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Featured Application: An application of this research is UAV identification (in terms of make 
and model) based upon a malicious UAV report that includes a photo of the suspicious UAV. 

Abstract: Unmanned Aerial Vehicles (UAVs) or drones have found a wide range of useful applica-
tions in society over the past few years, but there has also been a growth in the use of UAVs for 
malicious purposes. One way to manage this issue is to allow reporting of malicious UAVs (e.g., 
through a smartphone application) with the report including a photo of the UAV. It would be useful 
to able to automatically identify the type of UAV within the image in terms of the manufacturer and 
specific product identification using a trained image classification model. In this paper, we discuss 
the collection of images for three popular UAVs at different elevations and different distances from 
the observer, and using different camera zoom levels. We then train 4 image classification models 
based upon Convolutional Neural Networks (CNNs) using this UAV image dataset and the concept 
of transfer learning from the well-known ImageNet database. The trained models can classify the 
type of UAV contained in unseen test images with up to approximately 81% accuracy (for the Res-
net-18 model), even though 2 of the UAVs represented in the UAV image dataset are visually simi-
lar, and the fact that the UAV image dataset contains images of UAVs that are a significant distance 
from the observer. This provides a motivation to expand the study in the future to include more 
UAV types and other usage scenarios (e.g., UAVs carrying loads). 
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1. Introduction 
The prevalence of Unmanned Aerial Vehicles (UAVs) or drones used for such appli-

cations as delivery of goods, remote sensing, surveying, inspection, and recreation has 
been increasing over the past decade [1]. Like most technologies, UAVs can be misused. 
The motivation for such malicious use may be to cause annoyance, invade privacy, cause 
physical harm or even to shutdown airspace with its associated economic impact [2,3]. 

Once a malicious UAV is detected, there are various countermeasures that can be 
considered, including capturing or destroying the UAV, jamming its wireless link so it 
cannot be controlled or report data back, and identifying and fining the owner [4]. De-
pending upon the exact scenario, the detection may depend upon a person reporting the 
malicious UAV to authorities, perhaps with a photo of the UAV included as part of the 
report. It would be very useful to be able to automatically predict the manufacturer and 
specific product identification of the malicious UAV from the photo using a trained image 
classification model, even if the UAV is relatively far away from the person taking the 
photo. 

The research problem this paper addresses is whether it is possible to train a deep 
learning image classification model to accurately classify images of UAVs in flight in 
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terms of the manufacturer and specific product identification. This is a difficult image 
classification problem because the UAVs are in flight and so may be quite distant from 
the camera, thereby appearing relatively small in an image. In addition, different types of 
UAVs appear visually similar, so it is not straightforward to distinguish between them. 

In this paper, we discuss the acquisition of an image dataset of three popular UAVs 
in flight: 
• the DJI Mavic 2 Enterprise. 
• the DJI Mavic Air. 
• the DJI Phantom 4. 

The first two of these are visually similar, so much so that a person would be chal-
lenged to distinguish between them. Images are taken at various UAV elevations and dis-
tances using different zoom levels on the camera. 

We then train various deep learning image classification models based upon Convo-
lutional Neural Networks (CNNs) using the labelled image dataset. In this paper, we are 
most interested in Resnet-18 because it is relatively lightweight and has such a good rep-
utation in a large variety of image classification tasks. We compare the performance of 
Resnet-18 against other popular and high performing models; these are AlexNet, VGG-
16, and MobileNet v2 [5]. Rather than start the model training from the beginning, we 
employ the established technique of transfer learning, in which we start with a pre-trained 
model for a different image dataset and optimize the parameters for the UAV image da-
taset [6]. This reduces the time required to train the model and makes robust training pos-
sible with a smaller dataset. 

