as a correction to the leading term A2k
2, and the following term

ε4A6k
6 as a correction to the term ε2A4k

4. Thus, the value of λ remains negative

at all plausible values of the mechanical parameters of the system (such as elastic

moduli and viscosities). This reflects the essentially dissipative nature of the seismic

wave, or, in other words, the impossibility of self-excitation of motion. In view of the

crucial presence of the small parameter ε in equations (4.2) and (4.3) we revise our

earlier attempt (Strunin, 2014) to guarantee this important property of the freely

propagating seismic wave in the model. In (Strunin, 2014) a popular form of Eq. (4.2)

was considered where the small parameter ε was omitted. It was reasoned that the

mechanical parameters, of which A4 and A6 are composed, should therefore assume

special limited values, in order to guarantee that λ < 0. However, negativity of λ

is simply ensured by the smallness of ε, which is the essential part of Eq. (4.2) as

explicitly shown.
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4.2 Basic equations of one-dimensional dynamics

4.2.1 Conservation of mass and momentum

For a one-dimensional case the momentum and mass balance equations are (Niko-

laevskiy, 1990)

∂

∂t
(1−m)ρ(s)v +

∂

∂x
(1−m)ρ(s)vv =

∂

∂x
σ(ef) − (1−m)

∂p

∂x
− I ,

∂

∂t
mρ(f)u+

∂

∂x
mρ(f)uu = −m∂p

∂x
+ I ,

∂

∂t
(1−m)ρ(s) +

∂

∂x
(1−m)ρ(s)v = 0 ,

∂

∂t
mρ(f) +

∂

∂x
mρ(f)u = 0 ,

(4.4)

where, the subscripts s and f label the solid and gas-liquid mixture respectively, ρ,

v, and u are the corresponding densities and mass velocities, m is the porosity, σ(ef)

is the effective Terzaghi stress, p is the pore pressure, and I is the interfacial viscous

force approximated by

I = δm(v − u), δ =
µ(f)m

`
,

where µ(f) is the gas-liquid mixture viscosity and ` is the intrinsic permeability.

4.2.2 Dynamics of bubbles

The equation of the dynamics of a bubble (Dontsov et al., 1987) has the form

R
∂2

∂t2
R +

3

2

(
∂

∂t
R

)2

+
4µ

ρ(L)

(
1

R
+
m

4`
R

)
∂

∂t
R = (pg − p)/ρ(L) , (4.5)

where R is the bubble radius, p is the pressure in the liquid, pg = p0(R0/R)χ is the

gas pressure inside the bubble (here χ = 3ς, ς is the adiabatic exponent), ρ(L) is the

density of the liquid without the bubbles, and µ is the viscosity of the liquid without
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the bubbles. The density equations for the solid and liquid without gas are

ρ(s) = ρ
(s)
0 (1− β(s)σ) = ρ

(s)
0

[
1 + β(s)p− β(s)σ(ef)

1−m

]
≈ ρ

(s)
0 [1 + β(s)p− β(s)σ(ef)] , (4.6)

ρ(L) = ρ
(L)
0 (1 + β(L)p) . (4.7)

The mean density of the gas-liquid mixture is

ρ(f) = (1− φ)ρ(L) + φρ(g), (4.8)

where

φ = (4π/3)R3n0 .

Here σ is the true stress, φ is the volume gas content and n0 is the number density

of the bubbles per unit volume. In Eq. (4.8) we can neglect the density of the gas

ρ(g) due to the low gas content. The change in φ is due to the change in the bubble

radius R. Then Eq. (4.8) becomes

ρ(f) = ρ
(L)
0 (1 + β(L)p)

(
1− 4π

3
R3

0n0

)
. (4.9)

Similarly to Dunin et al. (2006) we also assume that the pore pressure p is equal to

the pressure in the liquid far from the bubble.

4.2.3 Stress-strain relation

In this section we derive the stress-strain relation for the viscoelastic medium based

on the rheological Maxwell-Voigt model, which includes the gas bubble. The model

includes two friction elements with viscosities µ1 and µ2, three elastic springs with

the elastic moduli E1, E2, and E3, and three oscillating masses M1, M2, and M3 as

shown in Figure 4.2. The total stress in denoted σ. We also denote the displacements

of the elements of the model by e with respective subscripts.
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Using the same approach as in Chapters 1 and 3, we derive the following relation

between the stress and strain,[
E1E3

(
1

µ1

+
1

µ2

)]
σ + (E3 + E1)

dσ

dt
+M3

d3σ

dt3

=

[
E1E2E3

(
1

µ1

+
1

µ2

)]
e+ [(E2 + E1)E3 + E1E2]

de

dt

+

[
E1E3M2

(
1

µ1

+
1

µ2

)]
d2e

dt2
+ [((E2 + E1)M3 + (E3 + E1)M2)

+E3M1]
d3e

dt3
+ [(M2 +M1)M3]

d5e

dt5
.

(4.10)

Generalizing equation (4.10) using similar approach to Nikolaevskiy (2008), we get

σ(ef) + η
∑
q=1,3

bq
Dqσ(ef)

Dtq
= E2e+ β(s)kb p+ η

∑
q=1,2,3,5

aq
Dqe

Dtq
, (4.11)

where σ(ef) is the effective stress, kb is the bulk elastic module of the porous matrix,

η = [E1E3 ( 1
µ1

+ 1
µ2

)]−1 and the coefficients aq and bq are expressed as

a1 = [(E2 + E1)E3 + E1E2] , a2 = M2 ,

a3 = [(E2 + E1)M3 + (E3 + E1)M2 + E3M1], a5 = [(M2 +M1)M3] ,

b1 = (E3 + E1) , b3 = M3 .

Figure 4.2: Rheological scheme including a gas bubble .
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Finally, we add the closing relation between the deformation e and the velocity v of

the solid,
De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
=
∂v

∂x
. (4.12)

4.3 Elastic waves in saturated media including gas

bubbles

Following the approach of Nikolaevskiy (2008), we consider the P1-wave in a porous

media under the full saturation. We address the reader to Appendix B, which

presents an extract from the paper of Nikolaevskiy (2008). This extract contains

five main sections of this paper in full. We believe this is the best way to convey the

main idea of his approach.

For p1-waves the mass velocities v and u have the same sign,

v = u+O(ε v) , (4.13)

where ε is the small parameter. The Darcy force has the order as shown,

I = εγδm(v − u) = εγδmv, δ = mµ/k = O(1) . (4.14)

Describing a weakly non-linear wave we use the running coordinate system with

simultaneous scale change,

ξ = ε(x− ct) , τ =
1

2
ε2 t ,

∂

∂x
= ε

∂

∂ξ
,

∂

∂t
= ε

(
1

2
ε
∂

∂τ
− c ∂

∂ξ

)
.

(4.15)

Thus, the constitutive law (4.11) transforms into the following form

σ(ef) + η
∑
q=1,3

bq ε
q

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)q
σ(ef)

= E2e+ β(s)kb p+ η
∑

q=1,2,3,5

aq ε
q

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)q
e .

(4.16)



4.3 Elastic waves in saturated media including gas bubbles 64

Now, we seek the unknown functions as power series

v = εv1 + ε2v2 + ... , u = εu1 + ε2u2 + ... ,

σef = σ
(ef)
0 + εσ

(ef)
1 + ε2σ

(ef)
2 ... , p = p0 + εp1 + ε2p2... ,

m = m0 + εm1 + ε2m2... , e = e0 + εe1 + ε2e2... ,

φ = φ0 + εφ1 + ε2φ2... , R = R0(1 + εR1 + ε2R2...) .

(4.17)

4.3.1 First approximation

Using equations (4.17), we collect the linear terms ∼ ε in system (4.4),

−(1−m0)ρ
(s)
0 c

∂v1

∂ξ
=
∂σ

(ef)
1

∂ξ
− (1−m0)

∂p1

∂ξ
,

−m0ρ
(f)
0 c

∂u1

∂ξ
= −m0

∂p1

∂ξ
,

ρ
(s)
0 c

∂m1

∂ξ
− (1−m0)c

∂ρ
(s)
1

∂ξ
+ (1−m0)ρ

(s)
0

∂v1

∂ξ
= −1

2
(1−m0)

∂ρ
(s)
0

∂τ
,

−m0c
∂ρ

(f)
1

∂ξ
− ρ(f)

0 c
∂m1

∂ξ
+m0ρ

(f)
0

∂u1

∂ξ
= −1

2
m0

∂ρ
(f)
0

∂τ
.

(4.18)

The system (4.18) gives the integrals

(1−m0)ρ
(s)
0 cv1 = −σ(ef)

1 + (1−m0)p1 ,

m0ρ
(f)
0 cu1 = m0p1 ,

(1−m0)ρ
(s)
0 v1 =

(
(1−m0)ρ

(s)
1 − ρ

(s)
0 m1

)
c ,

m0ρ
(f)
0 u1 = (ρ

(f)
0 m1 +m0ρ

(f)
1 )c .

(4.19)

According to (4.6) and (4.9) the terms ∼ ε in the density series are

ρ
(s)
1 = ρ

(s)
0

(
β(s) p1 −

β(s)σ
(ef)
1

(1−m0)

)
,

ρ
(f)
1 = ρ

(L)
0

(
β(L)κ1p1 − 4πn0κ2R

3
0R1

) (4.20)
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and also

ρ
(f)
0 = κ1κ2ρ

(L)
0 , (4.21)

where

κ1 = 1− 4π

3
R3

0n0 , κ2 = 1 + β(L)p .

Inserting (4.20) and (4.21) into the last two equations in (4.19) (mass equations) we

get

(1−m0)v1 = [(1−m0)β(s)p1 − β(s)σ
(ef)
1 −m1]c , (4.22)

m0u1 =

[
m1 +

m0β
(L)p1

κ2

− 4π n0m0R
3
0 R1

κ1

]
c . (4.23)

The combination of (4.22) and (4.23) gives

(1−m0)v1 +m0u1 =

[(
β + (1−m0)β(s)β(L)p0

)
p1

κ2

− β(s)σ
(ef)
1

−4π n0m0R
3
0 R1

κ1

]
c ,

(4.24)

where β = (1 − m0)β(s) + m0β
(L). The condition (4.13) means v1 = u1, therefore

equation (4.24) becomes

v1 =

[(
β + (1−m0)β(s)β(L)p0

)
p1

κ2

− β(s)σ
(ef)
1 − 4π n0m0R

3
0 R1

κ1

]
c . (4.25)

Due to the conditions v1 = u1, ρ0 = (1−m0) ρ
(s)
0 +m0 ρ

(L)
0 and using (4.21), the first

two of the momentum equations (4.19) give

ρ0 c v1 = −σ(ef)
1 + Ap1 , (4.26)

where

A = (1−m0) +
m0

κ1κ2

.

Now, the linear terms ∼ ε in relations (4.12) and (4.16) give

1

2

∂e0

∂τ
− c∂e1

∂ξ
+ v1

∂e0

∂ξ
=
∂v1

∂ξ
, (4.27)
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σ
(ef)
1 − E2 e1 − β(s) kbp1 = T , (4.28)

where

T ≡ η

[ ∑
q=1,2,3,5

aq (−c)q εq−1∂
qe0

∂ξq
+
∑
q=1,3

bq c
q εq−1∂

qσ
(ef)
0

∂ξq

]
.

The linear terms ∼ ε in the bubble equation (4.5) give

− µ c

ρ
(L)
0 κ2

[
4

R0

+
m0R0

`

]
∂R0

∂ξ
= − 1

ρ
(L)
0 κ2

(p0 χR1 + p1) . (4.29)

Equations (4.27), (4.28) and (4.29) lead to the integrals

e1 = −v1

c
, σ

(ef)
1 = E2 e1 + β(s)kbp1, p1 = −p0 χR1 . (4.30)

The effective stress σ
(ef)
1 in (4.30) can be rewritten as

σ
(ef)
1 = −

[
E2v1

c
+ p0 χβ

(s)kbR1

]
. (4.31)

Substituting (4.31) and the value of p1 from (4.30) into (4.25), leads to

(1− β(s)E2)v1 +
(
B − kbβ(s)β(s)

)
p0χR1c = 0 , (4.32)

where

B =

(
β + (1−m0)β(s)β(L)p0

)
κ2

+
4πn0m0R

3
0

κ1p0χ
.

Now, from (4.26) and using the value of p1 from (4.30), we obtain the effective stress

as

σ
(ef)
1 = − (ρ0 cv1 + A) p0χR1 . (4.33)

The combination of (4.31) and (4.33) results in

(E2 − ρ0 c
2)v1 −

(
A− kbβ(s)

)
p0χR1c = 0 . (4.34)

Equations (4.32) and (4.34) must coincide, therefore∣∣∣∣∣∣(1− β
(s)E2) (B − kbβsβs) p0χ

(E2 − ρ0 c
2) −

(
A− kbβ(s)

)
p0χ

∣∣∣∣∣∣ = 0 . (4.35)
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Equation (4.35) gives the velocity of the wave,

c2 =
(A− kbβ(s))Z1 + E2

ρ0

, (4.36)

where

Z1 =
1− β(s)E2

B − kbβ(s)β(s)
.

Thus, all the variables are expressed through any one selected variable, for example,

the velocity v1,

e1 = −v1

c
, σ

(ef)
1 = −(E2 − kbβ(s)Z1)

v1

c
, p1 = Z1

v1

c
, R1 = − Z1

p0χ

v1

c
,

m1 =
[
((1−m0)− kbβ(s))β(s)Z1 + β(s)E2 − (1−m0)

] v1

c
,

ρ
(f)
1 = ρ

(L)
0 Z1

(
β(L)κ1 +

κ24πn0R
3
0

p0χ

)
v1

c
,

ρ
(s)
1 = ρ

(s)
0 β(s)

[
Z1(1− kbβ(s)) + E2

] v1

c
.

