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ABSTRACT 
 

  The mdx mouse is widely used as a model for Duchenne Muscular 
Dystrophy, a fatal X-linked disease caused by a deficiency of the sub-sarcolemmal 
protein, dystrophin This dissertation reports characterisation of the features of 
dystrophy in the mdx mouse, including parameters such as electrophysiological and 
contractile properties of dystrophic cardiac tissue, quantitative evaluation of 
kyphosis throughout the mdx lifespan, and contractile properties of respiratory and 
paraspinal muscles. Following these characterisation studies, the efficacy of 
antisense oligonucleotides (AOs) to induce alternative mRNA splicing in mdx 
skeletal muscles (diaphragm and paraspinal muscles) was evaluated. 
 
 The left atria of younger (<6 weeks) and older (>15 months) mdx mice 
showed consistently lower basal forces and responsiveness to increased calcium, 
while action potential duration was significantly shorter in young mice (3 weeks) 
and older mice (9 and 12 months) (P<0.05). Cardiac fibrosis increased with age in 
mdx atria and ventricles and was elevated in young (6-8 weeks) and old (15 months) 
mdx compared to control mice (P<0.01). This study provided insights into DMD 
cardiomyopathy, and suggested that very young or old mdx mice provide the most 
useful models. 
 
 Mdx mice show thoracolumbar kyphosis like boys with Duchenne Muscular 
Dystrophy. A novel radiographic index, the Kyphotic Index (KI), was developed 
and showed that mdx mice are significantly more kyphotic from 9 months of age, an 
effect maintained until 17 months (P<0.05). At 17 months, the paraspinal and 
respiratory muscles (latissimus dorsi, diaphragm and intercostal muscles) are 
significantly weaker and more fibrotic (P<0.05). 
 

Administration of AOs at four sites within the diaphragm at 4 and 5 months 
of age significantly increased twitch and tetanic forces compared to sham treated 
mdx (P<0.05). However, no difference in collagen was evident and dystrophin was 
not detected, possibly due to the low concentration of AO utilised. This study 
suggested that AOs can provide functional improvement in treated skeletal muscles. 

 
 Monthly injections with AOs into the paraspinal muscles from 2 months to 
18 months of age alleviated kyphosis, without significantly altering twitch and 
tetanic forces of latissimus dorsi, diaphragm and intercostal muscles. There was 
evidence of less fibrosis in diaphragm and latissimus dorsi muscles (P<0.05) and 
reduced central nucleation of the latissimus dorsi and intercostal muscles (P<0.05). 
Again, dystrophin was not detected by immunoblot.  
 

These studies indicate that very young and old mdx mice display previously 
uncharacterised dystrophic features, and are useful models for testing new therapies 
such as AOs. Low doses of AOs were shown to be safe and efficacious for long-
term use, however there remains a need for testing higher concentrations and 
improved delivery strategies.   

 iii



 
CERTIFICATION OF DISSERTATION 

 
 
I certify that the ideas, experimental work, results, analysis and conclusions reported 
in this dissertation are entirely my own effort, except where otherwise 
acknowledged. I also certify that the work is original and has not been previously 
submitted for any other award, except where otherwise acknowledged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________  _________________ 
Signature of Candidate    Date 
 
 
 
ENDORSEMENT 
 
 
______________________________  _________________ 
Signature of Supervisor/s    Date 
 
 
______________________________  _________________ 
 
 
 
 
 
 

 iv



ACKNOWLEDGEMENTS 
 

   I wish firstly to acknowledge the help and encouragement of my Principal 

Supervisor, Dr Andrew Hoey. His dedication and expertise was at all times an 

inspiration, and his patience and ready availability to answer questions was greatly 

appreciated. 

 I am also grateful for the help and friendship of Dr Renee Cornford-Nairn. 

Renee performed the Western blots included within this dissertation, which was the 

only experimental work not performed by myself. 

 Thankyou to Dr Lindsay Brown, Department of Physiology and 

Pharmacology, University of Queensland for access to his laboratory and his 

students’ helpful assistance in learning several new techniques. In particular, I 

would like to thank Vincent Chan for his time and patience in showing me aspects 

of histology and confocal microscopy. Thankyou also to Dr Andrew Fenning for his 

initial help with microelectrode studies. I am especially grateful to Mr Paul 

Addison, also of the Department of Physiology and Pharmacology, University of 

Queensland for his continued advice and encouragement regarding the setting up 

histology facilities within our own laboratory. 

 Thankyou to Dr Peter Dunn, who was a willing source of statistical help and 

advice, in particular for all his help unravelling the vast amount of data generated in 

the aging mouse heart study. His assistance and explanations enabled me to view 

the data in a more logical manner. 

 I received assistance with electronics and constructing MAP and TAP 

apparatus from Oliver Kinder (Workshop Manager), Graham Holmes and Stewart 

Cornford (Department of Physics). I am grateful for their expert workmanship, and 

patience with my many and varied requests for help. 

 The technical and administrative staff from the Department of Biology, 

University of Southern Queensland, were a source of constant help and friendship. 

Thankyou Pat McConnell, Julie Murphy, Adele Jones, Mo Boddington, Vic Schultz, 

Debbie White, Ros Gill, Kath O’Donnell, Bob Coy and Sandra Sharp. Sandra and 

Julie’s high standards of animal care were always exemplary. 

 v



 Thankyou to the Oakey Veterinary Hospital for their kind loan of 

radiographic equipment and facilities for both x-ray studies. Thanks also to Helen 

Posselt, physiotherapist from Montrose Access, for useful discussions and papers on 

kypho-scoliosis in boys with Duchenne Muscular Dystrophy. 

 The staff of the Office of Research and Higher Degrees were always willing 

to assist in any way they could. Thankyou Ruth Hilton, Christine Bartlett, Trish 

Lowein and Carla Hamilton for your professionalism and support over the past few 

years. 

 Thanks are due also to all the Science IT staff, including Chris de Byl, 

Sammy Quattromani, Phil Hallas and Steve Payne, for their efforts in keeping the 

lab computers functioning and sorting out numerous small problems as they arose. 

 Thankyou to Dr Marie Ward from Auckland University, NZ, who gave 

advice via e-mail concerning ventricular trabeculae preparations.  

 Thankyou also to Drs Steve Wilton and Sue Fletcher, and Kaite Honeyman 

from Neuromuscular Research Institute, University of Western Australia for their 

generous help and advice with the anti-sense oligonucleotide aspect of this study.  

 I am grateful for the friendship and help from fellow researchers Christel, 

Peter, Scott Kershaw, Mike, Dave, Connie, Garth, Scott Fry, Austin, Rebecca, Xiao 

and Helen 

 Finally, my love and gratitude to Glen, Michael and Patrick: I cannot thank 

you enough for the support, tolerance and good humour you showed me at all times. 

  

  

 

 

 

 

 

 

  

  

 vi



TABLE OF CONTENTS 
CHAPTER 1. INTRODUCTION: DUCHENNE MUSCULAR 

DYSTROPHY, LITERATURE REVIEW AND SCOPE OF 

STUDY 
1.1 Duchenne Muscular Dystrophy 

1.1.1    Brief history of DMD............................................................................ 1 

1.1.2    Clinical features of DMD...................................................................... 3 

1.2 The dystrophin gene:room for error 

1.2.1    Incidence of DMD................................................................................. 6 

1.2.2    Gene structure and isoforms.................................................................. 6 

1.2.3    Mutation ‘hot spots’ in DMD................................................................ 6 

1.2.4    Becker Muscular Dystrophy.................................................................. 7 

1.2.5    Utrophin................................................................................................. 7 

1.3 Dystrophin: more than a scaffold 

1.3.1    Structure of dystrophin.......................................................................... 8 

1.3.2    Mechanical role of dystrophin............................................................. 10 

1.3.3    Cell signalling...................................................................................... 11 

1.3.4 Calcium homeostasis........................................................................... 12 

1.4 Pathophysiology of dystrophin deficient muscle 

1.4.1    Initiation of necrosis............................................................................ 13 

1.4.2    Downstream events ............................................................................. 13 

1.4.3    Myocyte regeneration and fibrosis ...................................................... 14 

1.4.4    Gene expression .................................................................................. 14 

1.5  Dystrophin deficiency in species other than man 
1.5.1    Range of animal models for DMD...................................................... 17 

1.5.2    Hypertrophic Feline Muscular Dystrophy cat ..................................... 17 

1.5.3    Golden Retriever Muscular Dystrophy dog ........................................ 18 

1.5.4    The mdx mouse 

            1.5.4 i The natural history of the mdx.................................................. 20 

            1.5.4ii  Skeletal muscle necrosis ......................................................... 20 

 vii



            1.5.4iii Muscle hypertrophy in the mdx............................................... 21 

            1.5.4 iv The mdx diaphragm: the ‘gold standard’................................ 22 

            1.5.4v  Cardiomyopathy in the mdx .................................................... 22 

            1.5.4vi  Genetic mutations in the mdx ................................................ 23 

            1.5.4 vii Shortcomings and strengths of the mdx model .................... 24 

1.6 Drug therapy for Duchenne Muscular Dystrophy 

1.6.1    Glucocorticoids ................................................................................... 25 

1.6.2    Creatine monohydrate ......................................................................... 26 

1.6.3    Alternative pharmacological agents .................................................... 26 

1.7 Gene therapy for Duchenne Muscular Dystrophy 

1.7.1 Dystrophin expression cassettes.......................................................... 28 

1.7.2 Vectors for gene delivery .................................................................... 28 

1.7.3 Cardiovascular gene therapy ............................................................... 29 

1.7.4 Clinical trials into gene therapy for DMD........................................... 30 

1.8 Ex vivo strategies using myoblasts or stem cells  

1.8.1    Myoblast transplantation ..................................................................... 30 

1.8.2    Stem cell therapy ................................................................................. 31 

1.9 Strategies to upregulate utrophin .......................................................... 31 

1.10 Gene repair strategies 

1.10.1  Aminoglycosides ................................................................................. 32 

1.10.2   Antisense oligonucleotides (AOs) 

           1.10.2i The theoretical basis to AO use................................................ 32 

           1.10.2ii The structure and action of AOs ............................................. 36 

           1.10.2iii  Development of AOs and potential applications .................. 36 

1.11 Aims and Scope of study 

1.11.1 Atrial function and cardiac fibrosis in aging mdx .............................. 39 

1.11.2 Monophasic action potentials and trabeculae contractility ................. 40 

1.11.3 Diaphragm function and fibrosis in aging mdx ................................... 41 

1.11.4 Progression of kyphosis in aging mdx ................................................. 41 

1.11.5 AO administration into mdx diaphragm muscle ................................. 41 

1.11.6 Long term administration of AO’s into paraspinal muscles of mdx.... 42  

 viii



CHAPTER 2. THE AGING MDX MOUSE: ATRIAL FUNCTION 

AND CARDIAC FIBROSIS 
2.1 Introduction ............................................................................................. 44 

2.2 Aims .......................................................................................................... 45 

2.3 Methods .................................................................................................... 46 

2.3.1  Mouse numbers and groupings.............................................................. 47 

2.3.2  Transmembrane action potentials and contractility of atria .................. 48 

2.3.3  Collagen measurements......................................................................... 48 

2.4  Statistics................................................................................................... 49 

2.5 Results  

2.5.1 Morphometry.......................................................................................... 50 

2.5.2 Transmembrane action potential recordings .......................................... 52 

2.5.3 Atrial isometric force and calcium induced inotropy............................. 54 

2.5.4 Collagen measurements 

         2.5.4a Study 1......................................................................................... 57 

         2.5.4b Study 2......................................................................................... 60 

2.6 Discussion ................................................................................................. 64 

 

CHAPTER 3. THE AGING MDX MOUSE: DIAPHRAGM 

FUNCTION AND FIBROSIS 

3.1  Introduction ............................................................................................ 70 

3.2  Aims ......................................................................................................... 73 

3.3  Methods ................................................................................................... 73 

3.3.1  Mouse numbers and grouping ............................................................... 73 

3.3.2  Organ bath experiments......................................................................... 74 

3.3.3  Quantitation of collagen ........................................................................ 75 

3.3.4  Diaphragm injection technique ............................................................. 75 

3.4  Statistics................................................................................................... 76 

3.5   Results 

3.5.1   Morphometry........................................................................................ 76 

 ix



3.5.2   Diaphragm contractility........................................................................ 77 

3.5.3   Diaphragm fibrosis ............................................................................... 78 

3.5.4 Diaphragm injections .......................................................................... 79 

3.6   Discussion ............................................................................................... 79 

CHAPTER 4. THE AGING MDX MOUSE: PROGRESSION OF 

KYPHOSIS 

4.1   Introduction ........................................................................................... 83 

4.2 Aims ........................................................................................................ 84 

4.3   Methods .................................................................................................. 85 

4.3.1  Mouse numbers and groupings.............................................................. 85 

4.3.2  Radiographic studies and establishment of Kyphotic Index ................. 86  

4.3.3  Measurement of thoracic area ............................................................... 88 

4.3.4  Contractility  studies.............................................................................. 89 

4.3.5  Hydroxyproline analysis........................................................................ 90 

4.3.6  Histology ............................................................................................... 91 

4.4  Statistics................................................................................................... 91 

4.5   Results..................................................................................................... 92 

4.5.1  Gross findings........................................................................................ 92 

4.5.2  Kyphotic Index ...................................................................................... 92  

4.5.3  Thoracic Area ........................................................................................ 93 

4.5.4  Muscle contractility............................................................................... 94 

4.5.5  Hydroxyproline analysis........................................................................ 97 

4.6   Discussion ............................................................................................. 101 

 

CHAPTER 5: ANTISENSE OLIGONUCLEOTIDE 

ADMINISTRATION INTO MDX DIAPHRAGM MUSCLE 
5.1   Introduction ......................................................................................... 105 

5.2   Aims ...................................................................................................... 105 

5.3   Methods ................................................................................................ 105 

5.3.1    Mouse numbers and grouping ........................................................... 105 

 x



5.3.2    Anaesthesia and surgery.................................................................... 107 

5.3.3 Oligonucleotides................................................................................ 108 

5.3.4 Contractility studies........................................................................... 109 

5.3.5 Hydroxyproline analysis.................................................................... 109 

5.3.6    Western blotting ................................................................................ 110 

5.3.7    Histology of diaphragm samples....................................................... 110 

5.4      Statistics............................................................................................. 111 

5.5       Results............................................................................................... 111 

5.5.1 Mouse survival and evaluation of surgery ........................................ 111 

5.5.2 Body weight ...................................................................................... 111 

5.5.3    Contractility studies........................................................................... 112 

5.5.4    Hydroxyproline analysis.................................................................... 115 

5.5.5    Western Analysis............................................................................... 116 

5.5.6    Histology ........................................................................................... 117 

5.6       Discussion ......................................................................................... 120 

 

CHAPTER 6: LONG TERM ADMINISTRATION OF 

ANTISENSE OLIGONUCLEOTIDES INTO THE PARASPINAL 

MUSCLES OF MDX MICE 
6.1     Introduction ....................................................................................... 123 

6.2     Aims .................................................................................................... 124 

6.3     Methods .............................................................................................. 124 

6.3.1   Mouse numbers and grouping ............................................................ 125 

6.3.2    Anaesthesia for radiography and administration of AOs .................. 125 

6.3.3    Antisense oligonucleotides................................................................ 126 

6.3.4    Radiography and determination of Kyphosis Index.......................... 127 

6.3.5    Contractility studies........................................................................... 128 

6.3.6    Hydroxyproline analysis.................................................................... 129 

6.3.7    Histology ........................................................................................... 129 

6.4      Statistics............................................................................................. 130 

6.5      Results................................................................................................ 130 

 xi



6.5.1    Evaluation of long term AO administration ...................................... 130 

6.5.2    Kyphotic Index .................................................................................. 130 

6.5.3    Muscle contractility........................................................................... 134 

6.5.4    Quantitation of collagen .................................................................... 137 

6.5.5    Histology ........................................................................................... 141 

6.5.6    Western blots..................................................................................... 145 

6.6       Discussion ......................................................................................... 145 

 

CHAPTER 7: CONCLUSIONS AND IMPLICATIONS FOR 

FURTHER STUDY ............................................................................... 149 

 

BIBLIOGRAPHY .................................................................................. 152 

 
APPENDIX A: DEVELOPMENT OF NEW TECHNIQUES 

A1:  CARDIAC MONOPHASIC ACTION POTENTIALS 
A1.1 Introduction ......................................................................................... A1 

A1.2 Methods ................................................................................................ A2 

A1.2.1 Langendorff perfused murine heart model ......................................... A2 

A1.2.2 Equipment........................................................................................... A3 

A1.2.3  Monophasic Action Potential Recordings ......................................... A4 

A1.3  Quality criteria for MAP recordings from murine hearts.............. A5 

A1.3  Results.................................................................................................. A7 

A1.4  Discussion ............................................................................................ A9 

A2: TRANSMEMBRANE ACTION POTENTIALS AND 

FUNCTION OF VENTRICULAR TISSUE 

A2.1 Introduction ....................................................................................... A10 

A2.2 Methods .............................................................................................. A10 

A2.3 Results................................................................................................. A12 

A2.4 Discussion ........................................................................................... A13 

References ................................................................................................... A14 

 xii



 

APPENDIX B: RECIPES AND PROTOCOLS 

B1: HYDROXYPROLINE ASSAY 

B1.1 Equipment............................................................................................ A17  

B1.2 Reagents............................................................................................... A17 

B1.3 Sample Preparation.............................................................................. A18 

B1.4 Assay Procedure .................................................................................. A18 

B2: HISTOLOGY RECIPES AND PROTOCOLS 
B2.1 Prestain and fixative recipes ................................................................ A22 

B2.2 Tissue processing and wax embedding................................................ A22 

B2.3 Cutting and mounting .......................................................................... A23 

B2.4 Staining ................................................................................................ A24 

B2.5 Photography and analysis .................................................................... A27  

B3 : WESTERN BLOT  
B3.1 Recipes................................................................................................. A28 

B3.2  Protein extraction................................................................................ A30 

B3.3  Protein Quantitation............................................................................ A30 

B3.4  Mini Gel Electrophoresis.................................................................... A31 

B3.5  Western Transfer ................................................................................ A33 

B3.6  Antibody incubation ........................................................................... A35 

B3.7  Antibody detection.............................................................................. A35 

B3.8  Chemiluminescence and film development........................................ A35 

B3.9  Results................................................................................................. A36 

B4: SKELETAL MUSCLE ORGAN BATH PROTOCOLS 
B4.1 Krebs Physiological Saline Solution recipe......................................... A37  

B4.2 Experimental equipment and protocol................................................. A37 

B5: MICROELECTRODE STUDIES 
B5.1 Tyrodes Physiological Saline Solution recipe ..................................... A39  

B5.2 Experimental equipment...................................................................... A39 

B5.3 Experimental protocol for TAPs and atrial contractility .................... A41 

 xiii



LIST OF FIGURES 
Fig 1.1 Illustrations from early treatises on Duchenne Muscular Dystrophy. .. 5 

Fig 1.2 Schematic representation of the dystrophin gene ................................. 7 

Fig 1.3 The dystrophin-glycoprotein complex of skeletal muscle.................... 9 

Fig 1.4 Pathophysiological processes in muscle lacking dystrophin .............. 16 

Fig 1.5 Feline and canine muscular dystrophy................................................ 19 

Fig 1.6 The natural history of the mdx mouse................................................. 21 

Fig 1.7 Events involved in mammalian gene expression................................ 33 

Fig 1.8 Mutations of the dystrophin gene leading to DMD and BMD ........... 34 

Fig 1.9 Use of AOs in mdx mice to induce exon-skipping ............................. 35 

Fig 1.10 Examples of successful AO treatment .............................................. 36 

Fig 1.11 Overall plan of research studies........................................................ 43 

 

Fig 2.1 Diagram detailing the mouse numbers and groups............................. 47  

Fig 2.2 Morphometry data from aging mice ................................................... 51 

Fig 2.3 TAP durations across age ranges ........................................................ 53 

Fig 2.4 Action Potential waveforms in aged mdx and C57 mice .................... 54 

Fig 2.5 Isometric twitch forces in aging mdx and C57 mice........................... 55 

Fig 2.6 Changes in isometric twitch waveforms with age .............................. 56 

Fig 2.7 Left atrial and left ventricular hydroxyproline ................................... 57  

Fig 2.8 Left ventricular collagen..................................................................... 58 

Fig 2.9 Representative photomicrographs of left ventricular sections............ 59 

Fig 2.10 Left atrial, right atrial and left ventricular hydroxyproline............... 60 

Fig 2.11 Cardiac collagen in young and old mice........................................... 61 

Fig 2.12 Photomicrograph of a heart apex from a 17-month-old mdx............ 62 

Fig 2.13 Fibrosis in mdx and control mice hearts ........................................... 63 

 
Fig 3.1 H&E stained diaphragm sections........................................................ 71 

Fig 3.2 Body weights of aging mice used for diaphragm study...................... 76 

 xiv



Fig 3.3 Peak diaphragm twitch and tetanic forces .......................................... 77 

Fig 3.4 Diaphragm hydroxyproline values...................................................... 78 

Fig 3.5 Decline in twitch force and increase in fibrosis in aging mdx ........... 81 

 

Fig 4.1 Whole body photographs of young and aged mdx and control mice.. 84 

Fig 4.2 Mice undergoing radiography for determination of KI ...................... 86 

Fig 4.3a. Method of measurement of KI in boys with DMD.......................... 87 

Fig 4.3b. KI in mice ........................................................................................ 88 

Fig 4.4 Assessment of thoracic area in mice................................................... 89 

Fig 4.5  Kyphotic Index of aging mdx and control mice................................. 92 

Fig 4.6  Examples of mouse radiographs used for calculation of  KI............. 93 

Fig 4.7  Hydroxyproline content of paraspinal and respiratory muscles ........ 97 

Fig 4.8 Histological score based on interstitial fibrosis .................................. 98 

Fig 4.9 Frequency distribution of internal nuclei in paraspinal muscles ........ 99 

Fig 4.10 Photomicrographs of H&E stained paraspinal muscles.................... 99 

Fig 4.11 Picrosirius red stained muscle sections of paraspinal muscles ....... 100 

 

Fig 5.1 Grouping and numbers of mice for diaphragm AO study ................ 106 

Fig 5.2 Approximate sites of diaphragm AO injections ............................... 107 

Fig 5.3 Genomic sequence of mouse dystrophin gene.................................. 108 

Fig 5.4 Diaphragm twitch force results......................................................... 112 

Fig 5.5 Diaphragm tetanic force results ........................................................ 113 

Fig 5.6 Twitch /tetanus ratio of isolated diaphragm strips............................ 114 

Fig 5.7 Hydroxyproline values of diaphragm strips...................................... 116 

Fig 5.8 Western blot of individual diaphragm strips..................................... 116 

Fig 5.9 Histological analysis of diaphragm muscle ...................................... 117  

Fig 5.10 Picrosirius red stained diaphragm sections..................................... 118 

Fig 5.11 H&E stained diaphragm sections.................................................... 119 

 

Fig 6.1 Groups for administration of AOs into the paraspinal muscles........ 125 

Fig.6.2 Genomic sequence of the mouse dystrophin gene............................ 127 

 xv



Fig 6.3 Spread of histology dye injections in the paralumbar muscles......... 128  

Fig 6.4 Kyphotic Index in AO treated mice.................................................. 133 

Fig 6.5 Representative radiographs from AO treated mice........................... 134 

Fig 6.6 Twitch and tetanic forces from AO treated muscles.................. 136,137 

Fig 6.7 Hydroxyproline content of AO treated muscles ............................... 138 

Fig 6.8 Fibrosis of muscles measured by picrosirius red staining ................ 139 

Fig 6.9i) Latissimus dorsi and longissimus dorsi stained with picrosirius ... 140  

Fig 6.9ii) Diaphragm and intercostal stained with picrosirius red ................ 141 

Fig 6.10 Incidence of muscle fibres with centrally located nuclei................ 142 

Fig 6.11(i) H&E sections of latissimus dorsi and longissimus dorsi ............ 143  

Fig 6.11(ii) H&E sections of diaphragm and intercostal muscles ................ 144 

Fig 6.12 Western blot of paraspinal muscles from AO treated mice ............ 145 

 

Fig A1.1 Langendorff experimental setup for ECG and MAP recordings .... A3 

Fig A1.2 Experimental setup and detail of MAP electrode ........................... A4 

Fig A1.3 Method of galvanically chloriding silver wire................................ A5 

Fig A1.4 TAP compared to MAP from normal mouse hearts ....................... A6 

Fig A1.5 Examples of MAP recordings achieved from mdx hearts............... A7 

Fig A2.1 Force recordings and TAPs from trabeculae ............................... A12 

 

Fig B1.1 Manifold used for hydroxyproline determination ......................... A19 

Fig B1.2 Hydroxyproline standard series..................................................... A20 

Fig B1.3 Example of hydroxyproline standard curve .................................. A20 

Fig B2.1 Overview of histology................................................................... A21 

Fig B3.1 Mini-gel apparatus ........................................................................ A33 

Fig B3.2 Order of components of gel sandwich .......................................... A34 

Fig B3.2 Detection of dystrophin in C57 muscles ....................................... A36 

Fig B4.1 Apparatus for skeletal muscle contractility studies....................... A38 

Fig B5.1 Diagram of microelectrode apparatus ........................................... A39 

Fig B5.2 Force transducer diagram.............................................................. A40 

Fig B5.3 Microelectrode stage for TAP and contractility studies................ A41 

 xvi



 

LIST OF TABLES 
Table 1.1 Clinical trials into alternative drug treatments of DMD................. 27 

Table 1.2 Studies into novel therapeutic agents in the mdx mouse ................ 27 

Table 4.1 Mean thoracic area of 17-month-old mice ..................................... 94 

Table 4.2 Mean Lo of muscle strips from 17-month-old mice....................... 95 

Table 4.3 Contractile properties of muscles from 17-month-old mice........... 96 

Table 5.1 Percentage fatigue of diaphragm strips ........................................ 115 

Table 6.1 Mean Lo of muscle strips from AO treated mice ......................... 135 

Table A1  MAP quality criteria ..................................................................... A6 

 

 

LAYOUT OF DISSERTATION 
A chapter format has been used for the presentation of data within this thesis as it 

was felt that individual studies were complete projects in their own right, with 

differing objectives and sometimes scientific methods. For this reason each chapter 

included a brief Introduction, Aims, Methods, Statistics, Results and finally 

Discussion. To prevent excessive repetition of methods these sections were kept 

brief and explained in greater detail in Appendix B. Likewise, a lengthy review of 

the published literature for each topic was avoided in Chapter 1, but relevant 

information was included (where applicable) as individual chapter introductions or 

within the chapter discussions. Chapter 7 provides an overview of the dissertation, 

highlighting important conclusions, shortcomings and implications for future study. 

The objective at all times was to present experimental data in context with the 

current knowledge base in the subject area, whilst providing new observations and 

insights. 

 

 

 

 

 xvii



PUBLICATIONS 
Laws, N., Woolf, P., Lu, S., Conlan, L. & Hoey, A., Research on Skeletal and 

Cardiac Muscle Dysfunction, Muscular Dystrophy 2003 Conference, Perth 

  

Hoey, A., Lu, S., Woolf, P. & Laws, N., 2003, The Mdx Mouse as a Model of Heart 

Dysfunction for DMD, Cardiomyopathy in Muscular Dystrophy, Tucson, Session 

13:40  

  

Hoey A., van Erp C., Laws N., Lu S. 2004.  The aging mdx mouse as a model of 

cardiomyopathy for Duchenne Muscular Dystrophy.  J. Mol. Cell. Cardiol. 37:174    

A36 

  

Laws N., Hoey A. (2004). Progression of kyphosis in mdx mice.  J Appl Physiol. 

97:1970-1977 

 

Laws N., Hoey A. (2004). Progression of kyphosis in dystrophin deficient (mdx) 

mice, Australian Society for Medical Research Postgraduate Conference, Brisbane 

 

PRESENTATIONS 
Laws N. (2002). The Misunderstood Mouse. Dept. of Biological and Physical 

Sciences, University of Southern Queensland Postgraduate conference.Toowoomba 

 

Laws N.  (2003) Cardiac manifestations in the mdx mouse model of Duchenne 

Muscular Dystrophy, Muscle 2003 Conference, Canberra 

 

Laws N. (2003). The Misunderstood Mouse II. Is the mdx mouse a good model for 

heart failure in Duchenne Muscular Dystrophy? Dept. of Biological and Physical 

Sciences, University of Southern Queensland Postgraduate conference. Toowoomba 

 

 xviii



ABBREVIATIONS 
AO antisense oligonucleotide 

APA action potential amplitude 

APD action potential duration 

BDM 2,3-butanedione monoxime 

BP base pair 

BPM  beats per minute 

DGC dystrophin-glycoprotein complex 

dH2O distilled water 

DNA deoxyribonucleic acid 

FOC force of contraction 

g gram 

H&E haematoxylin and eosin 

Kb kilobases 

K Da kilodalton 

LA left atria 

LVA left ventricular apex 

Lo optimum length 

M molar 

mM millimolar 

MAP monophasic action potential 

Mb megabases 

mRNA messenger RNA 

ms millisecond 

N normolar 

nNOS neuronal nitric oxide synthase 

S.E. standard error 

TAP transmembrane action potential 

TPF time to peak force 

TR50 time for 50% relaxation 

TR90 time for 90% relaxation 

 xix



 

 

 

1

 

CHAPTER 1. INTRODUCTION: DUCHENNE 

MUSCULAR DYSTROPHY, LITERATURE REVIEW 

AND SCOPE OF STUDY. 
The disease is one of the most interesting and at the same time most sad…  

       Sir William Gowers, Lancet 1879 

1.1 Duchenne Muscular Dystrophy 

Muscular dystrophies are a heterogenous group of hereditary diseases 

characterised by muscle necrosis, progressive muscle wasting and weakness. 

Phenotypically, they are the result of uncompensated deficiencies in metabolites or 

proteins, exceeding muscle’s demands for differentiation, maturation, growth and 

repair (Infante and Huszagh, 1999). Abortive cycles of necrosis and repair follow, 

leading to the eventual loss of satellite cells, endomysial fibrosis and adiposis. The 

majority of the dystrophies, but not all, are disorders of the dystrophin-glycoprotein 

complex that spans the sarcolemma, with Duchenne Muscular Dystrophy (DMD) 

the most prevalent and severe, usually leading to the death of affected males by their 

third decade. 

For the purposes of this review the term dystrophic applies to muscles lacking 

the protein dystrophin, including the disease in man and several animal models.  

 

1.1.1 Brief history of Duchenne Muscular Dystrophy 

Clinical descriptions of boys with progressive muscle wasting and weakness,  

enlarged calves and muscle contractures appeared in the 18th and 19th Centuries, 

authored by physicians Charles Bell (Edinburgh, 1774), Gaetano Coste (Naples, 

1836), Mr Partridge (London, 1847) and W.J. Little (London, 1853). However, the 

most complete early description of the disease came from Dr Edward Meryon 

(London, 1851), whose dissertation on 8 affected boys from 3 families suggested a 

genetic link and gender predilection. He concluded from microscopic analysis that 

the condition involved muscle tissue, and spared the nervous system. Duchenne de 

Boulogne reported some 40 cases in the 1850’s and 1860’s, including more detailed 

histology obtained from muscle biopsies. (Early history reviewed by (Gowers, 

1879) and (Emery and Muntoni, 2003)). Sir William Gowers gave a complete 



 

 

 

2

description of ‘Pseudo-hypertrophic Muscular Paralysis’ in a series of Lancet 

papers published in 1879 (Gowers, 1879). He brought attention to the common 

manifesation of muscular dystrophies now known as ‘Gower’s manoeuvre’, where 

affected individuals have difficulty rising, using their hands to incrementally walk 

up their thighs until able to stand (Figure 1.1), and the strong inheritance  from the 

maternal side ‘like haemophilia’. 

 Since these times the classification of different forms of muscular 

dystrophies, as well as identification of rare forms, has been performed. Becker 

Muscular Dystrophy (BMD), an allelic form of DMD with a milder phenotype was 

recognised (Becker and Kiener, 1955). Gene specific probes were developed and the 

cDNA was cloned and sequenced (Koenig et al., 1987), and the protein dystrophin 

was identified (Hoffman et al., 1987). Studies on the localisation (Koenig et al., 

1988) and function of dystrophin were then undertaken in earnest, most involving 

the murine model of DMD; the mdx mouse, discovered in a colony of 

C57Bl/10ScSn (Bulfield et al., 1984). The dystrophin-like protein, utrophin, was 

discovered in 1992 (Tinsley et al., 1992). 

 Early gene or myoblast transfer studies began in the 1990’s and are ongoing. 

Muscle is a vast organ presenting serious challenges to any somatic gene or cell 

replacement strategy. Adeno-viral associated mini-dystrophin research holds 

promise for the future (Xiao et al., 2000; Gregorevic et al, 2004). Aminoglycoside 

antibiotics such as gentamicin can be used to circumvent premature stop codons, 

and it is hoped new derivative drugs with a wider margin of safety can be used in 

the 10-15% of boys with this form of genetic defect (Barton-Davis et al., 1999). 

Anti-sense oligoribonucleotides offer exciting future prospects for safe and effective 

‘patching’ of mis-sense mutations, allowing a read-through of genetic information 

and production of functional dystrophin-like protein (Wilton et al., 1999; Aartsma-

Rus et al., 2002). The anticipation of a number of Stage Ι clinical trials, provides 

hope to patients and their families, although researchers agree a genetic ‘cure’ may 

realistically be one or two decades away (Scheuerbrandt, 2004). New genotyping 

techniques will allow tailoring of treatments to specific genetic lesions (Flanigan et 

al., 2003). 

 Perhaps the most recent advances in DMD research is into cardiomyopathy 

in both the mdx model and boys with DMD (reviewed by (McNally and Towbin, 
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2004), (Quinlan et al., 2004),(Yue et al., 2004), and the recognition that best 

practice treatment guidelines for cardiac monitoring and care (as promoted for 

respiratory care) can improve longetivity and quality of life (Bushby et al., 2003), 

(McNally and Towbin, 2004).  

 

 

1.1.2.Clinical features of DMD 

Boys with DMD are normal at birth, and clinical signs are not usually detected 

until after they become ambulatory. There is often delayed motor development 

(delays in sitting, standing or walking unsupported) or an abnormal gait when 

walking, running or climbing stairs. Despite an increasing understanding of DMD 

and better diagnostic testing, the average age at diagnosis in the United Kingdom is 

4 years 10 months, almost identical to that of the 1980’s (Bushby et al., 1999).  

Intellectual milestones can sometimes be delayed, in particular speech 

development, with 50-70% of DMD children having a delay in speech at 

presentation. A proportion of boys have behavioural or emotional disturbances, or 

have intellectual impairment (Emery and Muntoni, 2003). 

Enlargement of the calf muscles is a typical early sign, and this hypertrophy 

can sometimes extend to masseters, deltoids, serrati anterior and quadriceps. Muscle 

weakness is bilateral and symmetrical, resulting in well-defined physical features 

including a broad-based waddling gait, pelvic tilting, lumbar lordosis and toe 

walking. Gower’s manoeuvre is often elicited by 4-5 years of age. Shortening of the 

Achilles tendons and occasionally hip flexors and hamstrings occur (Figure 1.1). 

Respiratory muscles are never evidently weak in ambulatory children, with forced 

vital capacity measurements > 70%. 

Eventually a child with DMD will become confined permanently to a 

wheelchair, with the age that this occurs varying from 7-13 years (Emery and 

Muntoni, 2003). Functional tests, such as the Hammersmith Scale, show a 

progressive loss in motor function. As the disease progresses and muscle weakness 

becomes more profound, flexion contractures occur, and a severe kyphoscoliosis 

develops unless spinal support is provided (Smith et al., 1989).  

There is a progressive decline in pulmonary function with age, leading to 

hypercapnic respiratory failure. The age when vital capacity falls below 1L is a 
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strong marker of subsequent mortality (5 year survival <8%) (Phillips et al., 2001). 

Sleep-disordered breathing and nocturnal desaturation are common and severe in 

DMD patients (Bourke and Gibson, 2002). Cardiac manifestations range from 

subclinical, progressing to dilated cardiomyopathy and early death from heart 

failure. Clinically apparent cardiomyopathy is present in all patients over 18 years 

of age (Nigro et al., 1990), and shortens life expectancy significantly (Eagle et al., 

2002).  

Sir William Gowers poignant early descriptions of boys with DMD, with its 

accompanying illustrations (Gowers, 1879) are unfortunately still relevant today. 

DMD remains a relentlessly progressive disorder causing significant morbidity and 

early mortality, however the clinical course is altering due to improved 

physiotherapy, early introduction of antibiotics, influenza vaccination, 

glucocorticoid regimes, assistive respiratory devices and spinal stabilisation 

techniques. In particular, nocturnal ventilation has improved survival markedly from 

19 years for non-ventilated patients to 25 years for those receiving ventilation 

(Eagle et al., 2002). Improved delivery and organization of care has meant the 

difference between death in childhood and achieving an independent (although 

supported) life as adults. 
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A B

DC 

 

Fig 1.1 Illustrations from early treatises on Duchenne Muscular Dystrophy.  

A. Two young boys showing calf hypertrophy and wide based stance 

characteristic of DMD.  

B. During Gower’s manoeuvre, a boy typically uses the strength of his arms    

and hands pushing against his thighs to help him rise from a sitting position.  

C.  A patient displaying progressive weakness and lordosis.  

D.  An advanced case with severe spinal deformity and ligament contractures. 

(Figs A, B and D: (Gowers, 1879), C:(Bramwell, 1879)) 
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1.2 The dystrophin gene: room for error 

1.2.1 Incidence of DMD 

DMD is the most frequent of the lethal X chromosome-linked recessive 

disorders, with an occurrence of approximately 1 per 3,500 male births (Emery, 

1993). The mutation rate of 1 in 10,000 for the dystrophin gene is one of the highest 

mutation rates reported, and means 1 in 3 cases of DMD are the result of new, 

sporadic mutations (Muller et al., 1992).  

 

1.2.2 Gene structure and isoforms 

The dystrophin gene spans 2.4 megabases at Xp21.1 and comprises at least 85 

exons (including at least 7 promoters) that have been well conserved throughout 

vertebrate evolution (Koenig et al., 1987; Koenig et al., 1988).  

The genomic locus is nearly 200 times greater in size than the 14kb final RNA 

transcript, with a mean size of exons of 200bp and a mean size of introns of 35kb. 