Research into detecting and possibly identifying UAVs, both non-malicious and ma-
licious, using machine learning techniques has been undertaken by several projects over 
the past decade as the prevalence of industrial and consumer UAVs has increased [7]. The 
raw data on which these machine learning techniques are trained can be based on audio, 
images, video, and radar signatures. In this section, we concentrate on the research related 
to image classification of malicious UAVs since this is the subject matter of the present 
paper. 

In [8], the authors used a vision transformer (ViT) framework to model a dataset 
comprising 776 images of aeroplanes, helicopters, birds, non-malicious UAVs and mali-
cious UAVs. The distinction between non-malicious and malicious UAVs was made pri-
marily based upon whether the UAV was carrying a payload, which was assumed to be 
harmful and/or illegal. The model achieved an impressive accuracy of 98.3%. Our paper 
addresses a different problem, whereby a person reports a UAV as malicious based upon 
its location or behaviour rather than its visual characteristics or whether it is carrying a 
load, and the problem is to try to identify the type of UAV from the image provided in the 
report. However, our paper does not address UAVs carrying loads, and a future direction 
of our research will be to complement the image dataset with images of UAVs carrying 
loads. 

In [9], the authors trained a You Only Look Once (YOLO) model to detect and track 
UAVs in video streams. They used the DJI Mavic Pro and DJI Phantom III for validation 
purposes and achieved a mean average precision (mAP) of 74.36%, which was superior to 
previous studies. However, they did not distinguish whether the UAV in the video stream 
was a DJI Mavic Pro or DJI Phantom III, identifying it only as a generic UAV. The objective 
of our research is different, to be able to distinguish between different UAV types (e.g., by 
manufacturer and specific model) based upon an image provided. 

The study in [10] employed a dataset of 506 images and 217 audio samples to train 
and test a deep-learning model for the detection of UAVs based upon combined visual 
and audio characteristics. The best accuracy obtained was 98.5%. However, the aim was 
not to differentiate between different types of UAVs as in our research; rather, it was to 
distinguish between UAVs as a general class of object and other objects such as airplanes, 
birds, kites, and balloons. The combined video/audio approach was also adopted in [11], 
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but despite using different types of UAV such as a DJI Phantom 4 and DJI Mavic in the 
training and testing of the model, they did not attempt to distinguish the exact UAV type 
in the vicinity of the observer; instead, the objective was simply to detect that a UAV of 
some type was present. 

The research presented in this paper is different from that reviewed above and novel 
in that it attempts to classify the manufacturer and specific product identification of a 
UAV in an image, with the UAV being at various elevations and distances from the ob-
server, and with the observer using various zoom levels when taking the photo. The task 
is challenging both because we are attempting to distinguish between UAVs which may 
look similar, especially from a distance, and because the image may be taken at different 
distance and viewing angles with respect to the target UAV. 

Before we captured our own dataset, we investigated whether any other public do-
main-specific datasets [12,13] existed in this area. In terms of other image and/or video 
datasets that could potentially be employed as part of this study, most public datasets are 
of images and/or videos taken by drones/UAVs rather than images and/or videos of 
drones/UAVs. One notable exception is a dataset of 1359 UAV images on Kaggle [14]. 
However, this dataset cannot be meaningfully used in our study for a variety of reasons 
(1) many of the images are not of UAVs in flight, rather they are images of people holding 
a UAV or the UAV on the ground, (2) there is no information on the manufacturer or 
model of the UAV in the metadata, (3) the dataset is not balanced in terms of an equal 
number of images of each UAV type, and (4) for those images representing UAVs in flight, 
there is no information on elevation or horizontal distance from the camera. 

The novel contributions of the paper are as follows: 
• Development of a methodology to capture a balanced and structured image dataset 

of different UAVs in flight. The dataset is balanced in terms of the number of images 
of each UAV and structured in that images are captured at specified elevations, hor-
izontal distances and zoom levels. There is no similar (public) image dataset availa-
ble. 

• Training, testing and cross validation of various deep learning image classification 
models to be able to distinguish the manufacturer and specific product identification 
of a UAV in an image. 