(4.37)

4.3.2 Second approximation

Collecting the quadratic terms ∼ ε2 in (4.16), we get

σ
(ef)
2 − E2e2 − β(s) kb p2 = T , (4.38)

where

T ≡ η

[ ∑
q=1,2,3,5

aq (−c)q εq−1∂
qe1

∂ξq
+
∑
q=1,3

bq c
q εq−1∂

qσ
(ef)
1

∂ξq

]
.

Note that here we keep (as Nikolaevskiy did in (Nikolaevskiy, 2008)) the higher

powers of ε to represent small corrections to the leading terms. These corrections

will eventually translate into small corrections in the derived Nikolaevskiy equation

further in this chapter; they will be the object of our study. Thus,

∂σ
(ef)
2

∂ξ
− E2

∂e2

∂ξ
− β(s) kb

∂p2

∂ξ
=
∂T

∂ξ
. (4.39)
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From (4.12) in the order ∼ ε2 we get

∂

∂ξ
(ce2 + v2) = F ,

F = −1

c

(
1

2

∂v1

∂τ
+
∂v1v1

∂ξ

)
. (4.40)

Therefore,
∂e2

∂ξ
=
F

c
− 1

c

∂v2

∂ξ
. (4.41)

Substituting (4.41) into (4.39) we obtain,

∂

∂ξ

(
cσ

(ef)
2 + E2v2 − cβ(s) kb p2

)
= E2F + c

∂T

∂ξ
. (4.42)

From the momentum equations (4.4) for the solid and liquid, we get

(1−m0)ρ
(s)
0 c

∂v2

∂ξ
+
∂σ

(ef)
2

∂ξ
− (1−m0)

∂p2

∂ξ
= Σ1 , (4.43)

where

Σ1 = (1−m0)ρ
(s)
0

(
1

2

∂v1

∂τ
+
∂v1v1

∂ξ

)
− (1−m0)ρ

(s)
1 c

∂v1

∂ξ

+m1ρ
(s)
0 c

∂v1

∂ξ
−m1

∂p1

∂ξ
+ εγ−1δm0v1

and

m0ρ
(f)
0 c

∂u2

∂ξ
−m0

∂p2

∂ξ
= Σ2 , (4.44)

where

Σ2 = m0ρ
(f)
0

(
1

2

∂u1

∂τ
+
∂u1u1

∂ξ

)
−m0ρ

(f)
1 c

∂u1

∂ξ

−m1ρ
(f)
0 c

∂u1

∂ξ
+m1

∂p1

∂ξ
− εγ−1δm0u1 .

Due to the condition (4.13), the combination of (4.43) with (4.44) gives

ρ0 c
∂v2

∂ξ
+
∂σ

(ef)
2

∂ξ
− ∂p2

∂ξ
= Σ , (4.45)

where Σ = Σ1 + Σ2 , so that

Σ = ρ0

(
1

2

∂v1

∂τ
+
∂v1v1

∂ξ

)
− c((1−m0)ρ

(s)
0 β(s) +m0ρ

(L)
0 β(L)κ1)

∂p1v1

∂ξ
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+cρ
(s)
0 β(s)∂σ

(ef)
1 v1

∂ξ
+ c ρ

(L)
0 4πn0m0κ2R

3
0

∂R1v1

∂ξ
+ c(ρ

(s)
0 − κ1κ2ρ

(L)
0 )

∂m1v1

∂ξ
.

Equations (4.42) and (4.45) result in

∂

∂ξ

[
(E2 − ρ0 c

2)v2 + (1− β(s) kb)c p2

]
= E2F − cΣ + c

∂T

∂ξ
. (4.46)

From the bubble equation (4.5), in the order ∼ ε2,

−µ c
ρ

(L)
0 κ2

(
4 +

m0R
2
0

`

)
∂R1

∂ξ
=

1

ρ
(L)
0 κ2

[
β(L) p0χ

κ2

p1R1 +
β(L)

κ2

p2
1 +

p0χ(χ+ 1)

2
R2

1 − p0χR2 − p2

]
.

(4.47)

We re-write equation (4.47) as

p2 = Γ− p0χR2 , (4.48)

where

Γ = µc

(
4 +

m0R
2
0

`

)
∂R1

∂ξ
+
β(L) p1

κ2

( p0χR1 + p1) +
p0χ(χ+ 1)

2
R2

1 .

Now we substitute the value of p2 from (4.48) into (4.46) to get

∂

∂ξ

[
(E2 − ρ0 c

2)v2 − (1− β(s) kb)p0 χR2 c
]

= E2F − cΣ + c
∂T

∂ξ
− c(1− β(s) kb)

∂Γ

∂ξ
.

(4.49)

In the second order the mass balances (4.4) for the solid and liquid-gas mixture have

the form

∂

∂ξ

(
(1−m0)v2 − [(1−m0)β(s)p2 − β(s)σ

(ef)
2 −m2]c

)
= Λ(s)/ρ

(s)
0 , (4.50)

∂

∂ξ

(
m0u2 −

[
m2 +

m0β
(L)p2

κ2

− 4πm0 n0R
3
0(R2 +R2

1)

κ1

+
4πm0 n0R

3
0 p0 χβ

(L)R2
1

κ1κ2

]
c

)
= Λ(L)/ρ

(L)
0 ,

(4.51)

where

Λ(s) = ρ
(s)
0

1

2

∂

∂τ

[
(m1 − (1−m0) β(s)p1 + β(s)σ

(ef)
1 )

]
+ρ

(s)
0

∂

∂ξ

[
m1v1 − ((1−m0)p1 + σ

(ef)
1 )β(s)v1 − cβ(s)m1

(
p1 −

σ
(ef)
1

(1−m0)

)]
,

(4.52)
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Λ(L) = −ρ(L)
0

1

2

∂

∂τ

[
κ1

(
m1κ2 +m0β

(L)p1

)
− 4πn0κ2R

3
0R1

]
+ρ

(L)
0

∂

∂ξ

[ (
β(L)κ1p1 − 4πn0κ2R

3
0R1

)
(cm1 −m0u1)

]
− κ1κ2ρ

(L)
0

∂m1u1

∂ξ
.

(4.53)

The combination of (4.50) and (4.51) gives

∂

∂ξ

[
v2 −

(
(β + (1−m0)β(s)β(L)p0)p2

κ2

− β(s)σ
(ef)
2 − 4πm0 n0R

3
0(R2 +R2

1)

κ1

+
4πm0 n0R

3
0 p0 χβ

(L)R2
1

κ1κ2

)
c

]
= Λ ,

(4.54)

where

Λ ≡ (Λ(s)/ρ
(s)
0 ) + (Λ(L)/ρ

(L)
0 ) .

From equation (4.42) we have

∂σ
(ef)
2

∂ξ
=

∂

∂ξ

(
T + kb β

(s) Γ− kbβ(s) p0 χR2 −
E2

c
v2

)
+

1

c
E2F . (4.55)

Now we insert (4.55) and the value of p2 represented by (4.48), into equation (4.54),

∂

∂ξ

[
(1− E2β

(s))v2 −
(
ω1p0χ−

4πm0n0R
3
0

κ1

)
R2 c

]
= Λ− β(s)E2F − cβ(s)∂T

∂ξ
− cω1

∂Γ

∂ξ
+ cω2

∂R2
1

∂ξ
,

(4.56)

where

ω1 = kbβ
(s)β(s) +

(β + (1−m0)β(s)β(L)p0)

κ2

,

ω2 =
4πm0 n0R

3
0 β

(L)p0 χ

κ1κ2

− 4πm0 n0R
3
0

κ1

.

The determinant of the left-hand side of the system of equations (4.49) and (4.56)

coincides with the determinant of (4.35), which equals zero. A non-zero solution for

v2 exists only if the following compatibility condition takes place,∣∣∣∣∣∣(E2 − ρ0 c
2) ∂

∂ξ

(
E2F − cΣ + c∂T

∂ξ
− (1− β(s) kb)c

∂Γ
∂ξ

)
(1− E2β

(s)) ∂
∂ξ

[Λ− β(s)E2F − cβ(s) ∂T
∂ξ
− cω1

∂Γ
∂ξ

+ cω2
∂R2

1

∂ξ
]

∣∣∣∣∣∣ = 0 (4.57)
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(see Appendix C). This is the evolution equation with respect to v ∼= v1:

cM
∂Γ

∂ξ
− cN ∂T

∂ξ
+ cω2ψ

∂R2
1

∂ξ
+ Λψ + cΣ(1− E2β

(s))− E2FN = 0 , (4.58)

where

ψ = (E2 − ρ0c
2) , M = (1− β(s) kb)(1− E2β

(s))− ω1ψ , N = (1− β(s)ρ0 c
2) .

Now, we re-write equation (4.58) in terms of v and re-group,

1

2

[
Y1 + ψ

(
(1− κ1κ2)m̄1 − E2β

(s) −
(
Y2 +

4π n0R
3
0

p0χ

)
Z1

)]∂v
∂τ

−
[
Nηc2(a1 − b1(E2 − kbβ(s)Z1)) +

MZ1µc
2

p0χ

(
4 +

m0R
2
0

`

)]
∂2v

∂ξ2
+ εNηc3a2

∂3v

∂ξ3

−ε2Nη c4
[
a3 − b3(E2 − kbβ(s)Z1)

] ∂4v

∂ξ4
− ε4Nηa5 c

6∂
6v

∂ξ6
− [ζ1 + ζ2]

∂vv

∂ξ
= 0 ,

(4.59)

where

m̄1 = ((1−m0)− kbβ(s))β(s)Z1 + β(s)E2 − (1−m0) ,

Y1 =
(
E2N + c2ρ0(1− E2β

(s))
)
, Y2 = m0(κ1β

(L) − β(s)) + β(s)(1− β(s)kb) ,

ζ1 = ψ
(
m̄1 − (1−m0)β(s)Z1 + β(s)(E2 − kbβ(s)Z1)(1− m̄1)− β(s)Z1m̄1

+ κ1β
(L)Z1m̄1 − κ1κ2 + 4π n0κ2R

3
0

Z1

p0χ
(m̄1 −m0)−m0κ1β

(L)Z1 + ω2
Z2

1

(p0χ)2

)
,

ζ2 = c2(1− E2β
(s))
(
ρ0 − ρ0κ1βZ1 − ρ(s)

0 β(s)(E2 − kbβ(s)Z1)−m0κ2ρ
(L) Z1

p0χ

+ m̄1(ρ(s) − κ1κ2ρ
(L))
)

+
M(χ+ 1)

2p0χ
Z2

1 + E2N .

In short the evolution equation (4.59) can be written as

C1
∂v

∂τ
− C2

∂2v

∂ξ2
+ εC3

∂3v

∂ξ3
− ε2C4

∂4v

∂ξ4
− ε4C6

∂6v

∂ξ6
− ζ ∂vv

∂ξ
= 0 , (4.60)

where

C1 =
1

2

[
Y1 + ψ

(
(1− κ1κ2)m̄1 − E2β

(s) −
(
Y2 +

4π n0R
3
0

p0χ

)
Z1

)]
,

C2 =

[
Nηc2(a1 − b1(E2 − kbβ(s)Z1)) +

MZ1µc
2

p0χ

(
4 +

m0R
2
0

`

)]
, C3 = Nηc3a2

C4 = Nη c4(a3 − b3(E2 − kbβ(s)Z1)) , C6 = Nηa5 c
6 , ζ = ζ1 + ζ2 .
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4.4 Elastic waves in saturated media without gas

bubbles

Our goal is to study the effect of inclusion of gas bubbles into the rheological model,

on the elastic wave decay. For this purpose we will remove the bubble-representing

segment from Figure 4.2 and re-derive the wave equation (note that our rheological

model consists of only two branches: one for the solid and the other for the bubble-

fluid mixture). This differs from the original Nikolaevskiy model, which includes

three parallel branches (Nikolaevskiy, 1989, 2008).

4.4.1 Stress-strain relation

By removing the bubble segment from the rheological model in Figure 4.2 we get

Figure 4.3, for which we derive the following stress-strain relation (Nikolaevskiy,

1985),

σ + θ
dσ

dt
= E2e+ (E1 + E2)θ

de

dt
+M2

d2e

dt2
+ (M1 +M2)θ

d3e

dt3
, (4.61)

where θ = µ1/E1. This equation was discussed in detail in Chapter 1.

Hence, the constitutive law (4.61) will written as,

σ(ef) + b1 ε

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)
σ(ef)

= E2e+ β(s)kb p+
3∑
q=1

aq ε
q

(
1

2
ε
∂

∂τ
+ (v − c) ∂

∂ξ

)q
e , (4.62)

where

a1 = (E1 + E2) θ, a2 = M2 , a3 = (M1 +M2) θ , b1 = θ .
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Figure 4.3: Rheological scheme without gas bubble .