The DNA encoding the DMD locus represents 1/1000 of total human DNA, and it 

has been suggested that the high frequency of DNA mutations is a direct 

consequence of the sheer size of the gene (Koenig et al., 1987). 

Dystrophin exists in a number of isoforms, with three full length transcripts 

referred to as Purkinje (P), Muscle (M) and Brain (B), reflecting those tissues in 

which they are predominately represented, and at least five other shorter transcripts 

generated by internal promotors (retina, heart, spinal cord, peripheral nerves and 

ubiquitous) (Culligan et al., 1998; Pearce et al., 1993; Emery, 2002). Figure 1.2 

shows a schematic representation of the human dystrophin gene. 

 

1.2.3 Mutation ‘hot spots’ in DMD 

  The high mutation rate and large size of the dystrophin gene has led to the 

characterisation of hundreds of independent mutations, with approximately 65% of 

patients with DMD having large deletions within the gene, centred around two 

mutation ‘hot spots’(Koenig and Kunkel, 1990). The first is located approximately 

1200kb from the 5’ end, clustered around Exons 45-55. The second is located 500kb 

from the 5’ end, clustered around Exons 1-20. 
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The size and position of the deletion does not often correlate with the clinical 

phenotype observed, an observation largely explained by the reading frame 

hypothesis (Monaco et al., 1988). The majority of frame-shift deletions in these hot 

spots result in severe DMD, as no dystrophin is produced. In-frame deletions of the 

central region of the gene that removes almost 50% of the dystrophin can result in a 

mild phenotype. 

One third of DMD mutations are estimated to arise from point mutations or 

very small deletions that introduce premature stop codons, and these are not always 

centred on the mutation hot spots (Lenk et al., 1993). 

 

1.2.4 Becker Muscular Dystrophy 

DMD is also allelic with a milder condition of similar, but slower clinical 

course, known as Becker Muscular Dystrophy (BMD) (Becker and Kiener, 1955; 

Kingston et al., 1983). BMD usually results from mutations that maintain the 

reading frame, resulting in a partially functional dystrophin transcript (Monaco et 

al., 1988), however exceptions can occur sometimes with frame shift deletions, 

truncation mutations or splice site mutations also being described in BMD patients. 

(See also Sections 1.3.1, 1.3.2) 

 

1.2.5 Utrophin 

The dystrophin coding region also demonstrates homology with other classes 

of genes, and the entire dystrophin sequence is similar to that of utrophin (Pearce et 

al., 1993). The autosomal utrophin gene, located on chromosone 6, is another large 

gene of over 1 Mb in size, encoding the protein utrophin. This protein is present in a 

wide variety of tissues, with the highest levels in lung and kidney. In developing 

skeletal muscle it is localised around the entire sarcolemma, however in adults it 

becomes restricted to the myotendinous junctions and neuromuscular junctions. It 

has sequence homology to dystrophin of over 80% (Tinsley et al., 1992). The 

utrophin gene is not mutated in DMD, hence the interest in it for gene therapy 

strategies. 
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Fig 1.2 Schematic representation of the dystrophin gene 

a) The size occupied by the gene in kilobases (kb) 

b) The location of the various first exons and promoters (represented by the 

boxes above the vertical bars that show the dystrophin exons) 

c) Names of the resultant isoforms. B1, M1 and P1 indicate Brain, Muscle and 

Purkinje cell promoters, encoding for 3 full-length isoforms. They are 

located before Exon 2 

d) Tissues in which the various isoforms are preferentially expressed 

(from (Emery and Muntoni, 2003)) 

 

 

1.3 Dystrophin : more than a scaffold. 

1.3.1 Structure of dystrophin 

Dystrophin is a minor component (by mass) of skeletal, cardiac and smooth  

muscle, comprising only 0.002% of its total protein content (Beam, 1988). Despite 

its low abundance, it is an integral part of the large group of transmembrane and 

associated proteins known collectively as the dystrophin-glycoprotein complex 

(DGC). The DGC forms a direct link between the actin cytoskeleton and the 

extracellular matrix, and breaks in this link at one or more levels give rise to 

muscular dystrophy phenotypes. Figure 1.3 illustrates the arrangement of dystrophin 

serving as a bridge between the sarcolemma and sub-sarcolemmal actin filaments. 



 

 

 
Full-length dystrophin is a very large molecular weight protein (427 

kilodaltons), that is described as having four structural domains (Hoffman et al., 

1987). The N-terminal domain shows homology to α-actinin and binds F-actin in 

vivo and in vitro. One trangenic mouse study indicated that an intact actin-binding 

domain is not essential  (Corrado et al., 1996), however deletions of the amino 

terminal and rod actin binding domains result in severe pathology (Cox et al., 

1994). 

 

 

 

N-terminus 

C-terminus

Central rod domain 

Fig 1.3 The dystrophin-glycoprotein complex of skeletal muscle. The diagram 

shows the arrangement of DGC constituents in the sarcolemma and sub-

sarcolemmal areas. Abbreviations: ss = sarcospan, DB= dystrobrevin, syn= 

syntrophin, nNOS= neuronal nitric oxide synthase. 

(adapted from (Spence et al., 2002)) 
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A large central rod domain with 24 spectrin-like repeats follows this. The 

entirety of this domain appears not to be critical, as many mild Becker patients may 

have large in-frame deletions (for example from exon 17-48) that results in lengthy 

deletions in the rod domain (England et al., 1990).  

 The WW region, which separates the rod from the cysteine-rich domain is 

involved in the interaction of dystrophin with β-dystroglycan, and is a motif found 

in proteins with signalling and regulatory functions. Next comes the cysteine rich 

domain containing sequences involved in calcium binding, and calmodulin binding 

in a calcium dependant manner. Deletions within the cysteine rich regions disrupt 

the interaction between dystrophin and the glycoprotein complex and leads to severe 

dystrophic pathology (Rafael et al., 1996). 

Coiled-coil regions forming the C-terminus bind dystrobrevin, and the 

alternatively spliced region binds syntrophin. The exact function of dystrobrevin 

and syntrophin have not been entirely elucidated, however there is evidence they 

have roles in cell signalling through their binding with neuronal nitric oxide 

synthase (nNOS), sodium channels and various kinases. Deletions of the extreme C-

terminus and alternatively spliced region have no apparent effect on the function of 

dystrophin (Rafael et al., 1996). 

Analysis of dystrophin-deficient mdx mice and DMD patients shows that 

critical mutations causes a loss of the DGC at the myocyte membrane and de-

stabilisation of the whole complex, even though the DGC genes are still transcribed 

and translated (Ervasti et al., 1990). 

 

1.3.2 Evidence for a mechanical role for dystrophin 

The characterisation of the DGC has provided considerable evidence for 

dystrophin acting as a link between the glycoprotein complex and the sub-

sarcolemmal actin cytoskeleton. The linkage between the cytoskeleton and the 

extracellular matrix via dystroglycan is a likely mechanism for anchoring muscle 

cells, stabilising the membrane and protecting the sarcolemma from the stresses 

involved in muscle contraction  (Campbell, 1995). 

Dystrophin is localised to the sarcolemma at those areas of muscle under 

maximum longitudinally and radially transmitted stresses, and at the myotendinous 

junctions (Bonilla et al., 1988); (Petrof, 1998a). 
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 There is conflicting evidence whether dystrophic muscle is more 

susceptible to contraction induced injury using in vivo and in vitro methods. Mdx 

mice subject to markedly increased respiratory muscle workloads by tracheal 

banding did not show an expected increase in severe diaphragm pathology 

(Krupnick et al., 2003). Limb muscles subject to eccentric contractions however, 

did show fibre damage, measured by fluorescent dye leakage (Petrof et al., 1993a; 

Petrof, 1998a). 

 Leakage of muscle enzymes (pyruvate kinase and creatine kinase) into the 

serum occurs in mdx mice, DMD patients (and sometimes non-manifesting carriers) 

and occasionally BMD patients. Mdx muscle fibres also show an increased 

permeability to Evans Blue and Procion Orange, indicative of significant membrane 

lesions (Matsuda et al., 1995).  

 

1.3.3 Cell signalling role for dystrophin 

The DGC is a multifunctional protein complex, and there are strong 

arguments that its primary role is transmembrane signalling (Rando, 2001). The 

mechanisms of cell death due to mutations of the DGC are related to cell survival 

pathways and cellular defence mechanisms regulated by those signalling cascades. 

Components of the DGC are not muscle specific, but are widespread, suggesting 

universal and vital functions. 

There are numerous signalling molecules associated with the DGC, and the 

list continues to grow. They include calmodulin (which binds dystrophin and 

syntrophin), calmodulin-regulated kinases, Grb2 and nNOS. nNOS binds to 

syntrophin, which binds to dystrophin and  α-dystrobrevin. The product of nNOS, 

nitric oxide (NO) has cell protective properties, including actions as a free radical, 

the induction of cGMP-dependant cell survival pathways and a local vasodilatory 

effect on vascular smooth muscle, resulting in less ischaemic injury to skeletal 

muscle cells. nNOS is absent in the sarcolemmal or cytoskeletal fractions of mdx 

mice (Brenman et al., 1995b), however mice deficient in dystrophin and nNOS do 

not have an exacerbation of muscle pathology (Crosbie et al., 1998);(Chao et al., 

1998). 

Evidence from transgenic mouse studies expressing the Dp71 isoform 

further elucidates the role of dystrophin. This isoform restores the DGC at the cell 
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membrane, however a severe phenotype still results, suggesting that the N and C 

terminal domains are required for normal dystrophin function, including cell 

signalling (Cox et al., 1994). 

 

1.3.4 Calcium homeostasis 

Early studies showed increased deposits of calcium (demonstrated by 

alizarin red stain) in muscle biopsies of DMD patients (Bodensteiner and Engel, 

1978). The processes of this calcium entry remain controversial. There is an 

increased activity of plasma membrane Ca2+ channels in myotubes of DMD patients 

and the mdx mouse at a time when dystrophin is first expressed (Fong et al., 1990), 

although other researchers could not verify these findings in the muscles of young 

mice (Head, 1993). Patch clamp studies demonstrated calcium entry through novel 

stretch inactivated ion channels in mdx myotubes, which could account for 

sufficient Ca2+ influx to elevate intracellular Ca2+ to pathological levels (Franco and 

Lansman, 1990). Recently new fluorescent techniques showed higher calcium in 

mdx myotubes and adult mdx fibres. These effects can be inhibited by the ion 

channel blockers nifedipine and amiloride(Hopf et al., 1996; Tutdibi et al., 1999).  

While some researchers argue that calcium accumulation is secondary to the 

degenerative processes occurring in dystrophin-deficient muscle, and not an 

inherent property of it (McArdle et al., 1995; Reeve et al., 1997), there is growing 

evidence using patch clamp techniques that subsarcolemmal accumulation of 

calcium in mdx muscles is high enough to induce Ca2+-induced-K+ release upon 

depolarisation. In addition there is passive influx of Ca2+ and an increased number 

of entry sites in dystrophic muscle (Mallouk and Allard, 2002; Mallouk et al., 2000) 
While it is unlikely that the DgC is an integral component of  Ca2+ channels 

itself, it could play a role in the proper organisation of such channels within the 

membrane, as well as the transmission of mechanical signals to channel gating 

mechanisms (Rando, 2001). 
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1.4 Pathophysiology of dystrophin deficient muscle 

1.4.1 Initiation of necrosis 

Cell death in dystrophic muscle is not inevitable, but reflects a propensity 

that varies between muscles, changes with age and differs between species. Many 

characteristics of dystrophic muscle are stereotypic for necrotic processes, including 

raised intracellular Ca2+, increased volume of the sarcoplasmic reticulum, abnormal 

morphology of mitochondria and inflammation  (Bulfield et al., 1984; Anderson et 

al., 1988);  (Cullen M.J. and Jaros, 1988); (Stedman et al., 1991). The initiating 

event in the dystrophic process remains contentious, with arguments for and against 

elevated Ca2+, membrane damage or apoptosis acting as triggers (Tidball et al., 

1995).  

There appears to be no close connection between mechanical loading and 

cell death, with one study showing decreased degeneration in the limb muscles of 

exercised mdx mice (Dupont-Versteegden et al., 1994b), while another contrasting 

study employing immobilisation of mdx hind limbs by splinting also resulted in a 

significant reduction in degeneration (Mokhtarian et al., 1999). Recent cardiac 

studies showed that mechanical stress such as exercise or aortic banding was 

necessary to cause significant heart pathology (Danialou et al., 2001b; Nakamura et 

al., 2002).  

Myonuclear studies demonstrating fragmented double stranded DNA, and 

abnormal chromatin in mdx muscles lends weight to a primary apoptotic process 

followed by necrosis (Tidball et al., 1995). This scenario does not rule out the role 

of high intracellular Ca2+, as raised calcium is a common occurrence in well-

documented models of apoptosis (Cohen and Duke, 1984). High Ca2+ can cause 

necrosis, but may also be an initiator of apoptosis (Tidball et al., 1995). 

 

1.4.2 Downstream events 

The abnormally high Ca2+ content of dystrophic muscle activates calcium 

dependant proteases (especially calpains) that cause widespread proteolysis (Turner 

et al., 1988; Turner et al., 1993). Proteases can themselves modify calcium leak 

channels, thus a vicious cycle of disorded calcium homeostasis ensues (Alderton 

and Steinhardt, 2000). Mitochondrial overload occurs also, with the result being a 
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reduction in oxidative phosphorylation and eventual cell death. Additional 

mechanisms play a role in the pathogenesis of DMD, including defective glucose 

utilisation, a blunted vascular response to exercise, increased susceptibility to 

cytokines and oxidative stress, and aberrant cell signalling (Rando et al., 1998; 

Thomas et al., 1998; Heydemann and McNally, 2004). A schematic representation 

of the patho-physiological sequences in dystrophic muscle is shown in Figure 1.4. 

 

1.4.3 Myocyte regeneration and fibrosis  

Normal muscle is post-mitotic, but is capable of regenerating due largely to 

the proliferation of a population of mononuclear muscle precursor cells (satellite 

cells) within the basement membrane of fibres (Ferrari et al., 1998). In dystrophic 

muscle, regeneration fails to keep up with necrosis, so that atrophy eventually 

results. DMD muscle precursor cells in culture show fewer replications than age 

matched controls, thought to be due to shortened telomere lengths from prior 

replication cycles in vivo (Decary et al., 2000). There may also be a role for insulin-

like growth factor 1, as mice over-expressing this cytokine show decreased 

myonecrosis, improved muscle regeneration and protection against apoptosis 

(Barton et al., 2002).  

Chronic accumulation of fibrous tissue is a hallmark of dystrophy in both 

boys with DMD and the mdx mouse. Studies have demonstrated the role of T 

lymphocytes in this process, particularly in the diaphragm (Morrison et al., 2000). 

Transforming growth factor-β1 has also been mooted as a mediator of fibrosis in 

DMD (Bernasconi et al., 1999) and the canine model of DMD (Passerini et al., 

2002). 

 

1.4.4 Gene expression  

In recent years there has been interest in screening muscle cDNA arrays 

from DMD patients. Upregulation of 4 mitochondrial mRNA transcripts were found 

in one study, despite diminished mitochondrial enzyme activity. This upregulation 

of mRNA in response to low protein levels may be a short-term compensatory 

response, or due to oxidative damage, which is particularly important in 

mitochondrial compartments (Tkatchenko et al., 2001). Titin mRNA was markedly 

downregulated in this study, which, given titin’s role in muscle fibre elasticity and 
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formation of thick filaments, could contribute to sarcomere disorganisation and 

myofibril fragility during contractions. Another study found 80 downregulated 

genes, 36% of which were mitochondrial genes, while 12% involved cell signalling 

or cell growth and differentiation. The largest group of upregulated genes were 

developmentally regulated genes such as  cardiac α-actin, embryonic myosin heavy 

chain, acetylcholine receptors and others (Chen et al., 2000). Noguchi and 

coworkers were the first to highlight differences between individual DMD patients 

at a molecular level, noting differences in gene expression for HLA-related proteins, 

myosin light chains and troponin T (Noguchi et al., 2003). Temporal gene 

expression studies from mdx diaphragms provided evidence that secondary factors 

are important in dystrophies, with coordinated increases of many cytokines, 

chemokines, leucocyte adhesion factors and complement system activators (Porter 

et al., 2002)  

 

 The multitudinous complex pathways involved in the progression of DMD 

pathology still require extensive unravelling. Debates over initiating events, 

exacerbating factors, the relative importance of cell signalling pathways, up- or 

downregulated genes, and oxidative damage are ongoing. Far from being solely 

academic arguments, the elucidation of these hierarchical or causal relationships 
will go a long way to influence the development and targeting of future therapies. It 

is likely that further gene expression profiling will facilitate this process. The lack 

of inevitability of early and widespread necrosis in all models of dystrophy means 

novel pharmaco- or genetic therapies could have an eventual role in modifying 

severe dystrophic phenotypes by controlling downstream events.  
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Dystrophin-glycoprotein complex 
fragility 
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Calcium influx into sub-sarcolemmal area

Mechanical 
activity 

Membrane 
damage 
Activation of 
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Calcium overload of 
cytoplasm, 
nucleus, 
mitochondria and 
sarcoplasmic 
reticulum 

Secondary changes: 
Altered gene transcription 
Enzyme activation 
Mitochondrial damage 
Myofibril damage 
Cell signalling disruption 
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DYSTROPHIN DEFICIENT 
             MUSCLE 

Fig 1.4 Pathophysiological processes occurring in muscle lacking dystrophin 
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1.5  Dystrophin deficiency in species other than man 
1.5.1 Range of animal models for DMD 

 There are a number of naturally occurring dystrophin deficient animal 

species, and many more transgenic models. The most widely used is the muscular 

dystrophy X-linked mouse (mdx), discovered in a colony of C57Bl/10ScSn mice in 

Scotland when screening the colony for the serum enzymes pyruvate kinase and 

creatine kinase (Bulfield et al., 1984). The canine model for DMD, the Golden 

Retriever Muscular Dystrophy dog (GRMD) was recorded a few years later 

(Kornegay et al., 1988). The first dystrophin-deficient cats were shown to have 

remarkable muscle hypertrophy and histological features of necrosis and 

regeneration, but not fibrosis (Carpenter et al., 1989). These 3 species will be 

discussed in greater detail below. 

 There are a variety of other models including the dystrophic chicken 

(Dawson, 1966), sheep (Paulson et al., 1966), cow (Poukka, 1966), zebrafish, Danio 

reio, (Chambers et al., 2001; Bolanos-Jimenez et al., 2001; Lu et al., 2003), and 

nematode, Caenorrhabditis elegans, (Mariol and Segalat, 2001). The use of these 

models is not widespread, due largely to their phenotypic or genetic dissimilarity to 

DMD.   

 
1.5.2 Hypertrophic Feline Muscular Dystrophy cat 

 The first description of X-linked muscular dystrophy in cats was of two male 

littermates at 23 months of age (Carpenter et al., 1989). Both animals showed 

pronounced hypertrophy of tongue, neck, trunk, limbs and diaphragm, hypertrophic 

cardiomyopathy and evidence of muscle fibre necrosis on histological examination. 

Two domestic shorthair cats with stiff gaits, salivation and lingual hypertrophy were 

diagnosed with muscular dystrophy based on severe histopathological changes in 

their skeletal muscles (myocyte hypertrophy, splitting of fibres and calcium 

deposition) and absence of dystrophin, and were subsequently used to establish a 

colony of HFMD cats at the University of Berne, Switzerland (Gaschen et al., 

1992). Their muscle hypertrophy is a true hypertrophy (rather than 

pseudohypertrophy as seen in DMD), there is little muscle weakness and, with the 

exception of diaphragm muscles in older animals (6-9 months of age), they tend not 

to develop endo- or perimysial fibrosis. The genetic lesion is a deletion of the 
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muscle and Purkinje promoter (Winand et al., 1994). This tends to be a lethal 

genetic defect due to secondary complications such as megaoesaphagus (due to 

constriction by the hypertrophic diaphragm), failure to eat or drink, and renal failure 

(Gaschen et al., 1992). Figure 1.5 shows examples of histopathological and clinical 

features of FHMD. 

 

1.5.3 Golden Retriever Muscular Dystrophy dog 

  The GRMD dog has been recognised as an excellent model for research into 

DMD for several decades, and there are now colonies established throughout the 

world, including the United States, Japan, France and Italy. Like DMD, affected 

animals show muscle weakness, elevated serum creatine kinase levels, features of 

multifocal muscle fibre necrosis and regeneration as well as significant fibrosis with 

contracture (Figure 1.5). Electron microscopy showed disruption of myofibrillar 

architecture, particularly in the subsarcolemma, and increased numbers and size of 

mitochondria (Kornegay et al., 1988).  

The genetic defect is a splice site mutation in Exon 6, leading to deletion of 

Exon 7 (Fletcher et al., 2001). Interestingly, although no dystrophin is detected by 

immunohistochemical methods, GRMD dogs may show low level, widespread 

dystrophin using Western blotting.  This suggests that some dogs may use a 

mechanism of alternative processing of mRNA to overcome their mutation to 

produce truncated, but functional dystrophin (Schatzberg et al., 1998). This 

hypothesis could explain the variation in clinical severity noted even within litters 

(Cooper et al., 1988);(Nguyen et al., 2002), and possibly some boys with DMD 

where low level dystrophin is also present (Nicholson, 1993). 

GRMD dogs develop dilated cardiomyopathy. Echocardiographic studies 

show reduced fractional shortening and left ejection fractions, and marked left 

ventricular free wall dysfunction (Chetboul et al., 2004). 

There are a number of reported therapy trials using the GRMD dog, 

including prednisolone studies (Liu et al., 2004), adenoviral vectors expressing 

utrophin (Cerletti et al., 2003), chimeric oligonucleotide injections (Bartlett et al., 

2000); (Fletcher et al., 2001) and haemopoietic stem cell studies (Dell'Agnola et al., 

2004). The value of the GRMD model of DMD will become increasingly evident in 
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future years as research into promising new therapies hurry towards Stage 1 

clinical trials. 

 

Fig 1.5 Feline and canine muscular dystrophy 

A B

C D

A B

C D

A: Feline hypertrophic muscular dystrophy (FHMD) cat, showing muscle 

hypertrophy and stiffness of head and neck muscles, failure to groom and tongue 

protrusion. B: Histology of FHMD animals shows regeneration with central nuclei. 

C. Golden Retriever Muscular Dystrophy (GRMD), with pronounced quadriceps 

and biceps femoris atrophy. In contrast the semimembranosus, semitendinosis and 

cranial sartorius muscles are spared (arrows).* denotes femur D. The histological 

features tend to be more severe than FHMD, with endomysial and perimyseal 

fibrosis prominent. (From A.(Shelton, 1999), B (Carpenter et al., 1989), 

C:(Kornegay et al., 2003), (Kornegay et al., 1988)) 
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1.5.4 The mdx mouse 

1.5.4 i The natural history of the mdx 

It is now realised that the mdx progresses through distinct stages throughout 

its lifespan, and demonstrates varying degrees of skeletal muscle pathology and 

cardiomyopathy depending on age and muscle type (Fig 1.6). These stages impact 

on research into the pathophysiology of DMD, and the timing of therapies targeting 

dystrophic muscle. 

 

1.5.4ii  Skeletal muscle necrosis 

Mdx muscles exhibit early necrosis from day 5 after birth, but only in 

muscles of the head, trunk and girdle. There is an onset of limb muscle degeneration 

around 2 weeks, with a peak between weeks 5 and 8 weeks (Coulton et al., 1988) or 

3 weeks (Grounds  and Torrisi, 2004). The number of centrally nucleated fibres 

increases progressively to reach 50% of all fibres by 2 months and 90% by 3 months 

as the muscle regenerates. A very high centrally-nucleated fibre count is not 

general, however, and some muscles such as the diaphragm have a much lower 

count (Gillis, 1999). Although split fibres are not uncommon in the mdx, the 

presence of connective or adipose tissue is not prominent in mice up to 52 weeks of 

age (Pastoret and Sebille, 1995b). That study found that histologically degenerating 

fibres were seen until 104 weeks of age, and in these older mice large areas of 

muscles were comprised of atrophied fibres surrounded by fibrosis. Evidence of 

regeneration was rare after 90 weeks.  

This evidence of cycles of chronic degeneration of mdx muscles is supported 

by the continual leak of cytosolic enzymes throughout life (Bulfield et al., 1984; 

Coulton et al., 1988) and the high protein turnover observed in adult animals 

(MacLennan and Edwards, 1990). 

Some muscles are more selectively affected by dystrophinopathy, especially 

the diaphragm (Stedman et al., 1991) and postural muscles such as the soleus, 

intercostals and paraspinals (Lefaucheur et al., 1995). There appears to be a relative 

sparing of small fast twitch muscles (Lefaucheur et al., 1995), and extraocular 

muscles (Porter et al., 1998). 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUSCLE 
HYPERTROPHY 
STAGE 

DIAPHRAGM 
DEGENERATION 

Cycles of  
skeletal muscle 
degeneration, 
regeneration 
and fibrosis Cardiac 

fibrosis and 
dysfunction 

Muscle 
atrophy, weight 
loss  and 
kyphosis 

ACUTE NECROSIS 
STAGE 
Muscle degeneration and 
inflammation 

PRE-NECROTIC 
STAGE 

9 MONTHS 

24 MONTHS 

28 DAYS 

3 MONTHS 

BIRTH 

Fig 1.6 The natural history of the mdx mouse. 

The dystrophin-deficient mouse model of DMD undergoes various stages 

throughout its life, including an acute necrotic period at weaning age, muscular 

hypertrophy between approximately 5-12 months and weight loss and skeletal 

muscle atrophy between approximately 15-24 months. Diaphragm degeneration is 

most pronounced, and begins early in life. Mdx mice do not display overt heart 

failure, but cardiac fibrosis increases and heart function declines with age. 
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1.5.4iii Muscle hypertrophy in the mdx  

Generalised muscular hypertrophy peaks between 6 and 12 months, then 

regresses to the point where 18 month old mice show atrophy (Pastoret and Sebille, 

1995b). Muscle hypertrophy can be due to fibre hypertrophy, hyperplasia (fibre 

neosynthesis) or connective tissue proliferation, although none of these theories 

alone explain the increase in muscle weight or cross-sectional area in the adult mdx 

(De La Porte et al., 1999). Compensatory hypertrophy may occur due to viable 

fibres contracting synergistically against fibres damaged by the dystrophic process, 

with observations that the extensor digitorum longus (EDL) and soleus muscles 

sustain a hypertrophy of 17% and 22% greater respectively than control mice 

(Lynch et al., 2001). Although various authors state that adult mdx muscles are 

‘bigger and stronger’ than age matched C57 muscles (Coulton et al., 1988; 

Partridge, 1997; Pastoret and Sebille, 1995a; Pastoret and Sebille, 1995b; Bobet et 

al., 1998), when forces are normalised for weight and cross-sectional area, the 

forces generated are actually less (Lynch et al., 2001). 

 

1.5.4 iv The mdx diaphragm: the ‘gold standard’ 

Of the skeletal muscles studied in the mdx mouse, only the diaphragm 

exhibits marked and progressive degeneration, fibrosis and functional deficits 

commensurate with limb muscles of boys with DMD (Stedman et al., 1991; Lynch 

et al., 1997; Lefaucheur et al., 1995; Anderson et al., 1998; Coirault et al., 1999). 

One study found that impaired diaphragm strength was associated with qualitative 

and quantitative changes in myosin molecular motors that are responsible for 

generating force, and consequently reduced force per contractile element (cross 

bridge) contributes to weakness (Coirault et al., 1999). There is also a regional 

difference in pathology supportive of contraction-induced injury, oxidative damage 

and muscle use, with those that work harder showing more severe disease, at least in 

the mouse (Anderson et al., 1998). 

 

1.5.4v  Cardiomyopathy in the mdx 

Data concerning the dystrophic involvement of mdx cardiac muscle is both 

limited and conflicting. There is evidence for substantial cardiac muscle necrosis 

found in some studies (Lefaucheur et al., 1995; Bridges, 1986), but not others 
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(Torres and Duchen, 1987). Lefaucher et al 1995 found foci of inflammation and 

advanced fibrosis in older (at least 20 months) mdx hearts. 

Cardiac functional studies lend weight to significant heart pathology, 

including altered contractility and half relaxation times, and response to exogenous 

calcium in 12 week old mice (Sapp et al., 1996), and electrocardiographic changes 

(Chu et al., 2002; Bia et al., 1999). There are also age and sex related differences in 

cardiac β-adrenoceptors (measured by sensitivity to drugs that either stimulate or 

block these receptors) between 3 month mdx compared to C57 (Lu and Hoey, 2000). 

Altered action potentials are evidence of changes in membrane ion channels 

(Pacioretty et al., 1992), and mdx animals were found to have a significantly higher 

intracellular calcium concentration in ventricular cells, suggesting a defective 

control of calcium may have a role in electrophysiological and contractile properties 

of cardiomyocytes, as well as a noxious effects on cellular integrity (Alloatti et al., 

1995). 

Echocardiography of mdx hearts demonstrated significant differences in 

heart rate and left ventricular dimensions from control mice after 40 weeks of age, 

but not earlier. Fibrosis was seen as a late consequence of dystrophin deficiency 

(Quinlan et al., 2004).  

 

1.5.4vi  Genetic mutation in the mdx  

 The molecular basis of the disorder in mdx mice is a point mutation causing 

a frameshift and a premature stop codon in exon 23 of the dystrophin gene 

(3185C>T) (Sicinski et al., 1989). Despite this termination codon, approximately 

1% of mdx fibres show the presence of dystrophin (so called ‘revertant fibres’), 

possibly as a result of an exon skipping mechanism that restores the in-frame 

reading of the gene (Wilton et al., 1997a). 

More recently mice have been generated with point mutations or deletions in 

various parts of the dystrophin gene, to aid further understanding of critical 

functional domains of dystrophin (Im et al., 1996). 

 

1.5.4 vii Shortcomings and strengths of the mdx model 

 Researchers have questioned the validity of the mdx as a model for human 

disease, due to the apparent milder phenotype, evidence of skeletal muscle 
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regeneration, and lack of significant widespread fibrosis and fatty changes 

following muscle necrosis. It is said to be a better model for regenerative myopathy 

than degenerative processes. However, it remains the most readily available and 

economic model for research into DMD. 

 Dystrophinopathies show a lack of correspondence between phenotype and 

genotype. As commented by (Partridge, 1991), the ability of dystrophin-deficient 

animal models, such as the mdx mouse, to maintain a considerable muscle mass 

with a large resistance to pathogenesis offers ‘a considerable experimental asset, for 

it must be accommodated by any coherent theory of pathogenesis of dystrophin 

deficiency’.  

 Gene knockouts based on the mdx background are useful for loss-of- 

function or gain-of-function studies. Various transgenic strains, again on the mdx 

background, provide useful insights into the pathogenesis of the disease. The mdx 

mouse is proving to be a useful model for screening compounds for potential 

treatment of DMD patients. Compounds considered to be showing a positive effect 

in the mdx mouse are being considered for clinical trials.  

 There is increasing recognition of the importance of cardiomyopathy in 

DMD, and also recently in mdx mice. Like boys with DMD, mice show skeletal 

muscle degeneration and fibrosis before the onset of significant heart disease, which 

does not occur until much later in the lifespan. The gradual onset of 

cardiomyopathy, as well as inherent dysfunction in cardiomyocyte calcium 

handling, makes it a valid model of DMD cardiomyopathy. 

 New gene correction therapies will require extensive testing prior to clinical 

trials, including optimisation of dose, delivery methods and determination of 

transduction efficiency and safety. The short generation time and lifespan of the 

mdx mouse, as well as its close genetic homology to a large percentage of DMD 

patients, makes it the ideal model for these studies. 
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1.6 Drug therapy for Duchenne Muscular Dystrophy 

There is no cure for DMD, and current palliative therapies are centred on 

long-term corticosteroid administration (prednisolone or deflazacort), and drugs 

aimed at treating or alleviating heart failure or respiratory tract complications. The 

following section reviews current therapy options and research into new treatment 

modalities. 

 

1.6.1 Glucocorticoids 

Following almost two decades of use in patients with DMD, it is clear that 

glucocorticoids can provide short-term functional improvements such as increased 

muscle strength and prolonged ambulation (Wong and Christopher, 2002). 

The precise mechanisms by which glucocorticoids benefit dystrophic muscle 

are unclear. The possible mechanisms include a benefit to myogenesis (Passaquin et 

al., 1993); (Anderson et al., 1996), increased muscle mass due to anabolic effects 

(Rifai et al., 1995), reduction in apoptosis (Lim et al., 2004), stabilisation of the 

sarcolemma (Jacobs et al., 1996), regulation of intracellular calcium (Metzinger et 

al., 1995) and possibly immunosuppressive actions due to a reduction of 

mononuclear cells, although the latter is controversial (Kissel et al., 1993). Gene 

profiling of mdx suggested that genes involved in the immune response are down-

regulated, while structural protein genes were up-regulated after treatment with 

prednisolone (Muntoni et al., 2002). 

 The systemic effects of steroids are problematic, with a proportion of boys 

unable to continue treatment due to weight gain, mood swings and cataract 

development. These changes were found to be significantly less with the oxazolone 

derivative of prednisolone, deflazacort (Biggar et al., 2001). Boys treated with 

deflazacort or prednisiolone can walk significantly longer, have improved cardiac 

and respiratory function and delayed timing for scoliosis surgery (Biggar et al., 

2001; Silversides et al., 2003). The mechanisms are again unknown, but in vitro this 

agent has shown to augment expression of the membrane stabiliser laminin and 

satellite cell activity and muscle repair (Biggar et al., 2002). Deflazacort is 

unavailable in some Western countries, such as the United States and Australia, due 

to legislation restrictions. Moreover, there is no international consensus on the best 
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dose rates for either glucocorticoid, or optimum age at which treatment should 

commence.  

 

1.6.2 Creatine monohydrate 

 Phosphocreatine is an important source of quick energy production in 

muscle, particularly those used for sprinting. Creatine monohydrate is used as a 

nutritional supplement by athletes, and has shown promise for the treatment of 

people with neuromuscular disorders. Its beneficial effects are attributed to 

antioxidant properties, reduction of protein breakdown and enhancement of 

sarcoplasmic reticulum calcium uptake. In mdx mice administered creatinine from a 

young age, the first wave of acute muscle necrosis was markedly reduced in the 

extensor digitorum longus (fast twitch muscle), but not the soleus (slow twitch 

muscle) (Passaquin et al., 2002). Creatine supplementation in DMD patients is more 

controversial. A four-month trial on boys with DMD showed increased handgrip 

strength and an increased fat free mass (Tarnopolsky et al., 2004). Another trial 

provided evidence of increased resistance to fatigue, and improved maximal 

voluntary contractions of patients (Louis et al., 2003). However a double blind, 

cross-over trial showed no improvement in quantitative strength tests (Walter et al, 

2002). Creatine monohydrate is still commonly used as a supplement for boys with 

DMD. 

 

1.6.3 Alternative pharmacological agents 

 Although gene therapy will likely provide the cure for DMD, success still 

remains on the distant horizon. In the meantime there is emphasis on developing 

therapies that alleviate the deleterious consequences of dystrophin deficiency such 

as muscle necrosis, inflammation and scarring. With a better understanding of the 

complex pathophysiology of dystrophic muscle and appreciation of downstream 

events, comes research into new agents such as anti-tumour necrosis factor α, 

(Remicade®), myostatin blocking agents and others.  

Table 1.1 lists current or recently completed clinical trials studying 

alternative pharmaceutical agents, and Table 1.2 lists some recent drug studies in 

the mdx mouse model of DMD.  
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Table 1.1 Clinical trials into alternative drug treatments of DMD 

Therapeutic 
agent 

Mechanism 
of action 

Benefit or  
adverse effect 

Reference 

Albuterol β-agonist 
Inhibits 
proteolysis 

Improved 
muscle strength 

(Fowler et al., 2004) 

Oxandrolone Anabolic 
pathways 

Increased 
strength or no 
benefit 

(Fenichel et al., 1997) 
(Fenichel et al., 2001) 
 

Growth Hormone Anabolic 
pathways 

Improved cardiac 
function, 
no effect on 
muscle strength 

(Cittadini et al., 2003) 

    
Coenzyme Q Antioxidant, 

increased 
respiratory chain 
activity 

Trials ongoing http://www.mdausa.org
 
 
 

Glutamine 
 and creatine 
 

Modulators 
of inflammation 

No effect on 
muscle strength 

http://www.mdausa.org

 

Table 1.2  Studies into novel therapeutic agents in the mdx mouse 

Therapeutic 
agent 

Mechanism 
of action 

Benefit or  
adverse effect 

Reference 

Insulin like  
Growth Factor 
(IGF-I) 

Anabolic  
and satellite  
cell proliferation 

Improved 
contractilty 

(Gregorevic et al., 
2002) 

    
Remicade® Anti-tumour 

necrosis 
factor (TNF α) 

Marked protection 
against acute 
muscle breakdown 

(Grounds  and 
Torrisi, 2004) 

    
L-Arginine Increased  

NO production  
by NOS 

Upregulation  
of utrophin  
at sarcolemma? 

(Chaubourt et al., 
2002) 

Anti-myostatin Antibodies  
block myostatin 
action 

Hypertrophy 
and decreased 
muscle breakdown  
 

(Bogdanovich et 
al., 2002) 

    
Heregulin Regulates  

utrophin  
promoter 

Resistance to 
muscle damage, 
decreased muscle 
pathology 

(Krag et al., 2004) 
 

Leukaemia 
Inhibitory Factor 

Increased  
myocyte growth  
and proliferation 

Muscle 
hypertrophy, 
less degeneration 

(White et al., 
2001; Austin et al., 
2000) 

http://www.mdausa.org/
http://www.mdausa.org/
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1.7  Gene therapy for Duchenne Muscular Dystrophy 

1.7.1 Dystrophin expression cassettes 

The muscle isoform of dystrophin is encoded on a 14kb mRNA, which is 

considerably shorter than full-length dystrophin, and effective at preventing 

dystrophy in mdx mice (Cox et al., 1993). It is important that gene regulatory 

regions are included in dystrophin expression cassettes, including the muscle 

creatine kinase gene, a polyadenylation signal and an intron.  

Despite their reduced size, these cassettes are still too large to fit in most 

vectors, so much research has focussed on developing mini- or micro dystrophin 

(dys) genes, omitting non essential areas of the gene such as the central rod region 

and the C-terminal. Micro-dys with less than 3 spectrin-like repeats show little 

function, however clones with 4 or more repeats show normal function (Sakamoto 

et al., 2002). Successful mini-dys transfer encoded by recombinant plasmid DNA 

has been performed in mdx diaphragms and hind limb muscles (Decrouy et al., 

1997), showing some protection of injury to muscle fibres.  