• An analysis of the ability of the image classification models to distinguish between 
UAVs which are extremely similar in visual appearance, and to classify UAVs which 
are distant from the observer. Specifically, the average testing accuracy of the trained 
Resnet-18 model on the dataset is greater than 80% even though two of the three 
UAVs, the DJI Mavic 2 Enterprise and the DJI Mavic Air, are very similar in appear-
ance, and even though the UAVs may be at an elevation of 30 m and a horizontal 
distance of 30 m from the observer. 

2. Materials and Methods 
2.1. UAV Selection 

It was decided to restrict the number of distinct UAVs employed in the current study 
to three to understand whether existing state-of-the-art deep-learning image classification 
models could distinguish between them even when the UAVs are quite far from the ob-
server. The UAVs employed are illustrated in Figure 1. 
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DJI Mavic 2 Enterprise 

 
DJI Mavic Air 

 
DJI Phantom 4 

Figure 1. UAVs Employed in Current Study. 

Clearly, the DJI Mavic 2 Enterprise and DJI Mavic Air are visually similar, so we 
would intuitively expect an image classification model to struggle to distinguish between 
them. In contrast, the visual appearance of the DJI Phantom 4 is strikingly different in 
color and shape, so we would intuitively expect an image classification model to be able 
to easily distinguish between this UAV and the other two. 

2.2. Image Capture 
The methodology for capturing images of UAVs to form a trial dataset was designed 

to mirror how people are likely to take photos of malicious UAVs for reporting purposes 
in the field. Specifically, people are likely to use a smartphone for image capture, possibly 
with optical and/or digital zoom, and the target UAV may be at a different elevation h and 
a different horizontal distance from the person taking the photo d (see Figure 2). 

 
Figure 2. Distance d and Elevation h Parameters Used for Image Capture. 

The images were all captured with an iPhone X which supports a 12 MP (3024 × 4032 
pixels) autofocus camera with 2× optical zoom and 10× digital zoom. For each UAV posi-
tion in terms of a distinct pair of h and d values, images were captured with 1×, 2×, 3×, 5× 
and 10× zoom. It should be stressed that a distinct photo was taken for each zoom level as 
opposed to a single image being taken and that image subsequently processed with dif-
ferent zoom levels. 

Elevation values h of 5 m, 10 m, 15 m, 20 m, 25 m and 30 m were employed. These 
were measured from the UAV controller display. 

Horizontal distances d of 0 m (i.e., observer directly below the UAV), 10 m, 20 m and 
30 m were employed. These were measured with a standard measuring wheel. 

With an image taken of each UAV for each of 5 camera zoom levels, 6 elevation levels 
and 4 horizontal distances, the dataset was expected to comprise 5 × 6 × 4 = 120 images of 
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each UAV. In fact, some additional images were captured for the largest values of h and d 
because a clear image could not always be captured in these cases. A total of 127 images 
were captured for each of the three UAVs. Therefore, the dataset is balanced in that there 
are the same number of images taken under similar circumstances for each of the three 
UAVs. Balanced datasets are preferred for machine learning to prevent a model being 
trained with a bias for one or more objects of interest. 

It should be noted that there are some other advantages of this methodology for im-
age capture other than simply mirroring what a typical person trying to report a malicious 
UAV in the field might do. Firstly, the use of different camera zoom levels and different 
values of h and d values changes: 
• the size of the UAV in the image. 
• the view angle at which the UAV is captured, thereby exposing different visual char-

acteristics of the UAV. 
• the background of the image. 

This increases the diversity of the image dataset, which is known to be very im-
portant when the objective is to develop a robust image classification model which can 
make accurate predictions when exposed to new previously unseen images. For example, 
Figure 3 illustrates the effect of using different zoom levels (in successive shots) on the 
size of the UAV in the image and the image background. 