Note that the stress-strain relation (4.61) can be obtained directly from the rela-

tion (4.10). Assuming µ2 =∞ (rigid bar instead of friction piston) and M3 = 0 (no

mass) in (4.10), equation (4.61) takes the form

(E1E3)
1

µ1

σ + (E3 + E1)
dσ

dt
= (E1E2E3)

1

µ1

e+ [(E2 + E1)E3 + E1E2]
de

dt

+E1E3M2
1

µ1

d2e

dt2
+ [(E3 + E1)M2 + E3M1]

d3e

dt3
, (4.63)

Now dividing by E1 and E3 and assuming E3 =∞ (rigid bar instead of spring), one

gets the same stress-strain relation (4.61)

σ +
µ1

E1

dσ

dt
= E2e+ (E2 + E1)

µ1

E1

de

dt
+M2

d2e

dt2
+ (M1 +M2)

µ1

E1

d3e

dt3
. (4.64)

4.4.2 First approximation for the system without gas bub-

bles

The first approximations for the momentum and mass-balance equations without

gas bubbles are the same as for the system (4.4). As for the density equations, the
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solid density remains unchanged but for gas-liquid mixture we neglect the volume

gas content φ in equation (4.8),

ρ(f) = ρ(L) = ρ
(L)
0 (1 + β(L)p) . (4.65)

The first approximation of (4.65) is

ρ
(L)
1 = ρ

(L)
0 β(L)p1 . (4.66)

Inserting this into the mass equation for the fluid (4.19), we get

m0u1 =
[
m1 +m0β

(L)p1

]
c . (4.67)

Now, the combination of (4.22) and (4.67) yields

(1−m0)v1 + n0u1 =
[
(1−m0)β(s)p1 − β(s)σ

(ef)
1 +m0β

(L)p1

]
c . (4.68)

Due to the condition (4.13), equation (4.68) becomes

v1 =
[
(1−m0)β(s)p1 − β(s)σ

(ef)
1 +m0β

(L)p1

]
c . (4.69)

After we apply the conditions

v1 = u1, ρ0 = (1−m0) ρ
(s)
0 +m0 ρ

(L)
0

the first two equations in (4.19) give

ρ0 c v1 = −σ(ef)
1 + p1 . (4.70)

The first approximation of relation (4.62) is

σ
(ef)
1 − E2 e1 − β(s) kbp1 =

3∑
q=1

aq (−c)q εq−1∂
qe0

∂ξq
+ b1 c

∂σ
(ef)
0

∂ξ
. (4.71)

Equations (4.71) and (4.27) result in the integral

σef1 = −E2v1

c
+ β(s)kbp1 . (4.72)
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Substituting (4.72) into (4.69), we get

(1− β(s)E2)v1 = c(1−m0)β(s) p1 + cm0β
(L)p1 − β(s)β(s)kb c p1 . (4.73)

As β = (1−m0)β(s) +m0β
(L), equation (4.73) becomes

(1− β(s)E2)v1 = (β − β(s)β(s)kb)c p1 . (4.74)

From (4.70) we obtain

σ
(ef)
1 = p1 − ρ0 c v1 . (4.75)

Therefore, the combination of (4.75) with (4.72) yields

(ρ0 c
2 − E2)v1 = (1− β(s)kb)c p1 . (4.76)

The determinant of the system of equations (4.74) and (4.76) gives the wave velocity

c, ∣∣∣∣∣∣(1− β
(s)E2) −(β − β(s)β(s)kb)

(ρ0 c
2 − E2) −(1− β(s)kb)

∣∣∣∣∣∣ = 0 . (4.77)

Thus,

c2 =
E2 + Z2(1− β(s)kb)

ρ0

, (4.78)

where

Z2 =
(1− β(s)E2)

(β − β(s)β(s)kb)
.

Again we can express all the variables through the velocity v1 ,

e1 = −v1

c
, ρ

(s)
1 = ρ(s)β(s)[Z2(1− β(s)kb) + E2]

v1

c
, ρ

(L)
1 = ρ(L)β(L)Z2

v1

c
,

p1 = Z2
v1

c
, m1 = [(1−m0)β(s)Z2 + β(s)(E2 − β(s)kbZ2)− (1−m0)]

v1

c
,

σ
(ef)
1 = −(E2 − β(s)kbZ2)

v1

c
.

(4.79)
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4.4.3 Second approximation for the system without gas bub-

bles

In the second approximation for the system without the bubbles we again arrive at

an equation of the form (4.46), except the formulas for Σ and T are changed,

∂

∂ξ

[
(E2 − ρ0 c

2)v2 + (1− β(s) kb)c p2

]
= E2F − cΣ + c

∂T

∂ξ
, (4.80)

where

Σ = ρ0

(1

2

∂v1

∂τ
+
∂v1v1

∂ξ

)
− cρ0β

∂p1v1

∂ξ
+ cρ

(s)
0 β(s)∂σ

(ef)
1 v1

∂ξ
+ c(ρ

(s)
0 − ρ

(L)
0 )

∂m1v1

∂ξ
,

T =
3∑
q=1

aq (−c)q εq−1∂
qe1

∂ξq
+ b1 c

∂σ
(ef)
1

∂ξ
.

The second approximation of the mass balance for the sold is the same as (4.50),

while for the fluid it takes the form

∂

∂ξ

[
m0u2 − (m2 +m0β

(L)p2)c
]

= Λ(L)/ρ
(L)
0 , (4.81)

where

Λ(L) = −1

2
ρ

(L)
0

∂

∂τ

[
m1 +m0β

(L)p1

]
+ ρ

(L)
0

∂

∂ξ

[
cm1β

(L)p1 −m0β
(L)p1u1 −m1u1

]
.

The combination of (4.50) and (4.81) results in

∂

∂ξ

[
v2 − (βp2 − β(s)σ

(ef)
2 )c

]
= Λ , (4.82)

where

Λ = (Λ(s)/ρ
(s)
0 ) + (Λ(L)/ρ

(L)
0 ) .

From (4.42) we find

∂σ
(ef)
2

∂ξ
=

∂

∂ξ

(
T + kb β

(s) p2 −
E2

c
v2

)
+

1

c
E2F . (4.83)

Substituting (4.83) into (4.82) we get

∂

∂ξ

[
(1− E2β

(s))v2 − (β − β(s)β(s))c p2

]
= Λ− β(s)E2F − cβ(s)∂T

∂ξ
. (4.84)
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In analogy to (4.57), the compatibility condition for the system of equations (4.80),

(4.84) has the form∣∣∣∣∣∣(E2 − ρ0 c
2) ∂

∂ξ
(E2F − cΣ + c∂T

∂ξ
)

(1− E2β
(s)) ∂

∂ξ
(Λ− β(s)E2F − cβ(s) ∂T

∂ξ
)

∣∣∣∣∣∣ = 0 . (4.85)

Then the evolution equation for v ∼= v1 is

Λψ − cN ∂T

∂ξ
+ cΣ(1− E2β

(s))− E2FN = 0 . (4.86)

Rearranging, we arrive at

c2ρ0(1− E2β
(s))

∂v

∂τ
−Nc2(a1 − b1(E2 − β(s)kbZ2))

∂2v

∂ξ2
+ εN a2 c

3∂
3v

∂ξ3

−ε2Na3c
4∂

4v

∂ξ4
+ [G1 +G2]

∂vv

∂ξ
= 0 , (4.87)

where

m̂1 = (1−m0)β(s)Z2 + β(s)(E2 − β(s)kbZ2)− (1−m0) ,

G1 = ψ
(
− ((1−m0) + m̂1)β(s)Z2 − β(s)(E2 − β(s)kbZ2)

(
1 +

m̂1

(1−m0)

)
+ β(L)Z2m̂1 −m0β

(L)Z2

)
,

G2 =
(
c2(1− E2β

(s))
(
ρ0 − ρ0βZ2 − ρ(s)β(s)(E2 − β(s)kbZ2) + m̂1(ρ(s) − ρ(L))

)
+ E2(1− β(s)ρ0 c

2)
)
.

Finally, we re-write the evolution equation (4.87) as

D1
∂v

∂τ
−D2

∂2v

∂ξ2
+ εD3

∂3v

∂ξ3
− ε2D4

∂4v

∂ξ4
+G

∂vv

∂ξ
= 0 , (4.88)

where

D1 = c2ρ0(1− E2β
(s)) , D2 = Nc2(a1 − b1(E2 − β(s)kbZ2)) , D3 = N a2 c

3 ,

D4 = Na3c
4 , G = G1 +G2 .

We remark that for the wave propagating to the left, that is with ξ = ε(x+ ct), one

obtains (as we checked) the same equation (4.88).
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4.5 Linearized model

In this section we investigate the linearized versions of the model with and without

the bubbles, that is (4.60) and (4.88). Our particular interest is its dissipative part

responsible for decay of the wave.

4.5.1 Evaluation of the parameters and the wave velocity

From (Nikolaevskiy, 1985; Carcione, 1998; Smeulders, 2005; Dunin et al., 2006;

Mikhailov, 2010; Nikolaevskiy, 2016; Sutton and Biblarz, 2017), the values of the

parameters are: densities, ρ
(L)
0 = 1000 kg/m3 for water, ρ(g) = 2 kg/m3 for gas,

ρ
(s)
0 = 2500 kg/m3 for solid; porosity m0 = 0.25; bulk modulus kb = 1.7 × 109 Pa

for matrix, kb = 30 × 109 Pa for solid; compressibility β(L) = 2 × 10−9 Pa−1 for wa-

ter, β(L) = 2.4 × 10−6 Pa−1 for gas, β(s) = 2 × 10−10 Pa−1 for solid; steady pressure

p0 = 105 Pa; bubble radius R0 = 5× 10−5 m; volume gas content φ0 = 10−3; viscosi-

ties µ1 = 10−3 Pa·s for water, µ2 = 2× 10−5 Pa·s for gas; adiabatic exponent ζ = 1.4,

and permeability ` = 2× 10−11 m2. Using the data from (Nikolaevskiy, 1985; Niko-

laevskiy and Stepanova, 2005; Nikolaevskiy and Strunin, 2012; Nikolaevskiy, 2016),

the values of the parameters of the rheological model in Figure 4.2 are

M1 = ρ(L) L2
s = 10−2 kg/m , M2 = ρ(s) L2

s = 0.02 kg/m ,

M3 = ρ(g) L2
s = 2× 10−6 kg/m

and

(a) E1 = 1/β(L) = 4× 105 Pa , E2 = c2ρ0 = 2× 107 Pa , E3 = 3χ p0 = 4× 107 Pa ,

where we used, just for the purpose of evaluating of Ei and Mi, the typical velocity

c ∼ 100 m/s and the linear size of the oscillator Ls = 0.3 cm from (Nikolaevskiy,

1985; Vilchinska et al., 1985). Note that the above values of Ei are known only
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approximately. With this in mind, in the present study we also explore other the

values of Ei that are considerably different from variant (a).

(b) E1 = 5× 105 Pa , E2 = 5× 108 Pa , E3 = 5× 104 Pa ,

(c) E1 = 6× 105 Pa , E2 = 2× 109 Pa , E3 = 5× 103 Pa .

The reason for this choice is that the two different rheological models that we use

(for the wave with and without the bubbles), give close values of λ when we put

R0 = 0 and n0 = 0.

Now we apply the formulas for the wave velocity (4.36) and (4.78) to show that

they give reasonable orders of magnitude. For variant (a) formula (4.36) for the

wave with the bubbles gives c ≈ 577 m/s, and formula (4.78) for the wave without

the bubbles gives c ≈ 2100 m/s. For variant (b) the wave with the bubbles has the

velocity c ≈ 726 m/s and the wave without the bubbles the velocity c ≈ 2000 m/s.

For variant (c) the wave with the bubbles has c ≈ 1100 m/s, and the wave without

the bubbles c ≈ 1800 m/s. This illustrates, in line with the previous studies, that

the bubbles may result in considerable change of the wave velocity. However, our

main interest in this study is the dissipation rate of the wave, which we explore in

the next section.

4.5.2 Dispersion (dissipation) relation

Analysing the linearized model, we are interested in the influence of the bubbles on

the wave dissipation. This effect is controlled by the even derivatives, so we truncate

the linearized equation (4.60) to the form

∂v

∂τ
=
C2

C1

∂2v

∂ξ2
+ ε2C4

C1

∂4v

∂ξ4
+ ε4C6

C1

∂6v

∂ξ6
. (4.89)

For the Fourier modes v ∼ exp(λt+ ikx), we get the dissipation relation

λ(k) = −C2

C1

k2 + ε2C4

C1

k4 − ε4C6

C1

k6 , (4.90)
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where λ is the decay rate and k is the wave number. In the case without the bubbles

the linearized form of equation (4.88) is

∂v

∂τ
=
D2

D1

∂2v

∂ξ2
+ ε2D4

D1

∂4v

∂ξ4
. (4.91)

(we again consider only even derivatives). Then the dissipation relation is

λ(k) = −D2

D1

k2 + ε2D4

D1

k4 . (4.92)
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Figure 4.4: The decay rate by formula (4.90) for variant (a), k∗ = 0.25 1/m .

Figure 4.4 shows the decay rate by formula (4.90) at fixed k∗ = 0.25 1/m (Niko-

laevskiy, 1989) against R0 and n0. See that the increase in R0 significantly affects

the decay rate and makes its absolute value larger due to the bubbles increasing

their role through the pressure p1 = −p0 χR1. As for n0, one should disregard the

region of small n0 in Figure 4.4 since the equations of continuum mechanics in the

form adopted in the model become invalid when there are too few bubbles. This is

because one can no longer assume that every fluid particle contains its own bubble

(as suggested by equation (4.5)) because this would imply that the fluid particles are

no longer small and, hence, the continuum mechanics description fails.
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Figure 4.5: The decay rate by formulas (4.90) and (4.92) for variant (a): n0 varies,

R0 = 5× 10−5 .
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Figure 4.6: The decay rate by formulas (4.90) and (4.92) for variant (a): R0 varies,

n0 = 4× 108 .
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Figures 4.5 and 4.6 compare the dispersion curves of the wave with the bubbles

and the wave without the bubbles. The dashed line describes the case without the

bubbles and the solid lines correspond to the wave with the bubbles. Figure 4.5 is for

varying n0 and fixed R0. Figure 4.6 is for varying R0 and fixed n0 . The decay rate

depends on the number and radius of the bubbles. We note that this result agrees

with the conception discussed in (Strunin, 2014; Strunin and Ali, 2016) about the

passive nature of the freely propagating elastic wave. Similar results are obtained

for variants (b) and (c) as shown in Figures 4.7–4.12.
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Figure 4.7: The decay rate by formula (4.90) for variant (b), k∗ = 0.25 1/m .
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Figure 4.8: The decay rate by formulas (4.90) and (4.92) for variant (b): n0 varies,

R0 = 5× 10−5 .

k, 1/m
0 0.05 0.1 0.15 0.2 0.25

λ
, 1

/s

×10-3

-2.5

-2

-1.5

-1

-0.5

0

R0= 0 m

R0= 5×10-5 m

Figure 4.9: The decay rate by formulas (4.90) and (4.92) for variant (b): R0 varies,

n0 = 4× 108 .
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Figure 4.10: The decay rate by formula (4.90) for variant (c), for k∗ = 0.25 1/m .
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Figure 4.11: The decay rate by formulas (4.90) and (4.92) for variant (c): n0 varies,

R0 = 5× 10−5 .
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Figure 4.12: The decay rate by formulas (4.90) and (4.92) for variant (c): R0 varies,

n0 = 4× 108 .