 

1.7.2 Vectors for gene delivery 

The four classes of vectors of most interest in DMD research are 

adenoviruses (Ad), adeno-associated viruses (AAV), retroviruses and plasmids, 

although recently equine infectious anaemia lenti-virus has also been utilised for in-

utero gene delivery (Gregory et al., 2004).  

Conventional Ad vectors suffer the limitation of giving rise to transient 

expression of recombinant genes, with levels declining by 1 week and usually 

undetectable by 4 weeks. There appears to be recruitment of immune cells 

(cytotoxic T cells) marking virus-infected cells for destruction (Yang et al., 1995). 

Improved adenoviruses, the so-called gutted adenoviruses, have emerged and show 

less immunogenecity, with greater capacity for larger therapeutic genes such as 

dystrophin (Allamand and Campbell, 2000); (Matecki et al., 2004). Muscle gene 

therapy utilising Ad vectors will likely require repeat delivery to be effective. 

Recent reports of intravascular delivery of Ad mediated reporter genes to mdx 

muscles also show promise for the future (Cho et al., 2000). 

Retroviral vectors are limited to carrying mini- or micro-dys. They are 

difficult to grow in large quantities, however they are capable of being readily 
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incorporated into the host genome, potentially allowing persistent gene transfer 

(VandenDriessche et al., 2002). 

Adeno-associated vectors (AAV) are capable of integration into muscle cells 

and may persist for years (Xiao et al., 2000). It is theoretically possible to 

administer these agents, then provide booster doses to maintain high levels of  

expression. They can accommodate only 4.8kb of exogenous sequence (Flotte et al., 

1995). 

Widespread muscle-specific expression of functional micro-dystrophin in 

mdx was acheieved using vasculature permeabilising agents and delivery via AAV 

pseudotype 6 vectors, with such methods applicable to a variety of genes in addition 

to dystrophin (Gregorivic et al, 2004). 

Naked plasmid DNA shows a remarkable ability to transfer genes to muscle. 

Plasmids have the advantages of minimal immunogenecity and toxicity, and a large 

cloning capacity. They should overcome most viral-vector mediated problems, and 

may be safer. A drawback is their low transfection efficiency when administered by 

intramuscular injection. Advances in electroporation technology will potentially 

assist in high level or long lasting gene expression using this method, at least in 

animal models (Vicat et al., 2000; Murakami et al., 2003). Pre-treatment of muscles 

with bovine hyaluronidase prior to electroporation greatly enhances transfection 

(McMahon et al., 2001). Intravascular delivery of these agents also shows potential 

(Liu et al., 2001a); (Zhang et al., 2004). 

Retention of plasmids may be a limitation, and they will either require repeat 

administration (as for Ad‘s) or modification to enable better integration and 

persistence. 

 

1.7.3 Cardiovascular gene therapy 

There have been few studies examining gene transfer into dystrophic cardiac 

muscle. The challenges for successful gene therapy of cardiac tissue include safe 

and effective delivery, duration of transgene expression, safety of the vector and the 

intrinsic properties of cardiac cells. Cardiomyocytes replicate very slowly, and 

because of their syncytial nature transfection will likely be limited to the immediate 

vicinity, rather than dispersed via a long length of fibre as occurs in skeletal muscle. 

Foetal or neonatal administration of genes in mice offers provide evidence of the 
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potential for treatment of patients at a young age (Gregory et al., 2004). AAV 

mediated micro-dys persisted for 10 months post injection.  A recent study indicated 

that dystrophin expression in 50% of heart cells of mdx mice would be sufficient to 

treat cardiomyopathy (Yue et al., 2004). 

1.7.4 Clinical trials into gene therapy for DMD 

There are two landmark clinical trials currently underway, or close to 

commencement. 

The first study in France included a completed Stage I trial using 

intravenous administration of a large number of plasmids containing dystrophin 

cDNA into the forearms of patients. It has proved to be safe, but dystrophin 

expression was of the order of 1-10% of myocytes. In the second phase of the trial 

with Duchenne patients, it is planned to inject large volumes of the naked DNA into 

the forearm (Thioudellet et al., 2002; Scheuerbrandt, 2004). At present transfection 

levels are too low to draw conclusions of the validity of these methods. 

The second trial, supported by the Muscular Dystrophy Association of 

America, uses a modified AAV of serotype 2, called AAV 2.5. It contains a mini-

dys construct, lacking the rod regions R3-R21, and C-terminal end, making it one 

third as long as normal dystrophin (Wang et al., 2000). A Phase I/II trial will 

commence in late 2005 after toxicity and biodistribution studies are completed. The 

trials will involve 6 boys with DMD, older than 10 years. Placebo or vector 

injections will be administered into biceps muscles, with muscle strength testing and 

biopsies performed 6 weeks later (Scheuerbrandt, 2004). 

 

1.8 Ex vivo strategies using myoblasts or stem cells  

1.8.1 Myoblast transplantation 

The basic tenet of myoblast transfer is that its benefit would arise from a 

generation of significant amounts of donor muscle containing normal dystrophin, 

and the long-term survival of these donor muscle fibres within the patient’s muscles 

(Partridge et al., 1998). Early trials on myoblast (immature muscle cell) transfer into 

dystrophic mouse muscles showed some functional benefit in protecting adjacent 

fibres against necrosis, however effects were limited to a small region surrounding 

the injection site and there was evidence of immunological rejection of implanted 

cells (Partridge, 2002). Immunosuppressive drugs can improve therapeutic 
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outcomes, but may have significant side effects. Autologous myoblast 

transplantation could overcome rejection problems (Floyd et al., 1998); (Moisset et 

al., 1998), however myocytes from patients with DMD are not characteristically 

prolific in cell culture and may not be suitable for this approach. 

A family of genes including myoD has been identified that converts non-

muscle cells (eg fibroblasts) into muscle cells, and these may provide new sources 

of cells for gene therapy applications (Weintraub et al., 1989). There are also 

problems with cell survival that need addressing, however studies examining 

manipulation of telomerase expression may expand the replicative lifespan of 

myoblasts from normal and DMD patients (Biggar et al., 2002). 

 

1.8.2 Stem cell therapy 

New approaches involve stem cell recruitment via bone marrow 

transplantation techniques (Gussoni et al., 1999), or intra-arterial administration into 

mdx limbs (Torrente et al., 2001). Transplantation of myogenic progenitor cells into 

immunosupressed mice show that they can migrate to necrotic muscle and 

participate in its regeneration (Ferrari and Mavilio, 2002). Low efficacy of current 

stem cell approaches will require development of new strategies for expansion and 

active recruitment to myogenic differentiation. 

 

1.9  Strategies to upregulate utrophin 

Utrophin is a promising candidate for DMD therapy. Like dystrophin, it is 

capable of providing cytoskeletal linkage between actin and the extracellular matrix 

via DGC binding. It shows four structural domains like dystrophin. Mdx mice 

overexpressing a truncated utrophin transgene have reported to show reduced 

pathology as well as improved muscle function (Deconinck et al., 1997b). Utrophin 

has the advantage of not being recognised as a neo-antigen in dystrophin-deficient 

muscle, so cell-mediated immunity problems seen with dys transfer should be 

largely circumvented (Ebihara et al., 2000). 

An alternative approach is to increase expression of utrophin to the 2-3 fold 

increase in protein level required to prevent dystrophic pathology at the translational 

level via promoter activation, either via the use of small diffusable chemical 

compounds (such as butyrate derivatives used in β–thalassaemia), or alternative 
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drugs (Perkins and Davies, 2002). Heregulin, L-arginine, NO or hydroxyurea are 

thought to act by utrophin promoter activation mechanisms, although there is 

contention regarding the efficacy of L-arginine in this role (Krag et al., 2004; 

Chaubourt et al., 2002). 

 

1.10 Gene repair strategies  

1.10.1 Aminoglycosides 

Aminoglycoside antibiotics can suppress nonsense mutations in mammalian 

cells by the same action as they disrupt translational fidelity in bacteria. They bind a 

specific site in ribosomal RNA and disturb codon-anticodon recognition (Kaufman, 

1999). As mdx mice show a nonsense mutation in their dystrophin gene, the 

aminoglycoside gentamycin can be used to promote translation read-through of the 

nonsense codon in this species. Initial trials showed a restoration of between 10-

20% of normal levels of dystrophin in mdx muscles, at a level sufficient to protect 

against contraction-induced injury (Barton-Davis et al., 1999). This class of 

antimicrobials cause nephrotoxicity and ototoxicity, especially with long-term use, 

and more investigation is required regarding optimum dosage and interval between 

dosages before treatment of the estimated 15% of boys with DMD with premature 

stop mutations. 

 Negamycin, a dipeptide antibiotic said to be less toxic than gentamycin, 

restored dystrophin to skeletal and cardiac muscles of mdx mice in one study 

(Arakawa et al., 2003). Its mechanism of action is binding to a partial sequence of 

the eukaryotic rRNA decoding A-site.  

There have been several clinical trials using these agents. Effect may vary 

according to position of the stop codon, with some boys demonstrating greater 

dystrophin expression than others (Politano et al., 2003). Further clinical trails are 

anticipated, involving the use of gentamycin analogues, PTC124 and geneticin. 

   

1.10.2  Antisense oligonucleotides (AOs) 

1.10.2i The theoretical basis to AO use: 

Genes are organized in genomic DNA with exons (coding sequences) 

separated by introns (non-coding sequences). Exons contain open reading frames 

(ORF) of nucleotide triplet codons for amino acids and comprise an initiation codon 
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and a stop codon. For normal gene function to occur two exons in a series must 

have triplet codon breakpoints that maintain the correct translational ORF during 

splicing of intron sequences to form messenger RNA (mRNA). (Fig 1.7) 
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Fig 1.7 Simplified depiction of events involved in mammalian gene expression. 

 

Analysis of gene sequences of DMD patients revealed that the majority (but not all) 

showed deletions or point mutations of the gene causing a consequential shifting of 

the ORF, and the translation to a truncated, abnormal dystrophin (Fig 1.8A). If the 

deletion were in the area of the gene that maintained the ORF, the resultant protein 

would be shorter and semi-functional, a so-called Becker Muscular Dystrophy 

(BMD) protein causing a milder phenotype (Monaco et al., 1988) (Fig 1.8B). 
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A. DMD PHENOTYPE  
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Fig 1.8 Mutations of the dystrophin gene leading to A. Duchenne Muscular 

Dystrophy (DMD) or B. Beckers Muscular Dystrophy (BMD), depending upon the 

site of deletion, and whether the reading frame remains intact or is disrupted. These 

simplified diagrams apply to point mutations and short deletions and may not apply 

to large deletions, duplications or mutations at more than one site. 
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In the mdx mouse the nonsense mutation of the dystrophin gene results in 

termination of translation within Exon 23. Theoretically there should be no 

functional dystrophin expressed in mdx muscles, however occasional (<1%) 

dystrophin-positive fibres are found. Such fibres are also found in many DMD 

patients (Fanin et al., 1995). It is proposed that dystrophin arises in these fibres by 

alternative processing and exon skipping causing in-frame gene transcripts (Wilton 

et al., 1997a; Wilton et al., 1997b). 

Studies have shown that synthesized antisense oligonucleotides (AOs) may 

operate to induce exon skipping in a similar manner to that occurring in the mdx 

mouse (Wilton et al., 1999; Dunckley et al., 1995).  AOs have been utilised to block 

motifs involved in normal pre-mRNA splicing in mdx myoblasts. This causes 

skipping of exon 23 without disrupting the reading frame, thus potentially allowing 

synthesis of a shorter, but still functional protein when delivered to mdx muscles. 

(Figure 1.9) 

Fig 1.9 Use of antisense oligonucleotides in mdx mice to induce exon-skipping 

   

Nonsense  mutation 

Protein is shorter/ semifunctional 

   EXON SKIPPING  
ORF MAINTAINED 

AO 

EXON 23

DNA  ORF 
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 1.10.2ii The structure and action of AOs 
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Oligonucleotides have been used for the downregulation of cancer or 

disease genes, most commonly by base-pairing with a mRNA target and mediating 

its destruction by RNase H. AOs can also be used to silence mutations that cause 

aberrant splicing (for example β-Thalaassemia and some cystic fibrosis mutations), 

thus restoring correct splicing and gene function (Sazani and Kole, 2003). The 

requirements for the second generation AO’s are different - they must not activate 

RNase H, which would destroy the pre-mRNA target prior to splicing, and they 

must also be able to compete with splicing factors for access to pre-mRNA located 

in the nuclei of cells. AO’s with modifications to the 2’position, such as 2’-O-

methyl, or those with backbones based on phosphorothioate or morpholino 

derivatives are suitable candidates (Sazani and Kole, 2003).  

Delivery agents that allow AOs to accumulate in nuclei of cells and bind to 

the pre-mRNA markedly enhance their efficacy. Cationic liposome formulations or 

commercial vectors, such as Lipofectin, Eufectin or Lipofectamine are designed to 

enhance delivery and uptake. These vectors, because of their positive charge, have 

high affinity for negatively charged cell membranes (Dias and Stein, 2002).  

  

1.10.2iii  Development of AOs and potential applications  

 AOs applicable to mdx dystrophin were synthesized after sequencing of 

purified PCR products following long range PCR across introns 22 and 23. Splice 

sites flanking these introns were identified and 2’O-methyl dys 3’ and dys 5’ AOs 

were designed that would anneal to the 3’ and 5’ splice sites of the mouse pre-

mRNA respectively. These consistently induced skipping of Exon 23 in 

immortalised mouse myoblast lines (Wilton et al., 1999). Since then vast 

improvements in AO design and efficiency has occurred, including design of AO’s 

directed specifically against the 5’ (donor) splice site of intron 23. AOs as small as 

17 nucleotides induced strong and consistent exon skipping, with evidence of a 

Becker-like protein produced in cell lines and in vivo (Mann et al., 2002; Mann et 

al., 2001). Figure 1.10 shows immunohistochemical evidence of successful 

dystrophin restoration in mdx muscle. 
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C B A 

Fig 1.10 Examples of successful antisense oligonucleotide (AO) treatment, detected 

by immunostaining. A. Wild-type mice with dystrophin located on the periphery of 

all fibres. B Mdx muscle cells with some revertant fibres showing positive staining. 

C. Mdx muscles following electrotransfer of AO with many fibres staining positive 

for dystrophin. (Wells et al., 2003) 

 

Optimisation of oligonucleotide composition and delivery methods is vital to 

the application of this methodology in both the mdx mouse model (Wilton et al., 

1999; Mann et al., 2001) and in DMD cultured muscle cells (Aartsma-Rus et al., 

2002; van Deutekom et al., 2001). Modification of AO’s to a morpholino chemistry 

is also possible, which creates a neutral molecule with biological stability that can 

be tethered to a sense ‘leash’ and delivered as a cationic lipoplex (Gebski et al., 

2003). The aim of structural modifications is to create optimal safety, delivery and 

efficacy of both AO and delivery agent. 

Further developments include the application of multiexon skipping 

strategies using a combination of AOs to skip two or more exons (including an 

entire stretch from Exon 45-51 in cultured myotubes from one DMD patient) 

(Aartsma-Rus et al., 2004). Improved delivery using hyaluronidase enhanced 

electrotransfer was investigated in injected mdx limb muscles, with increased 

dystrophin expression resulting (Wells et al., 2003). Repeated administration and 

higher dosages of AO’s enhanced dystrophin expression (Lu et al., 2004). Linkage 

of antisense sequences to short nuclear (sn) RNA allows for subcellular localisation 

and inclusion into spliceosomes, and U7 (a non-spliceosomal snRNA) can be 

engineered to bind and deliver antisense sequences. AOs linked to U7 sn RNA have 

been introduced via AAV vectors for high efficiency gene transfer into skeletal 
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muscle. Administration into mdx tibialis anterior muscles showed prolonged 

expression, reduction of exercised-induced damage, and improved contractility 

(Goyenvalle et al., 2004). 

The advantages of an AO approach to therapy are that it is tissue specific 

and highly sequence specific (Bremmer-Bout et al., 2004). AOs are small 

compounds, and do not elicit an immune response. The apparent specificity of 

current AOs suggests that systemic delivery may be possible with targeted exon 

skipping only occurring in those tissues expressing dystrophin. There is the 

potential for repeated delivery as there appears to be a natural ability of muscle cells 

to take up these compounds, as well as a slow turnover of muscle cells in vivo 

(Wilton et al., 1999).  

The shortcomings of AO therapy at present are the challenges of widespread 

delivery to many muscle groups, and ensuring persistence in tissues. While some 

experiments suggest dystrophin persistence following AO treatment is up to 2 

months (Lu et al., 2003), other studies suggest it may be considerably shorter than 

this (Wells et al., 2003). The development and refinement of vectors for systemic 

delivery may overcome these problems. 

Unfortunately dystrophinopathies caused by large deletions of the gene will 

not be amenable to this method of correction, however a hospital database in France 

indicated that 43% of patients could benefit from skipping a single exon 

(Goyenvalle et al., 2004), and this proportion may be increased if multiple exon 

skipping can be accomplished (Aartsma-Rus et al., 2004).  

It must also be recogised that BMD is not a benign disorder, and can result 

in serious cardiomyopathy and death. However, many BMD patients lead active 

lives well into middle age (or beyond), and do not suffer the debilitating 

consequences of respiratory failure or generalised muscle wasting seen in DMD. 

 Despite these limitations the future for incorporation of AO technology into 

the treatment of DMD looks promising. The dystrophin gene is uniquely suited to 

therapeutic exon skipping due the modular and repetitive nature of some of its 

domains, and the high incidence of point mutations or short deletions. There are 

now pathways in place for vector mediated delivery and potential rescue of multiple 

muscle groups, as well as future clinical trials. 
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1.11 Aims and Scope of study  

 The overall aim of this research project was further characterisation of the 

mdx mouse model of DMD, to enable strategic treatment with antisense 

oligonucleotides. Particular muscles were targeted in this study, including cardiac 

muscle, diaphragm, paraspinal and accessory respiratory muscles. Knowledge 

gained from preliminary characterisation studies were used to optimise methods and 

choose ages and numbers of mice for subsequent experiments utilising AO’s (see 

Fig 1.11). The exception to this was the cardiac experiments, as it was felt that an 

in-depth cardiac AO study was beyond the scope of this PhD because of time 

constraints. The aims and scope of each individual project are listed below. 

 

1.11.1 Atrial function and cardiac fibrosis in aging mdx  

The mdx heart has been characterised to an extent previously, and in recent 

years there have been functional studies using in vitro isolated hearts and in vivo 

catheterised hearts. New knowledge has been gained from these studies that 

confirms the mdx mouse as a useful model for DMD cardiomyopathy under certain 

conditions, notably exercise induced stress, following aortic banding or 

pharmacologically induced stress (dobutamine or isoprenaline), or perhaps older 

age. This latter point was published only in late 2004, with reports of 

echocardiographic data from 40 week old mdx suggesting ventricular function was 

impaired and dilation was present in these older mice, but not before (Quinlan et al., 

2004). Prior to these studies there was limited functional data available, mostly from 

young mdx atria. The older mouse may be a realistic model for heart disease in 

DMD, as cardiomyopathy also develops gradually in DMD, often towards the end 

of the patient’s lifespan. Artificially induced heart failure (such as from aortic 

banding or acute catecholamines challenge) may provide a less realistic model than 

gradually occurring pathology with compensatory physiological responses and 

progressive fibrosis.  

The aim of this study was to characterise changes in atrial function and 

cardiac fibrosis throughout the lifespan of the mdx mouse. This project used 9 ages 

of mice (from 3 weeks to 24 months), and measured cardiac morphometry, atrial 

contractility, responses to exogenous calcium and development of fibrosis as 

measures of progressive cardiac dysfunction. Cardiac fibrosis has been poorly 
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documented in the mdx, despite it being a significant contributor to DMD 

cardiomyopathy, and fibrosis in general being a hallmark of dystrophy in any 

muscle type. This project used two measures of cardiac fibrosis; the first was the 

colorimetric assay of hydroxyproline, an amino acid constituting some 8% of the 

total protein content of collagen, the second using collagen specific staining and 

percentage flourescence of heart sections.  

Electrophysiological data was also measured across the age groups of mice, 

using transmembrane action potentials from isolated left atria. Again, there is little 

available data from mdx mice, and none across the lifespan. There is also conflicting 

ECG data available in the literature with reports indicating QT intervals as similar, 

less or greater in mdx compared to control mice, and it was hoped action potential 

data would resolve this. Electrophysiological disturbances may be an inate property 

of dystrophic muscle, as there is a high incidence of arrythmias and ECG 

abnormalities in boys with DMD, even at a young age before clinical signs of heart 

failure. 

 

 1.11.2 Monophasic action potential measurements and trabeculae contractility 

Monophasic action potential measurements using Langendorff preparations 

and trabeculae contractility was also planned in a separate set of experiments, as it 

was felt that these parameters would add considerably to our knowledge regarding 

dystrophic cardiac muscle. There have been no MAP studies reported from mdx 

mice, despite this technique being widely used in transgenic murine models of 

human cardiomyopathy (especially arrhythmias). There have been few mouse 

trabeculae or small papillary muscle functional studies, and none in mdx mice. 

Ventricular experiments may provide additional information, especially if there is 

unequal chamber involvement in the dystrophic process.  

Unfortunately there were technical difficulties with these studies, which 

meant there were too few results to draw conclusions or provide tests of statistical 

significance. These results are included as Appendix A, including establishment of 

equipment and setting up of protocols. 
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1.11.3 Diaphragm function and fibrosis in aging mdx 

 The diaphragm is recognised as the muscle that best resembles the severe 

dystrophic pathology seen in DMD. This study utilised the same age groups of mice 

as outlined in 1.11.1, and served as a useful preliminary study for a future 

experiment examining the effects of AOs injected into the diaphragm. Protocols 

were established, and expertise gained, in skeletal muscle contractility experiments, 

histology and surgery for diaphragm injections.  

 

1.11.4 Progression of kyphosis in aging mdx mice 

 Boys with DMD develop severe kyphoscoliosis unless spinal surgical 

stabilisation is undertaken. The aim of this study was to characterise the progression 

of kyphosis in mdx mice by monthly radiographs, and development of a novel 

Kyphotic Index to measure this objectively. Further aims were to assess the 

contractility of paraspinal and respiratory muscles not previously examined in mice, 

including latissimus dorsi muscles and an intercostal muscle segments. Fibrosis was 

also quantitated in these muscles, in addition to the longissimus dorsi muscles and 

diaphragm. These paraspinal and accessory respiratory muscles were deemed 

important for both the progression of kyphosis and possibly respiratory dysfunction 

in mdx mice. It was anticipated that knowledge gained from these experiments 

would further understanding of the dystrophic phenotype, and serve as useful 

preliminary data for a later experiment administering AOs into paraspinal muscles. 

 

1.11.5  AO administration into mdx diaphragm muscle 

 AOs show promise as a gene correction strategy in the treatment of DMD, 

but for this to be considered successful they must be shown to ameliorate the signs 

of dystrophin deficiency, including necrosis, fibrosis and muscle weakness. This 

study examined the effects of two administrations of AOs into mdx diaphragms, 

given one month apart.  The aim was to determine if AOs injected into a muscle 

with known severe dystrophic tendencies is rescued by such therapy, using the 

endpoints of muscle function in vitro, collagen accumulation and dystrophin protein 

expression by Western blotting. 
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1.11.6 Long term administration of AO’s into paraspinal muscles of mdx 

 Any potential therapy for a genetic disorder such as DMD is likely to be 

given long term, and by repeat administration. Current AO strategies are limited to 

direct intramuscular injections, and previous studies have looked only at single 

treatments in young animals. The aim of this study was to examine the efficacy of 

monthly AO injections into the paraspinal muscles of mdx mice for 16 months 

(following on from 1.11.5). Mice were radiographed once monthly to follow 

progression of kyphosis in injected, sham-injected and wild-type mice. At the end of 

the experiment muscles were mounted in organ baths for contractility studies, and 

fibrosis was measured by hydroxyproline assay and specific collagen stains of 

histological sections. Western blotting was used to assess efficacy of AO 

transduction and dystrophin protein expression. This study is unique in applying a 

dynamic parameter that changes with age (the Kyphotic Index), and measures of 

contractility and fibrosis at the end of the lengthy experimental period. 
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CHARACTERISATION STRATEGIC TREATMENT 

Atrial function and 
cardiac fibrosis in 
aging mdx mice 
(Ch2) 

MAP 
measurements 
and trabeculae 
contractility 
(ApA) 

Diaphragm function and 

fibrosis in aging mdx(Ch 3) 

 AO administration into mdx 
diaphragm muscle (Ch 5) 

Progression of 
kyphosis in aging 
mdx mice (Ch 4) 

Administration of AO’s 

into paraspinal muscles 

of mdx mice (Ch 6) 

CHARACTERISATION AND STRATEGIC 
TREATMENT OF DYSTROPHIC MUSCLE 

 

Fig 1.11 Overall plan of  research studies 

 MAP= monophasic action potential, AO= antisense oligonucleotides, Ch= chapter, 

Ap= appendix. 
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CHAPTER 2. THE AGING MDX MOUSE: ATRIAL 

FUNCTION AND CARDIAC FIBROSIS 
2.1 Introduction 

Boys with DMD often exhibit cardiomyopathy in addition to serious 

respiratory complications due to diaphragm weakness, thoracic deformity and 

chronic hypoventilation. A recent survey on survival in DMD patients highlighted 

that early death from heart failure reduced average life expectancy significantly 

(Eagle et al., 2002). Symptomatic cardiomyopathy increases with age, with all 

DMD patients over 18 years having detectable cardiac disease (Nigro et al., 1990). 

The spectrum of cardiac involvement includes sudden death, isolated conduction 

defects and dilated or hypertrophic cardiomyopathy. Autonomic imbalance has been 

demonstrated in DMD patients at an early stage of the disease when 

cardiopulmonary function is still well preserved (Yotsukura et al., 1995). 

Cardiac involvement in mdx was noted in early histological studies. 

Myocardial lesions were observed in 5/10 male mdx mice ranging in age from 8-30 

weeks (Bridges, 1986). Coulton et al., (1988) found evidence of cardiac 

myonecrosis and cellular infiltration in 13/65 ventricles examined in mice of 26-303 

days old. Foci of inflammation and fibrosis were also found in old mdx hearts 

(greater than 20 months old) (Lefaucheur et al., 1995),  while another histological 

study reported the absence of pathological changes in mdx hearts examined at 

different ages (Torres and Duchen, 1987).  

Two studies have suggested that mdx hearts may be hypertrophic (Danialou 

et al., 2001b; Megeney et al., 1999), although it has been pointed out that these 

studies had small sample sizes (5 and 12 mice respectively) that were not large 

enough to reveal a statistically significant hypertrophy (Yue et al., 2004). Other 

studies have shown that heart weight normalised to body weight is similar between 

mdx and control mice (Yue et al., 2004), and that left ventricle/bodyweight is 

significantly less in younger and similar in older mice (Lu and Hoey, 2000). There 

have been no studies to evaluate heart weights in relation to body weight 

systematically across throughout the mdx lifespan, although echocardiographic 

studies of 8, 29 and 42 week old mice showed the development of dilated 

cardiomyopathy in 42 week old mdx, with increased LV end systolic and diastolic 

diameters and decreased fractional shortening (Quinlan et al., 2004). 
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Studies of isolated left atria in 12-week-old mice showed mdx also have 

contractile dysfunction compared to wild types (Sapp et al., 1996). These young 

mice also displayed a reduced responsiveness to calcium and altered atrial twitch 

characteristics, including delayed relaxation times. Ex vivo perfused hearts from 

young mdx provide direct evidence for severe contractile dysfunction and non-

ischaemic tissue damage correlated with cardiac workload, indicating dystrophin 

functions to guard cardiomyocytes from mechanical stress (Danialou et al., 2001b). 

It has been suggested that 50% dystrophin expression is sufficient to improve heart 

function in mdx mice, as measured by Evans blue dye uptake and left ventricular 

functional parameters (Yue et al., 2004). 

Autonomic nervous system dysfunction occurs in mdx as well as boys with 

DMD. There is a marked deterioration in cardiac β1-adrenoceptor function in aged 

(12 month old) male mdx, evidenced by a reduced potency and efficacy of (-)-

isoprenaline (Lu and Hoey, 2000). Heart rate variability studies on conscious mice 

suggested an elevated sympathetic tone and blunted parasympathetic activity in mdx 

(Chu et al., 2002). 

Quantitative studies of cardiac fibrosis in mdx are few. One study revealed a 

four-fold increased fibrosis in 17-month-old mdx hearts compared to controls, with 

no predilection for the five regions analysed (right ventricle, anterior wall, posterior 

wall, lateral wall and septum)(Quinlan et al., 2004). 

There is a requirement for further cardiac phenotype characterisations of the 

mdx as it increases the knowledge base to help understanding of the 

pathophysiology of DMD cardiomyopathy. Furthermore, this is important for 

therapeutic trials involving anti-inflammatory, immune-modulating agents or gene 

therapy studies that may improve cardiac function.  

 

2.2 Aims  

The primary aim of the present study was to determine whether cardiac 

function and electrophysiological properties of mdx mice change across their 

lifespan and vary significantly from wild type mice. In addition, cardiac collagen 

was measured to assess if mdx heart fibrosis increases with age, as occurs in hearts 

from boys with DMD.  
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2.3 Methods 

2.3.1 Mouse numbers and groupings 

In the initial series of experiments (Study 1), groups of 7-8 male control 

C57BL/10ScSn (C57) and mutant C57BL/10ScSn mdx (mdx) mice were utilised for 

functional studies at 3, 6 and 12 weeks, 6, 9, 12 and 15 months of age. In addition 

two groups of mdx mice only were used at 18 and 24 months of age (because of the 

unavailability of control mice at these ages). For hydroxyproline assays and 

morphometry measurements additional age, sex and strain matched tissues were 

utilised to give an n=10-14 per group. 

 Following examination of the results of these experiments two age groups 

of C57 and mdx mice (6-8 weeks and 15-17 months) were utilised for a more 

detailed analysis of cardiac fibrosis (Study 2). There were 7-8 mice/age group/ 

strain for this part of the study. It was anticipated that measuring cardiac fibrosis at 

3 different cross-sectional levels of the heart, and an increased n number would 

improve accuracy, as would performing hydroxyproline assays on ventricular tissue 

from mid-heart rather than just the tip of the heart apex. 

 Mdx mice were obtained from the USQ Animal House, and C57’s from 

Animal Resource Centre, Nedlands, Western Australia.  

The groupings and mouse numbers are shown in Figure 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MDX C57 

Study 1 
Morphometry, cardiac function and 
fibrosis across the lifespan of mdx

Ages 3, 6, 12 wks, 6, 9, 
12, 15, 18 +  24 mths 
for all studies 

Numbers (/ age group /strain) 
n=7-8 (functional studies) 
n=7-14 (hydroxyproline assays) 
n=4 (histology) 

Ages 3, 6, 12 wks, 6, 9, 12, 15, 
18  +  24 mths (morphometry ) 
3, 6, 12 wks, 6, 9, 12, 15 mths 
(functional studies, histology 
and hydroxyproline assays) 

MDX C57 

Study 2 
Cardiac fibrosis in young and old mdx 
and C57 mice

Ages 6-8 wks and 15-17 mths 

Numbers (/ age group / strain) 
n=7-8 (hydroxyproline assays) 
n=7-8 (histology) 

Ages 6-8 wks and 15-17 mths 

Fig 2.1 Diagram detailing the mouse numbers and groups for the series of 

experiments evaluating cardiac function and fibrosis in mdx and control (C57) mice. 
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2.3.2 Transmembrane action potentials and contractility of isolated atria 

At the commencement of each experiment mice were weighed, anaesthetised 

using Tiletamine/Zolazepam at 35 mg/kg subcutaneously (Virbac Laboratories, 

Australia), then euthanased by exsanguination. Lungs and hearts were removed, and 

the lungs were rinsed of blood clots, blotted for 3 seconds and weighed. 

Each heart was dissected quickly in ice-cold pre-carbogenated (95% O2/5% 

CO2) Tyrode physiological salt solution (TPSS; mM: NaCl 136.9, KCl 5.4, 

MgCl2H20 1.05, NaH2PO4.2H2O 0.4, NaHCO3 22.6, CaCl22H2O 1.8, glucose 5.5, 

ascorbic acid 0.3, Na2EDTA 0.05). The right atria, right ventricular free wall and 

left ventricle (LV) plus septum were dissected, blotted for 3 seconds and weighed.  

The left atria (LA) was removed and a stainless steel hook was positioned 

into the pulmonary vein opening, before transferring into a 1 ml Perspex organ bath. 

The LA was pinned onto a small rubber mat, and the hook connected to the force 

transducer (model AE801, SensoNor, Horten, Norway). The tissue was perfused 

continuously with carbogenated TPSS at a flow rate of 3mL/min and a temperature 

of 35±0.5oC. The LA was held at an optimum preload of 3.5±0.5 mN throughout the 

experiment, and field stimulated via platinum electrodes at 0.5ms pulse width and 1 

Hz, 25% above threshold (Grass SD9 stimulator, W. Warwick, RI, USA).  

 After a 30-minute equilibration period the LA was impaled 4-5 times at 

different sites with a 3M KCl filled glass microelectrode (World Precision 

Instruments, New Haven, CT, USA, 150F glass, 10-50MΩ resistance). Data was 

recorded using a PowerLab and Chart 4.1.1 software (A.D. Instruments, Castle Hill, 

Australia), at 1000 samples/sec and then an average of the 4-5 recordings was 

calculated. A concentration response curve (CRC) to CaCl2 was generated following 

transmembrane action potential (TAP) recordings. Details of the apparatus required 

for these experiments are provided in Appendix B. 

2.3.3 Collagen measurements 

At the end of the experiment the LA was blotted briefly and weighed. LA 

and LV apex were stored at –70oC. For Study 2 the right atria were also stored for 

hydroxyproline assays. The remainder of left ventricle and septum was fixed 

sequentially in Telly’s fixative (formaldehyde, glacial acetic acid-ethanol fixative, 

72 hours), Bouin’s solution (formaldehyde, glacial acetic acid-picric acid fixative, 
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24 hours) and 70% ethanol, prior to paraffin embedding, cutting and staining of 10 

micron sections, using 0.1% w/v picrosirius red solution (Sirius Red F3B, Chroma 

Dyes, Germany in saturated picric acid).  

Analysis was performed blinded to the strain or age. Interstitial and 

perivascular collagen was included, while capsular collagen was excluded from 

analysis. For Study 1 sections were viewed on a Biorad MRC 1024 confocal 

scanning microscope with a krypton/argon laser and subjected to a 

Rhodamine/Texas Red filter of 568nm wavelength. Images were captured using a 

Biorad Lasersharp 2000 program. Photomicrographs of 4 sections per heart were 

analysed and averaged for saturated pixel intensity corresponding to collagen fibres, 

using Scion Image software Beta 4.0.2 (http://www.scioncorp.com). Results are 

expressed as collagen as a percentage of area of view. An n of 4-6 mice per group 

was compared in this manner.  

For Study 2 examining fibrosis in young and old mice, entire hearts were 

sectioned at 3 levels a) apex, b) mid portion and c) base. Fluorescent microscopy 

images were acquired from these heart sections using a digital camera (Q imaging 

Micropublisher 5.0 RTV) coupled to an epifluorescence microscope (Eclipse E600, 

Nikon, Japan). Four sections per tissue were photographed and analysed using the 

image analysis program DocuAnalySIS (Soft Imaging System), then averaged. 

Collagen was expressed as a percentage of the total area of tissue. Good correlation 

was found between results of slides examined previously using the confocal 

microscope, and those captured and analysed with this analysis system. 

Hydroxyproline (HP) content was also used as a measure of total collagen as 

described previously (Stegemann and Stalder, 1967), with the following 

modifications. Tissue was thawed, then hydrolysed in sealed 2 ml cryotubes with 

6M HCl overnight at 110oC and dried completely using filtered air under pressure 

and heat (50oC). Values are expressed as µg HP/mg tissue wet weight. Appendix B 

shows details of HP assays, modified for tissue samples less than 20mg, to fit a 2 

mL total volume. 

2.4 Statistics 

Results are expressed as means ± S.E. Responses between groups of same aged mdx 

and C57 were compared using Student’s unpaired t-tests. For Study 2 group mean 

http://www.scioncorp.com/
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differences were determined initially by ANOVA, with post hoc application of 

unpaired Student’s t-tests in the event of significant ANOVA. P values less than 

0.05 were considered statistically significant. 

 

2.5 Results 

2.5.1 Morphometry 

 Differences in body weight between mdx and C57 were evident at various life 

stages as depicted in Fig 2.2a. At 3 weeks of age, corresponding to the acute muscle 

necrotic stage, mdx mice were significantly lighter (P<0.001), and then became 

heavier than wild type mice with development of muscle hypertrophy (significant at 

12 weeks of age (P<0.05)). Older mdx (at 15 months of age) demonstrated a weight 

decline relative to C57 mice (P<0.01). 

 Lung weights were less for mdx mice at all age groups except 15 months (data 

not shown), however when adjusted for bodyweight there was no significant 

difference between mdx and wild type mice, except for the 3 week old and 9 month 

old age groups (Fig 2.2b). Importantly there was no evidence of increased 

lung/body weight ratios indicative of pulmonary congestion as mdx aged. 

Total mdx heart weights (calculated by addition of individual heart 

chambers) were less at 3 weeks, and at all ages exceeding 12 months (Fig 2.2c). In 

contrast heart weight/body weight ratio was higher in mdx at 3 weeks (when body 

weights were less than controls) and lower at 12 weeks when they are undergoing 

muscle hypertrophy. At all ages exceeing 12 months mdx exhibited a lower heart 

weight/body weight ratio, despite lower body weights (Fig 2.2d). At no time point 

did mdx show increased total heart or individual chamber size, relative to control 

animals.  
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Fig 2.2 Morphometry data from aging mice. Mdx and C57 mice a) Body weights of 

mdx mice are less at 3 weeks of age, and then became significantly less than 

controls from 15-24 months. b) Lung weight/body weight ratio was greater in mdx 

at 3 weeks when mice were of low body weight, and were then less than control 

mice (significant at 9 months only). c) Heart weights were greater in control mice, 

with significance at 3 weeks, then from 12 months to 24 months. d) Heart weight/ 

body weight ratio was less for mdx mice (significant at 3months, then from 12-18 

months), however at 3 weeks of age mdx showed an increased heart/body weight 

ratio.  n=7-8 per strain/age group  *** P<0.001, ** P<0.01, * P<0.05. 
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2.5.2 Transmembrane action potential recordings 

The criteria for TAP inclusion were a stable wave-shape with a sequence of 

more than 10 action potentials, a horizontal diastolic interval, amplitude greater than 

70 mV, and an overshoot greater than +10 mV.  