 
1× zoom 

 
2× zoom 

 
3× zoom 

 
5× zoom 

 
10× zoom 

Figure 3. Effect of Different Camera Zoom Levels On Size and Image Background (UAV: DJI Mavic 
Air, h = 5 m, d = 10 m, images reduced to 256 × 256 resolution). 

Figure 4 illustrates the effect of different UAV elevations on the size of the UAV in 
the image, the view angle of the UAV in the image and the image background (note: these 
images were taken some time apart which explains why the backgrounds are different). 

 
h = 5 m 

 
h = 10 m 

 
h = 15 m 

 
h = 20 m 

 
h = 25 m 

Figure 4. Effect of Different Elevations h on Size, View Angle, and Image Background (UAV: DJI 
Phantom 4, 10× Zoom, d = 10 m, images reduced to 256 × 256 resolution). 

Another advantage of the image capture methodology in terms of formally indexing 
each image by zoom level, elevation h and horizontal distance d, is that it opens the pos-
sibility of not just image classification (i.e., predicting the type of UAV in the image), but 
also elevation prediction and distance prediction. This topic is not covered in this paper, 
primarily because it would require a much larger dataset, but it is an interesting possibil-
ity for the future, particularly as such predictions may facilitate evidence that a UAV was 
flying illegally (e.g., too close to people). 
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2.3. Model Theoretical Background 
The deep-learning CNN image classification models employed as part of this study 

are compared and summarized in Table 1. These are all well-known and high performing 
image classification models. Some of them are part of families, e.g., there are Resnet-18, 
Resnet-34, Resnet-50 and Resnet-101 models. For this investigation, we generally em-
ployed the least complex model in a family (e.g., Resnet-18 in the case of Resnet) because 
it has the fewest number of parameters to train and therefore is less likely to be overfit 
when using a dataset that is not particularly large. 

Table 1. Deep-learning CNN Image Classification Models Employed in This Study. 

Model Layers with Weights Parameters 
Input Image 
Resolution 

AlexNet 8 ~60 million 227 × 227 
VGG-16 16 ~135 million 224 × 224 

Resnet-18 18 ~11 million 224 × 224 
MobileNet v2 53 ~3.5 million 224 × 224 

As discussed in the Introduction, we are primarily interested in Resnet-18 because it 
is relatively lightweight and has such a good reputation in a large variety of image classi-
fication tasks. Resnet-18 is a Convolutional Neural Network model which has 18 convo-
lutional and/or fully connected layers in its architecture [15] as illustrated in Figure 5. To 
understand the structure of a typical convolution layer, consider the convolutional layer 
with designation “3 × 3, Conv, 128,/2”. This uses 128 filters with window size 3 × 3 and a 
stride of 2. The curved arrows represent skip connections which provide some protection 
against overfitting. 

 
Figure 5. Structure of the Resnet-18 Model. 

AlexNet was proposed by Alex Krizhevesky [16] in 2012 and is a deep and wide CNN 
model. This was considered as a significant step in the field of machine learning and com-
puter vision for visual recognition and classification. The AlexNet architecture has 3 con-
volution layers and 2 fully connected layers. The recognition accuracy was found to be 
better against all traditional machine learning and computer vision approaches. 

VGG-16 is a Convolutional Neural Network (CNN) model which was proposed by 
Karen Simonyan and Andrew Zisserman [17]. The use of uniform 3 × 3 filters is the stand-
out feature of the VGG technique which reduces the number of weight parameters when 
compared to a 7 × 7 filters. 

MobileNetv2 is a CNN that is based on an inverted residual structure whereby the 
residual connections are between the thin bottleneck layers [18]. As a source of non-line-
arity, the intermediate layer utilizes the lightweight depth wise convolutions to filter fea-
tures. The architecture has a fully convolution layer with 32 filters and 19 residual bottle-
neck layers. 
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2.4. Image Pre-Processing and Management 
As discussed previously, a total of 127 images were captured for each of the three 

UAVs. All images were down-sampled from 3024 × 4032 pixel resolution to 256 × 256 pixel 
resolution since this is a common intermediate resolution prior to training [5]. This also 
involved some cropping of the image, since the source raw image is rectangular (i.e., non-
square) while the output processed image is square. The down-sampling/cropping was 
performed manually for all images to ensure the UAV was still in the frame of the output 
processed image. 