For a different k∗ = 0.52 1/m (Beresnev and Nikolaevskiy, 1993), the results are

similar, see Figures 4.13–4.15.
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Figure 4.13: The decay rate by formula (4.90) for variant (a), k∗ = 0.52 1/m .



4.5 Linearized model 86

k, 1/m
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

λ
, 1

/s

-0.01

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

n0= 4×108 1/m3

n0= 0 1/m3

Figure 4.14: The decay rate by formulas (4.90) and (4.92) for variant (a): n0 varies,

R0 = 5× 10−5 .
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Figure 4.15: The decay rate by formulas (4.90) and (4.92) for variant (a): R0 varies,
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4.6 Concluding remarks

We studied the effect of rheology with and without gas bubbles and of the bubble

dynamics on the dissipation of elastic waves in porous solids. The Frenkel-Biot waves

of P1 type are analysed in the fluid-saturated environment. Using the three-segment

rheological model (with the bubbles) and two-segment model (without the bubbles),

we derived the Nikolaevskiy-type equations for the velocity of the solid matrix. We

compared the linearized versions of the equations in terms of the decay rate λ(k)

of the Fourier modes. For the both cases – with and without the bubbles – the

λ(k)-curve lies entirely below the zero. We found out that |λ(k)| increases with the

increase of the radius of the bubbles but decreases with the increase of the number

of the bubbles. The decrease manifests the opposite trend to the one observed in

Chapter 3. We are inclined to consider the trend obtained in the current chapter as

more realistic because of the more complete structure of the bubble element used in

the rheological model.



Chapter 5

Evaluating the influence of

parameters on the decay rate

SUMMARY: In this chapter, we evaluate the effect of the mechanical parameters on

decay rates for the bubble-including equations derived in Chapters 3 and 4.

C1
∂v

∂τ
− C2

∂2v

∂ξ2
+ εC3

∂3v

∂ξ3
− ε2C4

∂4v

∂ξ4
− ε4C6

∂6v

∂ξ6
− ζ ∂vv

∂ξ
= 0 . (5.1)

A1
∂v

∂τ
+ A2

∂2v

∂ξ2
+ AN

∂vv

∂ξ
= 0 . (5.2)

5.1 Introduction

In this section, we are mainly interested in testing the effect produced by different

values of mechanical parameters on the decay rate. Note that magnitudes of some of

these parameters are well known, for example viscosities µi, while other parameters

such as the masses Mi are known quite poorly. Let us re-write the dispersion relation

for equation (5.1) as

λ(k) = −C2

C1

k2 + ε2C4

C1

k4 − ε4C6

C1

k6 . (5.3)
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5.2 Influence of the rheological parameters

All the parameters participating in our model have their respective ranges of vari-

ation. We expect that this variation may exert influence on the wave decay rate.

In this section we focus on the parameters of the rheological model in Figure 5.1.

While the magnitudes of the viscosities µ1 and µ2 are well known from literature,

the parameters M1, M2, M3, E1, E2, E3 can only be roughly estimated by the order

of magnitude.

We choose to represent our numerical results by 3D plots of the decay rate against

the radius of the bubbles R0 and their number (concentration) n0. The values of µ1,

and µ2 are given in Table 5.1. As for the values of Mi and Ei, we considered their

reference magnitudes specified in chapter 4 and let them vary from these magnitudes

by some orders lower and higher, see Table 5.2.

Figure 5.1: Rheological scheme including a gas bubble .
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µ1, Pa·s µ2, Pa·s

1 5× 10−3 2× 10−7

2 5× 10−3 2× 10−4

3 10−2 2× 10−4

4 10−2 2× 10−7

Table 5.1: The values of µ1, and µ2 .

E1, Pa E2, Pa E3, Pa M1, kg/m M2, kg/m M3, kg/m

1 4× 105 2× 107 5× 107 10−3 10−3 10−6

2 4× 105 2× 109 5× 107 10−3 10−1 10−6

3 4× 107 2× 109 5× 107 10−1 10−1 10−6

4 4× 107 2× 107 5× 107 10−1 10−3 10−6

5 4× 105 2× 107 5× 103 10−3 10−3 10−4

6 4× 105 2× 109 5× 103 10−3 10−1 10−4

7 4× 107 2× 107 5× 103 10−1 10−3 10−4

8 4× 107 2× 109 5× 103 10−1 10−1 10−4

9 5× 105 25× 106 5× 107 10−3 10−2 5× 10−6

10 5× 105 25× 108 5× 107 10−3 5× 10−2 5× 10−6

11 5× 108 25× 108 5× 107 10−2 5× 10−2 5× 10−6

12 5× 108 25× 106 5× 107 10−2 10−2 5× 10−6

13 5× 105 25× 106 5× 103 10−3 10−2 5× 10−7

14 5× 105 25× 108 5× 103 10−3 5× 10−2 5× 10−7

15 5× 108 25× 106 5× 103 10−2 10−2 5× 10−7

16 5× 108 25× 108 5× 103 10−2 5× 10−2 5× 10−7

Table 5.2: The values of E1, E2, E3, M1, M2, and M3 .
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The 16 rows of Table 5.2 and 4 rows of Table 5.1 give 16× 4 = 64 possible graphs.

However, some of these graphs are almost identical as we commented in figure cap-

tions. Figures 5.2–5.4 represent the results of using the parameter values given in

Tables 5.1 and 5.2 in the formula (5.3).
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Figure 5.2: The decay rate by formula (5.3) for rows 2 of Tables 5.1 and 5.2, k∗ = 0.25

1/m .
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Figure 5.3: The decay rate by formula (5.3) for row 4 of Table 5.1 and row 10 of

Table 5.2, k∗ = 0.25 1/m .
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Furthermore, when we increased the values of n0 to n0 = (4, 8)× 1010 1/m3 and R0

to R0 = 10−4m, we obtained similar results as shown in Figures 5.5–5.14.
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Figure 5.5: The decay rate by formula (5.3) for rows 1 of Tables 5.1 and 5.2, k∗ = 0.25
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Figure 5.6: The decay rate by formula (5.3) for row 4 of Table 5.1 and row 13 of

Table 5.2, k∗ = 0.25 1/m .



5.2 Influence of the rheological parameters 94

×10-5

5
4

R0, m

3
2

1
00

1

2

n0,1/m3

3

×1010

-0.5

-1

-1.5

-2

0

4

×10-4

λ
, 1

/s

Figure 5.7: The decay rate by formula (5.3) for row 1 of Table 5.1 and row 3 of
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Figure 5.8: The decay rate by formula (5.3) for row 3 of Table 5.1 and row 8 of
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Figure 5.9: The decay rate by formula (5.3) for row 2 of Table 5.1 and row 5 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.10: The decay rate by formula (5.3) for row 3 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m .



5.2 Influence of the rheological parameters 96

×10-4

1
0.8

0.6

R0, m

0.4
0.2

00

2

4

n0,1/m3

6

×1010

-1

-0.4

-1.2

0

-0.2

-0.6

-0.8

8

×10-3

λ
, 1

/s

Figure 5.11: The decay rate by formula (5.3) for rows 1 of Tables 5.1 and 5.2, k∗ = 0.25
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Figure 5.12: The decay rate by formula (5.3) for row 1 of Table 5.1 and row 3 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.13: The decay rate by formula (5.3) for row 4 of Table 5.1 and row 8 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.14: The decay rate by formula (5.3) for row 1 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m .
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As is seen in some figures, for example Figure 5.9, the decay rate λ gets less negative

for large values of n0 and R0. The results of our computations for Figure 5.9 are

shown in Table 5.3. Observe from the table that the value of the wave velocity

c becomes complex in the region of large n0 and R0. Therefore, we consider the

corresponding values of λ non-physical.

λ −5.5× 10−4 −5.6× 10−4 −5.7× 10−4 −5.2× 10−4 −3× 10−4 −5× 10−6 −9× 10−8

n0 0 1010 2× 1010 3× 1010 4× 1010 4× 1011 4× 1012

R0 0 10−5 2× 10−5 3× 10−5 5× 10−5 8× 10−5 10−4

c 739 738 732 704 578 137 0+25i

Table 5.3: Numerical data for Figure 5.9 .

At different values of parameters Ei, Mi, µi, for example those corresponding to

Figure 5.10, the velocity always remains real-valued as shown in Table 5.4. Thus, at

relatively small values of n0 we always observe a finite region of k for which λ < 0.

At large values of n0 of the order n0 ∼ 1012 the rate λ > 0 at all k. This indicates

that our model is not applicable to such extreme amounts of bubbles (for the given

values of Ei, Mi, etc.).

λ −6× 10−4 −6.2× 10−4 −6.5× 10−4 −6.3× 10−4 −4× 10−4 −7× 10−6 3× 10−7

n0 0 1010 2× 1010 3× 1010 4× 1010 4× 1011 4× 1012

R0 0 10−5 2× 10−5 3× 10−5 5× 10−5 8× 10−5 10−4

c 740 739 733 705 580 145 42

Table 5.4: Numerical data for Figure 5.10 .

Generally speaking, this result leads to a further possible direction of research, which

is to determine the area(s) of values of the parameters Ei, Mi, p0, kb, etc. where

the model produces physically acceptable result of λ < 0. One would need to study

the 8+ dimension parametric space formed by the parameters Ei, Mi, p0, kb, etc.

Such an investigation is beyond the scope of this thesis. In our work we determined
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some of the acceptable values of the parameters, they are given in Tables 5.1 and 5.2,

excluding rows 5, 8 and 15 of Table 5.2. We emphasize that the acceptable values of

the parameters are not exceptional isolated values (similar to eigenvalues) but belong

to finite-size cloud(s) of acceptable values in the parametric space.

Now let us discuss the parametric dependencies for equation (5.2). We re-write the

corresponding dispersion relation as

λ(k) =
A2

A1

k2 . (5.4)

Figures 5.15–5.21 show the results of using the parameter values given in Tables 5.1

and 5.2 in the formula (5.4).
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Figure 5.15: The decay rate by formula (5.4) for rows 1 of Tables 5.1 and 5.2, k∗ = 0.25
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Figure 5.16: The decay rate by formula (5.4) for row 1 of Table 5.1 and row 2 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.17: The decay rate by formula (5.4) for row 2 of Table 5.1 and row 9 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.18: The decay rate by formula (5.4) for row 2 of Table 5.1 and row 4 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.19: The decay rate by formula (5.4) for row 2 of Table 5.1 and row 3 of

Table 5.2, k∗ = 0.25 1/m .



5.2 Influence of the rheological parameters 102

×10-4

0

R
0
, m

0.5

14

3

n
0
, 1/m3

2

1

×1010

0

0

-1

-0.2

-0.4

-0.6

-0.8

×10-5
λ

, 1
/s

Figure 5.20: The decay rate by formula (5.4) for row 2 of Table 5.1 and row 11 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.21: The decay rate by formula (5.4) for row 1 of Table 5.1 and row 16 of

Table 5.2, k∗ = 0.25 1/m .
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Moreover, when we increased the values of n0 further to n0 = 8 × 1010 1/m3, we

obtained similar results, see, for example, Figures 5.22–5.24.
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Figure 5.22: The decay rate by formula (5.4) for rows 3 of Tables 5.1 and 5.2, k∗ = 0.25

1/m .
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Figure 5.23: The decay rate by formula (5.4) for row 3 of Table 5.1 and row 15 of

Table 5.2, k∗ = 0.25 1/m .
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Figure 5.24: The decay rate by formula (5.4) for row 1 of Table 5.1 and row 5 of

Table 5.2, k∗ = 0.25 1/m .

5.3 Influence of other parameters

In this section we aim to determine the effect of the parameters beyond the rheological

model, for example porosity m0, on the decay rate. We consider nine parameters

that can have an effect on the decay rate: pressure p0, porosity m0, bulk moduli kb,

compressibility β(s) for solid, compressibility β(L) for liquid, density, ρ
(s)
0 for solid,

density, ρ
(L)
0 for liquid, permeability ` and adiabatic exponent ζ. For each of these

parameters we choose the range of variation about its literature values. Furthermore,

sometimes our strategy to determine the boundaries of these ranges depends on the

behaviour of λ, for example, if λ shows very small change against the parameters,

we stopped varying them. Figures 5.25–5.33 show that each of the above parameters

can impact significantly on the wave decay rate.
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Figure 5.25: The attenuation curves by formula (5.3) for different values of p0, k∗ =

0.25 1/m .
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Figure 5.26: The attenuation curves by formula (5.3) for different values of m0, k∗ =

0.25 1/m .
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Figure 5.27: The attenuation curves by formula (5.3) for different values of kb, k∗ =

0.25 1/m .
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Figure 5.28: The attenuation curves by formula (5.3) for different values of β(s), k∗ =

0.25 1/m .
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Figure 5.29: The attenuation curves by formula (5.3) for different values of β(L),

k∗ = 0.25 1/m .
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Figure 5.30: The attenuation curves by formula (5.3) for different values of ρ
(s)
0 , k∗ =

0.25 1/m .
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Figure 5.31: The attenuation curves by formula (5.3) for different values of ρ
(L)
0 , k∗ =

0.25 1/m .