APDs were measured at 20, 50 and 90% of repolarisation (APD20, APD50 and 

APD90 respectively). There was a strong trend of shorter APD90 values in all age 

groups of mdx, with significance at 3 weeks, 9 months and 12 months (Fig 2.3). 

Waveform shape differed between strains as mice aged, with APD50 increasing in 

mdx older than 15 months, despite a tendency for a shorter APD90 (Fig 2.3 and 2.4) 

APD increased over the lifespan of both mouse strains 

 Action potential amplitudes (APA) were not significantly different (C57, 88.5 ± 

2.8: mdx 87.4 ± 2.1 mV). Rate of upstroke (dV/dtmax) were not different between 

strains (C57, 86.3 ± 2.1: mdx 91.9±3.7 V/sec). There was no difference in resting 

membrane potentials at any age groups compared (C57, -76.7 ± 0.73mV: mdx, 

-75.45 ± 0.19mV). 
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Fig 2.3 Transmembrane action potential durations (APD) across age ranges of mdx 

(open circles) and control mice (filled circles), measured from left atria. APD 20,50,90 

represents 20%, 50% and 90% repolarisation time. n=7-8 per strain/age group. 

**P<0.01, *P<0.05 
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Fig 2.4 Action Potential waveforms in aged (15 month old) mdx (broken line) 

and C57 (solid line). Action potential amplitudes, and resting membrane 

potentials were the same for both strains, but APD50 was prolonged and APD90 

shorter in dystrophic atria. 

 

 

2.5.3 Atrial isometric force and calcium induced inotropy 

 Basal isometric force production was measured at 1.8 mM CaCl2 (Fig 2.5a). 

Young mdx showed reduced basal force compared to controls, which was 

significant at 3 and 6 weeks, and redeveloping again at 15 months. In the 

intervening period force production was not different except for 9 months when C57 

showed smaller forces. A CRC to CaCl2 was also determined for each LA (Fig 

2.5b).  
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Fig 2.5 Isometric twitch forces in aging mdx (open symbols) and C57 (closed 

symbols).n=7-8 mice per strain/age group.**P<0.01,*P<0.05 a. Basal atrial force of 

contraction at 1.8mM CaCl2 (mN) b. Concentration Response Curves to CaCl2 for 4 

ages of mice, from 1.8 mM (basal force) to 12mM CaCl2 
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 There was a significant difference between increases in force of contraction in 

young mdx mice relative to their age-matched controls, with mdx showing 

diminished inotropic responsiveness at 3, 6 and 12 weeks of age, and again at 15 

months. As previously noted for basal force generation, 9 month old mdx showed 

increased responsiveness to exogenous calcium. Shapes of CRCs varied, 

demonstrating a plateau or usually a decline in contractility with maximum calcium 

loading. 

 Isometric twitch characteristics varied between mouse strains at ages greater 

than 12 weeks (Fig 2.6). After this age mdx mice showed a prolonged time to 50% 

relaxation (TR50: P<0.01)) and time to 90% relaxation (TR90: P<0.01), and mice 

from 9 months of age showed a delayed time to peak force (TPF: P<0.05) also. 

These parameters increased irrespective of the peak force generated. 

           
              

       *
3-12 weeks 

Basal force less 

TPF, TR50 and TR90 similar 

      
               
                                                                               
15 months 

Basal force less      *         
TPF, TR50 and TR90 prolonged          

       

*

**
**

                40msec 
 
Fig 2.6 Changes in isometric twitch waveforms with age (C57 solid line, mdx 

dashed line). Young mdx mice show similar twitch shape to control mice despite a 

reduced force, but as mdx age time to peak force and time to 50% and 90% 

relaxation increases. ** P<0.01, *P<0.05  
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2.5.4 Collagen measurements 

2.5.4a Study 1  

LA and LV apex hydroxyproline values across the age ranges are shown in Fig 2.7. 

There was a 2-4 fold more hydroxyproline (and hence collagen) in atrial compared 

to ventricular tissue.  
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Fig 2.7 Left atrial and left ventricular hydroxyproline (HP) values for aging mice. 

There was a tendency for greater fibrosis (measured by HP ) in mdx for both tissues, 

especially after 12 months of age. n=7-14 per age per strain. * P<0.05, ** P<0.01, 

*** P<0.001 
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The mean ventricular collagen percentage as detected by picrosirius red 

fluorescence was increased for mdx mice, but due to large standard error of means 

in this strain, this only reached statistical difference at two ages (6 weeks and 15 

months) (Fig 2.8a). The box and whiskers plot portrays the trend for increased 

fibrosis in aging mdx hearts, and the spread of data for both strains across their life 

spans (Fig 2.8b) 
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Fig 2.8a Left ventricular collagen expressed as percentage of area, as determined by 

picrosirius red staining and confocal imaging. Results based on 4 sections/heart, n= 

4 per strain/age. Fig 2.8b Box plot using the same data as 3.8a, demonstrating 

progression of fibrosis in older mdx hearts. Median value shown by bar, 1st and 3rd 

quartiles by box and lowest and highest values for mean LV collagen % of area.  

* P<0.05 
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Figure 2.9 shows representative photomicrographs of myocardial sections in young 

and aged mdx and C57 mice. Some mdx mice showed marked collagen deposition 

compared to others of the same strain, or control mice of the same age. This 

collagen was predominantly localised to interstitial areas in mdx, although regions 

of accumulated perivascular collagen was also noted. An occasional young animal 

with dramatically increased capsular fibrosis was seen, however this type of 

collagen was not included in the final analysis due to the sporadic incidence. 

 

Fig 2.9  Representative photomicrographs of mdx and C57  left ventricular sections 

cut  at 10 microns and stained with picrosirius red. 40X magnification. A.6-week- 

old C57. Collagen deposition, shown by orange-red staining, is minimal. Collagen 

averaged over all sections for this animal was 0.13% B. 6-week-old mdx (0.69% 

collagen) C.15-month-old C57 (0.97% collagen). D.15-month-old mdx. (7.77% 

collagen)  
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2.5.4b Study 2 

 HP values were greater for mdx right atria in young mice (P<0.01), left atria 

in both young  (P<0.05) and old mdx (P< 0.001), and left ventricles in young 

(P<0.05) and old mdx (P<0.01). Left ventricular hydroxyproline tended to be 5-10 

times less than atrial hydroxyproline. Figure 2.10 shows results of HP assays from 

atrial and mid ventricular sections.  
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Fig 2.10 Left atrial, right atrial and left ventricular hydroxyproline (HP) values for 

young and aged mice. Mdx showed greater HP in all tissues except the right atria in 

old mice.  n=7-8 per age per strain. * P<0.05, ** P<0.01, *** P<0.001, ns=not 

significant. 
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The results of collagen analysis at 3 different levels are shown in Figure 

2.11. There was significantly more fibrosis in old compared to young mice of both 

strains, and mdx showed more fibrosis than control mice at both age groups. There 

was no difference in the extent of fibrosis between levels, with the exception of 

young mdx that had a lower collagen content of the heart apex compared to the mid 

portion and heart base (P<0.001). 
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Fig 2.11 Cardiac collagen in young (6-8 week old) and old 15-17 month old mdx 

and control mice. Interstitial collagen as a percentage of total area was averaged 

from 4 views at 3 different levels of each heart (apex, mid portion and base). In 

addition, averages of the 3 levels is shown as the top stack (with error bars 

corresponding to this mean value only). Collagen increased significantly with age in 

both strains, but the magnitude of increase was greater for mdx mice. Mdx had 

significantly more cardiac collagen compared to age-matched control mice. n=7-8 

mice/age /strain.  *= level of significance between mdx and C57 mice, += level of 

significance between young and old mice of the same strain. 
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 Examples of picrosirius red stained heart samples are shown in Figure 2.12, 

and Figure 2.13. 

 

Fig 2.12 Photomicrograph of a heart apex from a 17-month-old mdx mouse 

(montage of 4x magnification epifluorescent images). Picrosirius staining, 

representing interstitial collagen, is seen within many regions of this mdx heart, 

however it was also common to find a patchy distribution with dense collagen 

deposition in only one or two areas. There appeared to be no specific predilection 

site for fibrosis in mdx cardiac muscle, unlike the regional fibrosis seen in hearts 

from boys with Duchenne Muscular Dystrophy. 
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Fig 2.13 Fibrosis in mdx and control mice heart, with images from mid sections of 

left ventricles. The red staining represents cardiac collagen deposition. A= young 

(6-8 week old) C57, B= old (17-18 month old ) C57, C= young mdx, D= old mdx. 

There was significantly more fibrosis in young and old mdx compared to age-

matched control hearts. The collagen of older mdx was dense and infiltrative, 

resulting in marked fibre disarray. 
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2.6 Discussion 

 The comparison of dystrophin-deficient and wild type mice across their 

lifespan was performed to investigate the progression of cardiac abnormalities with 

age, hence helping to better define the mdx cardiac phenotype, and assess the most 

appropriate age to use it as a model for DMD. There have been few cardiac studies 

in this strain providing quantitative data regarding electrophysiology or cardiac 

fibrosis across the lifespan, despite widespread research into the mdx mouse and the 

high incidence of cardiomyopathy associated with DMD. 

 In the acute skeletal muscle necrosis phase represented by the 3-week-old mice, 

mdx have greatly reduced body weights compared to controls. There was a lower 

total heart weight and lung weights at this age (p<0.05), although as a proportion of 

body weight these values were higher, presumably due to the systemic effects of 

skeletal muscle necrosis causing ill thrift. Body weight curves from older mice 

agree with other studies, where there is a decline in body weight in older mdx, as 

they again become less active and have more difficulty in obtaining food and water 

unaided (Pastoret and Sebille, 1995b), although the magnitude of weight loss in the 

mice in this current study was much less. Differing bodyweights between mdx 

colonies worldwide was highlighted in a recent report, where 3-12 month old mdx 

ranged from 35-50 grams (Murakami et al., 2003). The heaviest mdx at this age 

range bred by the USQ colony was 36.7 grams, with an average of 34.6 ± 0.7g.  

These differences may be due to husbandry factors, intercurrent disease or perhaps 

strain variability. As mdx mice have been widely used for research since 1984 

(Bulfield et al., 1984), and may have been maintained as inbred colonies for long 

periods, it is plausible that some phenotype diversity between colonies has evolved 

(with this diversity possibly extending beyond body weight).  

 Heart weights are reported with organs carefully trimmed of great vessels, 

pericardium and fat. Mdx hearts from 6 weeks of age were smaller than controls 

with a lowered heart/body weight ratio, in contrast to a former study (Bia et al., 

1999). The strain difference in heart weight/body weight ratio at 15 months is a 

reflection of declining and increasing body weights in mdx and C57 respectively, 

rather than altered cardiac size. Heart weights may be less if there is considerable 

wall thinning such as dilated cardiomyopathy, however there was no gross evidence 
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of either hypertrophy or individual chamber dilation. Recent echocardiograph 

experiments suggest that dilated cardiomyopathy does occur in mdx at 42 weeks of 

age, resulting in increased LV end diastolic and end systolic dimensions and 

reduced fractional shortening (Quinlan et al., 2004). 

 Lung/body weight ratios are used as a measure of pulmonary congestion, and 

the lowered ratios in mdx indicate that congestive heart failure is not a feature.  

 There is a shortening of APD90 in mdx left atria compared to controls. A 

previous study measured shorter APDs from ventricular cells in mdx older than 6 

months, and in dystrophic canine (xmd) epicardial atrial and ventricular cells 

(Pacioretty et al., 1992). The genesis of the shorter potential may result from 

dystrophin’s role in receptor/channel localisation. Previous work suggests that the 

actin-based cytoskeleton is implicated in regulation of both voltage- and ligand–

gated ion channels such as L-type Ca2+ channels (Sadeghi et al., 2002). In the 

mouse the transient outward K current (Ito) has a prominent role in repolarisation, 

and an enhancement of this current will lead to more rapid repolarisation and shorter 

duration of electrical potential. The longer APD50 at 15 months of age is also 

noteworthy, with possible mechanisms including increased ICa or delayed 

inactivation (as suggested by Sadeghi et al., 2002) 

 It is difficult to draw conclusions about ventricular repolarisation from mdx 

ECG data reported in the literature. Murine T wave terminations and hence QT 

intervals are not always readily identifiable (Danik et al., 2002). This is highlighted 

by 3 studies in mdx: in one the QTc was shorter in conscious 10-12 week old mice 

(C57: 61.6±1.5ms; mdx: 55.5±0.5msecs, P<0.05) (Chu et al., 2002), another found 

longer durations in similarly aged mice anaesthetised with xylazine-ketamine (C57: 

50msecs; mdx: 70 msecs, P<0.003) (Sadeghi et al., 2002), and a third study reported 

no difference in 2, 6 and 12 month old mice anaesthetised with Hypnorm-Hypnovel 

(QT stated as 24msecs in both strains) (Bia et al., 1999). These discrepancies may 

be due to drug effects or methodology and could be clarified with telemetry studies, 

plus isolated and in vivo ventricular action potential experiments. In patients with 

DMD QT dispersion is greater (ie the range between minimum and maximum QT 

intervals, reflecting regional variations in ventricular recovery), however the 

minimum QTs were significantly less than normal subjects, indicating shorter 

electrical repolarisation (Yotsukura et al., 1999). 
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 Mdx hearts show reduced contractility compared to control mice at most, but 

not all, ages studied. This is the first report showing that at specific ages mdx 

isolated atria are capable of generating equivalent forces as C57 under the same 

conditions and has been previously observed in our laboratory in other groups of 6-

12 month old mice (unpublished data). These results are contrary to patients with 

DMD, who show deteriorating heart function with time, while in mdx mice a 

progression of pathological changes in skeletal muscle occurs also with age, albeit 

to a milder degree than the acute necrosis period around weaning age (Pastoret and 

Sebille, 1995b; Lynch et al., 2001; Hayes and Williams, 1998). 

 It is clear that young mice represented in this study by the 3 and 6-week-old 

groups, have compromised cardiac function. Basal forces are lower, and 

responsiveness to exogenous Ca2+ is blunted and in addition each level of 

repolarisation (APD20, 50 and 90) is significantly shortened in the 3-week-old group. 

Other reports using 12 week old atria show evidence for differing force-frequency 

relationships, development of diastolic contracture, irregular contractile activity and 

a lowered efficacy to CaCl2 (Sapp et al., 1996; Lu and Hoey, 2000). This weakness 

might be intrinsic to dystrophic cardiac muscle, due to secondary phenomena, or 

resulting from a combination of factors. Dystrophic cardiomyocytes have higher 

intracellular calcium, which initiates proteolysis and consequently tissue necrosis, 

which could affect contractility (Alloatti et al., 1995). Both mdx and DMD 

myocytes lack neuronal nitric oxide synthase (nNOS), which is thought to 

contribute to abnormal muscle function and incomplete myofibre regeneration 

(Brenman et al., 1995a; Chao et al., 1996). Young mdx undergoing generalised and 

severe muscle necrosis may be under considerable stress, and were shown to have a 

significantly lower metabolic rate and food consumption to controls (Dupont-

Versteegden et al., 1994a). It is feasible that a period of relative malnutrition and the 

existence of widespread inflammatory processes resulting from necrosis may 

exacerbate cardiac dysfunction, but whether animals then come out of this period 

with upregulated utrophin or adaptive responses to the calcium overload for a time, 

or if compensatory myocyte regeneration occurs is only speculative. Absences of 

dystrophin (and hence effective dystrophin-glycoprotein complexes) render 

cardiomyocytes more susceptible to mechanical stresses (Danialou et al., 2001a; 

Kamogawa et al., 2001). There is consensus from recent studies in young mice (8-
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12 weeks) that mdx have relatively normal cardiac function and mild 

histopathology under baseline conditions, and mechanical stress induced via aortic 

banding (Danialou et al., 2001a); (Kamogawa et al., 2001), exercise (Nakamura et 

al., 2002) or pharmacological means such as isoprenaline or dobutamine (Yue et al., 

2004);(Quinlan et al., 2004), is necessary to produce significant functional or 

histological changes. . 

 Older mice (>15 months in this current study) show deteriorating atrial 

function, increased fibrosis, and altered twitch morphology, suggesting progressive 

pathology at the myocyte and organ level as mdx age. A recent echocardiographic 

study did not show differences in chamber dimensions or fractional shortening in 

mdx and control mice until they reached 42 weeks of age (Quinlan et al., 2004). 

 The apparent paradox of shorter APD90 and longer contractile rise and 

relaxation times implies a level of dissociation between the electrical events 

occurring within the cardiac cell and functioning of the contractile machinery. The 

alteration in relaxation and contraction times appears to occur in an age-dependant 

manner, being normal in young mice and greater from 6 months onwards in this 

study and at 12 weeks in another performed at 25oC (which slows contractile 

kinetics) (Sapp et al., 1996). Raised intracellular calcium has been shown to abolish 

excitation-contraction coupling in isolated skeletal muscles in rat and toad (Lamb et 

al., 1995). In addition mdx extensor digitorum longus muscles, with an inherent 

intracellular calcium elevation, also displays these properties (De Luca et al., 2001). 

There is an interplay of events determining lusiotropy, including dissociation of 

calcium from actin-myosin cross bridges, reuptake of calcium by the sarcoplasmic 

reticulum and calcium extrusion which may be affected in dystrophic 

cardiomyocytes. 

 Hydroxyproline values from left atria and left ventricular apex samples indicate 

collagen accumulation begins at a young age in mdx mice. The LV HP 

measurements in the first study do not suggest marked fibrosis in dystrophin 

deficient hearts, but this may be a methodological problem rather than a reflection 

of true values. A total assay volume of 2 mL precluded use of more than 20 mg of 

tissue and, because LV was also stored for confocal microscopy, only the tip of the 

apex was utilised. In the second study samples were taken from mid portions of the 

heart, and values were perhaps more representative. Right atria were also included 
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in this study, with HP significantly greater in young, but not old, mdx compared to 

control right atria. The reason for this is unknown, however this structure usually 

has a dense collagen network, commensurate with its structural and conducting 

function and fibrosis may progress in aging normal and dystrophic mice. 

 There was variation in collagen measured by picrosirius red staining and 

confocal microscopy (Study 1), with large standard error of means for dystrophic, 

but not for control hearts. This phenomenon also occurred in another study, where 3 

times as many dystrophic mice were analysed compared to control mice, yet large 

standard errors were noted in mdx only (Quinlan et al., 2004). There was no 

perceived benefit in using confocal microscopy in this series of experiments, 

particularly as the number of scans was small (3), and given the added costs of this 

technique. In Study 2 improvements included the use of more mice, analysing 3 

levels of the heart instead of only one and ensuring analysis fairly included non 

fibrotic as well as fibrotic regions. Fibrosis may not occur equally in all mdx hearts, 

and this is supported by other studies in mdx (Lefaucheur et al., 1995) and boys with 

DMD. Although the magnitude of fibrosis (up to 8-10%) is less in mdx mice 

compared to DMD patients, it could still impact on contractile function and 

electrical impulse propagation in affected animals. 

 There were several limitations to this study. There were no age matched control 

mice available to enable valid comparisons of functional and electrophysiology data 

at 18 and 24 months. Atrial contractile and electrophysiological data may not be 

commensurate with ventricular function, however isolated left atria were used in 

order to obtain sufficient statistical results in mice of body weights ranging from 6 

to 39 grams. Atrial preparations have been used previously to demonstrate altered 

contractile function in mdx mice (Alloatti et al., 1995), and it is known that 

multifocal dystrophic involvement occurs in all four heart chambers of boys with 

DMD (Sanyal et al., 1978; Sanyal and Johnson, 1982), and was evident from 

increased ventricular and atrial collagen in this study.  Mouse trabeculae or papillary 

muscles have a high frequency (~75%) of geometrically unsuitable preparations for 

working muscle experiments (Gao et al., 1999; Kogler et al., 2001), and it is our 

laboratory’s experience that mdx papillary muscle preparations undergo contracture 

more readily than control mice, presumably as a consequence of their high 
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intracellular calcium (see Appendix A for details regarding ventricular experiments 

in mdx). 

 . There have been arguments that the mdx is a poor model of cardiomyopathy 

(Grady et al., 1997) (Megeney et al., 1999), however there is evidence from this 

current investigation, and other previously published work, that significant 

dystrophic changes do occur in mdx hearts which can lead to pathophysiological 

events not identical with, but similar to, the cardiomyopathy of DMD. 

 This study concludes that particular ages of mdx may be more useful than 

others for cardiac experiments. The young mouse less than 6 weeks old, undergoing 

or recovering from widespread muscle necrosis, shows cardiac contractile 

dysfunction. Mice older than 15 months of age demonstrate altered twitch 

properties, deterioration in contractile function and fibrosis indicative of ongoing 

pathology. The inherent dystrophic changes in dystrophin-deficient cardiomyocytes, 

such as altered calcium metabolism, cellular electrophysiological alterations and 

nNOS deficiency may be responsible for these changes. A shortened APD90 and 

hence refractory period, in association with other features of dystrophic cardiac cells 

such as increased intracellular calcium, necrosis and fibrosis can potentially enhance 

the development of arrhythmias, which are evident in many boys with DMD. 

Electrophysiological studies such as the transmembrane action potential 

measurements detailed here, patch clamping or monophasic action potential studies 

as performed in other murine models of cardiomyopathy are important in 

understanding electrophysiological disturbances at cell, tissue and organ level.  



 

 

 

70

 

CHAPTER 3. THE AGING MDX MOUSE: DIAPHRAGM 
FUNCTION AND FIBROSIS 

3.1 Introduction 

 The landmark study by Stedman et al was the first to document the severe 

histological changes in mdx diaphragm compared to the control strain, and the 

concurrent functional deficits of isolated diaphragm strips in organ bath experiments 

(Stedman et al., 1991). The discovery of a similar pattern of degeneration, fibrosis 

and severe functional deficits comparable to DMD limb muscles has since extended 

the application of the mdx mouse as an animal model of human disease. These 

authors compared diaphragm muscle by examining them histologically at two ages 

(6 and 16 months), by using hydroxyproline analysis as a measure of collagen 

content (in mice from 12-18 months of age), and by determining functional 

properties (18-month-old mice). At 6 months of age there was wide variation in 

myofibre size and architecture, with evidence of continued necrosis and connective  

tissue proliferation. By 16 months of age they noted extensive myofibre loss and 

replacement by fibrous tissue in diaphragms from mdx compared to C57 mice. 

Older mdx diaphragm strips demonstrated reductions of strength to 13.5% of the 

levels of control mice, in addition to reduced elasticity, twitch speed and fibre 

length. Figure 4.1 shows representative H & E stained sections from 18-month-old 

mdx and control mice (sections prepared by author). 

 

  A range of further studies examined contractility at 6 weeks, 4 months, 6 

months, 8 months, 9 months, 10-13 months, 22-24 months and fibrosis (by 

hydroxyproline analysis or histological stains) at 3 months, 4 months, 6 months, and 

8 months (Petrof et al., 1993b; Dupont-Versteegden et al., 1994b);  (Hartel et al., 

2001); (Krupnick et al., 2003; Coirault et al., 2003; Coirault et al., 1999; Lynch et 

al., 1997; Lynch et al., 2001; Gregorevic et al., 2002). However no single study has 

investigated these parameters across most of the lifespan of mdx mice.  
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Fig 3.1 H&E stained diaphragm sections from A) 18-month-old control mouse and 

B) 18-month old mdx. Dystrophic features of collagen accumulation, inflammatory 

cell infiltration, central nucleation and wide variation in cell size are apparent in the 

mdx diaphragm. (20x magnification) 

 

 A lowered threshold of work-induced injury was postulated as a cause of the 

distinct pattern of dystrophic changes in mdx diaphragm muscles (Stedman et al., 

1991). This was supported by findings of similar but less severe histological 

changes in the accessory muscles of respiration, which, like the diaphragm, have a 

constant obligatory workload. Also of interest is the satellite cell reserve within the 
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diaphragm suggesting that regeneration of myocytes within this organ still occurs, 

even in old mdx. Further studies have shown 70-80% of limb muscles of mdx mice 

have central nuclei, compared to 35% in diaphragm muscle, and that fibre diameter  

remains smaller in mdx diaphragms compared to controls (Louboutin et al., 1993). It 

has been suggested that the crural diaphragm is subject to more strain, fatigue or 

contraction induced injury than the costal diaphragm, possibly due to a higher 

workload and mechanical strain of these fibres in quadrupedal animal (Anderson et 

al., 1998). 

 In contrast, evidence is accumulating against the work-overload hypothesis. 

The decrease in diaphragm strength in mdx mice is more pronounced than that 

predicted by the area of fibrosis alone (Petrof et al., 1993b, Lynch et al., 1997), 

indicative of alternate causes of diaphragm weakness. There is a strong linear 

relationship between maximum tetanic forces and total number of cross bridges per 

square millimetre, with mdx diaphragm having a 48% reduction in cross bridges 

(Coirault et al., 1999). There is also evidence that the contractile apparatus of 

muscle fibres may be intrinsically dysfunctional in mdx diaphragms (Coirault et al., 

1999), even as young as 6 weeks of age when muscle necrosis and fibrosis remain 

limited (Coirault et al., 2003). These authors found a 37% lower force production in 

6-week-old mdx mice, despite only 2.8% fibre necrosis and 3.6% collagen surface 

area occupied. Their conclusions were that mdx diaphragm muscle is more prone to 

degeneration, as a portion of active cross bridges are forced to carry the ventilatory 

workload. Oxidative damage is a likely contributory factor, with studies showing 

both a reduction in NO-mediated protection against ischaemia and increased cellular 

susceptibility to oxidative damage in mdx (Disatnik et al., 2000; Rando et al., 1998). 

Further evidence against the work-overload hypothesis of muscular dystrophy was 

afforded by tracheal banding experiments, which did not accelerate degeneration in 

mdx diaphragm despite significantly increased inspiratory workloads (Krupnick et 

al., 2003). 
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To date, few studies have utilised direct administration of therapeutic agents into 

mdx diaphragm muscle, despite this structure showing the greatest similarity to 

DMD skeletal muscles, and being a potential treatment paradigm for gene therapies, 

plasmid or adenovirus delivery, or oligoribonucleotide (AO) administration. 

Efficient introduction of pure recombinant plasmid DNA into C57BL/6J mice 

diaphragms was reported (Davis and Jasmin, 1993), and reporter gene delivery has 

been successful in mouse diaphragms (Liu et al., 2001a; Liu et al., 2001b). It was 

demonstrated that a controlled release device for Leukaemia Inhibitory Factor (LIF) 

based on a calcium alginate rod could be sutured to the abdominal surface of the 

diaphragm to provide LIF for a 3-month period (Austin et al., 2000). These 

experiments utilised normal mice or young (3 month old) mdx mice and it is not 

clear from these studies whether the significant collagen deposition present in mdx 

diaphragms limits the use of direct injections in this strain. Timing of administration 

may be critical, with a balance sought between an age of mouse with a large enough 

body size to make surgery and diaphragm injections practicable, and prior to the 

period of accelerating degenerative changes and fibrosis, which may limit the 

spread of injectate within the muscle, and potential success of dystrophin restorative 

therapies.   

 

3.2 Aims 

 There were 4 aims of the study: a) to gain experience in the dissection and 

mounting of mouse diaphragm strips in organ bath experiments, b) to establish and 

optimise hydroxyproline assays for diaphragm tissue within our laboratory, c) to 

determine the best age range for experiments involving direct administration of AOs 

into mouse diaphragm muscles, using both functional data and measures of fibrosis 

and d) to develop expertise in sub-epimyseal diaphragm inoculations in mice. 

 

3.3 Methods 

3.3.1 Mouse numbers and grouping 

The same animals used for cardiac studies (Chapter 3) were utilised for 

diaphragm contractility experiments. There were 7-8 mice per group, with animals 

aged 3 weeks, 6 weeks, 12 weeks, 6 months, 9 months, 12 months, 15 months, 18 

months and 24 months of age (total 105 mice). Age matched male C57 and mdx 



 

 

 

74

were utilised, except for 12, 18 and 24 months age groups, where only mdx mice 

were available. A total of 10 C57 and mdx mice of mixed ages were used for post-

mortem practice diaphragm injections, additional to contractility studies. 

Hydroxyproline analyses were performed on diaphragm strips from 6 or 7 control 

and mdx mice per age group. 

 

3.3.2 Organ bath experiments 

The organ bath protocol followed was that used in the laboratory at the time, 

utilising existing equipment.  

Mice were anaesthetised with 50 mg/kg tiletamine/zolazepam (Zoletil, 

Virbac Australia)) by subcutaneous injection. The diaphragm and surrounding ribs 

were removed en bloc and placed in ice cold Krebs solution, bubbled with 95% O2 

and 5% CO2. Strips of diaphragm muscle were prepared for hydroxyproline analysis 

by snap freezing in liquid nitrogen before storing at –80oC.  A single diaphragm 

strip 2-3 mm wide was excised from the right hemidiaphragm for organ bath 

studies.  These were anchored by means of cotton thread to a fixed peg at the rib 

end, and attached to a force transducer at the tendon end, and placed within a 25ml 

glass organ bath maintained at 23oC. Tissues were stimulated via a Grass S48 

stimulator (W. Warwick, RI, USA). Data was collected and analysed using Chart 

4.1.1 software on an iMac computer. A square pulse of 0.2 ms duration was 

dispersed via two platinum plate electrodes positioned at each side of the muscle. 

Preload was set at 5 mN, frequency of tetanic stimulation at 120 Hz and voltage at 

10 volts for all muscle strips. 

Reported data was the average of 3 individual single twitch or tetanic 

stimulations per muscle strip to give an overall mean for that mouse. A fatigue 

protocol (one tetanic stimulation every 5 secs for 5 minutes) was also performed. 

Muscles were measured using a digital micrometer, blotted for 3 secs then weighed 

prior to storage at –80oC for subsequent hydroxyproline assays. Cross-sectional area 

(CSA) and normalisation of forces was calculated as described previously (Lynch et 

al., 2001), where CSA equals weight of tissue divided by length multiplied by 1.06 

(the density of mammalian skeletal muscle).  

Organ bath protocols were changed subsequently (including more stringent 

optimisation of preload, voltage and frequency for each muscle preparation), with a 
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preamplifier to increase stimulation current intensity added to the experimental 

apparatus. Subsequent diaphragm experiments resulted in greater peak force values 

for these reasons (see Chapters 5- 7), however these early results are included 

because they offer useful functional information for aging mice, complimenting 

hydroxyproline values at the same age groups. 

 

3.3.3 Quantitation of collagen 

Hydroxyproline content was used as a measure of collagen. Tissues were 

thawed then hydrolysed in sealed tubes with 6M HCl overnight at 110 oC. The 

samples were dried to entirety using filtered air under pressure and heat (50 oC). The 

rest of the protocol has been described previously (Stegemann and Stalder, 1967), 

with details of the assay adjusted to a 2 mL total volume provided in Appendix A. 

Values are expressed as  gHP µ/mg tissue wet weight. 

 

3.3.4  Diaphragm injection technique 

Anaesthesia was induced with 70-mg/kg thiopentone sodium 

(Nembutal,Boerhinger Ingelheim Australia) given i.p. Hair was clipped from the 

ventral abdomen of the mouse and a midline laparotomy performed from the 

xiphisternum caudally. Exposure of the abdominal surface of the diaphragm was 

achieved by placing a silk suture through the abdominal musculature on each side, 

then attaching a pair of haemostats to the ends of the threads and holding them away 

from the body. Magnification was performed initially with 3x magnification glasses, 

or later, 7x magnification illuminated lenses (Voroscope). 30 gauge 0.3 mL 

disposable insulin syringes (Omnican 30, Braun, Australia) were used for the 

injections, which for practice purposes were a total of 34µL of 0.9% saline and 6 µL 

histological marking dye (Wak-Chemie Medical, Germany). The needle was 

inserted with the orifice away from the muscle and as much of the length inserted 

into the muscle as possible. 4 injections of 10 µL were administered at sites around 

the diaphragm, two in the right and two in the left hemidiaphragms. Success of the 

procedure was gauged by the spread of staining in the vicinity of the injection site. 
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3.4 Statistics 

Results are expressed as mean ± SEM. Variables were compared between 

experimental groups using Student’s t-tests, assuming equal variances. Differences 

between groups were considered significant when P<0.05. 

 
3.5 Results 

3.5.1 Morphometry 

Figure 3.2 shows group mean body weights of mice used for both the aging 

heart study (Chapter 3) and for this study. Significant differences were observed at 3 

weeks of age, when mdx were lighter (P<0.001), at 12 weeks old when mdx were 

heavier corresponding to their muscle hypertrophy stage (P<0.05) and again at 15 

months when mdx mice were moving less freely around their cages and weight loss 

was observed (P<0.01). This weight loss in mdx continued until the end of the study 

(24 months of age). 
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Fig 3.2 Body weights of aging mice used for diaphragm study and aging heart 

study. n=7-8 mice per strain per age group, except for 18 months and 24 months 

when only mdx were available. *P<0.05, **P<0.01, ***P<0.001 
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3.5.2 Diaphragm contractility.  

Peak twitch and tetanic forces are shown in Figure 3.3a and b. Mdx twitch 

values were significantly less at 6 weeks and six months Mdx tetanus values were 

similar to control mice at 3, 6 and 12 weeks of age. After this time there was a 

significant difference between mice strains, with mdx having lower values (P<0.01). 

Twitch to tetanus ratios tended to be greater in mdx mice compared to controls, 

showing significance at 6 months of age (C57, 0.18 ± .004; mdx, 0.23 ± .02,  

P<0.01) and 15 months of age (C57, 0.19 ± 0.02; mdx, 0.29 ± .02, P<0.01).  

Other twitch characteristics measured including time to peak force (TPF), time for 

50% relaxation (TR50) and time for 90% relaxation (TR90) did not differ 

significantly between mice strains (data not shown). Percentage fatigue of 

diaphragm strips was significantly less in mdx mice after 9 months of age (C57, 

53.49 ± 2.3%; mdx, 35.8 ± 5.9%, P<0.01), corresponding to the lower tetanic forces 

achieved in older mice.  
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Fig 3.3a Peak diaphragm twitch force, normalised to CSA for groups of C57 and 

mdx mice (n= 7-8 mice per strain per age group). There were significant differences 

between strains at 6 weeks and 6 months of age, with mdx showing lower peak 

twitch forces. 

Fig 3.3b Peak diaphragm tetanic force normalised to CSA for groups of C57 and 

mdx mice (n= 7-8 mice per strain per age group). Force was similar in young mice 

(3, 6 and 12 weeks), but became less in mdx mice from 6 months of age. 
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3.5.3 Diaphragm fibrosis  

There was a three to four fold increase in HP in old mdx mice, compared to 

young mdx. Values tended to remain similar in the age groups of control mice 

tested. (Figure 3.4) 
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Fig 3.4 Diaphragm hydroxyproline values, expressed as µg HP/mg tissue wet 

weight. n=7-8 mice per strain per group. HP values were similar for mdx and control 

mice until 6 months of age, when significant differences were measured. * P<0.05, 

**P<0.01, ***P<0.001 
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3.5.4 Diaphragm injections 

Young mdx mice (< 6 weeks old) and C57 mice of all ages tended to have very 

thin diaphragm muscles, while older mdx had thicker, more opaque muscles that 

were consequently easier to inject. Success of injections was judged by spread of 

blue dye in the muscle around the needle tip. This either resulted in a bleb of 

injectate or sometimes infiltration of dye along the length of muscle fibres, from 

near the costal margin towards the central tendon. Successful injections were aided 

by retraction of the costal margin to flatten the diaphragm surface, positioning the 

mouse on an inclined foam pad to enable the abdominal contents to drop away from 

the diaphragm, and holding the liver away using gauze swabs and blunt forceps. 

Occasional injections resulted in blue dye escaping into the thoracic cavity, however 

with practice correct placement was usually achieved. 

 
 
 
3.6 Discussion 

   The mdx mouse is a complex model, with differential patterns of dystrophy 

according to age and the muscles examined. The mdx diaphragm is a desirable 

target for dystrophin restoration strategies because of its severe pathology that 

begins early and persists throughout the mouse lifespan. There is, however, little 

available evidence as to the best age to apply such treatments, and only a few 

references document the use of mouse diaphragm sub-epimysial injections (Davis 

and Jasmin, 1993; Petrof et al., 1995; Petrof, 1998b)  

This present study used the parameters of loss of force production and 

collagen accumulation as measures of dystrophic pathology. It was hypothesised 

that success of dystrophin restoring strategies is most likely before significant 

muscle weakness or fibrosis is present (Chapter 5). Whereas young mice (6 weeks 

old) have been used for testing of limb injections of AOs (Lu et al, 2003), the 

thinness of diaphragm muscle in control mice and very young mdx mice may 

preclude the efficacy of this procedure until a larger body size is reached. 

Organ bath studies of mouse diaphragm muscle are well documented and 

performed in many laboratories throughout the world, however a review of the 

literature showed a variation in protocols and peak force values obtained (Stedman 
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et al., 1991; Lynch et al., 1997; Coirault et al., 1999; Stevens and Faulkner, 2000). 

It is essential to optimise procedures within an individual laboratory and for 

researchers to gain expertise in new experimental techniques. It became apparent 

that protocols initially in place in our laboratory were resulting in very low force 

productions (less than 1/3 of those achieved elsewhere), and did not optimise 

conditions for muscle fibre contractions. Changes for subsequent studies included 

the careful determination of preload to obtain optimal muscle fibre length (Lo) and 

hence achieve greatest isometric active tension, determination of the frequency 

resulting in a maximally fused tetanic tension and assessment of optimal stimulus 

voltage. In addition a preamplifier was added to the experimental apparatus to 

amplify field stimulation intensity. Unfortunately much of this preliminary 

experiment was performed before these changes were made, and for comparison 

sake the rest of the diaphragm preparations were treated similarly. As a consequence 

maximal force production was considerably underestimated in this series, as tension 

declines at lengths less than or greater than Lo. However, when taken together with 

hydroxyproline values and information available from published studies, useful 

conclusions could be still be reached. Figure 3.5 shows the approximate decline in 

force production with age as well as collagen accumulation. 
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Mdx diaphragm hydroxyproline and peak twitch
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Fig 3.5 Plot expressing both decline in peak twitch force in aging mdx, compared to 

increased fibrosis (measured by hydroxyproline analysis). The two lines show 

averaged values generated by curve fit, and as such represent approximate values 

only. The asterisks show the age at which significant differences between mdx and 

control mice for hydroxyproline and twitch force occurred in this study. 