The processed image data was then pseudo-randomly split into 101 training images 
and 26 test images for each UAV using the Python split-folders module [19] with a specific 
seed (2002). This corresponds to approximately an 80/20 split of train/test data, which is 
quite common when training image classification models. 

2.5. Model Training and Validation 
The 3 × 101 training images were then used to train each of the deep-learning CNN 

image classification models specified in Table 1. This number of training samples is not 
sufficient to train the model from an initial (random) state. Instead, the models were pre-
trained with the ImageNet database, i.e., pre-loaded with weights corresponding to the 
result of training on ImageNet [20], then the last model layer was replaced so as to classify 
just three objects (i.e., the three UAVs use in this study), and the 3 × 101 training images 
were employed to further optimize all the weights to apply to the UAV images under 
consideration. This is known as transfer learning [6] and it is a standard technique em-
ployed in image classification for relatively small image datasets. As part of the training, 
we employed data augmentations of a random horizontal flip and a random resized crop 
to the model input image resolution (see Table 1). Such data augmentations are useful for 
generalizing the applicability of the trained model to new and previously unseen data. 

Table 2 shows the hyperparameters used in the training for all models. The number 
of epochs (25) was sufficient to train the model to a converged final accuracy in all cases. 

Table 2. Image Classification Hyperparameters Used for all Models. 

Hyperparameter Value 
Number of epochs 25 
Image batch size 40 

Optimizer Stochastic Gradient Descent (SGD) 
Initial learning rate for optimizer 0.001 

Momentum for optimizer 0.9 
Learning rate decay factor 0.1 
Learning rate decay period 7 epochs 

When training is complete, the accuracy of the model in correctly predicting the UAV 
type in each image of the test set is given by: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑛𝑛  (1)𝑛  is the number of test images for which the trained model correctly predicted the 
UAV type, and 𝑛  is the total number of test images. 

2.6. Cross Validation 
The previous sections discuss model training and validation for one specific pseudo-

random 80/20 training/test split of the processed image data. This is useful to obtain an 
initial idea about the relative accuracies of the different models, but ultimately the process 
should be repeated with multiple different training/test splits of the processed image data 
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to fully characterize the model performance and remove any bias that using just one spe-
cific training/test split may result in. 

For this paper, we used repeated random sub-sampling cross validation (sometimes 
known as Monte Carlo cross-validation). The processed image data was partitioned 30 
times into different 80/20 training/test splits using 30 different random seeds of the Python 
split-folders module [19]. Note that each such split was balanced in that it contained 101 
training images and 26 test images for each UAV, i.e., there were the same number of 
training images for each UAV and the same number of test images for each UAV. Each 
model was trained across all 30 training/test splits, and the model accuracy figures aver-
aged. 

3. Results and Discussion 
3.1. Overall Test Accuracy 

Table 3 illustrates the test accuracy of the image classification models in decreasing 
order for the initial training/test split discussed in Section 2.4. The test accuracy is equal 
to the proportion of correct predictions (i.e., predicted UAV type = actual UAV type) the 
trained model makes on the test image dataset. 

Table 3. Test Accuracy Using Trained Models. 