Figure 5.32: The attenuation curves by formula (5.3) for different values of `, k∗ = 0.25

1/m .
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Figure 5.33: The attenuation curves by formula (5.3) for different values of ζ, k∗ = 0.25

1/m .

5.4 Concluding remarks

We investigated the effect of the parameter values on the decay rate of the wave with

the bubbles. We grouped the parameters as

(a) relevant to the rheological model and

(b) other parameters, and investigated their effect separately.



Chapter 6

Nonlinear dynamics of neutral

modes in elastic waves in granular

media

SUMMARY: We analyse a model equation describing the dynamics of seismic waves

featuring a neutrally stable short-wavelength mode. The system is modelled by the

Nikolaevskiy equation relevant to certain type of elastic waves, reaction-diffusion

systems and convection. Due to the nonlinear coupling between the time-dependent

Fourier modes, the system exhibits asymptotically slow evolution towards either

zero or non-zero steady state depending on the initial condition and the neutral

wave number. Using the centre manifold technique, we derive the decay law of the

system. Then the results are confirmed by the computations of the dynamical system

for the Fourier modes.
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6.1 Introduction

The Nikolaevskiy equation has been originally derived for seismic waves in gran-

ular rocks aiming, in particular, to explain the experimentally detected dominant

frequencies (Nikolaevskiy, 1989). The effect of dominant frequencies manifests the

formation of waves characterized by special – dominating – frequency as a result of

general mechanical impact on soils or rocks (Nikolaevskiy, 1996). This effect has

been experimentally found in marine sands (Vilchinska and Nikolaevskiy, 1984) as

well as weak soils and fragmented rocks (Guschin, 1998). Prior to these studies,

the term “dominant frequency” has been used in (Biot, 1965) and we used it in

this project in the same sense as it normally appears in the engineering literature.

Generally the Nikolaevskiy equation includes two groups of terms: the dispersion

terms and dissipation/excitation terms, with the latter group being responsible for

the growth or decay of the patterns. In this chapter we focus on the effects of dis-

sipation/excitation, so for simplicity we consider the Nikolaevskiy equation in the

form
∂v

∂t
= A

∂2v

∂x2
+ C

∂4v

∂x4
+ F

∂6v

∂x6
+Gv

∂v

∂x
, (6.1)

where the coefficient A provides the effect of dissipation, C is responsible for self-

excitation, F represents higher-order dissipation, and G transfers energy from the

excitation to dissipation (note that for reaction-diffusion systems the dispersion terms

are not part of the equation in the first place). We want to rewrite Eq. (6.1) in terms

of the derivative, v = ∂u/∂x.

We get
∂2u

∂t∂x
=

∂

∂x

[
A
∂2u

∂x2
+ C

∂4u

∂x4
+ F

∂6u

∂x6

]
+G

∂u

∂x

∂2u

∂x2
, (6.2)

Integrating Eq. (6.2) on x, we obtain

∂u

∂t
= A

∂2u

∂x2
+ C

∂4u

∂x4
+ F

∂6u

∂x6
+G

(
∂u

∂x

)2

+ E , (6.3)

where E is the constant of integration and G is a new constant incorporating 1/2.
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Eq. (6.3) contains only one independent parameter (plus parameter E discussed

later).

Indeed, let us define the new function U by

u = aU . (6.4)

We also define a new coordinate X and new time T by

x = bX ,

t = cT .

(6.5)

Now, substituting Eq. (6.4) and Eq. (6.5) into Eq. (6.3) we get

∂u

∂t
=
∂u

∂U

∂U

∂T

∂T

∂t
=
a

c

∂U

∂T
,

∂u

∂x
=
∂u

∂U

∂U

∂X

∂X

∂x
=
a

b

∂U

∂X
,

∂2u

∂x2
=

∂

∂x

(∂u
∂x

)
=

1

b

∂

∂x

(a
b

∂U

∂X

)
=

a

b2

∂2U

∂X2
,

In the similar way
∂4u

∂x4
=

a

b4

∂4U

∂X4
,

∂6u

∂x6
=

a

b6

∂6U

∂X6
,

Thus, Eq. (6.3) becomes

a

c

∂U

∂T
= A

a

b2

∂2U

∂(X)2
+ C

a

b4

∂4U

∂(X)4
+ F

a

b6

∂6U

∂(X)6
+
a2

b2
G

(
∂U

∂X

)2

+ E ,

∂U

∂T
= A

c

b2

∂2U

∂X2
+ C

c

b4

∂4U

∂X4
+ F

c

b6

∂6U

∂X6
+G

ac

b2

(
∂U

∂X

)2

+ E ,

Now we choose the a, b, c such that

A
c

b2
= 1 , F

c

b6
= 1 , G

ac

b2
= 1 ,
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giving

a =
A

G
, b =

(
F

A

) 1
4

and c =
F

1
2

A
3
2

.

Therefore, we come to the equation with only one free parameter, α ,

∂u

∂t
=
∂2u

∂x2
+ α

∂4u

∂x4
+
∂6u

∂x6
+

(
∂u

∂x

)2

+ E , (6.6)

where α = CA−1/2F−1/2. In the context of elastic waves v represents the velocity

in the reference frame moving with the wave. In the context of reaction-diffusion

systems u stands for the phase of oscillations of chemical concentration and E = 0

(for these systems the transition u → u + Et eliminates E anyway). When α > 2

the curve representing the increment of a small perturbation ∼ eλt against the wave

number is partly located above zero, see the dashed line in Figure 6.1. By the original

Figure 6.1: The increment versus wave number for an active system (dashed line) and

passive system (the mode with N = 3 is shown as neutral as an example) .

idea of Nikolaevskiy, the wave number k∗ corresponding to the maximum growth rate

of the perturbation translates into the dominant seismic frequency v = ck∗, where c

is the average wave velocity. However, as Strunin (2014) argued in the recent paper,
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for a passive system such as elastic wave the self-excitation is prohibited because

of the absence of internal energy sources. In other words, rocks cannot self-start

moving from rest (that is from the state v(x; 0) = 0 or u(x; 0) = const). We refer

to Strunin (2014) for a more detailed discussion, but note here that the absence of

internal sources of energy is obvious from the schematic representation of a grain of

material constituting the medium, see Figure 6.2. This rheological model was utilized

in (Nikolaevskiy, 1989; Beresnev and Nikolaevskiy, 1993) to derive the rheological

stress-strain relation. The element consists of oscillator masses M and M1 , springs

E, E1 and E∗ and friction pistons.

Figure 6.2: Rheological scheme representing a single grain (Nikolaevskiy, 1989) .

However, in application to systems where the capacity for the internal energy supply

does exist, the self-excitation is possible. This is the case, for example, for reaction-

diffusion systems, where the energy is internally generated by reactions (Strunin,

2009). These arguments do not imply that the dominant frequency cannot be ex-

plained within the Nikolaevskiy equation, but, in our view, the interpretation of such

frequency needs to be modified. The dominant frequency mode is the one that ex-

hibits slowest decay relative to the other modes, rather than fastest growth. Such a

mode would survive for longer period of time in comparison to the other modes, and

thus would dominate in the spectrum. Accordingly, the increment curve should lie

entirely below zero as shown by the solid lines in Figure 6.1. Although the decaying
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dynamics may be less interesting compared to nontrivial pattern formation in sys-

tems with self-excitation (such as stationary or chaotic patterns in reaction-diffusion

systems), they still deserve attention. This makes the question on how the decay

progresses in time particularly important.

6.2 Evolution on the centre manifold

Upon adopting periodic boundary condition, we expand the function u(x, t) into the

Fourier series

u(x, t) =
∞∑

n=∞

An(t)einkx , (6.7)

Here A−n = A∗n to ensure that u is real-valued.

The choice of periodic boundary condition (Strunin, 2014) originates from our previ-

ous analysis where we used the imaginable closed-loop configuration of the medium

(which, however, may be artificially created in a laboratory experiment). Using this

configuration, it is easy to realize the impossibility for a self-supporting elastic wave

to run in circles along the loop for ever (effectively presenting a perpetuum mobile).

We also note that, for the elastic waves, the original equation is written in terms of

the velocity v, not u, see Eq. (6.1). Therefore the adopted condition of periodicity of

u is a more strict condition than periodicity of v: generally, the function u is allowed

to be non-periodic. So we limit the scope of our study by the most simple situation

of u-periodic regimes (in this case the other neutral mode, k = 0, will not participate

in the analysis of ODEs below). Substituting Eq. (6.7) into Eq. (6.6) we obtain

dAn
dt

= [−(nk)2 + α(nk)4 − (nk)6]An − k2

∞∑
m=−∞

An−mAmm(n−m) . (6.8)

For the linearised equation (6.8), the modes behave as An ∼ eλnt with

λn = −(nk)2 + α(nk)4 − (nk)6 .
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Consider the limiting case of α = 2 , when one of the modes is only neutrally stable.

The increment curve touches zero level when nk = 1. Therefore, if such a neutral

mode is chosen to be the N-th Fourier mode, then the basic wave number is

k = 1/N . (6.9)

Thus, under the linearised version of the model, we have one neutral mode and

discrete set of exponentially decaying modes. This situation is ideally suitable for

treatment by the centre manifold technique; it will allow us to asymptotically describe

the decaying dynamics at large times. Taking into account the nonlinear interplay

between the modes, we expect the system to eventually approach an asymptotic

stage when the exponentially fast dynamics, driven by the linear terms, are replaced

by slow evolution driven by the nonlinear coupling. Inserting α = 2 and Eq. (6.9)

into Eq. (6.8) gives

dAn
dt

=

[
−
( n
N

)2

+ 2
( n
N

)4

−
( n
N

)6
]
An−

(
1

N

)2 ∞∑
m=−∞

An−mAmm(n−m) . (6.10)

We begin asymptotic analysis with the case when the neutral mode is the first,

N = 1.

6.3 Centre manifold approach

Using N = 1 in Eq. (6.10), see Figure 6.3, and restricting attention to a few leading

modes, we get

dA1

dt
= 4A2A

∗
1 + 12A3A

∗
2 + . . . ,

dA2

dt
= −36A2 − A2

1 + 6A3A
∗
1 + . . . ,

dA3

dt
= −576A3 − 4A1A2 + . . . ,

. . .

(6.11)
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The centre manifold theory states (Carr, 2012) that the modes which experience a

stage of exponential decay caused by the linear terms (in case of system (6.11) these

modes are A2 and A3), drop onto a surface, or manifold, where they then evolve

slowly. On the manifold the fast modes become connected to the neutral mode

by stiff algebraic expressions. As a consequence, these modes depend on time not

independently but via the neutral mode. We seek the modes A2 and A3 in the form

of power series in A1 and A∗1,

A2 = a1A1 + b1A
∗
1

+a2A1A
∗
1 +m2A

2
1 + n2A

∗
1

2

+a3A
2
1A
∗
1 + b3A

∗
1

2A1 + g3A
3
1 + h3A

∗
1

3

+w4A
4
1 + x4A

3
1A
∗
1 + y4A

2
1A
∗
1

2 + z4A1A
∗
1

3 + l4A
∗
1

4 + . . . ,

(6.12)

A3 = p1A1 + q1A
∗
1

+p2A1A
∗
1 + f2A

2
1 + k2A

∗
1

2

+p3A
2
1A
∗
1 + q3A

∗
1

2A1 + v3A
3
1 + y3A

∗
1

3 + . . . .

(6.13)

We substitute Eq. (6.12) and Eq. (6.13) into the A2- and A3-equations of sys-

tem (6.11) simultaneously replacing dA1/dt by its expression from the first equation

of system (6.11). Collecting same powers in A1 and A∗1 and their products with the

help of computer algebra, see Appendix A, we obtain equations for the coefficients

of the series Eq. (6.12) and Eq. (6.13). They lead to

m2 = − 1

36
, v3 = − 4

576
m2 =

1

5184
,

x4 =
6v3 − 8m2

2

36
= − 13

93312
, . . . .

(6.14)
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Figure 6.3: The neutral modes N = 1, 2, and 3 of Eq. (6.10) .

Note that the structure of the power series appears to be (the coefficients are omitted)

A2 ∼ A2
1 + A4

1 + A6
1 + . . . ,

A3 ∼ A3
1 + A5

1 + A7
1 + . . . ,

A4 ∼ A4
1 + A6

1 + A8
1 + . . . ,

. . .

Based on Eq. (6.14) and system (6.11), the slow evolution on the manifold, up to

the 5-th order, is given by

dA1

dt
= 4(m2A

2
1 + x4A

3
1A
∗
1 + . . . )A∗1 + 12(v3A

3
1 + . . . )(m2A

∗
1

2 + . . . ) =

= −1

9
A2

1A
∗
1 −

29

46656
A3

1 (A∗1)2 + . . . .

(6.15)

A simple approximation can be derived if we retain only the leading term in
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Eq. (6.15),
dA1

dt
= −1

9
A2

1A
∗
1 . (6.16)

For the real and imaginary parts defined by A1 = Z + iY we get the system

dZ

dt
= −1

9

(
Z3 + ZY 2

)
,

dY

dt
= −1

9

(
Z2Y + Y 3

)
.

(6.17)

It is easy to figure out that Eq. (6.17) has the solution

Z =
Z0√
t
, Y =

Y0√
t
. (6.18)

Further, inserting Eq. (6.18) into Eq. (6.17) we establish that Z0, Y0 are connected

by

Z2
0 + Y 2

0 =
9

2
. (6.19)

The individual values of Z0 and Y0 depend on a specific trajectory governed by

system (6.11).