 

 

 It was felt that determination of diaphragm fatigue did not provide useful 

additional information as muscles showing lower tetanic force production tended to 

fatigue less (older mdx diaphragms). The altered twitch/tetanus ratios could also not 

be interpreted categorically because of the incorrect optimisation procedures used. 

 The success of diaphragm injections was cofirmed by visual confirmation. 

The sites of injections were clearly apparent by the appearance of a raised bleb 

within the diaphragm musculture. Successful injections occurred infrequently at 

first, but with repeated practice these injections were possible at four sites in the 

majority of animals. The dissection of treated diaphragms post mortem also allowed 

examination and assessment of the spread of dye. 

   In conclusion this study provided experience in organ bath techniques and  

highlighted the need for modification and improvements of existing skeletal muscle 

contractility protocols. Valuable experience in laparotomy and diaphragm injections 
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in mice was gained. The reliability of hydroxyproline assays as a measure of 

diaphragm fibrosis was realised. For potential studies employing direct injection of 

AOs into mdx diaphragm muscle it was concluded that such injections should occur 

well before six months of age, when marked dystrophy is evident. As it was thought 

that two administrations of AOs four weeks apart were preferential to one injection 

it was considered that future mice undergo surgery for AO injections at four and 

five months of age, before sacrifice for organ bath studies, hydroxyproline, 

histology and Western analysis at six months of age. 
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CHAPTER 4. THE AGING MDX MOUSE: 
PROGRESSION OF KYPHOSIS 
4.1 Introduction 

Chest deformity due to scoliosis, kyphosis, lordosis or combined spinal 

curvatures contribute significantly to the morbidity associated with DMD, and often 

leads to a restrictive respiratory pattern with diaphragm and inspiratory muscle 

weakness, ineffective cough mechanisms, mucus plugging of airways and chronic 

alveolar hypoventilation (Rideau et al., 1981; Seddon and Khan, 2003). Vital 

capacity (VC) remains normal in patients with neuromuscular disease if respiratory 

muscle strength is more than 50% of predicted, however when strength is less than 

this VC becomes diminished to a greater extent than expected (De Troyer et al., 

1980; Estenne et al., 1993). This decrease is thought to be associated with a loss of 

compliance of the chest wall and lungs, with stiffening of ribcage tendons and 

ligaments and ankylosis of costosternal and thoracovertebral joints (Estenne et al., 

1993); (Bach and Kang, 2000). As well as exacerbating respiratory dysfunction in 

affected boys, kyphoscoliosis negatively impacts on their quality of life in their 

wheelchair dependant years, with most patients electing surgery for spinal fusion 

and stabilisation and/or experiencing chronic pain due to poor posture and 

prolonged sitting (Smith et al., 1989).  

The natural course of spinal deformity differs between patients and a 

classification scheme has been established based on radiographic indices including 

the Cobb angle, pelvic obliquity, kyphotic index (KI) and sacral angle (Oda et al., 

1993). Pulmonary function (as measured by plateau of vital capacity) correlates 

with the progression of spinal deformity and may be an indicator of the expected 

progression (Yamashita et al., 2001a; Yamashita et al., 2001b). It has also been 

suggested that a particular clinical course may correlate with a specific molecular 

lesion (Hoffman et al., 1989; Hoffman, 1993). 

Thoracolumbar kyphosis also occurs in murine models of neuromuscular 

diseases including the dystrophin deficient (mdx) mouse (Lefaucheur et al., 1995), 

the dystrophin/utrophin deficient (mdx:utrn-/-) mouse (Grady et al., 1997; 

Deconinck et al., 1997a) and the kyphoscoliosis (ky) mouse  (Dickinson and Meikle, 

1973; Bridges et al., 1992). Figure 4.1 shows photographs of aged mdx and control 
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mice with skin removed. These images show the muscle atrophy present in old 

mdx mice, and the presence of kyphosis of the thoracolumbar region.  

 

Fig 4.1  Whole body photographs of A.Young (3mo) mdx mouse, B. Aged (22 mo) 

mdx, C. Young C57 mouse and D. Aged C57 mouse. Kyphosis is grossly evident in 

both strains of mice, but is more pronounced in mdx. Also evident is the muscle 

hypertrophy in young mdx mice, and the muscle atrophy and weight loss that occurs 

with age in this strain. 

 

Although mdx diaphragm muscle has been shown to most closely mimic the 

pathological changes seen in DMD (Stedman et al., 1991), there is also histological 

evidence of necrosis and fibrosis in postural and paraspinal muscles of mdx and  

mdx:utrn-/- (Lefaucheur et al., 1995; Grady et al., 1997; Deconinck et al., 1997a). 

To date limited respiratory studies have been performed in the mdx mouse model, 

however there is recent evidence of significant attenuation of respiratory responses 

to hypercapnia (a potent ventilatory stimulant) in mdx mice compared to control 

mice, which was thought to be influenced by tumour necrosis factor-α (Gosselin et 

al., 2003).  
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4.2 Aims 

There were three goals in this study: a) Establishment of a novel Kyphotic 

Index (KI) to quantify the progression of spinal deformity in two groups of aging 

mice, mdx and their aged matched controls. b) Evaluation of contractile function in 

paraspinal and respiratory muscles (latissimus dorsi muscles and intercostal strips) 

and comparison to diaphragm muscle as a known standard. The latissimus, a flexor 

of the brachium, was chosen because of its origin from T8-T12 and the 

thoracolumbar fascia in the region kyphosis occurs, and due to its well documented 

contractile properties in other species (James et al., 1997). Functional parameters of 

intercostal muscles have been reported previously in larger species, but not in mice, 

therefore intercostal strips comprising four rib sections and adjoining intercostal 

muscles (external and internal intercostals) were utilised.  c) Measurement of 

fibrosis in the above muscles and longissimus dorsi muscles by means of 

hydroxyproline measurements and picrosirius red stained sections recording 

histological changes to evaluate muscle degeneration and regeneration. It was hoped 

that findings from this study would extend understanding of the mdx phenotype and 

be commensurate with dystrophic changes contributing to thoracolumbar deformity 

in DMD patients. 

 

4.3 Methods 

4.3.1 Mouse numbers and groupings 

  Male C57BL/10ScSn mice (control strain) were purchased from Animal 

Resource Centre, Nedlands, Perth, WA at 7 weeks of age. Male mdx mice were bred 

at the USQ Animal House, Toowoomba, Qld. The mice were housed in groups and 

given free access to laboratory chow and water, and all experiments were conducted 

in accordance with guidelines of the USQ Animal Ethics Committee. 4 mice per 

strain were used for the radiographic study, with one mouse dying during this study. 

An additional 4 mice per strain were also utilised for contractility experiments, 

hydroxyproline assays and histology.  17 month old mice were chosen as the aged 

group because of time restraints of PhD studies, and lack of availability of older 

mice for the additional functional experiments. 
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4.3.2 Radiographic studies and establishment of Kyphotic Index 

  Mice were sedated with Ketamine HCl 50 mg/kg (Ketamil, Troy 

Laboratories, Australia) in combination with Xylazine HCl 10 mg/kg (Ilium 

Xylazil-20, Troy Laboratories, Australia) administered by subcutaneous injection. 

At the end of the procedure atipamezole (Antisedan, Novartis Animal Health, 

Australia) was given at a dose rate of 0.1 mg/kg to reverse α-2 agonist effects of 

xylazine. Mice were lightly taped to the radiographic cassette using clear adhesive 

tape. Each animal was individually identified by tail markings, a radiodense (metal) 

number placed next to them, and a radiographic cassette label indicating date and 

animal grouping. Konica CM-H medical mammography film was exposed using a 

portable X-ray unit (either Showa  Xray Co Ltd Tokyo, Japan or Porta 1030 model, 

Job Corporation, Yokohama, Japan). Optimum exposure with this equipment was 

established at 48KV, 1.8 MAS with a film focal distance of 70 cm. Mice were 

radiographed once monthly from 4 months until 17 months of age. Figure 4.2 

depicts mice undergoing radiography. 

 

Fig 4.2 Mice undergoing radiography for determination of KI. A. Portable x-ray 

machine suspended from a timber beam to ensure correct film-focal distance. B. 

Anaesthetised mice positioned on cassette using clear adhesive tape. A metal 

number is taped beside each animal for individual identification. 

 



 

 

 
Equipment and procedures conformed to Queensland Department of Health 

regulations for veterinary radiography, and the correct personal and protective 

equipment (lead gown and gloves) was worn. Although it was necessary to stay in 

the room during film exposure the operator was as far from the x-ray beam as 

allowed by the length of cable. Monitoring of radiation exposure by radiation meters 

was performed regularly. 

Each whole body radiograph was photographed using a tripod mounted 

Ricoh Caplio RR30 digital camera with images analysed using Scion Image 

software Beta 4.0.2 (http://www.scioncorp.com). KI was calculated from a line 

drawn between the caudal margin of the last cervical vertebra, to the caudal margin 

of the 6th lumbar vertebra (usually corresponding to the cranial border of the wing of 

the ilium) (Line AB), divided by a line perpendicular to this from the dorsal edge of 

the vertebra at the point of greatest curvature (Line CD). This correlates as closely 

as possible to those radiographic parameters used to assess KI in boys with DMD, 

and is depicted in Figure 4.3a and b 
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Fig 4.3b.  KI in mice, calculated from radiographs of anaesthetised mice positioned 

in right lateral recumbency. 

Line AB is the length of a line drawn from posterior edge of C7 to the posterior 

edge of L6, usually where it contacts the wing of the ilium (which is more 

consistently identifiable than the sacral border). Line CD is the distance from line 

AB to the dorsal border of the vertebral body farthest from that line. KI=AB/CD 

 
Trial radiographs of the same animals in 3 positions 1) hind limbs and 

forelimbs placed in moderate extension, 2) overextension (stretching) of limbs and 

3) flexion of forelimbs and hind limbs showed there was some differences in 

measured KI, considered to be less than 10%. Care was then taken to avoid 2) or 3), 

and to ensure limbs were only moderately extended. This could be confirmed when 

radiographs were analysed because the femurs and humeri were close to parallel and 

perpendicular to the long axis of the spine. Several radiographs that did not meet 

these criteria or were under or overexposed were excluded from analysis. 

 

4.3.3 Measurement of thoracic area 

 With radiographs photographed using a fixed film-focal distance and 

utilising the Scion Image program draw tool, a line was extended around the inside 

border of the thoracic cavity, from T1 at the thoracic inlet following sternebrae, 

diaphragm and ventral edge of vertebrae to allow an estimation of thoracic area at 

age 17 months (Figure 4.4). This measure was repeated three times and results 

averaged for each animal (n=4 animals per group). Because thoracic area is related 

to body size the calculated area was normalised for body weight to give a value of 

thoracic area/body weight (cm2/gram) 
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Fig 4.4 Assessment of thoracic area in mice. A freehand line was drawn digitally  

following anterior edge of the first rib, sternebrae, diaphragm and ventral vertebral 

border using Scion Imaging program, and area bound by this line was calculated. 

This measurement was repeated three times for each mouse and results were 

averaged. The mouse shown above had a thoracic area of  3.59 cm2. 

 

4.3.4 Contractility  studies 

  17 month old mice were anaesthetised using pentobarbitone sodium 

(Nembutal, Boehringer Ingelheim, Australia) at 70 mg/kg IP. Cessation of breathing 

occurred when the thorax was entered. The following muscles were dissected and 

placed into ice-cold Krebs buffer solution bubbled with carbogen (95% O2/5% 

CO2); a) diaphragm strip from left midcostal hemi- diaphragm, with placement of 

silk suture material around the central tendon at one end and a small rib section at 

the other. b) latissimus dorsi muscle, which is a fan shaped muscle with an 

aponeurosis originating from the spinal processes of T8-T12 and the thoracolumbar 

fascia, and a distinct tendon of insertion at the proximal humerus. A needle threaded 

with 6/0 surgical silk was passed through the aponeurosis and tied with a loop to 

attach to a force transducer. A short length of silk was also tied at the tendon end to 

anchor to a fixed peg below the stimulating electrodes and c) intercostal section 

comprising 4 ribs and their attached intercostal muscles (internal and external), 

extending from T8-12, adjacent and parallel to the longissimus dorsi muscle. Silk 
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sutures were passed with a needle around each rib at the top and bottom of the 

intercostal strip for mounting.  

Muscles from the right side were collected and stored for histological 

analysis and hydroxyproline assays. Contralateral muscles were mounted in water-

jacketed glass organ baths, maintained at 23oC, using 6/0 silk surgical suture thread 

attached to a fixed peg at one end and a force transducer at the other. Tissues were 

stimulated via a Grass S48 stimulator (W. Warwick, RI, USA) and current intensity 

was amplified using a pre-amplifier (EP500B. Audio Assemblies, Campbellfield, 

Victoria, Aust). Data was collected and analysed using Chart 4.1.1 software. A 

square pulse of 0.2ms duration was dispersed via 2 platinum electrodes positioned 

along the length of the muscle. 

Optimum preload (Lo) was defined as the length eliciting maximal single twitch 

force. Optimal voltage was also determined for each preparation, as was the 

frequency eliciting maximal tetanic force from a range of 50 - 180 Hz.  A total of 7-

8 mice per group were used for contractility studies. Reported data was the average 

of 3 individual single twitch or tetanic stimulations per muscle strip after 25 minutes 

of equilibration and optimisation of conditions. Muscles were measured at Lo using 

a digital micrometer, blotted for 3 secs then weighed. Cross sectional area (CSA) 

and normalisation of force was calculated as described previously for diaphragm 

and latissimus muscles, where CSA equals tissue weight divided by length x 1.06 

(density of mammalian muscle) (Lynch et al., 2001). Intercostal muscle fibre CSA 

was shown to vary topographically (Kelsen et al., 1993) and in our preparations a 

strip comprises both muscle and rib cartilage and internal and external intercostal 

muscle layers consisting of differing fibre orientations and hence lengths. For these 

reasons intercostal forces were normalised to weight only. Time to peak force, 50% 

relaxation time and 90% relaxation time was calculated for each single twitch value. 

 

4.3.5 Hydroxyproline analysis 

   Hydroxyproline content was used as a measure of collagen in diaphragm, 

intercostal muscles, latissimus dorsi and longissimus dorsi muscles. Muscles were 

trimmed of fat, ribs and tendons and stored at -80 oC. Tissue was thawed then 

hydrolysed in sealed tubes with 6 M HCl overnight at 110oC. The samples were 

dried to entirety using filtered air under pressure and heat (50oC). The rest of the 
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protocol has been described previously (Stegemann and Stalder, 1967) and 

Appendix A shows details of the procedure for total assay volumes of 2 mLs. 

Values are expressed as µg HP/mg tissue wet weight. 

 

4.3.6 Histology 

  Each tissue (diaphragm, latissimus, longissimus and intercostal muscles) 

was pinned onto cork at optimal length and then fixed sequentially in Telly’s 

fixative (formaldehyde, glacial acetic acid-ethanol fixative, 72 hours), Bouin’s 

solution (formaldehyde, glacial acetic acid-picric acid fixative, 24 hours) and 70% 

ethanol, prior to paraffin embedding, cutting and staining of 10 micron sections 

using 0.1% w/v picrosirius red solution (Sirius Red F3B, Chroma Dyes, Germany in 

saturated picric acid), a collagen specific stain. Additional 5 micron sections were 

stained with haematoxylin and eosin for determination of nuclear position. Analysis 

was performed blinded to the strain of mouse, with sections viewed on a Nikon 

Eclipse E600 light microscope and captured with a Nikon FDX-35mm camera, then 

digitised. A visual grading scheme was applied to the picrosirius stained sections, 

with Grade 1 having minimum interstitial fibrosis (eg <10%), Grade 2 with mild 

fibrosis (10-25%), Grade 3 with moderate fibrosis (25-50%) and Grade 4 with 

marked fibrosis (>50%).   

 

4.4 Statistics 

 Pilot experiments on aged mice were performed to estimate standard 

deviations and suitable sample size. Post hoc tests of power confirmed that an n = 3 

animals for assessment of KI and n=5 animals for contractility experiments were 

adequate (Plummer, 1998). Results are expressed as means ± S.E. Responses 

between mdx and control strain were analysed using Student’s unpaired t-tests, with 

the exception of differences in KI, where ANOVA was employed. P values less 

than 0.05 were considered statistically significant. 
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4.5 Results 

4.5.1 Gross findings 

 Kyphosis was palpable and clearly evident in all mdx mice at 17 months of 

age.  In addition the control strain showed a degree of thoracolumbar kyphosis 

which was not as pronounced. All animals were ambulatory and in fair-good body 

condition, however the mdx group showed a stiffer gait and moved less freely 

around their cages. 

 
4.5.2 Kyphotic Index 

KI as a measure of spinal deformity remained similar for mdx and control 

mice until approximately 9 months of age, after which a significant difference 

became apparent between mdx and normal mice (P<0.01 at 9 months). There was a 

plateau in both mouse strains after this age (Figure 4.5). 

 
 
 

Kyphosis Index aging mice
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Fig 4.5  Kyphosis Index of aging mdx and control mice. Mice were radiographed 

monthly from 4 months to 17 months of age and measurements were made every 2 

months. n=4(mdx), n=3 (C57) *P<0.05, **P<0.01. 

 

Figure 4.6 shows examples of radiographs of young (5 months old) and aged (17 

month old) mdx and control mice, used for determination of KI. 

 



 

 

 

93

 

 

Fig 4.6  Examples of mouse whole body radiographs used for calculation of  

kyphotic index. A and C = young and aged (5 month old and 17 month old) control 

mouse, B and D=young and aged mdx mouse. The progression of spinal deformity 

results in a decrease in KI, and alteration of thoracic shape and size. 

 

4.5.3 Thoracic Area 

  There was no significant difference in body weights at 17 months of age 

between mdx and C57 mice, however there was a difference (P<0.05) between 

thoracic area and normalised thoracic area in mdx and age-matched controls (Table 

4.1) with mdx mice demonstrating lower values. 
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TABLE 4.1 Mean (± SE) of thoracic area, body weight and normalised thoracic 

area in 17-month-old mice. n=3(C57), n=4(mdx). *P<0.05 

  
Thoracic area 
(cm2) 

 
Body weight (g) Thoracic area/bw 

(cm2/g) 

Control 
 
4.49 ± 0.12 

 
32.2 ± 0.86 

 
0.14 ± .007 

 
Mdx 

 
3.71 ± 0.25 * 

 
31.65 ± 1.2 

 
0.12 ± .004 * 

 

4.5.4  Muscle contractility  

The characteristics (optimal muscle length (Lo), average width and weight) of 

each isolated muscle strip is listed in Table 4.2.  The latissimus dorsi muscle 

showed greatest variation between mouse strains, with mdx having considerably 

heavier (P<0.001) muscles than C57, despite being no significant differences 

between widths or Lo for these muscle preparations. It is thought that this muscle (in 

addition to many mdx limb muscles) demonstrates considerable hypertrophy during 

their lifespan with the presence of fibrosis contributing to increased weights. A 

difference between strains was also apparent during dissection; the diaphragm, 

intercostals and latissimus muscles of C57 tended to be thin and transparent, while 

in mdx they were thickened and opaque. There was a small difference in average 

diaphragm width selected for mounting, and, although this is unlikely to affect 

results, the resultant tissue strip was heavier in the mdx group. 
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Table 4.2 Mean (± SE) optimum fibre length, weight and width of muscle strips 

from 17-month-old control and mdx mice. n=7(C57), n=8(mdx) ***P<0.001 

*P<0.05 

Muscle 
                           

Lo 
(mm) 

Weight  
(mg) 

Width 
(mm) 

 
31.14± 4.2 

 
86.56±13.55 

 
2.84± 0.4 

Latissimus dorsi 
Control 
mdx 31.33± 1.01 158.09±10.1 

*** 
3.68± 0.43 

Intercostal strip 
Control 
mdx 
 

 
8.28± 1.31 
8.61± 0.39 

 
59.95± 9.04 
55.65± 3.85 

 
5.53± 1.04 
4.64± 0.37 

Diaphragm strip 
Control 
mdx 

 
9.44± 1.34 
8.56± 0.41 

 
8.15± 0.99 
12.49± 1.75* 
  

 
1.44± 0.21 
1.87± 0.18*  

 
 
 
 
 
   In vitro isometric contractile properties of these muscles are shown in Table 4.3. 

All mdx muscles examined demonstrated reduced force production (twitch and 

tetanus) compared to control mice, with mdx diaphragm muscle showing the 

greatest reduction in tension generated (approximately two-thirds that of control 

mice, P<0.01). Mdx latissimus dorsi and intercostal strip values were by contrast 

50% of control levels for both twitch and tetanus tensions (P<0.05 except for 

latissimus Po (P<0.01)). Rise times (TPT) were similar, except for the attenuated 

diaphragm twitches of the mdx, which had significantly shorter TPT (P<0.001). 

Relaxation was prolonged in mdx intercostal muscles compared to control levels, 

reflected by increased TR50 and 90 (P<0.05). 
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  TPT 
(ms) 

TR50  
(ms) 

TR90  
(ms) 

Pt 
(mN/mm2) 

Po 
(mN/mm2) 

Latissimus 
dorsi 

 
Control 

 
26.5±1.2 

 
20.6±0.9 

 
43.3±1.5 

 
18.76±3.9 

 
86.8±13.65 

  
Mdx 

 
25±1.0 

 
20±1.0 

 
43.8±3.0 

 
10.62±1.19* 

 
45.9±5.6** 

Intercostal  
strip 

 
Control 

 
24.2±0.8 

 
17.4±0.8 

 
36.8±1.7 

 
0.23±0.05 

 
1.04±0.2 

  
Mdx 

 
25.8±1.0 

 
20.1±1.0*

 
43.0±2.0*

 
0.11±0.02 * 

 
0.58±0.09 * 

Diaphragm  
Control 

 
41.5±1.4 

 
30.3±0.9 

 
62.0±2.3 

 
31.93±6.67 

 
117.8±23.1 

  
Mdx 
 

 
33.1±1.0 
*** 

 
31.8±1.0 

 
62.6±3.0 

 
5.83±0.61** 

 
31.86±3.2**

. 
Table 4.3 Contractile properties of latissimus dorsi muscles, intercostal strips and 

diaphragm strips from 17-month-old mdx and control mice: Time to peak tension (TPT), 

Time to 50% relaxation (TR50), Time to 90% relaxation (TR90), peak twitch force (Pt) and 

maximal isometric tetanic force (Po). n=7 (C57), n=8 (mdx) *P<0.05,**P<0.01, 

***P<0.001. Pt and Po normalised using muscle CSA for diaphragm and latissimus 

muscles, and wet weight only for intercostal preparations. 
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4.5.5 Hydroxyproline analysis 

 Four muscles were used for assays of hydroxyproline content, and results 

are shown in Figure 4.7. All mdx muscles had significantly more HP than control 

mice, with the diaphragm HP 2.5 times higher than the other muscles examined. 

Interestingly, control mice also showed a higher level of fibrosis in this organ 

compared to other respiratory or paraspinal muscles, and when relative values were 

compared (control HP as a ratio of mdx HP) the diaphragm and latissimus displayed 

an equal tendency for fibrous tissue deposition (0.66), followed by intercostal 

muscles (0.58) and then longissimus dorsi (0.44). The magnitude of fibrosis may be 

a reflection of the workload of individual muscles. 
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Figure 4.7  Hydroxyproline content of paraspinal and respiratory muscles in mdx 

and control mice, as a measure of tissue fibrosis. n=7(C57), n=8 (mdx) *P<0.05, 

**P<0.01, ***P<0.001 

 

4.5.6 Histology. 

 The results of an applied histological grading scheme for muscle sections 

stained with the collagen specific stain picrosirius red are listed in Figure 4.8. The 

percentage of centronucleation of muscle fibres as visible on H&E stained sections 

indicates previous necrosis and degeneration and one or more cycles of 

regeneration, and is displayed in Figures 4.9 and 4.10.  Representative 
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photomicrographs of all four muscles of mdx and control mice stained for collagen 

are shown in Figure 4.11. It is apparent that mdx muscles demonstrate marked 

heterogeneity in cell size, a high incidence of centrally nucleated fibres, 

inflammatory cell infiltration and fibrous tissue deposition compared to control 

muscles. 

Mdx diaphragm displays the highest scores on histological grading as 

expected, with marked fibre loss and replacement with interstitial collagen. The 

intercostals displayed an intensity of picrosirius staining and high score that is not 

perhaps reflected in measured hydroxyproline content of these tissues. The 

intercostal muscles are a complex mixed tissue when viewed microscopically, 

typically comprised of fibres in both cross and oblique section and containing fat 

and a large blood vessel. The impression in mdx sections was for greater disarray in 

tissue structure, fibre loss, considerable variation in myocyte size, fibrosis and 

inflammatory cell infiltration. 
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Fig 4.8 Histological score based on interstitial fibrosis, calculated on picrosirius red 

stained muscle samples. Scoring scheme was determined on viewing 10 fields per 

tissue (20X magnification) with a score of 4 indicating greater than 50% fibrosis. 

 n=7 (C57), n=8 (mdx).**P<0.01*** P<0.001    
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Frequency distribution of fibres with internal nuclei
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Fig 4.9 Frequency distribution of internal nuclei in paraspinal and respiratory 

muscles. Figures are based on counting 100 fibres per muscle on H&E stained 

sections. n=7 (C57), n=8 (mdx) P<0.0001 for all muscles. 

 

Fig 4.10 Photomicrographs of haematoxylin and eosin stained sections. A. Mdx 

longissimus, B. Mdx intercostals, C. Mdx latissimus, D.Control diaphragm. 

20X magnification. The mdx cells show dystrophic features including 

centronucleation, variation in fibre size, inflammatory cell infiltration and interstitial  

fibrosis, indicating cycles of degeneration and regeneration. In contrast the control 

diaphragm shows greater uniformity of fibre size and little evidence of fibrosis. 

 



 

 

 

100

 

ig 4.11. Picrosirius red stained muscle sections. The dark red stained areas 

E=Grade 3, G=Grade 4.All control mice were considered Grade 1. 

 Mdx Control 

Long. dorsi 

Intercostals 

Diaphragm 

Lat. dorsi 

 

F

represent collagen. The relative amounts of staining were used to grade samples 

from 1-4, corresponding with the level of interstitial fibrosis. A,C,E,G:mdx.  

B,C,F,H: C57 

A,C =Grade 2, 

Sections C,D and F shown at 10X magnification, other muscles at 20X 

 

 

 

 



 

 

 

101

.6 Discussion 

 mouse is the most frequently used animal model for research into 

DMD, 

ile a reduction of vertebral support in humans with neuromuscular 

careful positioning of animals it is possible to accurately measure 

naesthesia of mice will affect KI, and early trials 

utilizin

hypertrophy stage) would hinder correct positioning when prone. 

4

The mdx

and much of our understanding of the pathophysiology of dystrophic muscle 

has been gained from studies in this model. They, however, show a milder 

phenotype than boys with DMD or the Golden Retriever Muscular Dystrophy dog 

(GRMD). 

    Wh

weakness can show as thoracolumbar deviation in a dorsal or ventral plane 

(kyphosis or lordosis respectively) or a lateral deviation of the spine due to the 

effect of gravity (scoliosis), the quadrupedal gait of mice results in the development 

of kyphosis. 

    With 

differences between animals not apparent by observation or palpation. A significant 

decrease in Kyphotic Index occurred in a group of mdx mice at 9 months of age, or 

at approximately one third of the mdx lifespan. This differs from mdx:utrn-/-  which 

shows an earlier onset of spinal deformity (Deconinck et al., 1997a; Grady et al., 

1997) This difference is probably attributable to the muscle hypertrophy 

demonstrable in most skeletal muscle of mdx, which for a time maintains whole 

muscle strength, although in vitro organ bath studies of the paraspinal muscles 

indicates that normalised forces (maximum isometric tension per unit cross-

sectional area) are weaker. This is in agreement with experiments conducted on 

limb muscles (Lynch et al., 2001). 

It is likely that the level of a

g only light sedation resulted in animals struggling against the tape restraint 

causing movement blur. Ketamine/xylazine combination provided muscle relaxation 

as well as immobilisation, and offered the benefit of allowing xylazine reversal by 

atipamezole, which may enhance recovery in aged mdx with cardiac impairment. 

Right lateral recumbent views were chosen for ease and consistency, allowing up to 

6 mice per cassette to be radiographed. It is also possible to choose prone 

positioning with cross table lateral views, however this would allow only two mice 

to be radiographed at one time. There was also concern that the heavy shoulder and 

hind limb musculature of young mdx (3-12 months old, corresponding to muscle 
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affect pulmonary 

l muscles 

tedm

e 

strophic changes as they have an augmentative, though lesser, role than 

    Thoracic area measurements of mdx was less than those of control mice, 

and it is likely that such thoracic deformity in aged mdx will 

function (or contribute to the reduced lifespan of more severely kyphotic mdx:utrn-/- 

(Deconinck et al., 1997a)). Certainly in DMD patients diaphragmatic and 

respiratory muscle weakness coupled with severe thoracic deformity leads to 

hypoventilation and hypoxaemia, sleep abnormalities and susceptibility to 

respiratory tract infections (Sivak et al., 1999; Seddon and Khan, 2003). 

   Certain mdx skeletal muscles show profound dystrophic changes, 

particularly the diaphragm, slow twitch limb muscles and postura

(S an et al., 1991; Lefaucheur et al., 1995; Pastoret and Sebille, 1995b). These 

are muscles with either an obligatory constant workload or a role in resisting 

gravitational forces compared to fast twitch, intermittently active muscles such as 

the extensor digitorum longus. The diaphragm was utilised in these experiments 

because its contractile, morphometric and histopathologic properties are well 

documented (Stedman et al., 1991; Coirault et al., 1999; Anderson et al., 1998) and 

it serves as a useful benchmark for the severity of dystrophic changes in other less 

well-characterised muscles. Mdx diaphragm strips generate significantly lower 

maximum tensions compared to age-matched control mice as reported previously 

(Lynch et al., 1997; Stedman et al., 1991) and there was an inverse relationship 

between twitch force and hydroxyproline content. Histological changes showed 

severe interstitial fibrosis and myocyte disarray typical of this organ in mdx mice.  

 It is apparent that differential levels of dystrophic pathology exist between 

the four mdx muscles examined.  The diaphragm has been shown previously to b

an atypical tissue by virtue of its low percentage centronucleation, despite extensive 

fibrotic infiltration (Boland et al, 1995). These reasons for this are not clear 

(Anderson et al, 1998; Krupnick et al, 2003). There is no published data available 

regarding paraspinal and intercostal  muscle pathology in mdx, or the usefulness of 

counts of incidence of central nuclei in these muscles as a quantitative measure of 

dystrophy.  

    It is perhaps not surprising that intercostal muscles are also subject to a high 

degree of dy

the diaphragm in respiration. During inspiration contraction of the parasternal 

intercostals causes elevation of the ribs and flaring of the sternum synergistic to 
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50 and TR90 compared to control mice. Separation of 

interna

 dissected. This muscle also showed centronucleation 

n and extension. It is not amenable to organ bath studies 

diaphragmatic contractions (Farkas et al., 1985). Several of the mdx intercostal 

sections examined scored equally to diaphragm strips (Grade 4, equivalent to >50% 

fibrosis). The discordance between histological scores of fibrosis and 

hydroxyproline levels in intercostal muscles may be a factor of both the extent of 

infiltration and the density of the collagen in this tissue; i.e fibrosis is more 

extensive, but less dense.  

The intercostal muscles showed prolonged relaxation properties, with 

significant increases in TR

l and external intercostal muscle layers was not performed due to the risk of 

damage to individual fibres. The direction of dissection was parallel to external 

intercostal fibres, as external intercostal muscle fibres contribute most to force 

generation during normal respiratory movements. Previous intercostal studies on 

larger species including rabbits (Citterio et al., 1982), dogs (Decramer et al., 1985; 

Farkas et al., 1985) and hamsters (Kelsen et al., 1993 ; Kelsen et al., 1994) utilised 

separated muscles. The preparations spanning 4 ribs were very similar in 

dimensions to these hamster preparations, and were also extrapolated from studies 

in guinea pigs where tracheal segments comprising a series of tracheal rings are 

mounted via silk suture around cartilages in organ bath experiments (Mardini et al., 

1986) (Chitano et al., 2002). 

   The latissimus dorsi is a fan shaped muscle, which because of its superficial 

position on the trunk is easily

and fibrosis, with reduced Pt and Po seen in other skeletal muscles of older mdx. 

Previous contractility studies using rabbit latissimus dorsi confirm its fast twitch 

properties (James et al., 1997). Twitch kinetics from these experiments suggest the 

latissimus dorsi is also a fast twitch muscle in older mice, although this needs to be 

verified by fibre typing. 

    The longissimus dorsi is an important member of the erector spinae group, 

involved in spinal rotatio

because of multiple branching and insertions on many vertebral processes, however 

there was histological and biochemical evidence of dystrophy similar to the other 

mdx muscles examined. 
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  In humans, comparisons have been made between limb muscle and joint 

ce is not as extreme 

iographic 

  

contracture seen in neuromuscular diseases, and the fibrosis and contracture of 

respiratory muscles, stiffening of tendons and ligaments of the rib cage and 

ankylosis of costovertebral and costosternal articulations (Bach and Kang, 2000). 

Failure to fully expand the lungs causes increases in lung tissue and chest wall 

elastance and decreases in compliance (Misuri et al., 2000), alterations that 

contribute markedly to the total mechanical work of breathing.  

    Although the spinal deformity of dystrophin deficient mi

as that seen in patients with DMD, the hallmarks of dystrophy, muscle weakness 

and fibrosis, and not just aging per se, appear to be implicated in the progression of 

kyphosis and thoracic deformity in this model. It is likely also that the relative 

inactivity of aged mdx mice compared to their control strain, noted by ourselves and 

others (Pastoret and Sebille, 1995b), is due in large part to the presence of these 

skeletal malformations and associated muscle contracture and increase in stiffness. 

It is only conjecture at this stage that significant respiratory insufficiency may also 

occur in mdx mice and could be implicated in this failure to move freely.  

    In conclusion, this study demonstrated the application of a rad

index for the measurement of kyphosis in mice, and showed how this index changed 

in mdx mice compared to control mice. The measurement of kyphosis by 

radiographic indices presented here is a method of quantitative comparison between 

mouse strains and may also have application for long-term therapeutic studies or 

gene therapy trials in the mdx or other kyphotic mouse strains. 
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CHAPTER 5: ANTISENSE OLIGONUCLEOTIDE 
ADMINISTRATION INTO MDX DIAPHRAGM MUSCLE. 
5.1 Introduction 

DMD is the most common human X-linked genetic disorder. The disease 

remains a prime target for gene therapy because of its monogenic nature, prevalence 

and the distressing and relentless clinical course of those affected, however the 

obstacles in the path of a cure are many. Muscle is a vast organ, representing greater 

than 30% of total body protein, host immune defences are effective against 

transplanted myoblasts, stem cells or vectors, the gene in entirety is too large for 

administration via viral vectors, and finally the complexity of the gene and the 

variety of sites and categories of mutations within the locus itself all hinder progress 

towards an effective, safe and lifelong therapy.  

Antisense oligoribonucleotides (AOs) have been explored as a gene 

correction therapy, aimed at restoring frame-disrupting mutations. They are 

composed of 2’-O-methyl ribonucleotide analogues, which bind to a homologous 

sequence and cause a manipulation (‘exon-skipping’) of primary transcript 

processing. They have the advantage of not undergoing extensive degradation by 

endogenous ribonucleases. 

In mdx cell culture AOs have been shown to induce exon-skipping resulting 

in the production of a truncated, yet still functional protein, coined a ‘Becker-like’ 

protein, due to the similarity between the patchy sarcolemmal distribution and 

shortened dystrophin of patients with Becker Muscular Dystrophy (BMD), a milder 

allelic form of DMD (Mann et al., 2001; Mann et al., 2002). AO mediated skipping 

of multiple dystrophin exons has also been achieved in cultured human muscle cells 

(Aartsma-Rus et al., 2002).  

AO mediated exon-skipping resulted in dystrophin production in mdx limb 

muscles (Mann et al., 2001); (Lu et al., 2003), shown by immunohistochemistry and 

Western blotting. There has been one published study looking at function of AO 

treated mdx muscle which showed partial restoration of function in injected tibialis 

anterior muscles, with significant improvement in force production evident when 

comparing treated and untreated mdx muscles (Lu et al., 2003). 
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Due to the severity of dystrophy in mdx diaphragm muscle and its 

similarities to the pathology of DMD, it is an attractive target for AO administration 

as a ‘proof of principle’ treatment modality. 

 

5.2 Aims 

The aim of these experiments was to determine the effect of AOs injected  

into mdx mice diaphragms (as a continuation of  work outlined in Chapter 4). 

Contractility studies were undertaken as a measure of efficacy of the AOs in 

restoring (or partially restoring) function. In addition, histological measures of 

degeneration and regeneration (centronucleation and fibre diameter analysis) and 

tissue fibrosis were also used. Hydroxyproline was utilised as a biochemical marker 

of fibrosis in treated diaphragm segments. Finally Western blotting was used to 

measure the level of dystrophin protein production in treated muscles.  

5.3 Methods 

5.3.1 Mouse numbers and grouping  

Male mice were 16 weeks of age at the time of the first surgical procedure, 

20 weeks of age for the second administration, and 25-27 weeks old when 

euthanased. There were six groups of mice: a. mdx AO (n=10), b. mdx sham (saline) 

(n=4), c. mdx sham (lipofectin) (n=4), d.C57 sham (saline) (n=4) and e.C57 sham 

(lipofectin) (n=5). For the purposes of Western blotting an extra group of mice was 

used (n=6), where histology dyes were combined with AOs for more accurate 

localisation of the sites of injections. The groupings of animals are shown in Figure 

5.1.  

Mdx C57 

SHAM 
(saline) 
n=5 

SHAM 
(lipofectin) 
n=5 

SHAM 
(Saline) 
n=4 

SHAM 
(Lipofectin) 
n=4 

AO + 
lipofectin 
n=10 

AO + 
lipofectin + 
marker dye 
n=6

 

Fig 5.1 Grouping and numbers of mice for diaphragm AO study. 
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5.3.2 Anaesthesia and surgery 

Anaesthesia was induced with ketamine HCl 50 mg/kg (Ketamil, Troy 

Laboratories, Australia) and xylazine HCl 10 mg/kg (Ilium Xylazil-20, Troy 

Laboratories, Australia). A midline laparotomy was performed under sterile surgical 

conditions to expose the diaphragm. Injections were constituted as described below 

and injected in two sites on both hemi-diaphragms, using 29 gauge needles and 

0.3ml paediatric insulin syringes (Braun Omnican 30).  Sites of AO injections are 

shown in Figure 5.2. 