Model 
Number of Test 

Images 
(𝒏𝒕𝒐𝒕𝒂𝒍) 

Number of Correct 
Predictions 

(𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕) 
Test Accuracy 
(𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒏𝒕𝒐𝒕𝒂𝒍⁄ ) 

VGG-16 3 × 26 = 78 67 0.859 
Resnet-18 3 × 26 = 78 66 0.846 
AlexNet 3 × 26 = 78 61 0.782 

MobileNet v2 3 × 26 = 78 61 0.782 

It is useful to compare the test accuracies represented in Table 3 with a baseline ac-
curacy from a thought experiment. As previously discussed, of the three UAVs repre-
sented in the study, the DJI Mavic 2 Enterprise and DJI Mavic Air are visually similar, 
whereas the DJI Phantom 4 is quite different to the other two in appearance. If we assume 
a baseline trained model can always correctly predict a DJI Phantom 4 because of its dif-
ference in appearance, there will be 26 correct predictions from the test image dataset for 
this UAV alone. If we further assume that a baseline trained model cannot distinguish 
between the DJI Mavic 2 Enterprise and DJI Mavic Air, it will correctly predict each of 
these UAVs only 50% of the time on average, i.e., we will see 13 correct predictions out of 
26 test images for the DJI Mavic 2 Enterprise, and 13 correct predictions out of 26 test 
images for the DJI Mavic Air. This results in a combined number of correct predictions of 
26 + 13 + 13 = 52, and a baseline test accuracy of 52/78 = 0.667. 

The test accuracies of all four models represented in Table 3 are significantly higher 
than the baseline reference accuracy of 0.667 from the simple thought experiment. From 
this perspective, the results are very encouraging. The two best performing models are 
VGG-16 and Resnet-18. Of the other two lower performing models, AlexNet has an older 
architecture, dating back to 2012, and MobileNet v2 employs significantly fewer trainable 
parameters than the other models (see Table 1), which might explain these results. 

The test accuracies represented in Table 3 are contextual, i.e., specific to the current 
study and its design. It is very likely that the actual accuracy values will change signifi-
cantly if the design of the study is amended. For example, introducing more UAV types 
will likely result in lower test accuracies since it is more challenging to distinguish be-
tween a larger number of object classes. Another example would be that increasing the 
distance between the observer and UAV when an image is captured will likely result in 
lower test accuracies since it is more challenging to accurately pick out a smaller object 
from an image than a larger one. 
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3.2. Error Analysis 
It is important to understand under what circumstances the trained models are mak-

ing errors in their predictions. In particular, it is useful to know whether the assumption 
that the models will struggle to distinguish between the DJI Mavic 2 Enterprise and DJI 
Mavic Air is valid. This can be achieved by examining the confusion matrix for each 
model, which shows a count of predicted object versus true actual object. Table 4 illus-
trates the confusion matrix for one of the two best performing models in our study, Res-
net-18, and Table 5 illustrates the confusion matrix for one of the other two models in our 
study, MobileNet v2. The counts value in the main diagonal of the matrix (i.e., from top 
left to bottom right) represent correct predictions (i.e., predicted UAV type = actual UAV 
type), whereas the count values in other cells represent an error in prediction. 

Table 4. Confusion Matrix for Prediction of Test Images Using Trained Resnet-18 Model. 

  Predicted UAV 

 
Number of 

Validation Images = 
3 × 26 = 78 

DJI Mavic 2 
Enterprise 

DJI Mavic Air DJI Phantom 4 

A
ct

ua
l 

U
A

V
 DJI Mavic 2 

Enterprise 22 4 0 

DJI Mavic Air 6 20 0 
DJI Phantom 4 2 0 24 

Table 5. Confusion Matrix for Prediction of Test Images Using Trained MobileNet v2 Model. 