An example of a numerical solution of the 3-component system (6.11) using the solver

of Roberts (1998), is given in Figures 6.4 and 6.5. On the vertical axis we plot the

imaginary and real parts multiplied by
√
t. This way we can show the asymptotic

stage (t→∞) more vividly as the curve goes horizontally over a longer range relative

to the early stage of the dynamics. By comparison, the traditional log-log plot would

give a much shorter horizontal stretch of the asymptotic stage, which interests us.

We remind that the 1/
√
t regime is asymptotic, therefore the early stage in Figure 6.4

is to be ignored. Therefore the settling of the curves on constant levels proves that

each one is eventually proportional to 1/
√
t. An inspection of the settled levels of

Re A1 and Im A1 confirms that they satisfy the prediction Eq. (6.19).
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Figure 6.4: Settling of the inverse-square-root law for the neutral mode N = 1 from

(6.11); the initial condition A1 = A2 = A3 = 1 + i .
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Figure 6.5: Settling of the inverse-square-root law for the neutral mode N = 1 from

(6.11); the initial condition A1 = 1.5 + 0.4i, A2 = 0.5 + 0.4i, A3 = 0.5 + 0.3i .
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Now assume that the neutral mode is the second, N = 2. Using N = 2 and n =

1, 2, 3, 4 in Eq. (6.10), see Figure 6.3, we obtain

dA1

dt
= − 9

64
A1 + 6A4A

∗
3 + 3A3A

∗
2 + A2A

∗
1 + . . . ,

dA2

dt
= 4A4A

∗
2 +

3

2
A3A

∗
1 −

1

4
A2

1 + . . . ,

dA3

dt
= −255

64
A3 + 2A4A

∗
1 − A1A2 + . . . ,

dA4

dt
= −36A4 −

3

2
A1A3 − A2

2 + . . . ,

. . .

(6.20)

The modes A1, A3 and A4 are sought in the form of power series in A2 and A∗2,

leading to the centre manifolds

A1 = 0 , A3 = 0 , A4 = − 1

36
A2

2 −
1

5832
A3

2A
∗
2 + . . . .

This results in the slow motion on the manifold according to

dA2

dt
= −1

9
A2

2A
∗
2 −

1

1458
A3

2A
∗
2

2 + . . . . (6.21)

In the leading order, Eq. (6.21) has the same form as Eq. (6.16), so that the neutral

mode decays as inverse square root of time. This is confirmed by the numerical

solution of system (6.20), see Figures 6.6 and 6.7. Figures 6.8 and 6.9 show the

exponential decay of A1 and A3 towards their respective centre manifolds A1 = 0

and A3 = 0.
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Figure 6.6: Settling of the inverse square-root law for the neutral mode N = 2 from

(6.20); the initial condition A1 = A2 = A3 = A4 = 1 + i .
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Figure 6.7: Settling of the inverse square-root law for the neutral mode N = 2 from

(6.20); the initial condition A1 = A2 = A3 = A4 = 0.4 + 0.4i .
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Figure 6.8: The exponential decay (asymptotically) of A1 for the case N = 2 .
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Figure 6.9: The exponential decay (asymptotically) of A3 for the case N = 2 .

For the case of the neutral mode with N = 3, see Figure 6.3, Eq. (6.10) gives the
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system of equations

dA1

dt
= − 64

729
A1 +

8

3
A4A

∗
3 +

4

3
A3A

∗
2 +

4

9
A2A

∗
1 +

40

9
A5A

∗
4 +

60

9
A6A

∗
5 + . . . ,

dA2

dt
= −100

729
A2 +

16

9
A4A

∗
2 +

3

2
A3A

∗
1 −

1

9
A2

1 +
10

3
A5A

∗
3 +

48

9
A6A

∗
4 + . . . ,

dA3

dt
=

8

9
A4A

∗
1 −

4

9
A1A2 +

20

9
A5A

∗
2 + 4A6A

∗
3 + . . . ,

dA4

dt
= −784

729
A4 −

3

2
A1A3 −

4

9
A2

2 +
10

3
A5A

∗
1 +

24

9
A6A

∗
2 + . . . ,

dA5

dt
= −6400

729
A5 −

8

9
A1A4 −

4

3
A2A3 +

12

9
A6A

∗
1 + . . . ,

dA6

dt
= −36A6 −

10

9
A1A5 −

16

9
A2A4 − A2

3 + . . . ,

. . .

(6.22)

Executing the same process in system (6.22) we find the centre manifolds

A1 = 0 , A2 = 0 , A4 = 0 , A5 = 0 , A6 = − 1

36
A2

3 + . . . . (6.23)

Then, the slow motion of the neutral mode on the centre manifold is governed by

dA3

dt
= −1

9
A2

3A
∗
3 + . . . . (6.24)

The numerical solutions of system (6.22), shown in Figures 6.10 and 6.11. In addition,

Figures 6.12 and 6.13 show the exponential decay of A1, A2, A4 and A5 towards their

respective centre manifolds A1 = 0, A2 = 0, A4 = 0 and A5 = 0.
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Figure 6.10: Settling of the inverse-square-root law for the neutral mode N = 3 from

(6.22); the initial condition A1 = A2 = A3 = A4 = A5 = A6 = 1 + i .
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Figure 6.11: Settling of the inverse-square-root law for the neutral mode N = 3 from

(6.22); the initial condition A1 = A2 = A3 = A4 = A5 = A6 = 0.05 + 0.04i .
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Figure 6.12: The exponential decay (asymptotically) of real parts of A1, A2, A4 and

A5 for the case N = 3 .

t
0 20 40 60 80 100 120 140 160 180 200

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Im (A
1
, A

2
, A

4
, A

5
)

Figure 6.13: The exponential decay (asymptotically) of imaginary parts of A1, A2, A4

and A5 for the case N = 3 .
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In the numerical experiments with the neutral modes N = 2 and N = 3 we also found

non-zero steady states as illustrated by Figures 6.14–6.19. From the experiments,

for all such states (ReA2)2 + (ImA2)2 ≈ 0.025 for the neutral mode N = 2 and

(ReA3)2 + (ImA3)2 ≈ 37 for the neutral mode N = 3.
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Figure 6.14: The stationary solution for the case N = 2 with the initial condition

A1 = A2 = A3 = A4 = 0.5 + 0.5i .
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Figure 6.15: The stationary solution for the case N = 2 with the initial condition

A1 = 0.6 + 0.15i, A2 = 0.5 + 0.3i, A3 = 0.3 + 0.4i, A4 = 0.2 + 0.1i .
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Figure 6.16: The stationary solution for the case N = 2 with the initial condition

A1 = A2 = A3 = A4 = 0.2 + 0.1i .
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Figure 6.17: The stationary solution for the case N = 3 with the initial condition

A1 = A3 = A5 = 0.3 + 0.1i, A2 = A4 = A6 = 0.4 + 0.2i .
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Figure 6.18: The stationary solution for the case N = 3 with the initial condition

A1 = A2 = A3 = A4 = A5 = A6 = 0.4 + 0.4i .
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Figure 6.19: The stationary solution for the case N = 3 with the initial condition

A1 = A2 = A3 = A4 = A5 = A6 = 0.3 + 0.2i .

6.4 Concluding remarks

Seismic waves in granular rocks (as well as certain type of reaction-diffusion systems

and fluid systems with convection) are described by the Nikolaevskiy equation result-

ing in the spectrum with dominant frequency/wave number. In the work (Strunin,

2014) such frequency was interpreted as the one belonging to the mode showing slow-

est decay rather than fastest growth as usually assumed. In the present chapter we

investigated the critical case when this mode is neutrally stable. This is the border

case separating the impossible situation with self–excited modes and the realistic

case of exponentially decaying modes studied in the previous chapters. Depending

on the initial conditions and the neutral wave number the system approaches either

zero or non-zero steady state. The decaying regime was investigated using the centre

manifold technique, revealing the inverse-square-root asymptotic of the solution in

time. The results are confirmed by computations of the dynamical system for the

time-dependent Fourier modes.



Chapter 7

Conclusions and suggestions for

future work

SUMMARY: In this chapter, the main conclusions drawn from this study are sum-

marised. Then, suggestions for further work are presented in the next section.

7.1 Conclusions

In this thesis, we explored the elastic wave propagation in fluid-saturated porous

media with bubbles. The thesis consists of the following chapters. Chapter 1 pre-

sented the literature review and motivation. Chapter 2 gave general concepts from

dynamics. In Chapter 3, we used an extended stress-strain equation relative to the

linear standard solid model to take into account the bubbles. Using two–segment

rheology, we derived the Frenkel-Biot P1 wave equations for the velocity of the solid

matrix, with and without the bubbles. The linearized versions of the equations are

compared in terms of the decay rate λ(k) of the Fourier modes. For the both cases,

the λ(k)-curve lies entirely below zero. We found that with the increase of the radius

and the number of the bubbles the decay rate increases.
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In Chapter 4, we investigated how various rheological models, including and exclud-

ing the bubbles, affect the linear P1-waves. An extended viscoelastic model relative

to the model of Nikolaevskiy (1985) is used. The rheological model for the wave

with the bubbles consisted of three segments representing the solid continuum, fluid

continuum and a bubble surrounded by the fluid. Using these rheological models, we

derived the Nikolaevskiy type equations. The linearized versions of the equations are

analysed in terms of the decay rate λ(k). The λ(k)-curve always lies below zero level.

We found out that |λ(k)| increases with the increase of the radius of the bubbles but

decreases with the increase of the number of the bubbles. The decrease manifests

the opposite trend to the one observed in Chapter 3. We are inclined to consider the

trend obtained in the current chapter as more realistic because of the more complete

structure of the bubble element used in the rheological model.

In Chapter 5, we evaluated the influence on the decay rate by the rheological pa-

rameters and other parameters of the medium such as pressure and porosity. Each

of them has an appreciable effect on the decay rate, as detailed in the thesis. We

discovered that the model gives complex wave velocity and/or wave growth, which in-

dicates limitations of the model applicability at extremely large amounts of bubbles.

However, we calculated some of acceptable values of the parameters. They belong to

finite-size cloud(s) of acceptable values in the multi-dimensional parametric space.

In Chapter 6 we used the centre manifold theory to describe the dynamics of the

elastic wave for the special case when there is one neutral mode. Depending on the

initial conditions and the neutral wave number k, the system either decays on the

centre manifold or approaches non-zero steady state. An asymptotic inverse square-

root law for the decay is derived and confirmed numerically by direct computations

of the system for the Fourier modes.
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7.2 Suggestions for future work

Considering even more elaborated rheological model can be a potential area of future

work. In the present thesis we included the bubble into the two-branch rheological

model relative to the model of Nikolaevskiy (1985) and then derived and analyzed

the wave equations. Instead of using the two-branch model one may consider the

three-branch model, see Figure 7.1. This model would give a more complicated

constitutive law, which could be interesting to consider.

Figure 7.1: Three–branch rheological scheme including a gas bubble .

Another possible future direction is to determine the area(s) of values of the param-

eters Ei, Mi, p0, kb, etc. where the model produces physically acceptable result of

λ < 0. One would need to study the 8+ dimension parametric space formed by the

parameters Ei, Mi, p0, kb, etc.
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Appendix A

Maxima program

The following Maxima program is used to calculate the coefficients (6.14).

A2:a1*A1+b1*A1c+a2*A1*A1c+m2*A1^2+n2*A1c^2+a3*A1^2*A1c+b3*A1c^2*A1

+g3*A1^3+h3*A1c^3 +w4*A1^4+x4*A1^3*A1c+y4*A1^2*A1c^2 +z4*A1*A1c^3+

l4*A1c^4;

%----------------------------------------------------------------%

A3:p1*A1+q1*A1c+p2*A1*A1c+f2*A1^2+k2*A1c^2+p3*A1^2*A1c+q3*A1c^2*A1

+v3*A1^3+y3*A1c^3;

%----------------------------------------------------------------%

A2c:a1*A1c+b1*A1+a2*A1c*A1+m2*A1c^2+n2*A1^2+a3*A1c^2*A1+b3*A1^2*A1c

+g3*A1c^3+h3*A1^3+w4*A1c^4+x4*A1c^3*A1+y4*A1c^2*A1^2 +z4*A1c*A1^3

+l*A1^4;

%----------------------------------------------------------------%

A3c:p1*A1c+q1*A1+p2*A1c*A1+f2*A1c^2+k2*A1^2+p3*A1c^2*A1+q3*A1^2*A1c

+v3*A1c^3+y3*A1^3;

%----------------------------------------------------------------%

EQA2:diff(A2,A1)*dotA1+diff(A2,A1c)*dotA1c+36*A2+A1^2-6*A3*A1c;

EQA3:diff(A3,A1)*dotA1+diff(A3,A1c)*dotA1c+576*A3+4*A1*A2;

%----------------------------------------------------------------%
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FA2:expandwrt(subst([dotA1=4*A2*A1c+12*A3*A2c,dotA1c=4*A2c*A1+12*

A3c*A2],EQA2),A1,A1c);

/*FA3:expandwrt(subst([dotA1=4*A2*A1c+12*A3*A2c,dotA1c=4*A2c*A1+

12*A3c*A2],EQA3),A1,A1c);*/

%----------------------------------------------------------------%

subst([A1^8=0,A1c^8=0,A1^7=0,A1c^7=0,A1^6=0,A1c^6=0,A1^5=0,A1c^5=0]

,FA2);

/*subst([A1^9=0,A1c^9=0,A1^8=0,A1c^8=0,A1^7=0,A1c^7=0,A1^6=0,A1c^6=0

,A1^5=0,A1c^5=0],FA3);*/

%----------------------------------------------------------------%

collectterms(%,A1,A1c,A1*A1c,A1^2,A1c^2,A1^2*A1c,A1*A1c^2,A1^3,A1c^3

,A1^3*A1c,A1^2*A1c^2,A1*A1c^3,A1^4,A1c^4);



Appendix B

An extract from the paper

of Nikolaevskiy (2008)



126 V. N. Nikolaevskiy

1 Introduction

The dominant frequency effect consists in transfer of any type of mechanical impact at a
soil/rock massive to a wave with this frequency (Nikolaevskiy 1996). It is also known that
these waves are disturbing its structure the most effectively. It was found experimentally for
marine sands (Vilchinska and Nikolaevskiy 1984) but typical for all weak soils (Nikolaev
1965; Guschin 1998) or fragmented rocks, that is, for granular media. The term dominant
frequency exists in the book by Biot (1965) and it is used here in the same sense as it appears
sometimes in the engineering literature (ISRM 1992).