Muscle and skin incisions were closed with 4/0 Maxon and 5/0 Novafil 

synthetic suture material. After surgery buprenorphine 1 mg/kg (Temgesic, Reckitt 

Benckiser, Australia) and atipamezole 1mg/kg (Antisedan, Novartis Animal Health, 

Australia) were administered for analgesia and reversal of xylazine, respectively. 

Sterile saline (0.5mL) was also injected subcutaneously for maintenance of 

hydration. Mice were monitored post-operatively until ambulatory and were 

examined daily, with the appearance of the surgical wound, appetite, activity and 

weight recorded for 7 days post operatively. All experiments were carried out under 

USQ Animal Ethics Committee guidelines. 

CT

X

V

L

Fig 5.2 Approximate sites of AO injections. The green ovals represent regions of 

spread of injectate within the diaphragm muscle. X=xiphisternum, V=lumbar 

vertebra, CT=central tendon, L=liver, a remnant of which was visible in this 

cadaver specimen. 
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5.3.3  Oligonucleotides 

The AO used was M23D (+02-18), as defined previously (Mann et al., 

2002) and shown in Figure 5.3. AOs were synthesised on an Expedite 8909 Nucleic 

Acid Synthesiser at the Australian Neuromuscular Research Institute, University of 

Western Australia. The conditions for transfection had been optimised previously 

(Mann et al., 2002). Briefly, complexes of Lipofectin (Life Technologies, 

Melbourne, Australia) were prepared in a 2:1 Lipofectin/AO ratio (w/w) in sterile 

0.9% saline. Lipofectin and AO were incubated separately with saline for 30 

minutes prior to mixing; the AO/Lipofectin complex was then used within 30-45 

minutes. Approximately 1 µg of AO was administered per injection site. Sham 

injections comprised the same volume of Lipofectin or saline. 6 mice were treated 

with AO/Lipofectin as above, with 2 µL histology marker dye added to the 40 µL 

volume (Wak-Chemie Medical, Germany). The dye was autoclaved in cryotubes 

prior to use, with the resultant paste reconstituted in sterile saline. 

 

 

INTRON 23 EXON 23 

 

     +20       +10                         +1       -1                     -10                -20                                -30 
    
5’-ATAAACTTCGAAAATTTCAG   gtaagccgaggtttggcctttggcctttaaactatat-3’

 UC   cauucggcuccaaaccgg 

2’-O-methyl modified antisense oligonucleotide M23D(+2-18) 

Fig 5.3 Representation of the genomic sequence of the boundary between Exon 23 

(upper case letters) and Intron 23 (lower case letters) of the mouse dystrophin gene. 

The numbers above the sequence are used to designate the target homology of the 

AO M23D(+2-18), where M=murine, 23= exon number, D=Donor splice site, (+-

)=annealing coordinates. +2 is the last two exonic bases and –18 represents the first 

bases of intron 23 (Mann et al., 2002; Wells et al., 2003) 
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5.3.4 Contractility studies 

Mice were anaesthetised with 70 mg/kg thiopentone sodium (Nembutal, 

Boeringer Ingelheim, Australia) by intraperitoneal injection. The diaphragm and 

surrounding ribs were removed en bloc and placed in ice cold Krebs solution, 

bubbled with 95% O2 and 5% CO2. Strips of diaphragm muscle were prepared for 

hydroxyproline analysis and Western blotting by snap freezing in liquid nitrogen 

before storing at –80oC. Another muscle strip was pinned to cork and placed in 

Telly’s solution prior to Bouin’s fixation and eventual storage in 70% ethanol. . 

Three diaphragm strips, each 2-3 mm wide were excised for in vitro studies (two 

strips from the right hemidiaphragm and one from the left). These were anchored by 

means of surgical silk to a fixed peg at the rib end, and attached to a force 

transducer at the tendon end, and placed within a 25 mL glass organ bath 

maintained at 23oC. Tissues were stimulated via a Grass S48 stimulator (W. 

Warwick, RI, USA) and signal current intensity were amplified using a pre-

amplifier (EP500B. Audio Assemblies, Campbellfield, Victoria, Aust). Data was 

collected and analysed using Chart 4.1.1 software on an  iMac computer. A square 

pulse of 0.2 ms duration was dispersed via two platinum plate electrodes positioned 

at each side of the muscle. 

Optimum preload (Lo) was defined as the length eliciting maximal single 

isometric twitch force. Optimal voltage was also determined for each preparation, as 

was the frequency eliciting maximal tetanic force. Reported data was the average of 

3 individual single twitch or tetanic stimulations per muscle strip, with those three 

diaphragm strip values then averaged to give an overall mean for that muscle 

(=Averaged Values) or the maximum force achieved for that diaphragm 

(=Maximum Values). A fatigue protocol (one tetanic stimulation every 5 secs for 5 

minutes) and recovery from fatigue (a single tetanic stimulation 5 minutes later) was 

also performed. Muscles were measured at Lo using a digital micrometer, blotted for 

3 secs then weighed prior to storage at –80oC, and subsequent Western blotting. 

CSA and normalisation of force was calculated as described previously (Lynch et 

al., 2001). 

5.3.5 Hydroxyproline analysis 

Hydroxyproline content was used as one measure of collagen content of diaphragm 

tissue. Tissues were thawed and weighed, then hydrolysed in sealed tubes with 6 M 
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HCl overnight at 110oC. The samples were dried to entirety using air under 

pressure and heat (50oC). The rest of the protocol is described in detail in Appendix 

B. Values are expressed as µg HP /mg tissue wet weight. 

 

5.3.6 Western blotting 

Muscle samples were homogenised in 19 vol. of extraction buffer, and total 

protein was quantified with a Bio-Rad DC Protein Assay Kit. 100 µg of total protein 

from each sample was loaded onto a 4-12% polyacrylamide gel containing 0.2% 

SDS in tris-glycine buffer. Samples were electrophoresed for 5-6 hours at 20-25mA 

(temperature limited to approximately 16oC), before blotting onto a nitrocellulose 

membrane. The membrane was probed with NCL-DYS2 primary antibody (1:100, 

NovoCastra, Newcastle, UK) for 120 minutes followed by 3 washes in TBST 

buffer. The bound primary antibody was detected by horseradish-peroxidase 

conjugated rabbit anti-mouse secondary antibody (1:1000; DakoCytomation, 

Denmark) and Lumi-Light Western Blotting Substrate (Roche Diagnostics, 

Mannheim, Germany). The intensity of the bands obtained from the AO treated 

mice were compared with sham injected mdx and C57 mice. Details of the Western 

protocol used are listed in Appendix B. 

 

5.3.7 Histology of diaphragm samples 

Tissues for histological analysis were paraffin embedded. Blocks were cut at 10 µm 

prior to staining with picrosirius red (F3B, Chroma Dyes, Germany). Analysis was 

performed blinded to the treatment group. Fluorescent microscopy images were 

acquired using a digital camera (Q imaging Micropublisher 5.0 RTV) coupled to an 

epifluorescence microscope (Eclipse E600, Nikon, Japan). Four sections per 

diaphragm were photographed and analysed using the image analysis program 

DocuAnalySIS (Soft Imaging System), then averaged. Results are expressed as 

collagen as a percentage of area. H&E stained sections of 5 µm thickness were 

viewed using bright field, with images acquired and analysed using the same 

equipment. Percentages of muscle fibres with centralised nuclei were determined in 

100 fibres per diaphragm. 
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5. 4 Statistics 

The level of significance of treatment with AOs was determined using t-tests. Data 

was pooled from the sham groups because of a lack of difference between sham 

treatments- ie mdx AO were compared with mdx sham (saline and lipofectin), and 

C57 sham (saline and lipofectin) treated mice. Data is expressed as means ± SE, 

with significance defined as a P<0.001, 0.01 or 0.05 as appropriate. 

5.5 Results 

5.5.1 Mouse survival and evaluation of surgery 

2 mice died within 7 days of the surgical procedure. These were both mdx treated 

with AO/lipofectin complex plus histology marker dye. Affected mice were 

hunched and inappetant, and on post-mortem examination both showed a thoracic 

effusion, with small amounts of blue stain present within the fluid. Wak-Chemie 

product data sheet does not recommend use of the histological marker in living 

subjects, although it has been used successfully in AO treated mice previously 

(Mann et al., 2001). It is also likely that autoclaving of the product causes 

denaturation, manifest as a granular appearance despite retaining its staining 

properties.  It is probable that escape of dye into the thorax occurred inadvertently 

during diaphragm injections. 

The success of the injection procedure was subjective, and gauged by the formation 

of a distinct bleb of injectate at each site, or spread of blue stain along diaphragm 

muscle fibres in mice where marker dye was used. The site of previous injections 

could often be detected as a small area of blood vessel infiltration or grey scar 

tissue. 

5.5.2 Body weight 

Mdx mice were heavier at all time points compared to C57 mice. At the end of the  

experimental period mdx were 35.2 ± 0.63g compared to 30.9 ± 1.32g for wild type 

mice (p<0.01). Weight gain for the 9-11 weeks of the project was 4.1 ± 0.24g (mdx) 

and 2.54 ± 0.65 g (C57). There were no significant differences in body weights 

between AO and sham treated mdx mice. 
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5.5.3 Contractility studies 

The sham treated mdx group showed force deficits of   52% (twitch force) and 44% 

(tetanic force), compared to wild-type mice, whereas the mdx AO treated mice 

showed a deficit or 35% and 25.2% for twitch and tetanic forces respectively 

(Figures 5.4 and 5.5). Twitch and tetanus forces of the AO treated mdx compared to 

sham-treated mdx were increased by 33.8% and 33.9% respectively. 
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Fig 5.4 Twitch force results displayed as : A. The average of 3 diaphragm strips, or 

B. Single maximum value from mice treated with injections of antisense 

oligoribonucleotides (AO) or saline or Lipofectin (sham treated). FOC= Force of 

contraction ***P<0.001, ** P<0.01, * P<0.05.  n= 10 (C57), 9 (Mdx AO) and  8 

(Mdx sham) ** =difference between C57 and Mdx, AO treated. + = difference 

between Mdx, AO treated and Mdx, sham treated. 
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Fig 5.5 Tetanic force results displayed as : A The average of 3 diaphragm strips, or 

B Single maximum value from mice treated with injections of antisense 

oligoribonucleotides (AO) or saline or Lipofectin (sham treated).  

 Maximum tetanic contractions for AO treated mdx were closer to wild type mice 

values when analysed by this method. FOC= Force of contraction ** P<0.01, * 

P<0.05.  n= 10 (C57), 9 (Mdx AO) and  8 (Mdx sham). ** =difference between C57 

and Mdx, AO treated. ++ = difference between Mdx, AO treated and Mdx, sham 

treated. 
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Twitch:tetanus ratios were identical for mdx AO and sham treated mdx when 

considering averaged values, and these were significantly less than the C57 group 

(Figure 5.6). For maximum forces the twitch/tetanus ratio was significantly higher 

in mdx, AO treated compared sham treated mdx mice ( P<0.05) (Figure 6.5). 
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Fig 5.6 Twitch /tetanus ratio of isolated diaphragm strips from mice treated with 

injections of antisense oligoribonucleotides (AO) or saline or Lipofectin (sham 

treated). A) There was no difference between treated and untreated mdx, however 

there were significant differences between both mdx groups and wild type mice for 

averaged values. B) For maximum force values of mdx, AO treated were closer to 

wild type values, although there was still a significant difference between these 

groups (P<0.05). ** P<0.01, n= 10 (C57), 9 (Mdx AO) and  8 (Mdx sham) * 

=difference between C57 and Mdx, AO treated. + = difference between Mdx, AO 

treated and Mdx, sham treated. 
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Fatigue percentage and percentage loss of force (determined by the loss of force of 

single tetanic stimulus after the 5 min fatigue protocol) were similar between groups 

of mice, and these values are shown in Table 5.1.  

 

 

 

 

Table 5.1 Percentage fatigue of diaphragm strips, using a 5-minute protocol with 

one tetanic stimulation every 5 secs. Loss of force involved measuring one tetanic 

contraction 5 minutes after the fatigue protocol, expressed as a % reduction in force 

compared to the initial contraction. n= 10 (C57), 9 (Mdx AO) and  8 (Mdx sham) 

 

  Averaged values Maximum values 

 C57 Mdx, AO Mdx,sham C57 Mdx, AO Mdx,sham 

% fatigue 42 ± 7 49 ± 4 45 ± 5 49 ± 8 50 ± 4  60 ± 6 

Loss of 

force (%) 

 

20 ± 6 

 

20 ± 4 

 

24 ± 5 

 

25 ± 7 

 

19 ± 3 

 

31 ± 8 

 

 

5.5.4 Hydroxyproline analysis 

HP values were significantly greater in both sham injected and AO injected mice, 

compared to C57 mice. Mean HP values were greater in AO treated mdx compared 

to sham treated mdx, however these differences were not statistically significant as 

shown  in Figure 5.7 
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Fig 5.7 Hydroxyproline values of diaphragm strips. There was no significant 

difference between Mdx, AO treated and Mdx, sham treated mice. ** P<0.01, n= 10 

(C57), 9 (Mdx AO) and  8 (Mdx sham).  

 

5.5.5 Western Analysis 

Western blot analysis of dystrophin expression of diaphragms from wild type mice 

showed a strong expression of full length dystrophin (Figure 5.8). No dystrophin 

was detected in homogenates of AO treated or sham treated mdx diaphragm 

samples. This procedure was repeated multiple times using different muscle samples 

with similar results. 

 

 

 

 

Fig 5.8 Western blot of individual diaphragm strips from C57 and 3 different AO 

injected mdx mice. Only the band of full length dystrophin in the C57 diaphragm is 

evident (arrowhead). 
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parameters. ** P<0.01, **** P<0.0001, n= 8 (C57), 6 (Mdx AO) and  6 (Mdx 

sham).  

 

5.5.6 Histology 

Histological determination of fibrosis showed that mdx diaphragms had 

approximately twice the percentage of fibrosis of wild type diaphragms at this age 

(C57; 6.1 ± .6%, mdx; 13.9 ± .6%, P< 0.01). There was no difference in percentage 

fibrosis between AO treated and sham treated mdx (Figure 5.9A). Wild type mice 

showed a low incidence of centrally nucleated muscle fibres compared to both AO 

treated and sham treated mdx. These differences are displayed in Figure 5.9B. 

Photomicrographs of representative sections are shown in Figure 5.10 and 5.11. 
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Fig 5.9  Histological analysis of diaphragm muscle from antisense oligonucleotide 

(AO) treated and sham treated mice. A. Collagen (as a percentage of area) 

determined from picrosirius stained sections. B. Percentage of diaphragm fibres 

with centralised nuclei determined from H & E stained sections. Note the similarity 

between mdx AO and sham treated mice in both diaphragm collagen and centralised 

nuclei, and the significant differences between mdx and wild type mice for both 
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ig 5.10 Representative photomicrographs of picrosirius red stained diaphragm 

uscle sections (20x magnification). A. C57, B Mdx AO treated and C Mdx sham 

 

 

A 

 

B 

C 

 

 

F

m

treated diaphragms. Interstitial collagen was significantly less in wild type mice 

compared to either AO treated or sham treated Mdx groups.  The dense interstitial 

collagen network of mdx diaphragm muscle is apparent. 
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ig 5.11 H & E stained diaphragm muscle sections (20x magnification). A. C57, B 

dx AO treated and C Mdx sham treated. The percentage of centrally nucleated 
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fibres was significantly greater in Mdx AO and sham treated muscles compared to 

wild type mice. Other dystrophic features such as marked variation in cell size, 

inflammatory cell infiltration and interstitial fibrosis was also evident in mdx 

diaphragms. 
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t studies have shown the potential of AO therapy, both in mdx cell 

ulture and limb muscles (Mann et al., 2001; Mann et al., 2002; Lu et al., 2003). 

rk is novel in applying AOs to mdx diaphragm muscle, an organ at 

greater

mia Inhibitory Factor based on calcium alginate rods 

were su

 data was viewed in 2 ways; firstly by evaluation of normalised forces 

average

5.6 Discussion 

Recen

c

This current wo

 risk of dystrophic changes, even in young mice.  It tests the ability of 

injected AOs to restore function in diaphragm muscle and investigates whether 

tissue fibrosis is alleviated. 

The diaphragm is less accessible than limb muscles, and there have been few 

studies determining route, frequency and methods of drug delivery. Controlled 

release devices for Leukae

tured to mdx diaphragms for a three-month period, and this treatment was 

shown to ameliorate dystrophic abnormalities (Austin et al., 2000). Pure 

recombinant plasmid DNA and a lacZ reporter gene was introduced into mouse 

diaphragms without causing significant damage, while proving that 41 ± 3 muscle 

fibres had the potential to be stained from an individual injection site, with fibres 

frequently showing staining along their entire length. These results were superior to 

results obtained with similar injections into hind limb muscles (Davis and Jasmin, 

1993). Adeno-virus mediated gene transfer into mdx diaphragms was successful, 

however contractile function was impaired, thought to be due to direct cytotoxic 

effects of viral proteins (Petrof et al., 1995). Intravenous (tail vein injections) and 

occlusion of the vena cava below the diaphragm allowed reporter gene delivery to 

mice diaphragms, with expression peaking at 6 days and declining slowly (Liu et 

al., 2001a). 

In the current study injections of AO/Lipofectin complex at 4 distinct sites 

improved twitch and tetanic force production in mdx mice diaphragm strips. 

Contractility

d for 3 diaphragm strips, and secondly by consideration of the maximal 

twitch and tetanic forces achieved for each diaphragm (Figures 5.4 and 5.5). The 

two methods were utilised because it is likely that some fibres were more 

successfully transfected than others, with subsequent force production better 

reflected by maximal twitch and tetanus forces as compared to averaged values. All 

3 groups of mice showed increased force production when maximal values were 

evaluated, however these increases were greater for mdx AO treated mice.  Twitch 
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re administered at only four sites around the diaphragm, and 

althoug

was no

force and tetanic forces improved 33.9% and 25.3% respectively; when comparing 

AO with sham treated mdx using averaged values. For maximal twitch and tetanus 

values these gains in function were 70.9% and 53%. Regional variations in 

diaphragm dystrophy have been noted previously (Anderson et al., 1998), or 

alternatively the variation in force production may better reflect regions of optimal 

AO delivery and transfection. The benefits were greater for twitch compared to 

tetanic contractions, as it is probable that patchy sarcolemmal distribution of 

dystrophin occurs (similar to BMD), resulting in lesser values for fused tetanic 

contractions where there is recruitment of both dystrophin-positive and negative 

fibres. The twitch/tetanus ratio was also increased and closer to wild-type mice 

when maximal values were analysed, due to the higher twitch forces achieved 

(Figure 5.6). A published observation that dystrophin expression in 17% of mouse 

diaphragm fibres protected all fibres present within the muscle bundle from the 

damaging effects of repetitive lengthening contractions suggests that efficiency of 

transduction need not be close to 100% to obtain significant functional benefits 

(Decrouy et al., 1997) 

There were still significant shortfalls in force values between C57 and AO 

treated mice. The method of delivery and dosage is one possible explanation. Small 

volumes of injectate we

h previous work suggests that there is spread along the length of muscle 

fibres and through the 8-10 cell depth of the diaphragm (Davis and Jasmin, 1993), 

there was no way of assessing whether tissue strips taken for contractility studies 

corresponded exactly with injection sites in this current study. There is recent 

evidence that higher dosages of AOs are required, and persistence of AOs in tissues 

using direct injection techniques is short (Wells et al., 2003). An additional reason 

why force values did not reach those generated by control mice is the degree of 

fibrosis of this organ, with even young mice showing extensive collagen deposition.  

There was no reduction in tissue collagen in AO treated mice compared to 

mdx mice, as determined by hydroxyproline analysis. In the two histological 

parameters examined (percentage centralised nuclei and percentage fibrosis), there 

 difference detected between AO and sham treated mdx mice. At the age of 

euthanasia (6 months) there is already established dystrophy in mdx diaphragms, 

including variable fibre sizes and fibrosis, as evident on H&E and picrosirius 
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hin expression was short-lived 

or ther

9 

 comm.). Previous studies have utilised 

the sam

ssion (ie below that detectable using Western blotting). Diaphragm 

stained sections.  In the future it may be preferable to use younger mice for such 

studies, before diaphragm fibrosis is as pronounced. 

There are several possible reasons for the failure to detect protein expression 

by Western blot. The dosage of AO used (1 µg per injection site, total of 4 µg per  

diaphragm) may have been insufficient and dystrop

e was interference with the Western procedure due to the presence of the 

marker dye. The first explanation is the most likely, as more recent work using 3-

µg per injection (Lu et al., 2003) or 8 µg per injection of AO (Wells et al., 2003) has 

shown enhanced transfer and expression The latter authors also suggest that AO-

induced dystrophin expression is transient, possibly due to both the loss of the AO 

and to protein turnover. A recent publication showed that single intravenous 

administration of the same AO bound to the coblock polymer F127, was sufficient 

to induce dystrophin, which was demonstrated by immunohistochemical methods 

but not by Western blots. Three weekly intravenous treatments, however, resulted in 

increased efficiency of dystrophin induction, successfully demonstrated by Western 

blotting in many muscles (Lu et al., 2004).  

The concentration of AO used was based on prior published studies (Mann 

et al., 2001); (Gebski et al., 2003), and advice that higher concentrations of AOs 

may cause tissue necrosis (S. Fletcher, pers

e histology marker dyes in cell culture and in vivo, without hindrance to 

protein detection (Mann et al., 2001).  Much effort was spent optimising the 

Western procedure used, including different membranes, buffers and antibody 

concentrations, which was successful at detecting very low levels of dystrophin in 

diluted homogenates from C57 muscle with as little as 5 µg of loaded protein 

(Appendix B). 

 In conclusion, this study showed that AO injections have the potential to 

improve contractility of mdx diaphragm muscle, even at presumably very low levels 

of protein expre

function, however, is not restored to that displayed by wild-type mice, and in 

addition tissue fibrosis in 6 month old mice is not reduced. Further refinements of 

this study would include the use of younger animals, administration of increased 

AO concentrations, or investigating methods of whole diaphragm delivery, such as 

intravascular administration with temporary caval occlusion. Immunohistochemical  
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techniques may be beneficial in showing low levels of AO expression.
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CHAPTER 6. LONG TERM ADMINISTRATION OF 
ANTISENSE OLIGONUCLEOTIDES INTO THE 
PARASPINAL MUSCLES OF MDX MICE 
6.1 Introduction 

 Antisense oligoribonucleotides have become an attractive tool for the study 

and potential treatment of DMD that results from mutations in the dystrophin gene, 

which interrupt the reading frame and cause a complete loss of dystrophin. 

 AOs alter splicing so that the open reading frame is restored and the severe 

DMD phenotype is converted to a milder BMD phenotype. BMD patients have 

mutations that are not frame-shifting and result in an internally deleted, but partially 

functional dystrophin that retains it’s N- and C- terminal ends (Koenig et al., 

1989).Exon skipping has been successful in cells derived from the mdx mouse 

(Wilton et al., 1999; Mann et al., 2002; Mann et al., 2001; Lu et al., 2003) and 

various DMD patients (van Deutekom et al., 2001; Aartsma-Rus et al., 2002). 

 Functional properties of AO treated muscle were examined 3-4 weeks after a 

single administration into mdx tibialis anterior muscle (Lu et al., 2003). This muscle 

typically undergoes early necrosis but exhibits milder pathology to that seen in the 

diaphragm (Boland et al., 1995; Boland B. et al., 1995), the intercostal muscles, or 

those skeletal muscles involved with postural activity (Lefaucheur et al., 1995). 

Because age-related diminution of efficiency is a common feature of viral and non-

viral gene delivery into skeletal muscle (particularly in dystrophic conditions with 

increased extra-cellular matrix), protein expression was examined in mice of 6 

months of age and was shown to be similar to 2 and 4 week old animals (Lu et al., 

2003). In that study dystrophin persisted for up to 2 months, however another group 

found that AO-induced dystrophin expression is much more transient, possibly due 

to both a loss of AO and protein turnover (Wells et al., 2003).  

There have been no studies documenting AO use in very old mdx mice 

despite their skeletal muscles undergoing cycles of degeneration and regeneration, 

and showing pathology late in life closer to DMD dystrophinopathy (Lefaucheur et 

al., 1995; Pastoret and Sebille, 1995b). There is a need to apply AOs to a range of 

muscles over an extended period of time in order to assess the functional changes in 

those muscles and extend the therapeutic applicability of these techniques. This 
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current study utilises mice up to 18 months of age, and is also novel for 

administering AOs as deep lumbar injections and assessing respiratory and 

paraspinal muscle function.  

 

6.2 Aims  

The aims of this study were to determine changes in function of intercostal 

muscles and latissimus dorsi muscles following 15 monthly deep intramuscular 

injections of AOs into paraspinal muscles. Diaphragm muscle strips were also 

examined to compare the severity of dystrophy with the paraspinal and accessory 

respiratory muscles. This study follows on from previous work (Chapter 4) 

determining the usefulness of the Kyphotic Index (KI) in measuring kyphosis in 

older mdx. Monthly radiographs were taken for the calculation of KI, which was 

compared in AO and sham treated mice. In addition, hydroxyproline assays and 

histological measures of fibrosis and muscle degeneration and regeneration were 

utilised to evaluate the effects of therapy. Finally Western blotting was used to 

determine expression of dystrophin protein. 

 

6.3 Methods 

6.3.1 Mouse numbers and grouping 

Three groups of mice were utilised; a) C57 mice, sham injected, b) Mdx mice, sham 

injected and c) Mdx mice, AO injected. Mice were males at 8 weeks old at the 

beginning of the experiment and 18 months at the time of euthanasia. 6 mice were 

assigned to each group, however 2 died (one C57 and one sham injected mdx). One 

of these mice failed to recover from anaesthesia and the other died in its cage of 

unknown causes. These groupings are shown in Figure 6.1 

MDX 

AO treated 
n=6 Sham 

injected 
n=5 

Sham injected 
n=5 

Fig 6.1 Mouse numbers and groups for long-term administration of Antisense 

oligonucleotides (AOs) into the paraspinal muscles. 

C57 
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6.3.2 Anaesthesia for radiography and administration of AOs 

 Anaesthesia was induced with ketamine HCl 50 mg/kg (Ketamil, Troy 

Laboratories, Australia) and xylazine HCl 10 mg/kg (Ilium Xylazil-20, Troy  

Laboratories, Australia) subcutaneously prior to administration of AOs and 

radiography. 

 The hair over the dorsum was clipped, and the skin cleaned with ethanol prior 

to AO injections. The mice were positioned in ventral recumbency, and firm index 

finger and thumb pressure was applied to elevate and clearly visualise the lumbar 

musculature. 

 At the end of the procedure atipamezole 1mg/kg (Antisedan, Novartis Animal 

Health, Australia) was administered subcutaneously for the reversal of xylazine. 

Mice were kept warm and monitored until ambulatory. 

 

6.3.3 Antisense oligoribonucleotides 

The AO used was M23D (+02-18), as defined previously (Mann et al., 

2002) and represented in Figure 6.2. AOs were synthesised on an Expedite 8909 

Nucleic Acid Synthesiser at Australian Neuromuscular Research Institute, 

University of Western Australia. The conditions for transfection had been optimised 

previously (Mann et al., 2002). Complexes of Lipofectin (Life Technologies, 

Melbourne, Australia) were prepared in a 2:1 Lipofectin/AO ratio (w/w) in sterile 

0.9% saline. Lipofectin and AO were incubated separately with saline for 30 

minutes prior to mixing; the AO/Lipofectin complex was then used within 30-45 

minutes.  

The injection sites were into the paraspinal muscles adjacent and parallel to 

the thoracolumbar vertebrae. The needles were placed deep into the longissimus 

dorsi muscles, orientated in a cranial direction and kept as flat as possible. Evidence 

from preliminary experiments using several cadaver specimens injected with dye 

showed that the majority of the injectate remained within the longissimus dorsi 

muscles, but a small amount spread within the dorsal portion of the latissimus dorsi 

muscle, or sometimes into adjacent intercostal muscles (Figure 6.3). These 

variations may be due to the needle depth, or occasionally a small volume of 
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injectate could travel via fascial planes to other muscle regions. This variation in 

distribution was not a concern, as it was likely that each muscle had a contributory 

role in the progression of kyphosis, and the latissimus and intercostals were also 

used in contractility studies. Three evenly spaced injections were administered on 

each side of the spine, to give a total of 6 µg of AO per mouse in a total volume of 

40 µL. Sham injections comprised the same volume of saline. Saline was utilised 

instead of Lipofectin, based on advice from previous studies where there was no 

difference found between saline or Lipofectin sham groups (S Fletcher, pers comm.) 

At the time of the final procedure (18 months of age) the AO treated mdx had 2 µL 

histology marker dye added to the 40 µL volume (Wak-Chemie Medical, Germany). 

The dye was autoclaved in cryotubes prior to use, with the resultant granular paste 

reconstituted in sterile saline.  

EXON 23 INTRON 23 

 

     +20       +10                         +1       -1                     -10                -20                                -30 
    
5’-ATAAACTTCGAAAATTTCAG   gtaagccgaggtttggcctttggcctttaaactatat-3’

 UC   cauucggcuccaaaccgg 

2’-O-methyl modified antisense oligonucleotide M23D(+2-18) 

 

 

Fig. 6.2 Representation of the genomic sequence of the boundary between Exon 23 

(upper case letters) and Intron 23 (lower case letters) of the mouse dystrophin gene. 

The numbers above the sequence are used to designate the target homology of the 

AO M23D(+2-18), where M=murine, 23= exon number, D=Donor splice site, (+-

)=annealing coordinates. +2 is the last 2 exonic bases and –18 represents the first 

bases of intron 23 (Mann et al., 2002; Wells et al., 2003) 
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Fig 6.3 Photographs showing the spread of antisense oligonucleotide/ histology dye 

 injections in the paralumbar muscles of mdx mice. A. Lateral view of skinned 

mouse, with spread of injectate in longissimus muscle (top) and latissimus muscle 

(below). B. Dorsoventral view showing spread within longissimus muscles. In some 

mice there was clear staining of intercostal segments also. 

 

 

6.3.4 Radiography and determination of Kyphosis Index 

 After induction of anaesthesia and administration of AOs, mice were lightly 

taped to the radiographic cassette using clear adhesive tape. Each animal was 

individually identified by tail markings, a radiodense (metal) number placed next to 

them, and a radiographic cassette label indicating date and animal grouping. Konica 

CM-H medical mammography film was exposed using a portable X-ray unit (either 

Showa  Xray Co Ltd Tokyo, Japan or Porta 1030 model, Job Corporation, 

Yokohama, Japan).  

 Each whole body radiograph was photographed using a tripod mounted Ricoh 

Caplio RR30 digital camera with images analysed using Scion Image software Beta 

4.0.2 (http://www.scioncorp.com). KI was calculated from a line drawn between the 

caudal margin of the last cervical vertebra, to the caudal margin of the 6th lumbar 

vertebra (usually corresponding to the cranial border of the wing of the ilium) (Line 

AB), divided by a line perpendicular to this from the dorsal edge of the vertebra at 

http://www.scioncorp.com/
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the point of greatest curvature (Line CD), as described in Chapter 4. Measurements 

for each mouse were repeated 3 times and the results were averaged. 

 

6.3.5 Contractility studies 

18-month-old mice were anaesthetised using pentobarbitone sodium 

(Nembutal, Boehringer Ingelheim, Australia) at 70 mg/kg IP. Cessation of breathing 

occurred when the thorax was entered. The following muscles were dissected and 

placed into ice-cold Krebs buffer solution bubbled with carbogen (95% O2/5% 

CO2); a) diaphragm strip from left midcostal hemi-diaphragm b) latissimus dorsi 

muscle and c) intercostal section comprising 4 ribs and their attached intercostal 

muscles (internal and external), extending from T8-12, adjacent and parallel to the 

longissimus dorsi muscle. Muscle dissections are described in greater detail in 

Chapter 4. 

Muscles from the left side were collected and stored for Western analysis, 

histology and hydroxyproline assays. Contralateral muscles were mounted in water-

jacketed glass organ baths, maintained at 23oC, using 6/0 silk surgical thread to 

attach to a fixed peg at one end and a force transducer at the other. Tissues were 

stimulated via a Grass S48 stimulator (W. Warwick, RI, USA) and current intensity 

was amplified using a pre-amplifier (EP500B. Audio Assemblies, Campbellfield, 

Victoria, Aust). Data was collected and analysed using Chart 4.1.1 software. A 

square pulse of 0.2ms duration was dispersed via 2 platinum electrodes positioned 

along the length of the muscle. 

Optimum preload (Lo) was defined as the length eliciting maximal single 

twitch force. Optimal voltage was also determined for each preparation, as was the 

frequency eliciting maximal tetanic force from a range of 50 - 180 Hz.  Reported 

data was the average of 3 individual single twitch or tetanic stimulations per muscle 

strip after 25 minutes of equilibration and optimisation of conditions. Muscles were 

measured at Lo using a digital micrometer, blotted for 3 secs then weighed. Cross 

sectional area (CSA) and normalisation of force was calculated as described 

previously for diaphragm and latissimus muscles, where CSA equals tissue weight 

divided by length x 1.06 (density of mammalian muscle) (Lynch et al., 2001). 

Intercostal muscle fibre CSA was shown to vary topographically (Kelsen et al., 

1993) and in our preparations a strip comprises both muscle and rib cartilage and 
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internal and external intercostal muscle layers consisting of differing fibre 

orientations and hence lengths. For these reasons intercostal forces were normalised 

to weight only. Time to peak force, 50% relaxation time and 90% relaxation time 

was calculated for each single twitch value. 

 

6.3.6 Hydroxyproline analysis 

Hydroxyproline content was used as a measure of collagen in diaphragm, 

intercostal muscles, latissimus dorsi and longissimus dorsi muscles. Muscles were 

trimmed of fat, ribs and tendons and stored at -80 oC. Tissue was thawed then 

hydrolysed in sealed tubes with 6 M HCl overnight at 110 oC. The samples were 

dried to entirety using filtered air under pressure and heat (50oC). The rest of the 

protocol has been described previously (Stegemann and Stalder, 1967) and 

Appendix B gives details of the procedure for total assay volumes of 2 mLs. Values 

are expressed as µg HP/mg tissue wet weight. 

 

 

 

6.3.7 Histology 

  Each tissue (diaphragm, latissimus dorsi, longissimus dorsi and intercostal 

muscles) was pinned onto cork at optimal length and then fixed sequentially in 

Telly’s fixative (formaldehyde, glacial acetic acid-ethanol fixative, 72 hours), 

Bouin’s solution (formaldehyde, glacial acetic acid-picric acid fixative, 24 hours) 

and 70% ethanol, prior to paraffin embedding, cutting and staining of 10µm sections 

using 0.1% w/v picrosirius red solution (Sirius Red F3B, Chroma Dyes, Germany in 

saturated picric acid), a collagen specific stain. Instead of applying the histological 

grading scheme used in Chapter 4, an image analysis program was utilised to grade 

collagen as a percentage of tissue area. Fluorescent microscopy images were 

acquired using a digital camera (Q imaging Micropublisher 5.0 RTV) coupled to an 

epifluorescence microscope (Eclipse E600, Nikon, Japan). Four sections per tissue 

were photographed and analysed using the image analysis program DocuAnalySIS 

(Soft Imaging System), then averaged. Additional 5 µm sections were stained with 

haematoxylin and eosin and viewed using bright field, with images acquired and 

analysed using the same equipment. Percentages of muscle fibres with centralised 
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nuclei were determined in 200 fibres per muscle. Analysis was performed blinded 

to the strain of mouse. 

 

6.4 Statistics 

Pilot experiments on aged mice were performed for a previous experiment to 

estimate standard deviations and suitable sample size (Chapter 5). Post hoc tests of 

power (Plummer, 1998) confirmed that an n = 3 animals for assessment of KI and 

n=5 animals for contractility experiments of the latissimus, longissimus and 

diaphragm muscles were adequate. Results are expressed as means±S.E. Responses 

between mdx and control strain were analysed using Student’s unpaired t-tests, with 

the exception of differences in KI, where ANOVA was employed. P < 0.05 were 

considered statistically significant.  

 

6.5 Results 

6.5.1 Evaluation of long term AO administration 

 All mice tolerated the injection procedure well, with no adverse effects 

noted in surviving animals. At the conclusion of the experiment all mice showed a 

degree of palpable thoracolumbar kyphosis, which was less pronounced in the 

control strain. There were no significant differences in body weights between the 

three groups (C57 30.4 ± 1.03g; mdx sham treated 31.4 ± 0.88g; mdx AO treated 31 

± 0.98g) 

 

6.5.2 Kyphotic Index 

 KI as measure of spinal deformity was initially less for both sham and AO 

treated mdx mice compared to control mice (P<0.01 at 6 months of age). The AO 

treated mdx showed a tendency to a greater KI (and hence less thoracic deformity) 

than sham treated mdx after that age, although this only reached statistical 

significance at 10 months and again by the end of the experiment (18 months of 

age). AO treated mdx mice also had a lower KI compared to control mice from 8 to 

18 months of age, however at 16 and 18 months there was no statistical significance 

between the two groups. The data was also analysed with the inclusion of aging C57 

and mdx from a previous study (Chapter 4). This ensured a greater n number (n= 8 

(C57), 6 (Mdx AO) and 9 (Mdx)), which reduced some of the intergroup variability. 
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This was believed to be acceptable as all mice were x-rayed on the same day each 

month and were of a similar age and weight.  There was again evidence of reduced 

kyphosis in AO treated mdx mice, with statistical significance between treated and 

untreated mdx at 10, 12, 16 and 18 months of age. The AO treated mice however 

still demonstrated a reduced KI at most time points. Measured KI of the 3 mouse 

groups is shown in Figure 6.4.A and B.  

Kyphotic Index of AO and sham injected mice

Age of mice (months)
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Examples of radiographs from aged (18 month old mice) are shown in Figure 6.5. 

 

 

 

 

Fig 6.4A  Kyphotic Index as a measure of thoracolumbar deformity in antisense 

oligonucleotide (AO) treated Mdx, sham (saline) treated Mdx and C57 mice. 