  Predicted UAV 

 
Number of 

Validation Images = 3 
× 26 = 78 

DJI Mavic 2 
Enterprise DJI Mavic Air DJI Phantom 4 

A
ct

ua
l 

U
A

V
 DJI Mavic 2 

Enterprise 
19 6 1 

DJI Mavic Air 6 18 2 
DJI Phantom 4 1 1 24 

It can be seen from Table 4, and more so from Table 5, that the majority of prediction 
errors are one of the two following cases: 
• actual UAV is a DJI Mavic 2 Enterprise, predicted UAV is a DJI Mavic Air (row 1, 

column 2). 
• actual UAV is a DJI Mavic Air, predicted UAV is a DJI Mavic 2 Enterprise (row 2, 

column 1). 
Furthermore, when the actual UAV in the image is a DJI Phantom 4, it is almost al-

ways predicted correctly by the model (24 out of 26 times in both Tables 4 and 5). 
These statistics confirm the previous intuition that the trained models are very good 

at correctly predicting a DJI Phantom 4 in an image due to its distinctive appearance, but 
sometimes get confused in distinguishing between the DJI Mavic 2 Enterprise and DJI 
Mavic Air due to their similar appearance. However, the trained models still correctly 
predict a DJI Mavic 2 Enterprise and DJI Mavic Air in images more often than they make 
errors. 

3.3. Per UAV Type Metrics 
Figures 5 and 6 show the per-UAV type metrics of precision, recall and the F1-score 

for the Resnet-18 and MobileNet v2 models, respectively. 
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Precision measures the proportion of predictions for a particular UAV which are cor-
rect. For example, taking the confusion matrix for the Resnet-18 model in Table 4, the 
counts in the 2nd column show that the precision for the DJI Mavic Air is 20/(4 + 20 + 0) = 
20/24 = 0.833. 

Recall measures the proportions of actual (i.e., true) instances for a particular UAV 
which are predicted correctly. For example, taking the confusion matrix for the Resnet-18 
model in Table 4, the counts in the 2nd row show that the recall for the DJI Mavic Air is 
20/(6 + 20 + 0) = 20/26 = 0.769. 

The F1-score is a summary statistic that is equal to the geometric mean of the preci-
sion and recall. 

Figures 6 and 7 confirm the findings of the previous section in that the metrics for the 
DJI Phantom 4 are significantly better than those for the DJI Mavic 2 Enterprise and DJI 
Mavic Air, because the DJI Phantom 4 is more visually distinct. 

 
Figure 6. Per Class Metrics for Prediction of Test Images Using Trained Resnet-18 Model. 

 
Figure 7. Per Class Metrics for Prediction of Test Images Using Trained MobileNet v2 Model. 
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3.4. Cross Validation 
Table 6 illustrates the model test accuracy results of the cross validation on the 30 

pseudo-randomly training/test splits. When multiple training/test splits are considered, 
Resnet-18 offers the best mean and median model accuracy, followed by VGG-16, Mo-
bileNet v2 and AlexNet in order. 

It is interesting to note that some specific data splits result in consistently good or 
poor accuracy across all models. For example, consider data split index 15, for which the 
accuracy of all 4 models is poor. On examination of this dataset, it transpires that a larger 
proportion than usual of the images in the test set were of distant shots of UAVs, for which 
is much more difficult to make a correct prediction about the type of UAV. 

Table 6. Results of Cross Validation Showing Mean and Median Test Accuracy. 

Data Split Index Seed 
Test Accuracy 

VGG-16 Resnet-18 AlexNet MobileNet v2 
1 3 0.795 0.846 0.705 0.756 
2 42 0.808 0.769 0.821 0.782 
3 75 0.859 0.821 0.795 0.821 
4 126 0.808 0.795 0.769 0.821 
5 527 0.782 0.744 0.667 0.756 
6 603 0.769 0.782 0.667 0.782 
7 820 0.782 0.808 0.808 0.846 
8 991 0.782 0.782 0.692 0.718 
9 2002 0.859 0.846 0.782 0.782 