The aim of publications (Nikolaevskiy 1989; Beresnev and Nikolàevskiy 1993) and this
article is to explain the dominant frequency effect by free oscillations of porous matrix
fragments (grains, for instance) under the complex elastic–viscous response of grain contacts,
wetted with foreign fluid or fluid films of special state due to close presence of solid matter.

In the literature there are known many attempts of generalization of porodynamics by
the changes of the state laws for deformation or fluid flows (Nikolaevskiy 1996; Donskoy
1997; Hokstadt 2004). Here the viscous–elastic properties of the matrix in the Frenkel–Biot
model (Frenkel 2005; Biot 1956; Nikolaevskiy 2005) are generalized in a manner, essential
for dynamic processes. The latter is used in a form of non-linear balances with constitutive
laws, based on the thermodynamics, conventional for continuum theories, as it was done long
ago (Nikolaevskiy et al. 1970).

In articles (Nikolaevskiy 1989; Beresnev and Nikolàevskiy 1993) the key role is given
to introduction of higher time derivatives into the laws, connecting stress and strains. The
corresponding coefficients are determined in the rheologic scheme by masses of internal
oscillators (of free granules or blocks) and additional viscosities (existed at granules contact
due wetting effects) of the matrix (skeleton) itself. As a result, the wave-evolution equation
appeared to be the further generalization of the Korteweg–de Vries–Burgers equation with
positive coefficients at its right side and this reflects the decaying of oscillations in the earth
materials. The negative values of coefficients correspond to a raw of solitons (Kawahara
1983), typical for shallow water dynamics.

However, in a simple numerical example (Beresnev and Nikolàevskiy 1993) it was found
that stable solution could exist for some short time, but afterwards the calculations became
impossible. Later, the skilled analytical studies, added with calculations by supercomputers,
had shown (Tribelsky and Tsuboi 1996; Tribelsky and Velarde 1996; Tribelsky 1997; Xi et
al. 2000) the nature of appearing chaos and the need of bulk dissipating sink to get stable
asymptotic waves (Tribelsky 2007).

Let consider if the Darcy term responsible for involvement of saturating fluid phase can
generate the bulk dissipation necessary for stabilization of the evolution process.

2 One-Dimension Dynamics Equations

For simplicity, we consider only one-dimensional case. Then the momentum balance for the
solid matrix has the form:

∂

∂t
(1 − φ)ρ(s)v + ∂

∂x
(1 − φ)ρ(s)vv = ∂

∂x
σf − (1 − φ)

∂p

∂x
− R (2.1)

here, v is its velocity, φ is porosity, R is interfacial viscous force, created due to the relative
fluid flow, µf is fluid viscosity and k is intrinsic permeability:

R = δφ (v − u), δ = µf φ/k (2.2)
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Fig. 1 The scheme of stresses
distribution in a porous saturated
medium: the effective stresses
acts in springs

The non-divergent form of (2.1) is evident in non-linear cases. The effective stresses are
introduced as (Fig. 1):

σf = (1 − φ)(σ + p) = � + p (2.3)

where σ is the true stress in the solid matrix, ρ(s) is solid density, p is the pore pressure and
� are the total stresses, acting at a cross-section of the medium:

� = (1 − φ)σ − φp (2.4)

The effective stress (2.3) is one of possible linear combinations in the constitutive law for
solid matrix but it is selected by its role in the failure conditions (for example, in the Coulomb
criterion for fluid saturated soils as it was found in 1925 by Karl Terzaghi, see Nikolaevskiy
(1996); Nikolaevskiy et al. (1970)). Besides (2.3) includes the only measurable variables
and all other variants are needed in knowledge of elastic modules that will be found after
interpretation of tests with samples. The corresponding thermodynamics was developed in
Nikolaevskiy et al. (1970) and reproduced in Nikolaevskiy (1996). The balances forms, used
in Nikolaevskiy (1996), permits to get a non-linear variant of the Frenkel–Biot model and to
eliminate its some shortcomings.

The impulse balance for a fluid part of the medium looks as

∂

∂t
φρ(f )u + ∂

∂x
φρ(f )u u = −φ

∂p

∂x
+ R (2.5)

Mass balances for a porous medium have the following form:

∂

∂t
(1 − φ)ρ(s) + ∂

∂x
(1 − φ)ρ(s)v = 0; ∂

∂t
φ ρ(f ) + ∂

∂x
φ ρ(f )u = 0 (2.6)

Here u is the fluid velocity, indices (s) and (f ) are symbols of solid and fluid parameters,
respectively, ρ(f ) is the fluid density. The true stress, σ , determines the density changes of
solid intact material:

ρ(s) = ρ
(s)
0 (1 − β(s)σ ) = ρ

(s)
0

[
1 + β(s)p − β(s)σ f /(1 − φ)

]

≈ ρ
(s)
0

[
1 + β(s)p − β(s)σ f

]
(2.7)
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The equation of the fluid phase state has the same form but for fluid (pore) pressure p:

ρ(f ) = ρ
f
0 (1 + β(f )p) (2.8)

It is known that the description of solid dynamics in terms of displacement velocities is
preferable than displacements themselves to avoid an integral stress–strain links, typical for
elastic–viscous bodies. However, let remind that in this case there is a need to use the Oldroyd
derivatives to get the same determination of strains through displacement as in non-linear
elasticity (Nikolaevskiy 1996).

In one-dimension case the Oldroyd derivative is the usual Lagrange one and this gives the
following relation exists between deformation e and solid velocity v:

De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
= ∂v

∂x
(2.9)

Let account for these derivatives in the effective stress and the strain tensors in pore-elastic
law, where the polynomial viscous terms are added:

σf +
n∑

q=1

aq

Dqσf

Dtq
= E[e + β(s)Kp] +

m∑

q=1

bq

Dqe

Dtq
(2.10)

where E = λ1 + 2λ2 is elastic ID modulus, K = λ1 + (2/3)λ2 is the bulk elastic module of
the porous matrix, λ1, λ2 are the Lame coefficients, aq,bq is the elastic–viscous coefficients,
assumed constants. By introduction of pore pressure p, we are generalizing the constitutive
equation, suggested in Nikolaevskiy (1989).

It is possible to illustrate (2.10) by rheological scheme in Fig. 2 which generalizes the
Maxwell–Voigt element by attaching free oscillators (grains of a porous medium, given in
Fig. 1) to elastic contact springs (Nikolaevskiy 1996; Nikolaevskiy 1989). These oscillators
possess own masses Mi that are included into constants aq and bq as well as the piston
viscosities (see Nikolaevskiy (1989)).

It can be seen that Fig. 2 corresponds to the case in which n = 3 and m = 5. Two internal
concentrated masses M have a dimension [M] = [ρ][L2]. Because the matrix impulse itself
includes the density, ρ, the oscillator mass means practically the introduction of internal
length scale l such that

l2 = M/ρ (2.11)

That is, law (2.10) reflects dynamics of the medium fragments (sand grain conglomerates,
for example) in a continuum theory. Figure 2 describes the response of the scheme of Fig. 1

Fig. 2 Elastic springs (EI ,E and E∗) and viscous pistons of the Maxwell–Voigt rheology are added with
internal oscillators MI and M
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to dynamical loads with account for the grain’s oscillation and viscous delay due to a special
rheology of contacts where another fluid is present.

3 Evolution of P2 Wave in Wet Soils

In the impulse balance of wet matrix (2.1) it is possible to neglect fluid inertia, that is:

∂

∂t
(1 − φ)ρ(s)v + ∂

∂x
(1 − φ)ρ(s)vv = ∂σf

∂x
− ∂p

∂x
(3.1)

Really, density of air, saturating soil, is extremely small (gas under low pressure). Because
air phase is soft and matrix grains are practically rigid, we have porosity changes connected
with grain repacking and the mass balance for gas phase may be represented as:

∂

∂t
φp + ∂

∂x
φpu = 0,

ρ(f )

ρ
(f )
0

= p

p0
(3.2)

here, index zero corresponds to the reference sate and isothermal condition is assumed. In
impulse balance of fluid phase (2.5) now we can neglect the inertial terms and it takes a form
of the Darcy law:

R ≡ δ φ(v − u) = φ
∂p

∂xi

(3.3)

that excludes pore pressure from the matrix dynamics equation:

∂

∂t
[(1 − φ)ρ(s)v] + ∂

∂x
[(1 − φ)ρ(s)vv] = ∂σf

∂x
− δ(v − u) (3.4)

Due to incompressibility of grains (β(s) = 0), the stress–strain rate law of the matrix (2.10)
has the form as for a single continuum case (Nikolaevskiy 1989):

σf +
n∑

q=1

aq

Dqσf

Dtq
= Ee +

m∑

q=1

bq

Dqe

Dtq
(3.5)

As it usual for treatment of weak non-linear waves, let use the running coordinate system
with simultaneous scale changes:

ξ = ηα(x − ct), τ =
(

1

2

)
ηβt

∂

∂x
→ ηα ∂

∂ξ
; ∂

∂t
→ ηα

(
1

2
ηβ−α ∂

∂τ
− c

∂

∂ξ

) (3.6)

where β = α + 1, α = 1 and η << 1 is a small parameter. We assume that air viscosity is
extremely small, that is δ = ηO(v) at least. Then

(
1

2
ηβ−α ∂

∂τ
(1 − φ)ρ(s)v

)
= ∂σf

∂ξ
− ∂p

∂ξ
− (v − c)

∂

∂ξ
(1 − φ)ρ(s)v

δφ(v − u) = ηαφ
∂p

∂ξ
,

(
δ = µφ

k
, v − u ≈ O(v), u ≈ 0

)
(3.7)

1

2
ηβ−α ∂(1 − φ)

∂τ
= − ∂

∂ξ
(1 − φ)(v − c)
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σf − Ee = T ≡ −
n∑

q=1

aq
q
p=1η

q

[
η

1

2

∂

∂τ
+ (v − c)

∂

∂ξ

]q

σ f

+
m∑

q=1

bq
q
p=1η

q

[
η

1

2

∂

∂τ
+ (v − c)

∂

∂ξ

]q

e (3.8)

Also apply the following series for dynamical variables of a wave:

p = p0 + ηp1 + η2p2 + · · · ; v = η v1 + η2v2 + · · · ;
e = e0 + η e1 + η2e2 + · · · φ = φ0 + η φ1 + η2φ2 + · · · ; (3.9)

σf = σ
f
0 + η σ

f
1 + η2σ

f
1 + · · ·

In order to consider the first approximation, we select the momentum equation, the strain
definition through velocity field, the strain-stress law and material balance, consequently:

∂σ1
f

∂ξ
+ (1 − φ0)ρ

(s)
0 c

∂v1

∂ξ
= η�,

∂v1

∂ξ
+ c

∂e1

∂ξ
= ηF,

σ
f
1 − Ee1 = ηT ,

∂

∂ξ
[v1(1 − φ0) + cφ1] = η

(
1

2

∂φ1

∂τ
− c

∂v1φ1

∂ξ

) (3.10)

here, stress and strain of the reference state satisfy (3.9) and

� = (1 − φ0)ρ
(s)
0

(
1

2

∂v1

∂τ

)
+ ρ

(s)
0

∂

∂ξ
[(1 − φ0)v1 − φ1c]v1 + δ

η
v1,

F = 1

2

∂e1

∂τ
+ v1

∂e1

∂ξ
,

neglecting the right sides of this set of equations gives the integrals as well as the first porosity
increment as well as the first porosity increment from (3.10):

σ1
f + (1 − φ0)ρ

(s)cv1 = 0; σ
f
1 = −Ev1/c

e1 = −v1/c; φ1 = −(1 − φ0)(v1/c)
(3.11)

Integrals (3.11) determine the wave velocity through the 1D elastic modulus of the matrix
and its total density ρ = (1 − φ0)ρ

(s):

c = +
√

E

(1 − φ0)ρ(s)
= +

√
E

ρ
; (3.12)

In the second approximation, the same system of equations is valid but relatively to three
variables (v2, σ

f
2 and e2) but with not negligible right-side parts:

(1 − φ0)ρ
(s)c

∂v2

∂ξ
+ ∂σ2

f

∂ξ
= �,

∂v2

∂ξ
+ c

∂e2

∂ξ
= F, σ

f
2 − Ee2 = T (3.13)
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T = −
n∑

q=1

aq
q
p=1η

q(−c)q−1
(

∂v1

∂ξ

)q

E +
m∑

q=1

bq
q
p=1η

q(−c)q−1
(

∂v1

∂ξ

)q

(3.14)

The determinant of (3.13) is equal to zero if the wave velocity has value (3.12). Therefore
we need the compatibility condition of Eq. 3.13

∣∣
∣∣
1 �

c EF + cT

∣
∣∣∣ = 0 or EF − c� + c

∂T

∂ξ
= 0, (3.15)

which one may consider as the evolution equation for the wave under consideration.
Use right sides of (3.9), expressing all variables through v ≡ v1, according to (3.11). Then

we get the evolution equation that includes rather small bulk dissipation of η - order (if the
air viscosity µf in soils has the order ηγ , γ ∼ 2):

∂v

∂τ
+ Nv

∂v

∂ξ
+ ς v =

n∑

q=1

Aq+1
∂q+1

∂ξq+1 v, ς = δ/η

(1 − φ0)ρ(s)
≡ µf φ0

kρη
= O(η) (3.16)

where v ≡ v1, n = 6, coefficients

Aq+1 = c(−c)q(Ym−qbq − Yn−qan−qE), Yp = 1, p ≥ 0; Yp = 0, p < 0 (3.17)

Here A2q ≥ 0, A2q−1 ≤ 0 as well as non-linearity coefficient N (equal in this case to 1)
are constants. This choice of their signs corresponds to positive viscosities of the medium
(the negative signs A2q ≤ 0 would give the solitons case, see Kawahara (1983)).