AO/Lipofectin complex or saline were injected intramuscularly into the paraspinal 

muscles once monthly from 2-18 months of age. KI was calculated from lateral 

radiographs. n= 5 (C57), 6 (Mdx AO) and  5 (Mdx sham). * P<0.05, ** P<0.01 

(comparing AO treated Mdx and C57 mice), and ++ P<0.01 (comparing AO treated 

Mdx and sham injected Mdx). 
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Kyphotic Index of AO, sham injected and aging mice
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Fig 6.4B  Kyphotic Index as a measure of thoracolumbar deformity in antisense 

oligonucleotide (AO) treated Mdx, sham (saline) treated Mdx and C57 mice and 

additional untreated Mdx and C57 mice. AO/Lipofectin complex or saline were 

injected intramuscularly into the paraspinal muscles once monthly from 2-18 

months of age. KI was calculated from lateral radiographs. n= 8 (C57), 6 (Mdx AO) 

and  9 (Mdx). * P<0.05, ** P<0.01 (comparing AO treated Mdx and C57 mice), and 

++ P<0.01 (comparing AO treated Mdx and sham injected Mdx). There was 

evidence of reduced kyphosis in AO treated Mdx compared to sham injected and 

untreated Mdx, which reached statistical significance at 10, 12, 16 and 18 months of 

age.  
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Fig 6.5 Representative radiographs from 18 month old mice treated with either 

antisense oligonucleotide (AO) injections or sham (saline) injections into the 

paraspinal muscles. The yellow lines represent those constructed for the 

measurement of the Kyphotic Index (KI) = length of line ab/cd. A) C57 sham 

injected mouse. KI= 3.86 B) Mdx sham injected. KI=3.05 C) Mdx AO treated. 

KI=3.65. In the above examples kyphosis is more pronounced in the Mdx sham 

injected mouse, resulting in a lower KI. 
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6.5.3 Muscle contractility 

 The characteristics of each isolated muscle (optimal length (Lo), weight and 

width) are shown in Table 6.1. There was a significant increase in weights of all 

mdx muscle preparations (sham and AO treated) compared to wild type mice. This 

weight increase of the latissimus dorsi and diaphragm muscles was attributable in 

part to their greater widths (P<0.05). Diaphragm strips are cut from the entire organ, 

and therefore width could vary from section to section, however the latissimus is an 

entire muscle that has a distinctive fan shape. It is possible that a measurement of a 

long muscle of varying widths was not entirely accurate. It is also likely that 

dystrophic changes, including collagen and fat deposition and muscle hypertrophy, 

also play a role in the increased weight of most mdx muscles. There were no 

significant differences in muscle morphometry between AO and sham treated mdx. 

 

Table 6.1 Mean (± SE) optimum fibre length (Lo), weight and width of paraspinal 

and respiratory muscle strips from 18-month-old sham treated control mice, sham 

treated mdx mice and antisense oligonucleotide treated mdx mice. n= 5 (C57), 6 

(Mdx AO) and  5 (Mdx sham). * P<0.05, ** P<0.01 (comparing AO treated Mdx 

and C57 mice). ++ P<0.01 (comparing C57 and sham injected Mdx). 

Muscle Lo (mm) Weight (mg) Width (mg) 

Latissimus dorsi    

Control 33.04 ± 2.2 77 ± 8.2 2.34 ± 0.2 

Sham mdx 32.7 ± 2.14 121.6 ± 14.2 + 3.02 ± 0.3 

AO mdx 34.4 ±0.69 140.6 ± 8.8 * 3.27 ±0.29 * 

Diaphragm strip    

Control 8.1 ± 0.78 6.08 ± 1.2 1.26 ± 0.12 

Sham mdx 7.94 ± 0.74 10.92 ± 1.85 + 1.92±0.31 + 

AO mdx 7.63 ± 0.28 9.36 ± 0.82 * 2.1 ± 0.13 * 

Intercostal strip    

Control 7.61 ± 0.99 48.2 ± 6.4 5.37 ± 0.55 

Sham mdx 8.05 ± 0.89 79.82 ± 5.5 ++ 6.88 ± 0.89 

AO mdx 8.53 ± 0.21 82.96 ± 2.8 ** 5.86 ± 0.17 
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  In vitro normalised twitch and tetanic forces of the three skeletal muscles 

examined are shown in Figure 6.6 (A, B and C).  
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 C. Normalised twitch and tetanic forces from intercostal strips
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Fig 6.6 Isometric twitch and tetanic forces from latissimus dorsi, diaphragm and 

intercostal strips from 18-month-old sham injected control mice, antisense 

oligonucleotide (AO) injected and sham injected mdx. A) Peak twitch forces of 

latissimus and diaphragm muscles in the three groups of mice. B) Peak tetanic 

forces of latissimus and diaphragm muscles. C) Twitch and tetanic forces of 

intercostal muscle strips. There were significantly greater twitch and tetanus forces 

in control mice compared to mdx for all muscles, however there was no difference 

in force between AO treated and sham injected mice. 

FOC= Force of contraction ** P<0.01, * P<0.05.  n= 5 (C57), 6 (Mdx AO) and  5 

(Mdx sham) ** =difference between C57 and Mdx, AO treated. 
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6.5.4 Quantitation of collagen 

 The hydroxyproline content of four paraspinal and respiratory muscles 

(latissimus dorsi, longissimus dorsi, diaphragm and intercostal muscles) is shown in 

Figure 6.7. All mdx muscles demonstrated approximately twice the hydroxyproline 

levels compared to control mice (P<0.05), with the diaphragm showing the greatest 

evidence of fibrosis of the four tissue types. There was a trend for lower 

hydroxyproline levels of diaphragm and intercostal muscles in mdx AO treated 

mice, however this did not reach statistical significance. The greater fibrosis of mdx 

diaphragms was also apparent on picrosirius stained sections of these muscles. Mdx 

AO treated latissimus and diaphragm muscles showed significantly less fibrosis 

than sham treated mdx when analysed by this method (Figure 6.8). Examples of 

histological sections are shown in Figure 6.9. 
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Fig 6.7 Hydroxyproline (HP) content of latissimus dorsi, longissimus dorsi, 

diaphragm and intercostal muscles in control mice, sham treated mdx and antisense 

oligonucleotide (AO) treated mdx mice. Tissue fibrosis, as measured by HP content, 

was significantly greater in all mdx muscles compared to controls. * P<0.05.  n= 5 

(C57), 6 (Mdx AO) and  5 (Mdx sham). 
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Fig 6.8 Fibrosis of latissimus dorsi, longissimus dorsi, diaphragm and intercostal 

muscles in control mice, sham treated mdx and antisense oligonucleotide (AO) 

treated mdx mice. Tissue fibrosis, as measured by analysis of picrosirius stained 

tissues was significantly greater in all mdx muscles compared to controls. For 

diaphragm and latissimus dorsi muscles there was significantly less fibrosis in AO 

treated mdx compared to sham treated mdx. n= 5 (C57), 6 (Mdx AO) and  5 (Mdx 

sham). * P<0.05, ** P<0.01, P<0.001 (comparing AO treated Mdx and C57 mice). 

+ P<0.05 (comparing C57 and sham injected Mdx). 
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Fig 6.9i) Latissimus dorsi (A,C,E) and longissimus dorsi muscle sections (B,D.F) 

stained with picrosirius red. Mdx mice (C,D) showed significantly greater fibrosis 

than control mice (A,B). In addition to the dense interstitial collagen network of 

dystrophin deficient muscle, there was also irregular myocyte size and fibre 

disarray. In antisense oligonucleotide (AO) treated mice there was a small, but 

statistically significant decrease in percentage fibrosis of the latissimus dorsi 

muscles (E), but not the longissimus dorsi muscles (F), compared to sham treated 

mdx. 
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Fig 6.9ii) Diaphragm muscle sections (A,C,E) and intercostal sections (B,D,F) 

stained with picrosirius red.  Sham treated mdx mice (C,D) showed significantly 

greater fibrosis than control mice (A,B), demonstrated in these photomicrographs as 

bright red bands of dense interstitial collagen. Antisense oligonucleotide treated 

mice showed a small but significant, decrease in diaphragm collagen (E), but not the 

intercostal muscles (F) when compared to sham treated mdx. 
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6.5.5 Histology 

 The characteristics of dystrophy, including variability in fibre size; centrally 

located nuclei, split and fused fibres, inflammatory cell infiltration and myocyte 

disarray, were apparent in all H&E stained mdx muscles. These changes were more 

pronounced in the diaphragm and intercostal muscles than the latissimus and 

longissimus dorsi muscles. There was a lower incidence of centrally nucleated 

fibres in AO treated mdx latissimus muscles (P<0.05) and intercostal muscles 

(P<0.01), although there was still considerable discrepancy between these treated 

muscles and control mice (P<0.001). The frequency of centrally nucleated myocytes 

is shown in Figure 6.10, and representative photomicrographs in Figure 6.11. 

Frequency of centrally nucleated fibres in paraspinal and respiratory muscles
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Fig 6.10 Incidence of muscle fibres with centrally located nuclei from control mice, 

antisense oligonucleotide (AO) treated mdx and sham treated mdx mice. The control 

mice characteristically showed peripheral nuclei (with their frequency here 

represented by the solid line adjacent to x-axis). There was a reduction in the 

percentage of central nucleation in AO treated latissimus and intercostal muscles.  

n= 5 (C57), 6 (Mdx AO) and  5 (Mdx sham). P<0.001 when comparing mdx and 

C57 mice). + P<0.05, ++ P<0.01 (comparing AO and sham injected mdx). 

 



 

 

 

143

F E 

D C 

B A 

Fig 6.11(i) Representative H&E photomicrographs of latissimus dorsi (A,C,E) and 

longissimus dorsi muscles (B,D,F). Control mice muscle (A,B) had peripheral 

nuclei and little interstitial inflammation. Sham injected mdx mice (C,D) in contrast 

showed central nucleation and inflammatory cell infiltration typical of dystrophin 

deficient muscle. Antisense oligonucleotide (AO) injected mdx latissimus dorsi 

myocytes (E) had significantly fewer central nuclei than sham treated mdx. In this 

cluster of cells collagen is still evident but cells show peripheral nuclei, suggestive 

of less degeneration. AO treated mdx longissimus dorsi muscle (F), in contrast 

shows many centrally nucleated fibres.  
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Fig 6.11(ii) Representative H&E photomicrographs of diaphragm sections (A,C,E) 

and intercostal muscles (B,D,F). Control diaphragm (A) and intercostal muscles (B) 

show homogeneity in size and shape compared to sham treated mdx diaphragm 

sections (C) and intercostal muscles (D).   Diaphragm section from AO injected mdx 

(E) showed no significant difference in central nucleation compared to sham 

injected mdx, however the AO treated mdx intercostals displayed milder pathology. 

This group of mice showed significantly less central nucleation than sham treated 

mdx (P<0.05).  
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6.5.6 Western blots 

Western blot analysis of C57 lumbar muscles showed full-length dystrophin at the 

predicted site (427 kDa), however it was not possible to detect dystrophin in AO 

treated mdx muscles. The Western blots were repeated several times with similar 

results (see Appendix B for details). Results from Western blots are shown in Figure 

6.12. 

 

 

 

 

ig 6.12 Western blot of paraspinal muscles of control mice, sham injected mdx 

.6 Discussion 

e oligonucleotide therapy of DMD is a promising approach to the 

utcomes of once monthly AO injections 

mini

 

F

mice and antisense oligonucleotide (AO) injected mdx. Only the C57 dystrophin 

band is evident. Muscles blotted in order were C57 longissimus, sham injected mdx 

longissimus, AO treated mdx longissimus (2 different mice) and AO treated mdx 

latissimus (2 different mice).  

 

6

 Antisens

disease in those boys whose genetic defect is amenable to forced alternative 

splicing. There are, however, a number of questions raised by this mode of therapy - 

including the safest and most efficacious route of administration, timing, long-term 

efficacy, and level of dystrophin expression required to ameliorate symptoms. There 

is much work still needed using animal models such as the mdx mouse and GRMD 

dog before clinical trials can progress. 

 This project examined the o

ad stered into the paraspinal muscles of mdx mice aged from 2-18 months of 

age. These ages were chosen as, although mdx show the most severe necrosis at 

weaning age, they continue to experience cycles of degeneration and regeneration 

throughout life, with gradual development of severe or moderate dystrophy in 

muscles such as the diaphragm, postural muscles and accessory respiratory muscles. 
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as no apparent 

ice 

tch and 

tanic 

mN, mdx AO treated : 13.6 ± 1.6mN). 

(Stedman et al., 1991; Pastoret and Sebille, 1995b; Lefaucheur, 1995). In addition, 

other important clinical features of DMD such as thoracolumbar deformity was 

documented previously (Laws and Hoey, 2004). 

 AO injections were well tolerated by the mice, and there w

local swelling, loss of appetite or stiffness of gait following monthly treatments. 

 The KI of the AO treated mice tended to be greater than sham injected m

(indicating less kyphosis) at all time points from 8-18 months of age, however there 

was only statistical difference between groups at 10 and 18 months of age. There 

was incongruity between KI in this series of radiographs (involving a larger n) than 

a previous study (Chapter 4), as the control mice in this study showed a decline in 

KI at 16 and 18 months of age, bringing them closer in value to mdx mice. The KI 

of AO treated mdx mice tended to plateau from 8-18 months of age, compared to 

fluctuating values in the other two groups of mice, making it more difficult to draw 

conclusions on the validity of statistical tests of significance (Fig 6.4A). When 

additional mice were included in the analysis there was less intergroup variabilty 

(and consequently smaller error bars). It was felt that inclusion of the additional 

untreated mdx and C57 mice was statistically valid as there were no significant 

difference in KI between them and sham injected mice. This also indicated that 

using more animals may improve a) the assessment of KI in mdx and control mice 

across their lifespan (despite tests of power suggesting fewer mice were adequate) 

and b) the evaluation of therapeutic interventions measuring this parameter. 

 The contractility data presented in Figure 6.6 shows the specific twi

te forces of control mice was greater than mdx mice, with the exception of 

diaphragm single twitch data (Fig 6.6i). This was an unexpected result and was also 

contradictory to the specific tetanic forces obtained from the same muscle 

preparations, however other authors have noted the discrepancies between forces 

normalised for mass or cross-sectional area in old mice skeletal muscle (Hayes and 

Williams, 1998). When diaphragm twitch forces were normalised for muscle weight 

only they were significantly greater for control mice (C57; 3.15 ± 0.42 mN/mg, mdx 

sham treated; 1.39 ± 0.25 mN/mg, mdx AO treated : 1.48 ± 0.19. P<0.01). Absolute 

twitch forces for diaphragm strips were also greater for control mice, although this 

did not reach statistical significance (C57; 18.9 ± 6.5 mN, mdx sham treated; 14 ± 2 
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ared to sham treated mdx. An inadequate 

n results obtained in this study were 

ding adeno-associated 

us v

 There was no significant difference in force production of any examined 

muscle type for AO treated mdx comp

dosage or distribution of AO to the muscles in question is likely to be the primary 

explanation for this result. AO transfection is a local phenomenon, limited by 

concentration, the spread of injectate within tissues and degree of internalisation of 

AO by myocytes. Although evidence of dye was observed within other tissues such 

as latissimus dorsi or occasionally intercostal muscle regions, a dilution of effects 

could also result from this spread, i.e. there was less AO available to transfect fewer 

cells. Tissues with the most staining were reserved for Western blotting to maximise 

detection of dystrophin, but this could mean that the muscles strips used for 

contractility studies were less likely to have successfully incorporated AOs. In 

addition this project examined function at one time point only (18 months old), and 

there may be a diminution of efficacy of AO therapy in dystrophic muscle with age, 

as satellite cell reserves and regenerative ability of muscle wanes and fibrosis 

advances. This latter point may explain the discrepancy between improvement in KI 

and lack of improvement in contractility.  

 The two methods of measuring collagen are complimentary with results 

generally in agreement, however certai

equivocal. There was no significance difference between AO and sham treated 

muscles using HP assays, but significantly less interstitial collagen in diaphragm 

and latissimus muscles when collagen specific stains were analysed. The advantage 

of histological staining methods is the ability to visualise and record the extent of 

fibrosis, however the number of fields of view examined (or the number of levels of 

sectioning) limits the accuracy of analysis. AO therapy is unlikely to influence 

fibrosis in diaphragm muscle because direct injections were not employed, however 

it may have provided benefit in areas of latissimus muscles.  

 Evaluation of central nucleation in mdx myocytes demonstrated the 

attenuation of dystrophic pathology in other studies, inclu

vir ector-mediated gene therapy (Wang et al., 2000; Yoshimura et al., 2004; 

Fabb et al., 2002) and stimulation of calcineurin signalling (Chakkalakal et al., 

2004). The percentage decrease in centrally nucleated fibres in this current study, 

although significant from untreated muscles, is only small. This contrasts to 

successful gene therapy studies where 75-98% of fibres showed peripheral nuclei 
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estern blotting, despite the presence 

athology in mdx mice, and at many time points 

and consistent fibre sizes and shapes (Wang et al., 2000;  Yoshimura et al., 2004). 

In these studies they injected vectors and min-dys into single muscles rather than 

over a wider area, and accurate localisation of transduced fibres was possible by 

histology and immunohistochemical methods.  

 It was not possible to demonstrate dystrophin expression in longissimus 

dorsi and latissimus dorsi muscle samples by W

of strong dye staining to enable localisation of the sites of AO injection. This is 

most likely a result of low dosage of AO administered, as detailed in the diaphragm 

study (Chapter 5). In the time since both these studies were undertaken other 

researchers have shown that up to 8 fold increased amounts of AO are required for 

in vivo studies in mdx muscles (Lu et al., 2003; Wells et al., 2003). 

Immunohistochemical methods have recently been proved to be more sensitive than 

Western blotting for demonstraing low level dystrophin induction  follwing AO 

administration (Lu et al., 2004).  

 In conclusion, this study did provide some evidence that long term AO 

administration reduced muscle p

significantly altered the dystrophic phenotype of kyphosis present in this strain, 

(comparing AO treated with sham injected mdx). There was still evidence of greater 

kyphosis in treated mice compared to control This study also showed that 

significantly higher levels of AO are needed for in vivo experiments than that which 

achieved transfection of myocytes in cell culture in previous studies. The 

confounding problems of all gene modulating therapies currently considered for 

DMD clinical trails are exemplified here; the need for high efficiency widespread 

transfer, high biological activity, persistent expression and efficient target delivery 

throughout the lifespan.  
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HAPTER 7: CONCLUSIONS AND IMPLICATIONS 

, and that we, or those that come after us, may 

s a prototype disease. It is 

ommon, knows no geographical or socio-economic boundaries and is always fatal. 

The d

ntractions, 

it is 

ents are confused: will a ‘cure’ 

invol

 

C

FOR FURTHER STUDY 
Regarding every disease now incurable we may entertain the hope that our 

powerlessness may not be permanent

speak of it in very different terms… 

   Sir William Gowers, Lancet 1879 

 

Duchenne Muscular Dystrophy can be regarded a

c

ystrophin gene, the largest in the human body, has been studied for decades 

and its structure and mutations can now be considered well characterised. There are 

several naturally occurring laboratory animals, and many more man-made ones, that 

are excellent models for different aspects of study. There are research centres 

throughout the world dedicated solely to research into muscular dystrophies. It is 

likely the discovery of a genetic cure for DMD will release the floodgates for 

treatment of many other genetic diseases of lesser prevalence in society.  

Dystrophin’s countless roles are being revealed gradually; it is a strut that 

maintains structural stability and helps to resist the forces of muscular co

integrally involved in those contractions via connections to actin, it binds 

important molecules such as nNOS, calmodulin, dystrobrevin and ion channels, 

either directly or indirectly. These various and vital roles suggest that successful 

treatment can only come about through dystrophin replacement strategies, rather 

than anti-inflammatory drugs, hormone intervention, immune modulators or channel 

blockers, which influence only part of the complex. 

Whilst there is hope for successful treatment in the future for boys affected 

with DMD, the pathways to it are far from clear. Par

ve stem cell therapy, gene transfer via plasmids or viruses, a series of 

injections such as geneticin, or a system of applying molecular ‘patches’ using 

antisense oligonucleotides? The complexity of the gene and variety of mutations 

arising within it also suggest than a standard form of treatment is unlikely, but rather 

that therapy will be customised for every patient, based on individual genotyping 

and accurate determination of each mutation. 
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emonstrated by mdx muscles in vivo 

or 

ly lower 

 Exon skipping strategies utilising AOs hold great promise for those patients 

with point mutations and short deletions, as d

and cultured human muscle cells. The challenges include devising methods for 

widespread delivery, refinement of AO chemistry and ensuring persistence of 

dystrophin expression in all muscle types, including the heart and the diaphragm. 

 This dissertation sought to examine several muscles uniquely involved in the 

dystrophic phenotype and previously either less well characterised, 

uncharacterised, in the mdx mouse model. These included cardiac muscle, accessory 

respiratory muscles and paraspinal muscles. In addition mdx diaphragm muscle was 

utilised as an example of skeletal muscle severely affected by the dystrophic 

process, and most representative of the profound dystrophy seen in DMD. 

Following these characterisation studies strategic administration of AOs was 

performed in diaphragm and paraspinal muscles, and the effects evaluated. 

 Mdx cardiomyopathy varies with the life stage. Young mice (3 weeks of age, 

or corresponding to the acute muscle necrosis stage) showed significant

heart weights and atrial contractility compared to control mice. 3 and 6 week old 

mdx showed blunted atrial responsiveness to increasing concentrations of calcium. 

15-month-old mdx also displayed lower atrial forces compared to C57 mice. 

Isometric twitch characteristics altered with age, with 15-month-old mice showing 

lower basal forces and prolonged rise and relaxation times. Electrophysiological 

differences were evident in dystrophic hearts when action potential durations were 

measured by transmembrane glass microelectrodes. There was a strong trend for 

shorter APD90 in mdx mice (significant at 3 weeks, 9 months and 12 months), while 

APD50 increased in mice over 15 months of age. The apparent paradox of slowed 

twitch properties, shortened APD90 and prolonged APD50 provide evidence for 

dissociation between cell contractile machinery and electrical events, in addition to 

dysregulation of ion channels in mdx cardiomyocytes. These properties, and the 

development of increasing interstitial fibrosis with age in mdx hearts, provide 

insights into DMD cardiomyopathy including ECG disturbances and the tendency 

for arrhythmias. Differences between human and murine disease were noted: mdx 

hearts can show equivalent function to control hearts at many ages, and fibrosis is 

patchy and diffuse, rather than localised and severe, as occurs in boys with DMD. 

There was no evidence of dilated cardiomyopathy in mdx, although this occurs 



 

 

 

151

trapolated from 

 measured from 

commonly in DMD. In conclusion this study showed that young (<6 weeks) and 

old (>15 months) mdx mice were most useful for cardiac studies, when contractile 

dysfunction and electrophysiological disturbances were significant. 

 Spinal deformity is common in DMD, and also occurs in the mdx mouse, in 

the form of thoracolumbar kyphosis. A novel radiographic index ex

the Kyphotic Index used in children, was developed and applied to aging C57 and 

mdx mice. KI remained the same until approximately 9 months of age, after which it 

became significantly less in mdx mice (indicating more severe kyphosis). Muscles 

associated with spinal and thoracic deformity were isolated and used for 

contractility studies, measurements of interstitial collagen, and histological 

measures of muscle degeneration and regeneration. The latissimus dorsi, intercostal 

muscles and diaphragm muscles of the mdx mouse showed reduced twitch and 

tetanic force production, increased central nucleation (indicating myocyte 

regeneration) and increased fibrosis. This study was the first to apply such a 

radiographic index to an animal model, and evaluate the effects of dystrophy of the 

paraspinal and respiratory muscles in the progression of kyphosis. 

 AOs were administered once monthly by intramuscular injection into the 

paraspinal muscles of mice from 2-18 months of age. KI was

monthly radiographs and found to be greater in AO compared to sham treated mdx 

at 10-18 months of age (significant at 10, 12, 16 and 18 months). There was still 

significant discrepancy in KI however, between AO treated mdx and C57 mice. 

There was no improvement in force production of latissimus dorsi, intercostal 

muscles or diaphragm in AO treated mice, but there was some reduction in fibrosis 

measured by histological stains specific for collagen in AO treated latissimus dorsi 

muscles and diaphragm. The frequency of centrally nucleated fibres was 

significantly less for AO treated latissimus dorsi and intercostal muscles. 

Dystrophin expression could not be demonstrated by Western blot.  The conclusion 

from this study was that some benefit to the dystrophic phenotype in the form of 

reduced kyphosis was observed after long-term administration of AOs. The 

concentration of AOs was thought to be too low to result in persistent expression of 

dystrophin, and higher concentrations were indicated. More sensitive dystrophin 

detection methods, such as immunostaining or RT-PCR should also be evaluated. 
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th 

an trials. The proof of principle that AOs 

 The mdx diaphragm shows necrosis and fibrosis from an early age, with the 

histological changes closely mimicing that seen in skeletal muscles of boys wi

DMD. Organ bath studies measuring contractility of diaphragm strips, 

hydroxyproline analysis and histological measures of fibrosis and degeneration and 

regeneration were shown to be reliable indicators of the extent of dystrophy in this 

organ. From preliminary studies using mice from 3 weeks to 15 months of age, it 

was decided to use 4-month-old mice for the administration of AOs directly into 

diaphragm muscle. Two procedures one month apart were performed, involving 

sub-epimyseal injections of AO/lipofectin complex at four sites around the 

diaphragm. Mice were sacrificed one month after the second procedure and 

diaphragm strips were dissected for contractility studies. Twitch and tetanic forces 

were significantly greater in AO treated diaphragms compared to sham injected, but 

fibrosis was not alleviated. The frequency of centrally nucleated fibres was also 

similar between AO and sham treated mdx. Western blotting again failed to 

demonstrate dystrophin production, thought to be due to a low concentration of AO. 

This study was the first to show evidence of functional benefits after AO treatment 

in muscle with a tendency for severe dystrophy, and provides additional evidence 

that this mode of treatment may be a safe and efficacious form of therapy if vectors 

for systemic delivery are developed. 

 From the studies outlined above and consideration of published work, it is 

clear that AO strategies are ready for hum

successfully induce exon skipping in both mdx and DMD cells was followed by 

studies showing improved function in mdx limb muscles, with a lack of 

inflammatory response and toxicity. Long term AO use was safe and well tolerated 

in mdx mice, and alleviated kyphosis compared to sham injected mice. Diaphragm 

function was improved after two injections of AO, albeit of a lower concentration 

than would be considered for future trials. Recent advances including systemic 

delivery via intravenous injections, the feasibility of double or multi-exon skipping 

and the development of viral vectors expressing antisense sequences offer hope. 

Considerable challenges remain, including the effective delivery of AOs that induce 

persistent expression of dystrophin, which is able to provide functional benefits 

across a wide range of muscle types and alleviate the serious pathology associated 

with DMD. 
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APPENDIX A: DEVELOPMENT OF NEW TECHNIQUES 

A1: CARDIAC MONOPHASIC ACTION POTENTIALS 
A1.1 Introduction 

Boys with DMD show a high prevalence of atrial and ventricular arrhythmias, 

however the mechanisms of disturbed rhythm and conduction are not well understood 

(Sanyal and Johnson, 1982; Perloff, 1984). QT dispersion, a measure of QT interval 

variability, is seen in congenital arrhythmias such as congenital long-QT syndrome, 

torsades de pointes and various cardiomyopathies. A high degree of QT dispersion 

(>60ms) was found in a study of 67 DMD patients (Yotsukura et al., 1999), and these 

authors demonstrated the association between QT dispersion and severity of ventricular 

arrhythmias with a probable relationship  to regional myocardial derangement. 

Abnormal ECGs have been observed in mdx mice, attributed in one study to the 

deficiency in nNOS activity seen in this strain (Bia et al., 1999). There is controversy 

regarding QT intervals in mdx, due possibly to difficulties in determining the termination 

of the murine T wave (Bia et al., 1999; Chu et al., 2002; Danik et al., 2002)). 

Monophasic action potentials (MAPs) are extracellular recordings that can 

replicate the repolarisation time course of transmembrane action potentials (TAPs) with 

high fidelity. MAPs can be recorded from the endocardium and epicardium of in vivo or 

in vitro beating hearts in human and animal subjects. The MAP accurately reflects the 

duration as well as configuration of the repolarisation phase of the TAP, although action 

potential amplitude and upstroke velocity is much less (Franz, 1999). They are hence 

useful as a link between basic and clinical electrophysiology in arrhythmia research, 

including studies of various transgenic mice models of human cardiomyopathy (Casimiro 

et al., 2001; Franz, 1999; Knollmann et al., 2001a ; Knollmann et al., 2001b). 

MAP measurements would be a useful tool to further investigate the 

electrophysiological properties of mdx hearts, thus enhancing both the understanding of 

repolarisation and genesis of arrhythmias in dystrophic cardiac tissue, and helping to 

resolve controversies regarding the mdx cardiac phenotype. 

 

 



                                                                                                                                     A-  2

A1.2 Methods 

A1.2.1 Langendorff perfused murine heart model 

Hearts were isolated from 6-8 week old and 15 month old mdx and C57 

mice.n=14-15/group 

Mice were anaesthetised with 60 mg/kg sodium pentobarbital administered intra-

peritoneally.  A thoracotomy was performed and hearts were excised into room 

temperature perfusion fluid. The aorta was cannulated under magnification using a blunt 

ended 21 gauge needle, and the coronary circulation perfused at 80 mmHg with modified 

Krebs-Henseleit buffer containing (mM) NaCl 119, NaHCO3 2, KCl 4.7, MgCl 1.2, 

KH2PO4 1.2, EDTA 0.5, glucose 11 and pyruvate 2. The concentration of CaCl2 was 

1.25mM. Buffer was equilibrated with 95% O2 and 5% CO2 at 37oC for 1 hour, giving a 

pH of 7.4, and was filtered inline using 0.45 µm filter to remove microparticles. The left 

ventricle was vented with a polyethylene apical drain, and the heart was then immersed in 

warmed perfusate in a jacketed glass bath maintained at 37oC, where it rested 

horizontally. The temperature of the perfusion fluid was monitored continuously by a 

needle thermistor at the entry of the aortic cannula. The heart was paced by attaching 

electrodes to either the right atrium or ventricle and stimulating via a Grass SD9 

stimulator. Settings= voltage threshold + 20%, (usually 2-3 volts but sometimes requiring 

a higher voltage to capture initially (up to 60 V)), 2 ms duration, frequency 6.9 Hz. This 

frequency achieved a heart rate of 420 bpm. 

Perfusion pressure was also measured and maintained at 80mm Hg. Data was 

recorded at 2 kHz on a PowerLab data acquisition system (AD Instruments, Castle Hill, 

Australia) and 4 kHz for ECG channels. The experimental apparatus for MAP is shown 

in Figure A1.1. 

The organ bath used was a Radnoti water-jacketed glass dish, modified with a 

Perspex insert to support and prevent free swinging of the heart for the purposes of 

recording MAPs. A simultaneous volume conducted ECG was also recorded with the 

recording electrodes and earth electrodes positioned in the perfusion fluid in close 

proximity to the heart. 

 

 



                                                                                                                                     A-  3

 

Fig A1.1 Langendorff experimental setup for ECG and MAP recordings  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
A1.2.2 Equipment 

Shallow water-jacketed organ bath (Radnoti) 

Glass heating coil (Radnoti) 

Tubing and connectors (Radnoti) 

Sterivex-HV 0.45µm filter unit (Millipore Corporation, US) 

Animal Bioamp (ADI, Castle Hill, Australia) 

Gilson pump 

MLT844 Physiological Pressure Transducer (ADI) 

Pressure 
feedback signal 

Temperature signal 

Control signal to pump 

Water 
jacketed 
organ bath 

Peristaltic pump 

From perfusate 
reservoir 

Air filled syringe 
for pressure 
damping 

Mac G4 

Heating coil 

POWERLAB  

Stimulator 

Bridge Amp 

Bioamp 

Temperature Pod 

Pump Controller 

Amplifier 

Pacing stimulus to atria 

ECG 

MAP signal

Perfusate pressure signal 
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Clip-on Domes for MLT844 (ADI) 

Grass SD9 stimulator 

Temperature pod for thermistor 

Thermistor (ADI) 

Custom made MAP electrodes 

Custom made ECG electrodes 

Suction  

Heated water bath 

Arterial clips and clip applicator, fine forceps and scissors 

. 

A1.2.3  Monophasic Action Potential Recordings 

A 0.25mm MAP recording probe was constructed according to published protocols 

(Knollmann et al., 2001a) and consisted of an elastic strand of twisted double silver wires 

(95% purity), insulated with Teflon sleeves except for the very tips. The ends were 

deflected by 90o for the distal 3mm. Both tips were galvanically chlorinated to eliminate 

DC current offset. The MAP exploring electrode was smoothed to a rounded surface. The 

reference electrode was placed 1 mm proximal from the tip electrode to avoid 

simultaneous contact with the myocardium (Figure A1.2).  The method used for 

chloriding silver wires is shown in Figure A1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A1.2 Experimental setup and detail 
of monophasic action potential 
electrode used in a Langendorff- 
perfused mouse heart. The MAP 
electrodes and four silver/ silver 
chloride electrodes recording the 
surface ECG are shown. 
(Knollmann et al., 2001a) 
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Fig A1.3 Method of galvanically chloriding silver wire to create MAP or ECG 

electrodes. The wire is attached to a 9-volt battery and submerged in a saturated KCl 

solution for 5-10 minutes. Successful chloriding is seen by the formation of a dull grey 

discolouration to the wire. The silver chloride coating is fragile and impermanent, 

requiring the process to be repeated every few days.  

 

The MAP probe was lowered by hand perpendicularly onto the epicardial surface 

of the heart until gentle but stable contact pressure was achieved, resulting in the 

development of MAP signals. 

MAP recordings were made from different aspects of the heart by rotating the 

heart horizontally to expose the right or left ventricle to the MAP electrode. To obtain 

endocardial recordings the electrode was placed on right or left ventricle via a small hole 

in either atrium and made to contact the endocardium by directing the tip against the 

ventricular wall. 

MAP recordings were preamplified with a DC coupled differential preamplifier, 

digitised at 2 kHz sampling rate and stored and analysed using a PowerLab data 

acquisition system. 

 

Ag/AgCl 
electrode 

-VE +VE 

 
 

9 volt  
Battery 

Bath with 3M KCl 

Silver plate 
or wire 
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A1.3  Quality criteria for MAP recordings from murine hearts. 

Table A1 details those criteria that ensure murine MAP recordings are faithful in 

accurately reproducing the wave shape of TAP recordings from mouse hearts. 

Representative murine MAPs are shown in Figure A1.4 

Table A1  MAP quality criteria (adapted from Knollmann et al., 2001a and Franz, 1999) 

________________________________________________________________________ 

1. Fast, clean upstroke (phase 0) 

2. No major contamination by intrinsic deflection or QRS 

3. Stable MAP wave shape with horizontal diastolic baseline 

4. Rapid early repolarisation (APD50 3-11 ms depending on recording site) 

5. No ‘spike and dome’ morphology 

6. An inflection point (plateau) below the 50% repolarisation level 

________________________________________________________________________ 
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Fig A1.4 Transmembrane action potentials (upper panels) compared to monophasic 

action potentials (lower panels) from normal mouse hearts. These traces illustrate the 

regional heterogeneity in waveform duration and amplitude, and marked difference in 

amplitude between MAPs and TAPs (Knollmann et al., 2001a) 

A1.3 Results 

50 mice were utilised while trialling MAP techniques. Expertise was gained in mounting 

hearts in the Langendorff apparatus and achieving good function (manifest as constant 

pressure, strong regular cardiac contractions and pink colour to the tissue). All hearts 

(mdx and C57) continued to beat for the duration of the experiment, which was often 

more than two hours.  

Examples of MAPs achieved in mdx mice are shown in Figure A1.5 
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Fig A1.5 Examples of monophasic action potential recordings achieved from epicardial 

surfaces of mdx hearts. These serve to illustrate the variation in MAP amplitude and wave 

forms experienced during these experiments. A. A typical left ventricular epicardial trace, 

with an amplitude of 4 mV. B. Another left ventricular recording from a different mouse 

recorded on a separate day. The amplitude was 2 mV and APD was also different to 

previous recording. C. This a third mouse reading with a 1mV amplitude, slower upstroke 

velocity and prolonged duration. Also apparent in these traces is the 50-cycle interference 

causing baseline and downstroke fluctuations. 

 

There were three main areas of difficulty encountered during these experiments: 

1.Reliability of MAP recordings 

It was not possible to consistently and reliably obtain MAP recordings, despite efforts to 

replicate conditions and electrodes from previously successful experiments. Sometimes 

MAP recordings were achievable, but of very low amplitude (2-3 mV) making 

comparison between mice difficult. MAP electrodes were re-chlorided, or made again 

from new silver wire when problems were encountered. Two different commercial bio-

amplifiers were trialled (Grass CP511 Amplifier and Animal Bioamp (ADI, Australia), 

and a custom made differential circuit was also made and tested unsuccessfully. 

2.Electromagnetic interference 

50-cycle interference was a significant problem throughout this series of experiments, 

with the degree of interference varying on a day-to-day basis. Initially the Langendorff 

2:15.72:15.62:15.52:15.42:15.3

-3

-2

-1
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1
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3
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apparatus was disassembled and rebuilt in another area of the laboratory. An ultrasonic 

flow probe was also thought to be a major source of EMI initially, so its use was 

discontinued. Water baths, computers and amplifiers were moved as far from the heart 

and electrodes as possible. The stage for the tissue bath and the tissue bath itself was 

shielded using aluminium foil. Various combinations of filters were tried, and isolated 

ground amplifiers were chosen (with 50-Hz notch filter). Grounding of the heart was also 

attempted using earth electrodes. 

3. Amplitude and morphology of MAPs 

Variable MAP amplitudes are reported in the literature –for example 11-19mV 

(Knollmann et al., 2001a), 3.5-15.1mV (Danik et al., 2002) and 14.6-22.4mV (Liu et al., 

2004). Action potential amplitudes cannot be used as an absolute measure of cellular 

electrophysiology, but serve as a relative reference for acceptable signals. The maximum 

MAP amplitude achieved was 8.5mV, with the majority falling in the 2-4 mV range. Of 

greater concern than amplitude alone was the fidelity of waveforms, with many showing 

the appearance of Fig A1.5c, where there was not always typical depolarisation spikes 

with rapid repolarisation downstrokes. 

 

A1.4 Discussion 

MAP recordings provide precise information regarding local activation and 

repolarisation of the heart, and there is a need for verifying this information in mdx mice. 