10 4565 0.744 0.846 0.782 0.744 
11 6425 0.833 0.872 0.795 0.833 
12 9476 0.795 0.846 0.756 0.744 
13 13,869 0.821 0.808 0.782 0.833 
14 24,658 0.744 0.833 0.808 0.795 
15 44,941 0.718 0.667 0.692 0.641 
16 59,740 0.718 0.795 0.782 0.769 
17 61,086 0.833 0.833 0.782 0.756 
18 73,952 0.833 0.821 0.756 0.808 
19 84,248 0.821 0.821 0.705 0.756 
20 91,033 0.821 0.897 0.821 0.769 
21 163,576 0.795 0.769 0.718 0.808 
22 356352 0.795 0.795 0.718 0.859 
23 406,538 0.795 0.846 0.679 0.769 
24 459,208 0.897 0.833 0.795 0.833 
25 565,642 0.769 0.808 0.795 0.744 
26 755,484 0.846 0.795 0.769 0.769 
27 887,546 0.885 0.897 0.769 0.833 
28 943,457 0.705 0.756 0.744 0.718 
29 1,418,519 0.821 0.795 0.795 0.782 
30 5,641,860 0.718 0.795 0.821 0.718 

 Mean 0.798 0.811 0.759 0.778 
 Median 0.795 0.808 0.776 0.776 

3.5. Training Time Analysis 
Table 7 illustrates the mean and median training times for the various models when 

using the hyperparameters specified in Table 2. The model training was conducted with 
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PyTorch scripts running on Google Colab with Graphics Processing Unit (GPU) accelera-
tion. As Google Colab is a shared cloud-based service, service levels can change over time 
and so the values represented in Table 7 are subject to such variations. However, it can be 
clearly seen that VGG-16 is the slowest model to train, while AlexNet and MobileNet v2 
are the quickest to train. 

Table 7. Training Times for Various Models. 

 VGG-16 Resnet-18 AlexNet MobileNet v2 
Mean 184.1 s 113.7 s 68.0 s 78.5 s 

Median 184.0 s 120.0 s 67.0 s 78.5 s 

4. Conclusions and Further Work 
In this paper, we have described the collection of an image dataset for 3 popular 

UAVs at different elevations, different distances from the observer, and using different 
camera zoom levels. This UAV image dataset has been modelled using four CNN image 
classification algorithms, comprising AlexNet, VGG-16, Resnet-18 and MobileNet v2. The 
accuracy of the trained models on previously unseen test images is up to approximately 
81% (for Resnet-18). This is encouraging given that two of the UAVs, the DJI Mavic 2 En-
terprise and the DJI Mavic Air, are visually similar, and given that some of the photos of 
UAVs were taken at relatively large distances from the observer. The main anticipated 
application of this work is the automatic identification of the manufacturer and specific 
product identification of a UAV contained in an image which is part of a malicious UAV 
report. However, it could equally be employed in real time by security cameras (e.g., on 
buildings or other infrastructure) which identify an unwanted or even illegal UAV in the 
vicinity. 

The main limitations of this image classification based technique for UAV identifica-
tion are (1) it can be difficult to distinguish between UAVs which are of similar appearance 
and/or have similar flight characteristics, and (2) UAVs which are far from the ob-
server/camera will appear small in the image, thus complicating identification via image 
classification. Therefore, it may be useful to combine this technique with other methods 
of UAV identification (such as radar or acoustic signature), although this may not always 
be feasible depending upon the scenario. 

Given the encouraging results to date, we plan to expand the image dataset to include 
more UAV types, and more UAV usage scenarios, e.g., UAVs carrying loads, UAVs in 
motion and UAVs that are part of swarms. In addition, all the images collected to date 
were taken from below the UAV, because the main application for the work is an observer 
manually observing a (malicious) UAV from the ground. However, there is also the pos-
sibility that the images can be captured from above the UAV, e.g., by security cameras on 
tall buildings or even by another UAV. Therefore, we also plan to take photos of UAVs 
from above. The set of candidate image classification models may also be expanded; given 
the anticipated increased size of the image database, more complex models such as Res-
net-34 may be considered. Finally, we would also like to expand the work to include object 
detection of UAV type in video streams using a YOLO variant as the object detection al-
gorithm. 
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