Let the underline that the considered wave is P2 by the Frenkel–Biot terminology, observed
in soils of arbitrary but small fluid wetness. Really, it is controlled by developed deformation
of the matrix (modulus E) with the Darcy law. Wave P1 is absent in this case.

However, in the case of full saturation the wave P2 is fast decaying because mass velocities
v and u have the opposite signs and the Darcy resistance is extremely high. Then another
Frenkel–Biot wave (P1) becomes practically the only observable. This explains “sudden”
jump in wave velocity curves if fluid saturation is selected as its argument (Nikolaevskiy
et al. 1970; Nakagawa et al. 1997). Mikhailov (2006) has studied the pore pressure effect on
waves in gas-saturated media when such a change takes place.

Two waves are seen in the case of gas bubbles presence in water/oil-saturated media
(Bedford and Stern 1983; Gardner 2000) but in this case the bubbles resonance makes the
situation more complicated. The physics of this phenomenon is explained in Dunin et al.
(1978).

4 P1 Wave in Fluid Saturated Media: The First Approximation

Let us consider the wave P1 observable in porous materials under its full saturation. In this
case we consider the full dynamics system. The key point now is that in wave P1 the mass
velocities v and u have the same sign and we can assume that

v1 = u1 + ηγ v1, v − u = O(ηv) (4.1)

Then the interfacial (Darcy) force has the order as shown:

R = ηγ δφ (v − u) = ηγ δ φv; δ = φµ/k = O(1) (4.2)
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Due to (4.2), the first approximation of Eq. 2.1, if one applies representations (3.6), (3.7),
means

ηβ−α 1

2

∂(1 − φ)ρ(s)v

∂τ
+ ∂

∂ξ
(1 − φ)ρ(s)v(v − c) = ∂σf

∂ξ
− (1 − φ)

∂p

∂ξ
+ ηγ−αδ φv,

ηβ−α 1

2

∂φρ(f )u

∂τ
+ ∂

∂ξ
φρ(f )u(u − c) = −φ

∂p

∂ξ
− ηγ−αδ φv,

(4.3)

ηβ−α 1

2

∂(1 − φ)ρ(s)

∂τ
+ ∂

∂ξ
(1 − φ)ρ(s)(v − c) = 0;

ηβ−α 1

2

∂φρ(f )

∂τ
+ ∂

∂ξ
φρ(f )(u − c) = 0

If assume β = α + 1, α = 1 and the following equations are valid:

(1 − φ0)ρ
(s)

0 c
∂v1

∂ξ
+ ∂σ

f
1

∂ξ
− (1 − φ0)

∂p1

∂ξ
= η�

� ≡ (1 − φ0)ρ
(s)

0

(
1

2

∂v1

∂τ
+ ∂v1v1

∂ξ

)
+ c[φ1ρ

(s)

0 − (1 − φ0)ρ
(s)

1 ]∂v1

∂ξ
(4.4)

−φ1
∂p1

∂ξ
− ηγ−1δφ0 v1

Expression (3.10) for strain is still valid but the constitutive law is changed:

σ
f
1 − Ee1 − Kβ(s)p1 = ηT (4.5)

T ≡ −
n∑

q=1

aq(−c)q
q
p=1η

q−1 ∂q

∂ξq
σ

f
1 + 1

η

m∑

q=1

bq(−c)q
q
p=1η

q−1 ∂q

∂ξq
e1 (4.6)

The left sides of Eqs. 4.4, 4.4, 3.8 and (4.5) give us the following integrals:

(1 − φ0)ρ
(s)
0 v1c = −σ

f
1 + (1 − φ0)p1, φ0ρ

(f )
0 u1c = φ0p1

(4.7)
v1 + ce1 = 0, σ

f
1 = Ee1 + Kβ(s)p1

Condition (4.1) in the first approximation means v1 = u1. Therefore the impulse balance
gives the following result

ρ0v1c = −σ
f
1 + p1, ρ0 = (1 − φ0)ρ

(s)
0 + φ0ρ

(f )
0 (4.8)

The Hooke law (with introduced pressure of saturating fluid) follows (4.5):

σ
f
1 = −Ev1/c + Kβ(s)p1 (4.9)

The combination of (4.8) and (4.9) will be used further:

(ρ0c
2 − E)v1 − (1 − Kβ(s))cp1 = 0 (4.10)
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Now, let us consider mass balance to be:

∂

∂ξ

{
(1 − φ0)ρ

(s)
0 v1 −

[
ρ

(s)
1 (1 − φ0) − ρ

(s)
0 φ1

]
c
}

= η�(s)

(4.11)

�(s) ≡ 1

2

∂[ρ(s)
1 (1 − φ0) − ρ

(s)
0 φ1]

∂τ
− ∂

∂ξ

[
ρ

(s)
0 φ1v1 − ρ

(s)
1 φ1c − (1 − φ0)ρ

(s)
1 v1

]
;

∂

∂ξ

{
ρ

(f )
0 φ0u1 −

[
ρ

(f )
0 φ1 + ρ

(f )
1 φ0

]
c
}

= η�(f )

(4.12)

�(f ) ≡ 1

2

∂(ρ
(f )

0 φ1 + ρ
(f )
1 φ0)

∂τ
− ∂

∂ξ

(
ρ

(f )

0 φ1u1 − cρ
(f )

1 φ1 − ρ
(f )

1 φ0u1

)

This set of equations gives us the following integrals if we neglect values of η-order.

(1 − φ0)ρ
(s)
0 v1 = (−ρ

(s)
0 φ1 + ρ

(s)
1 (1 − φ0))c;

(4.13)
φ0ρ

(f )
0 u1 = (ρ

(f )
0 φ1 + ρ

(f )
1 φ0)c;

According (2.7), (2.8), the first approximations of the densities are

ρ
(f )
1 = ρ

(f )
0 β(f )p1; ρ

(s)
1 = ρ

(s)
0 [β(s)p1 − β(s)σ

f
1 /(1 − φ)] (4.14)

Now one can express the first approximations of phase velocities through wave velocity
c(>> v1, u1):

(1 − φ0)v1 = (−φ1 + (1 − φ0)β
(s)p1 − β(s)σ

f
1 )c; φ0u1 = (φ1 + φ0β

(f )p1)c

After summation one can get

(1 − φ0)v1 + φ0u1 = (φ0β
(f )p1 + (1 − φ0)β

(s)p1 − β(s)σ
f
1 )c ≡ (βp1 − β(s)σ

f
1 )c

(4.15)

Due to v1 = u1, (4.15) means

v1 = (βp1 − β(s)σ
f
1 )c; (4.16)

Exclusion of the effective stress (4.10) gives:

(1 − β(s)E)v1 − (β − β(s)β(s)K)p1c = 0 (4.17)

The condition of coincidence of Eqs. 4.10 and 4.17 relatively v1 and cp1 determines the wave
velocity:

∣∣∣∣
1 − β(s)E −(β − β(s)β(s)K)

ρ0c
2 − E −(1 − β(s)K)

∣∣∣∣ = 0 (4.18)

that is,

c2 = E + (1 − β(s)K)B

ρ0
, B = 1 − β(s)E

β − β(s)β(s)K
(4.19)

If the solid material is ideally cemented (Nikolaevskiy et al. 1970), that is β(s)K = 1, (4.19)
gives the usual 1D wave velocity.
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In the first approximation we can express all variables through the velocity v1:

e1 = −v1

c
; ρ

(f )
1 = ρ

(f )
0 β(f )B

v1

c
, ρ

(s)
1 = ρ

(s)
0 β(s)[B(1 − β(s)K) + E]v1

c
;

φ1 = (1 − φ0)[(1 − β(s)K)β(s)B + (β(s)E − 1)]v1

c
; p1 = B

v1

c
; (4.20)

σ
f
1 = −(E − β(s)KB)

v1

c

In the case of “soft” rocks (fully saturated soils), that is, if βE << 1, β(s)K << 1,

Bβ = 1, p1 = v1/(βc), σ
f
1 = −p1(βE − β(s)K),

φ1 = −(1 − φ0)(v1/c)[1 − (β(s)/β)],
(4.21)

e1 = −(v1/c); ρ
(f )
1 = ρ

(f )
0 (β(f )/β)(v1/c), ρ

(s)
1 = ρ

(s)
0 (β(s)/β)(v1/c)

c = +1/
√

βρ0

This coincides with the results, got earlier (Nikolaevskiy 1996; Nikolaevskiy et al. 1970)
for this type of porous rocks.

5 The Second Approximation of Wave P1

Assumption (4.1) selects practically (Nikolaevskiy 1996) the first P-wave in the full equation
system. The second approximation will give us the evolution equation. Firstly, one has to pay
attention to the impulse equation, where right side is determined by Eq. 4.3:

(1 − φ0)ρ
(s)
0 c

∂v2

∂ξ
+ ∂σ

f
2

∂ξ
− (1 − φ0)

∂p2

∂ξ
= � (5.1)

The constitutive law of the matrix has the form of:

σ
f
2 − Ee2 − p2β

(s)K = T (5.2)

The expression of strain through displacement velocity is the following one:

∂

∂ξ
(ce2 + v2) = F (5.3)

The second approximation of mass balances (2.6)—with account for analysis of (4.11),
(4.12)—is as follows:

∂

∂ξ
[v2 − (βp2 − β(s)σ

f
2 )c] = � ≡ (�s/ρ

(s)
0 ) + (�f /ρ

(f )
0 ) (5.4)

The combination of (5.2) and (5.3) results in

∂

∂ξ
(cσ

f
2 + Ev2 − p2cβ

(s)K) = EF + c
∂T

∂ξ
(5.5)

Now exclude the second approximation of the effective stress. Then Eqs. 5.4 and 5.5 give:

∂

∂ξ
[(1 − β(s)E)v2 − (β − β(s)β(s)K)cp2] = � − β(s)EF − β(s)c

∂T

∂ξ
(5.6)
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Eqs. 5.1 with 5.5 result in the following one:

∂

∂ξ
[(ρ0c

2 − E)v2 − (1 − β(s)K)cp2] = EF − c� + c
∂T

∂ξ
(5.7)

The determinant of Eqs. 5.6, 2.5 coincides with (4.18) that had given the wave velocity c.

According to the linear algebra rules, the compatibility condition is the equation, got from
(4.18) by change of one of columns with right side of (5.6), (5.7). Then we have:

∣∣
∣∣∣
∣∣∣

ρ0c
2 − E

∂

∂ξ

(
EF − c� + c ∂T

∂ξ

)

1 − β(s)E
∂

∂ξ

(
� − β(s)EF − β(s)c

∂T

∂ξ

)

∣∣∣
∣∣
∣∣
∣

= 0 (5.8)

This is the evolution equation relatively to v ∼= v1:

(ρ0 c2 − E)� − [1 − 2β(s)E + β(s)ρ0c
2]EF + c(1 − β(s)E)�

= [β(s)(ρ0 c2 − E) + (1 − β(s)E)]c ∂T

∂ξ
(5.9)

This equation has the form of (3.16) with the coefficients N and Aq can be calculated
with help of the expressions given above. The sink term with the coefficient ζ ∼ O(η) is
responsible for permanent generation of the P-wave of the second type, which is parasitic in
this case.

For soft rocks (soils), saturated with fluid, we have βE << 1, β(s)K << 1, and expres-
sions (4.20) are valid. Then (5.9) is simplified:

c� − [β + β(s)]EcF + c2β� = (β + β(s))c2 ∂T

∂ξ
(5.10)

c� = 1

2

∂v

∂τ
+

[

1 + (1 − φ0)
β(f ) − β(s)

β

(

1 − β(s)

β

)]
∂vv

∂ξ
(5.11)

cF = −
(

1

2

∂v

∂τ
+ 1

2

∂vv

∂ξ

)
(5.12)

c2� = c2(1 − φ0)ρ
(s)
0

{
1

2

∂v

∂τ
+

[(
1 − βs

β

)
ρ0

ρ
(s)
0

]
∂vv

∂ξ

}

(5.13)

Collecting all necessary expressions will give again Eq. 3.16 with the following coeffi-
cients. Correspondingly, one can see that deviations of value N = 1 are connected with the
physical differences of solid and fluid phases.

∂v

∂τ
+ Nv

∂v

∂ξ
+ ς v = β + β(s)

�
c2 ∂T

∂ξ
, ς = δη

ρ0�
≡ µf φ0

kρ0�
= O(η) (5.14)

N = 2
1 + (1 − φ2

0)

φ0 + φ0(1 − φ0)(ρ
(s)
0 /ρ0)

�, � = 1

2

[

1 + (1 − φ0)
ρ

(s)
0

ρ0

]

(5.15)
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Appendix C

Example

Equation (4.57) can be illustrated by the following simple example

v1 + cR1 = 0 ,

2v1 + 4R1 = 0 .

A non-zero solution of the system exists only if c = 2 (the eigenvalue of the problem).

Here v1 and R1 are analogous to the first approximation from our main text. The second

approximation, v2 and R2, satisfies the system

v2 + cR2 = f [v1] ,

2v2 + 4R2 = g[v1] ,

which is solvable only if the right-hand sides satisfy the condition g[v1] = 2f [v1]. This

solvability condition is the analogy to the Nikolaevskiy-type equation that we aim to derive.
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