Unfortunately there was a series of technical problems encountered during this 

experiment limiting the usefulness of the results, meaning n numbers were low and 

statistical tests could not be applied. The problem of 50-Hz interference was not 

overcome, despite seeking expert advice on this matter (A. Katchman, pers comm. 

20.4.04). A commercial bioamplifier recommended and subsequently first used (Grass 

CP511) was found not to be a differential amplifier. Advice was also sought regarding 

waveform and amplitudes (B. Knollmann, , pers comm 20.5.04 and M. Franz, pers comm. 

24.5.04) and it was felt that the problems encountered may be a combination of recording 

technique or MAP electrodes, although M. Franz indicated that recordings such as shown 

in Fig A1.5a and b were acceptable. This project was terminated due to inconsistencies in 

results and the time constraints of PhD studies. 
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A2: TRANSMEMBRANE ACTION POTENTIALS AND 

FUNCTION OF VENTRICULAR TISSUE 
A2.1 Introduction 

In recent years mouse trabeculae or small papillary muscle preparations have been 

utilised in studies of contractile function and calcium handling (Stull et al., 2002; Gao et 

al., 1999; Stuyvers et al., 2002). They have the advantage over single cardiomyocytes in 

that intercellular connections are maintained, loaded contractions can be assessed and 

also there is the ability to maintain high pacing rates, similar to physiological frequencies 

(Stull et al., 2002).  Ultra-thin muscles have less diffusion distance compared to thick 

ventricular wall preparations, so core hypoxia or accumulation of metabolites do not limit 

contractility. However, they suffer the disadvantage of a low incidence of geometrically 

suitable preparations (33% in one study (Stull et al., 2002)). 

TAPs are superior to MAPs in providing information on resting membrane 

potentials, action potential amplitudes or upstroke velocity (Liu et al., 2004), however 

achieving stable TAPs at very short cycle lengths can be difficult.  

It was hoped that information gained from successful TAP studies in mdx and C57 mice 

would complement atrial data in aging mice (Chapter 3) and MAP studies in age matched 

mice (Appendix A1). 

 

A2.2 Methods 

Hearts were isolated from 6-8 week old and 15 month old mdx and C57 mice. 

n=14-15/group 

Mice were anaesthetised with 60 mg/kg sodium pentobarbital administered intra-

peritoneally.  A thoracotomy was performed and hearts were excised into room 

temperature perfusion fluid. The aorta was cannulated under magnification using a blunt 

ended 21 gauge needle, mounted onto a Langendorff apparatus and the coronary 

circulation perfused at 80 mmHg with modified Krebs-Henseleit buffer containing (mM) 

NaCl 119, NaHCO3 2, KCl 4.7, MgCl 1.2, KH2PO4 1.2, EDTA 0.5, glucose 11 and 

pyruvate 2. The concentration of CaCl2 was 0.25M. The Krebs buffer was equilibrated 

with 95% O2 and 5% CO2 at 37oC for 1 hour, giving a pH of 7.4, and was filtered inline 
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using 0.45 µm filter unit to remove microparticles. The heart was immersed in a jacketed 

glass bath maintained at 37oC, where it rested horizontally and was perfused in 20mM 

2,3-butanedione monoxime (BDM) to prevent cutting injury. The temperature of the 

perfusion fluid was continuously assessed by a needle thermistor at the entry of the aortic 

cannula. 

The right ventricle was opened from base to apex by cutting parallel to the 

interventricular septum. Blood clots were washed out and a thin, uniform, nonbranched 

trabeculae or small pap muscle was carefully dissected leaving a block of tissue at one 

end from the RV free wall, and a small part of the tricuspid valve at the other end to 

facilitate mounting. Muscles were mounted between a stainless steel cradle glued to a 

force tranducer (Sensor Nor beam) and snared at the valve end by 9/0 monofilament 

nylon suture material (Ethilon brand) threaded into a 50 µm hollow stainless steel tube 

(Goodfellow, Cambridge,UK), according to published protocols for rat trabeculae (Ward 

et al., 2003). Muscles were perfused initially with the same buffer as above (with the 

exception of BDM) at 37oC, and stimulated at 0.5 Hz. Calcium and frequency was 

increased incrementally each 10 minutes over a 40-minute period until baseline 

conditions were reached (37oC, 1.25 mM Ca2+, 6.9 Hz.). Voltage was set at 20% greater 

than threshold, field stimulated at a pulse duration of 5 ms and perfusate flow rate at 8 

mLs per minute. 

Force development was determined at slack length (with no preload applied) and 

optimal length where force development is slightly below maximal (corresponding to an 

approximate sarcomere length of 2.2 µm (Stull et al., 2002)). 

Experimental apparatus was similar to that detailed in B4.2 (microelectrode 

apparatus) and A1.2.2 (Langendorff apparatus). 

When muscles were equilibrated, force recordings were measured for 5 minutes, and a 

glass microelectrode was impaled into the tissue using a 3M KCl filled microelectrode of 

10-50 mΩ resistance. Stable TAP recordings (at least 10 beats at 3-4 sites) were sought. 

The muscles were measured at optimum length using a calibration reticule in the ocular 

of the dissection microscope after mounting. Cross-sectional areas were calculated 

assuming an ellipsoid shape (CSA=πab x length, where a= ½ minor diameter and b= ½ 

major diameter). 
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A2.3 Results 

Ventricular preparations from 32 mice were used while attempting to optimise 

experimental conditions. Experience was gained in the dissection and mounting of 

papillary muscles or trabeculae under magnification. Figure A2.1 shows force recordings 

and action potential recordings. 

 

 

Fig A2.1 Force recordings (above) and action potentials (below) achieved at a frequency 

of 6.8 Hz, or over 400bpm. These preparations were subjected to a temperature of 37oC, 

and field stimulated at 5 ms pulse width and 30 volts. 
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The following observations were made regarding these experiments: 

1.There was a low incidence of suitable linear, non-branched trabeculae necessitating the 

use of papillary muscles in most cases. The broad apical end of mouse papillary muscles 

made it difficult to mount these in the cradle of the force transducer, and the use of this 

cradle restricted contractions. Later in the experiment a fine (6/0 silk) noose was used to 

attach muscles to a hook glued onto the force transducer. 

2. There was poor contractile function in many preparations. Rapid deterioration in 

function was encountered in mouse trabeculae at 37oC in another published study, forcing 

these investigators to using non-physiological room temperatures for the remainder of 

their experiments (Gao et al., 1998). 

3. Achieving stable sequences of TAPs at high frequencies was very difficult. 

4. Some technical difficulties were encountered including preload drift, and signal noise 

at high frequencies. This made measurement of small increments in force difficult. 

This project was not pursued at the time because of difficulties in consistently achieving 

good ventricular function, making comparisons between strains problematical. 

 

A2.4 Discussion 

There are few reports that characterise fundamental cardiac physiology in mdx 

mice, and some are performed under non-physiological conditions (Sapp et al., 1996) or 

in atrial preparations only (Sapp et al., 1996; Lu and Hoey, 2000a; Lu and Hoey, 2000b;). 

There is a need to further explore electrophysiological properties of mdx ventricular 

muscle as undertaken in transgenic mouse models of human cardiomyopathies. There is 

now an emphasis on replicating physiological temperatures and frequencies as far as 

possible (Stull et al., 2002; Ward et al., 2003) and ensuring optimum sarcomere length 

(Stull et al., 2002; Stuyvers et al., 2002). While these guidelines were adhered to as much 

as possible in this study it was unfortunate that statistical comparisons could not be made. 

Further improvements of apparatus and technique could include miniaturising the tissue 

bath further and use of laser diffraction techniques to accurately measure sarcomere 

length, rather than relying on optimal force production alone. It is possible that mouse 

trabeculae or papillary muscles are highly sensitive to stretch and are readily damaged. 
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APPENDIX B: RECIPES AND PROTOCOLS 

B1: HYDROXYPROLINE ASSAY 

B1.1 Equipment 

2 mL flat based polypropylene tubes with lid 

Spectrophotometer, semi-micro cuvettes (1.5-3 mL tapered) 

Heating block or oven for heating at 1070C  overnight. 

Timer 

Pippetors and tips, beakers, heat resistant tube rack. 

Shaking water bath at 600C 

Manifold for bubbling off HCl (either a series of Silastic tubing and Y connectors with 18 

gauge needles on ends, or custom made manifold (see Fig A.1)) 

Filter (Sartorius Midistart 0.2 µm) and tubing to connect from air tap to manifold 

B.1.2 Reagents 

1.Hydroxyproline Standards 

Stock of 1 mg/mL hydroxyproline (trans-4-hydroxy-L-proline, Sigma, Australia) 

prepared in distilled water. 

Aliquot standards into 150 µL amounts and freeze. 

Thaw prior to use for dilution into a standard series. 

Require range of 0-20 µg HP, in assay vol of 500 µL. Mix reagents well. 

 

2.Buffer Stock solution (pH 6) 

Dissolve 50 g citric acid.1H20 (analytical grade), 12 mLs acetic acid (96%), 120 g sodium 

acetate.3H20 and 34 g of sodium hydroxide in dH20 and bring up to 1 litre. Ten drops of 

toluene added as preservative. 

The buffer is used in colour reaction by taking 500mLs and adding 100mLs water and 

150mLs n-propanol= Working Solution. Stable for several months. 

 

3.Chloramine T reagent (0.056 M) (keep in dark at 4o for 3 weeks) 
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Dissolve 1.41g of Chloramine T in 10 mL water; add 10 mLs n-propanol and 80 mLs 

buffer at pH 6 (this is stable for several weeks, then discard) 

 

4.Erlich’s Reagent  

Dissolve 15 g p-dimethylaminobenzaldehyde (Sigma, Australia) in 60 mLs n-propanol 

and 30 mLs perchloric acid, (2:1 n-propanol:perchloric acid) (or the amount required for 

that day’s assays). 

This is light sensitive and unstable, so needs to be prepared freshly. 

This volume is enough for approx 360 samples (250 µLper sample) 

Use fume hood with waterfall for preparation. 

Perchloric acid and n-propanol can be mixed together and stored. 

 

B1.3 Sample Preparation 

Weigh tissue after trimming tendons, fat or capsular tissue. Place sample of tissue (or HP 

standard) in 6 N HCl. Use approx 10-20 mg tissue in 0.5 mL HCl in a cryotube. Tissue 

can be homogenised or cut into smaller pieces with scissors. Vortex thoroughly. 

Seal tubes and hydrolyse at 107oC for 18 hrs. 

Next morning, open tubes and dry hydrolysed samples (blow off HCl with filtered 

compressed air in fume hood). This takes 1-2 hours, and results seem better if bubbling is 

not too vigorous, as this causes dried sample to adhere to walls of tube making them 

difficult to reconstitute. If tube rack is placed on heater block at 50oC it speeds up drying 

process by evaporation also. Replace lids with fresh ones to avoid traces of HCl affecting 

assay. 

Reconstitute dried sample with 500 µL dH20. Vortex thoroughly, and get as much of 

dried sample from wall of tube. Despite the hydrochloric acid being  removed in totality, 

the hydrolysate remains acid (pH 1-2). 

 

B1.4 Assay Procedure 

Use 0.5 mL reconstituted sample or standard 

1.Add 250 µL of Chloramine T reagent. Ensure samples and chloramine T at room 

temperature.  Vortex and incubate for 20 minutes at room temperature. (=oxidation step) 
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2.Add 250 µL Ehrlich’s reagent to each sample and vortex. Incubate at 60oC for 20 

minutes (chromophore development stage) Cool tubes under tap water 

3.Read absorbance of each sample at 550 nm using spectrophotometer. 

Curve tends to plateau out, and some samples may be obviously dark red, but show HP in 

flat area. If too concentrated dilute sample with n-propanol and repeat absorbance 

reading. (Fig B.2) 

4.Construct standard curve (determine curve fit and equation by entering values into 

KaleidaGraph v 3.5, Synergy Software, Reading, USA ). Calculate µg hydroxyproline in  

samples (Fig B.3). 

 

Fig B1.1 Custom made manifold for drying hydrochloric acid from samples. The 

apparatus allows 40 samples to be handled at one time. 

 

 

Filter 

Taps for closing off  
air - flow to half of tubes 

Manifold base 

AIR

20uL  pippette  tips 
screwed into manifold base 
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drilled to fit tubes 

Heater 

Stand for manifold, 
when not in use 
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Fig B1.2 Hydroxyproline standard series with dilutions from 1-20 µg hydroxyproline. 

This demonstrates the sensitivity of the assay, even in small tissue samples such as mouse  

atria. 

 

 

Fig B1.3 Example of hydroxyproline standard curve. In the linear range of the graph 

R=0.99923 
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B2: HISTOLOGY RECIPES AND PROTOCOLS  
Histology protocols and recipes were courtesy of Assoc Prof Lindsay Brown’s laboratory 
and Paul Addison, histologist, Department of Physiology and Pharmacology, University 
of Queensland. Procedures were adapted from hand processing to automatic processing to 
suit the equipment available at USQ. 
 
 
Figure B2.1 An overview of the steps required for preparation of H&E or Picrosirius Red 
stained sections. 
 

 
 
 
 
 
 

Steps in preparing histological slides

1.PRESTAIN AND FIXATIVE

2. TISSUE PROCESSING AND WAX EMBEDDING

3. CUTTING AND MOUNTING OF SECTIONS

5 µm sections 10 µm sections

Dewaxing and hydration
Stain with PICROSIRIUS RED

Dehydration and rinse
Mounting and coverslipping

Dewaxing and hydration
Stain HAEMATOXYLIN & EOSIN

Dehydration and rinse
Mounting and coverslipping

PHOTOGRAPHY AND ANALYSIS
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B2.1 Prestain and fixative recipes 

1. Telly’s fixative 

870 mL of 70% ethanol 

44 mL CH3C00H (glacial acetic acid) 

87 mL formaldehyde 

2. Modified Bouins’s solution 

850 mL picric acid 

100 mL formaldehyde 

50 mL glacial acetic acid 

 

Pin tissue onto cork, especially if thin tissue such as diaphragm or limb muscles 

Place tissue in Telly’s fixative for 3 days. 

Remove Telly’s and cover tissue in Modified Bouin’s fluid for 24 hours. 

Perform 3 changes of 70% Ethanol every 24 hours. 

Store with tissue well covered by 70% Ethanol 

 

B2.2 Tissue processing and wax embedding. 

Equipment: 

Shandon Elliot Duplex processor or Histokinette tissue processor with 9x 1L flask for 

ethanol and toluene 

Fume hood 

Tissue cassettes and baskets 

Fisher Histo-Centre tissue embedding station 

Simport embedding rings and plastic moulds 

Paraplast Extra paraffin beads 

Forceps 

Toluene 

Ethanol 100%, and beakers, measuring cylinders and funnel for diluting 
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Automatic processor times: 

Beaker   Solution   Time 

1.   70% ethanol   30 mins 

 

2.   90% ethanol   30 mins 

 

3.   95% ethanol   30 mins 

 

4.   95% ethanol   30 mins 

 

5.   Absolute ethanol  30 mins 

 

6.   Absolute ethanol  30 mins 

 

7.   Absolute ethanol  30 mins 

 

8.   Toluene   30 mins 

 

9.   Toluene   30 mins 

 

10.   Wax (A)   30 mins 

 

11.   Wax (B)   30 mins 

B2.3 Cutting and mounting 

Equipment: 

Leica manual microtome 

Feather brand disposable blades  

Menzel- Glaser Polysine microscope slides 

Heated water bath and heated trays 

Paintbrushes, pencil 
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Sections cut at 5 µm (H&E) and 10 µm (picrosirius red) 

B2.4 Staining 

Haematoxylin and Eosin recipes: 
Mayer’s Haematoxylin: 
0.5 g Mayer’s Haematoxylin powder 

500 mL dH2O 

Heat at 50-60oC on magnetic heater stirrer until dissolved. 

Add 25 g aluminium potassium sulphate, mix until dissolved. 

Add 100 mg sodium iodate - this oxidizes haematoxylin and changes colour to reddish. 

Cool solution (preferably overnight) 

Adjust pH by adding 0.5 g citric acid. 

Add 10 g chloral hydrate to preserve solution. 

Filter before use. 

Do trial staining to determine the best staining times - 6.5 mins usually gives good 

nuclear staining. 

This volume is usually sufficient for 500 slides, and is getting low in volume by 6-8 

months. 

Store at 4 oC  when not in use. 

Eosin stain: 

Eosin used is Eosin yellowish (eosin Y) which is alcohol and water soluble. 

Stock solution: 2 g powder, 40 mL dH2O, 160 mL 95% EtOH 

Working solution: Add 1 vol Stock solution : 3 vol 80% Ethanol (150: 450mL) 

Store at 4 oC   

Adequate for 200 slides. 

Scott’s solution 

4.5 g magnesium sulphate, 3.75 g sodium bicarbonate 

Make up to 1 litre with dH2O 

Store at 4 oC, can also keep solution in staining pots at RT, however discard regularly 

 

Picrosirius Red stains: 

Phosphomolybdic Acid 



                                                                                                                                     A-  25

0.2% solution is used (ie 100 mg/100 mL dH2O) 

0.01M HCl solution 

1mL 10 M HCl to 999 mL dH2O 

Discard after use. 

1% Lithium carbonate solution 

Add 5 g Li Carbonate to 500 mL dH2O 

0.1% Picrosirius red stain 

0.1 g Sirius Red F3B (Chroma, Germany) in 100 mL dH2O 

 

Staining procedure, Picrosirius red 

Place slides in racks in 56 oC oven for 1 hour 

Dewaxing: 

1.XYLENE 5 mins 

2.XYLENE 5 mins 

3.XYLENE 5 mins 

Hydration: 

4.100% ETHANOL 3 mins 

5. 100% ETHANOL 3 mins 

6. 90% ETHANOL 3 mins 

7. 70% ETHANOL 3 mins 

8. Water bath 2 mins 

9. Distilled water 1 min 

10. PHOSPHOMOLYBDIC ACID 5 mins 

11. Brief rinse in water bath 

Stain: 

12. PICROSIRIUS RED STAIN 90 mins 

13. 0.01 M HCl 2 mins 

Dehydration and rinse: 

14. 70% ETHANOL 30 secs 

15. 90% ETHANOL 30 secs 

16. 100% ETHANOL 30 secs 
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17. 100% ETHANOL 30 secs 

18 100% ETHANOL 30 secs 

Mounting: 

19 XYLENE 5 mins 

20 XYLENE 5 mins 

21 XYLENE 5 mins 

22. Coverslip with Depex. 

 

Staining procedure, Haematoxylin and eosin 

Place slides in 56oC oven for 1 hour 

Follow dewaxing and rehydration as for Picrosirius Red staining protocol until step # 7 

Omit Lithium Carbonate (step # 8) 

Running water bath 2 mins 

9. Distilled water 1 min 

H&E staining 

10 HAEMATOXYLIN STAIN  7 mins 

Water bath 1 min 

11 SCOTT’S SOLUTION  0.5-1 min 

Water bath 4 mins 

12 70% ETHANOL  1 min 

13.  EOSIN STAIN 11 mins 

14.  95% ETHANOL  30 secs 

15. 100% ETHANOL 30 secs 

16. 100% ETHANOL 30 secs 

17. 100% ETHANOL 30 secs 

MOUNTING 

As for Picrosirius Red, in fume hood. Continue from step # 19 of Picrosirius Red 

protocol. 
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B2.5 Photography and analysis 

Equipment either: 

A) Biorad MRC 1024 confocal scanning microscope with a krypton/argon laser and 

subjected to a Rhodamine/Texas Red filter of 568nm wavelength. Images were 

captured using a Biorad Lasersharp 2000 program.  

Photomicrographs of 4 sections per heart were analysed and averaged for saturated pixel 

intensity corresponding to collagen fibres, using Scion Image software Beta 4.0.2 

(http://www.scioncorp.com) density slice tool. 

 

B) Nikon Eclipse E600 microscope, images captured with Q Imaging Micropublisher 

5.0 Docu AnalySIS 

Skeletal muscle regeneration was assessed by counting centronucleation (manual 

counting of 100 fibres per muscle). Cell diameters were calculated from digital 

photomicrographs and Scion Image software. 

Some muscles were subjected to a visual grading scheme (see Chapter 4). 
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B3 :WESTERN BLOT  
Protocols courtesy of Renee Cornford-Nairn (USQ), Russell Johnsen and Kaite 

Honeyman (UWA) 

B3.1 Recipes: 

Protein Treatment Buffer/ Protease Inhibitor/PMSF 

1 mL Protein treatment buffer (PTB) and 30 uL Protease Inhibitor (Sigma, Australia) and 

2.5 µL PMSF solution. 

PMSF= 0.5 mM phenylmethylsulfonyl fluoride in isopropanol (17.25 mg/0.5 mL) 

Transfer buffer (5X concentration) 

Tris base 30 g 

Glycine 144 g 

Sodium dodecyl sulfate (SDS) 0.5 g 

adjust to pH 8.3 with concentrated HCl 

Double distilled H20 to make up to 1 L 

SDS is used to enhance the transfer of large molecular weight proteins such as 

dystrophin. 

Loading (treatment) buffer 

125 mM TrisHCl (pH 8.8) 5 mLs 

4% SDS   8 mL 

40% glycerol   20 mL 

d H20  17 mL 

2 M urea was added as a denaturant, because samples are not sonicated. Range of urea= 

2-8 M. 2 M= 6g urea in 50 mL 

 

TBST Buffer (Western washing buffer) 

 Concn (X1 

solution) 

1X working 

soln (1litre vol) 

10X stock (2 L 

total volume) 

Trizma base 10 mM 1.21 g 24.22 

NaCl 150 mM 8.76 g 175.2 g 

Tween 20 0.05% 500 µl x 

Adjust pH to 7.6 using HCl. Use Trizma not Tris HCl as base. 
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TBS Buffer 

 Concn (X1 

solution 

1X working 

soln (1L vol) 

10X stock (2 L 

total volume) 

Trizma base 10 mM 1.21 g 24.22 g 

NaCl 150 mM 8.8 g 176 g 

 

 

Blocking Buffer 

 100 mL TBST 

 5 g skim milk powder 

Place in beaker with magnetic flea. Stir to dissolve. Store in Schott bottle in 

fridge. 

 

    SUMMARY OF WESTERN TRANSFER 

 1. Protein Extraction  

 

 2. Protein Quantitation  

   

 3. Mini Gel Electrophoresis  

 

4. Western Transfer  

 

5. 1o Antibody incubation 

 

6. 2 o Antibody incubation 

 

7.  Chemiluminescence detection  
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B 3.2 Protein extraction 

Prechill porcelain six-well mortars by placing in freezer. Chop tissue finely with scissors. 

Weigh tissue samples (10-30 mg tissue is optimum). Record weights. Place muscle tissue 

trimmed of tendons into labelled 1.5 mL eppendorf tube. Add 19 volumes of Protein 

Treatment Buffer/Protease Inhibitor/PMSF mix to frozen muscle sample on mortar- eg if 

tissue weighs 10 mg add 190 µL of mix. Use porcelain pestle to grind tissue, while 

keeping samples as cold as possible (use crushed ice or dry ice under mortar). Wash 

pestle thoroughly with distilled water after use to avoid contamination. Grinding takes 

some time and some tissue such as diaphragm is more difficult- grind as finely as 

possible. Pippette ground sample back into eppendorf tube and vortex thoroughly. 

Store at -20oC until needed. 

 

B3.3 Protein Quantitation 

This assay uses the scaled Lowry assay for protein estimation using a commercial kit 

(BioRad Protein Assay Kit) with concentrations (rather than µg of total protein 

calculated). (Note that this protocol will not work using buffers containing 2-

mercaptoethanol). Aim of assay is to determine the concentration of total protein present 

in the tissue sample prior to loading the gel, with an optimum of 10 µg total protein 

loaded per lane. 

Prepare a standard curve: 

(Note the kit manual uses 4 mL plus volumes. ¼ suggested volumes are adequate for 1 

mL microcuvettes) 

Prepare 2mg/mL Bovine Serum Albumin (BSA) stocks and aliquot and freeze -20oC until 

use. 

Concentration µl BSA stock µl PTB 

Blank 0 25 

0.2mg/mL 2.5 22.5 

0.5mg/mL 6.25 18.75 

1.0mg/mL 12.5 12.5 

1.5mg/mL 18.75 6.25 

2mg/mL 25 0 
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Prepare dilutions of samples. 

Dilution µl Sample µl PTB 

1/5 5 20 

1/10 2.5 22.5 

 

Other dilutions can be used (eg ½ and undiluted), however these may fall outside linear 

range of graph and are probably unnecessary. 

Protocol for protein estimation:  

Use freshly autoclaved tips, and wear gloves to avoid protein cross contamination. 

Turn on spectrophotometer (750 nm). 

Prepare a solution containing 125 µL of Reagent A per sample, and 20 µL Reagent S per 

mL of Reagent A. Dispense into a 15 mL Falcon tube or similar. Mix thoroughly. This 

mix is stable for 1 day. 

Dispense 1 mL of Reagent B per sample into a 50 mL Falcon tube. 

Briefly centrifuge thawed samples and standards (5000RPM) 

Add 125 µL Reagent A-S mix into each tube. Vortex. 

Add 1 mL Reagent B. DON’T MIX, STIR OR INVERT. Incubate for 15 minutes at room 

temp. 

Read absorbance at 750 nm. 

Use graphing program (eg Kaleidograph) to calculate total protein concentration 

(mg/mL) of unknown samples. Average both dilution readings. 

 

B3.4 Mini Gel Electrophoresis 

Uses Invitrogen NuPage Novex 4-12% Bis-Tris gradient gels and Invitrogen NuPage 

MOPS-SDS running buffer. Loading dye =4 µL mercaptoethanol + 1 µL bromphenol 

blue. 

For C57 muscle samples load approximately 100 µg protein and make up volume of 35 

µL with PTB and 5 µL loading dye to give 40 µL total volume/well. Add loading dye in 

fume hood due to use of mercaptoethanol. 

For AO treated mice and mdx can use 35 µL of protein to maximise detection (dystrophin 

will be present in very low concentration) 
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Standard= Invitrogen E-Page SeeBlue pre-stained standard. Use 5 µL volume. No need to 

heat prior to electrophoresis. Standard extends from 20-260 kDa protein range. 

Briefly centrifuge samples. 

Denature proteins by heating at 95oC for 10 minutes in heating block. 

Remove gels from plastic bag (care with liquid inside bag as it contains sodium azide 

which is toxic.) 

Rinse gels well in distilled water and remove white plastic strip from base. 

Assemble gel apparatus. Pour 1 x MOPS-SDS running buffer into each compartment 

until ¾ full. 

Place gel with writing facing towards you and comb facing away. If using 2 gels place 

back to back. Lock gel tension wedge in place to hold gels firmly. Fill inner chamber first 

and check for buffer leakage into outer chambers. Fill chambers to almost full. 

Remove combs gently. See Figure B.3.1 for view of electrophoresis tank used. 

Use a plastic transfer pipette to flush buffer into wells to wash them out thoroughly. 

Load protein marker in left hand well. 

Load other samples. Leave empty well between C57 sample and mdx if possible to avoid 

contamination. Use gel loading tips to fill wells. 

Turn power unit on, adjust current to 20-25 mAmps. Run for approximately 3 hours  for 1 

gel or 5-6 hours for 2 gels, or until marker runs nearly to bottom of gel. Use water bath 

set with dip cooler at  15-18 oC and heat exchange coil into tank to limit temperature to 

approximately  16oC.  

Can proceed to transfer immediately or alternatively leave gels in plastic soaked in buffer 

overnight at 4oC.  
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Fig B3.1 Mini Gel Apparatus 

View of the Invitrogen XCell SureLock™Mini Cell  

 

 

Preparation for Transfer: 

Remove gel cassettes from electrophoresis unit and place in labelled plastic containers 

Cover in transfer buffer. Soak for 10-20 minutes. 

Soak Scotch Brite pads in transfer buffer for a minimum of 4hours. 

 

B3.5 Western Transfer 

Have the following available: 

BioRad unit for transfer (BioRad Mini-Protean II Cell Model and BioRad 

PowerPac3000) 

1L Transfer Buffer 

Container with transfer buffer to fit size of BioRad blot module components 

Soaked blotting pads 

Transfer membranes (Hybond-P membranes, Amersham Biosciences, Buckinghamshire 

UK). These membranes contain polyvinyldiflouride (PVDF), which have a high binding 

capacity compared to nitrocellulose membranes. 
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 Use forceps to remove blue backing sheets after clipping top right hand corner of 

membrane for orientation (2 clips for second membrane). Dip in methanol for 10-20 

seconds to activate, the give a 5 minute wash in distilled water. 

Filter paper, soaked briefly in transfer buffer 

Invitrogen NuPAGE gel cassette. This is opened by gently prising one side with plastic 

spatula to crack open cassette and expose gel while leaving it sitting on the larger plate. 

Trim below wells with edge of spatula. Discard gel waste into acrylamide waste bin. 

The sandwich is assembled in container with transfer buffer using roller to roll out air 

bubbles. To turn out gel, place bottom layers onto cling film and turn gel face down onto 

wet filter paper layer. Cut foot of gel from unit using plastic spatula. Slide spatula 

carefully along gel to release. Finish preparing sandwich (Figure B 3.2). 

Note that the gel is positioned closest to the black plate, and after sliding the plastic clasp 

closed to hold the sandwich together the module is inserted into the BioRad unit with the 

black plate closest to the black electrode. (Gel to Black and Black to Back) 

 

 

 

 

 

 

 

 

Fig B 3.2 Order of transfer sandwich: 

 

Fig B3.2 Order of components of gel sandwich 

 

Insert a frozen ice block into the back of the unit, and fill with transfer buffer. Insert a 

cooling coil to maintain temperature at 12oC. 

Place a magnetic flea into bottom of unit and position lid and electrical leads 

Have a magnetic stirrer beneath this to facilitate mixing and cooling of buffer with 

magnetic flea. 

WHITE PLATE OF BLOT MODULE >ANODE 

BLACK PLATE OF BLOT MODULE > CATHODE 

SCOTCHBRITE PAD

SCOTCHBRITE PAD

Filter paper 

Filter paper 

Nitrocellulose Membrane 

GEL 
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Turn power pack on to a constant current of 300 mA at 15-18oC overnight. 

With 40 minutes of transfer time remaining, make up Blocking Buffer. Have TBST ready 

also and a shaking platform available. 

With 10 minutes remaining make up Primary Antibody (Novocastra Laboratories Ltd, 

Newcastle upon Tyne, UK NCL-DYS2 mouse monoclonal antibody). 

Antibody is diluted 1:100 (can be up to 1:33) with blocking buffer. 

 

B3.6 Antibody incubation 

Disassemble transfer apparatus and remove nitrocellulose membranes using forceps. 

Cut off the lower half of the membrane below orange myoglobin marker. 

Place each upper membrane is a small plastic container just big enough to fit membrane. 

Wash 2 x in distilled water for 5 minutes each wash.  

Incubate in Blocking Buffer for 60 minutes. Agitate gently on shaker for 1 hour. 

Incubate membranes in antibody for 2 hours at room temperature. Add prepared DYS2 

(Novocastra Laboratories, UK) diluted in blocking buffer. 

Wash 3 x in TBST for at least 10 minutes. Place in blocking solution for 15 minutes. 

 

B3.7 Antibody detection 

Make up Secondary Antibody (Peroxidase-Conjugated Rabbit Anti-Mouse 

Immunoglobulins, DakoCytomation, Denmark) Dilute 1:1000 in Blocking Buffer. 

Incubate for 120 minutes at room temperature. 

Wash membranes twice in TBST and once in TBS each for 10 minutes. Make up 

chemiluminescent substrate during the last 10 minute wash 

 

B3.8 Chemiluminescence and film development 

Use Lumi-Light Western Blotting Substrate (Roche Diagnostics, Mannheim, Germany). 

Mix 3mL each of Reagent 1 and 2 per membrane in a Falcon tube. Use fresh tips for each 

solution. 

Place Lumi-light on top of membranes for 1 minute only. Drain off excess substrate. 

Place membranes between 2 pieces of transparency film or plastic folder inserts. Use a 

tissue to gently wipe over plastic to remove air bubbles. Place in radiographic cassette. 
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In darkroom pour developer and fixer into shallow trays. Use photographic safelight only 

and remove piece of Amersham Bioscience radiographic film and cut to size. Cut one 

corner to orientate where protein marker is positioned. Film exposure time is variable, 

with C57 mice only needing 10 seconds exposure, and mdx requiring 5 or 10 minutes to 

maximise detection. Develop film for 30 secs with agitation, then wash, then fix for 2-3 

minutes with gentle agitation. Give a final wash and hang in drying cupboard for a short 

period. 

 

B3.9 Results of Western blotting for dystrophin  

It was possible to consistently demonstrate the 427 kDa protein dystrophin in C57 

muscle, whereas it was absent in mdx muscle (as expected) and antisense oligonucleotide 

(AO) injected mdx mice. Many repeat experiments were performed to improve detection 

of low levels of AO. Modifications such as the addition of PMSF to the Protein 

Treatment Buffer, using a methanol free Transfer Buffer, adding SDS to the Transfer 

Buffer to enhance transfer of large proteins and utilisation of the high binding capacity 

PVDF membranes were made. The low dose of AO used may have resulted in this failure 

to detect dystrophin in AO treated mice (see Chapters 6 and 7). Clear expression of 

dystrophin is shown in Figure B.3.3, where six dilutions of C57 extracted protein was 

used, ranging from 5-60 µg.  

 

 
 

Fig B.3.2 Detection of dystrophin in C57 limb muscles. Six dilutions of extracted protein 

were used to test for the sensitivity of the Western blotting procedure. Lane1 corresponds 

to 60 µg total protein, 2= 40 µg, 3=20 µg,, 4=15 µg, 5=10 µg and 6=5 µg. 

 

    1  2  3        4  5   6
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B4: SKELETAL MUSCLE ORGAN BATH PROTOCOL 
B4.1 KREBS PHYSIOLOGICAL SALINE SOLUTION (Krebs PSS) 

Stock solutions (make up in 1 L volumes with dH20): 

Stock A: 

NaCl 118 mM 

KCl  4.7 mM 

MgSO4.7H2O 1.16 mM 

KH2PO4 1.18 mM 

Stock B: 

NaHCO3 25 mM 

Stock C: 

CaCl2.2H20 2.5 mM 

Store at 4oC 

Working solution 

Add 100 mL each of Stock A, B and C in MilliQ. Add 4.0 g glucose and make up to 2 L. 

Make fresh working solution each day. 

 

 

B4.2 Experimental equipment and protocol 

Carbogen (95% O2 and 5% CO2) was bubbled through Krebs PSS for 30 minutes prior to 

experiment to bring buffer to correct pH (7.4). Ice-cold Krebs was used for dissections. 

Mice were anaesthetised with 70 mg/kg thiopentone sodium (Nembutal) by 

intraperitoneal injection. The skeletal muscles of interest were removed and placed in the 

Krebs PSS. Muscles were anchored by means of surgical silk to a fixed peg at one end, 

and attached to a force transducer at the tendon end, and placed within a 25 mL glass 

organ bath maintained at 24oC (Figure B4.1). Tissues were field stimulated via a Grass 

S48 stimulator (W. Warwick, RI, USA) and current intensity was amplified using a pre-

amplifier (EP500B. Audio Assemblies, Campbellfield, Victoria, Aust). Data was 

collected and analysed using Chart 4.1.1 software on an i Mac computer. A square pulse 

of 0.2 ms duration was dispersed via two platinum plate electrodes positioned at each 

side of the muscle. 
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Optimum preload (Lo) was defined as the length eliciting maximal single twitch force. 

Optimal voltage was also determined for each preparation, as was the frequency eliciting 

maximal tetanic force. Reported data was the average of 3 individual single twitches or 

tetanic stimulations per muscle strip, with those three values then averaged to give an 

overall mean for that muscle. A fatigue protocol (one tetanic stimulation every 5 secs for 

5 minutes) and recovery from fatigue (a single tetanic stimulation 5 minutes later) was 

sometimes performed also. Muscle dimensions were measured at Lo using a digital 

micrometer, blotted for 3 secs then weighed prior to storage at –80oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig B4.1 Row of water-jacketed organ baths used for skeletal muscle contractility 

studies. The computer is to the right of the organ baths, and above it is positioned the 

stimulator and preamplifier. Recordings showing a) twitch b) tetanus and c) fatigue of 

representative diaphragm strips. 
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B5 MICROELECTRODE STUDIES 
B5.1 TYRODES PHYSIOLOGICAL SALINE SOLUTION (TPSS) 

Stock solutions (make up in 1 L volumes with dH20): 

Stock A: 

NaCl 136.9 mM 

KCl  5.4 mM 

MgCl2.H2O 1.05 mM 

NaH2PO4. H2O 0.42 mM 

Stock B: 

NaHCO3 22.6 mM 

Stock C: 

CaCl2.2H20 1.8 mM 

Store at 4oC 

Working solution 

Add 100 mL each of Stock A, B and C in MilliQ. Add 2.0 g glucose, 0.2 g Ascorbic acid, 

and 0.4 mL of 9.5% Na2EDTA solution. Make up to 2 L. 

Make working solution up freshly each day. 

B5.2 Experimental equipment  

Thermometer 
STIMULATOR   Microelectrode & 
     Micromanipulator 
POWERLAB 
Chart 4 
ELECTROMETER     Ag/AgCl 
     electrode 
                    -ve                                        TPSS 

      O2/CO2            
    

                                     Organ chamber  
                 heater 
         +ve   
      Platinum electrodes  
    

Gilson 
pump 

Fig B5.1 Diagram of microelectrode apparatus used for atrial microelectrode and 

contractility studies. 
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Pipette puller- WPI microprocessor controlled vertical pipette puller. Microelectrodes of 

10-50 MΩ  resistance used. 

Perfusion pumps- Gilson minipuls 3, set at 3 mL/minute. 

Stimulator- Grass SD9 stimulator 8-10 V usually (can increase<20 V), Freq 1 Hz, pulse 

width 0.5 msecs, 

Determine threshold voltage that elicits a contraction, add 20 %. 

During an experiment it may be necessary to increase voltage to maintain contractions. 

WPI motorised micromanipulator DC 3001R, MS 314 step arm controller 

WPI Electrometer-Cyto 721 

Thermometer-Fluke 50S K/J  Temp =35+/- 0.5oC 

Powersource -Topward 3303D-4Volt, 1.18 amps, with flow through heater, custom 

made  

Force transducer 

 
 +       -        Earth  

AE-801 SensoNor 

Sensor element   

-Header 

 

     Pins 

Resistors 

     Beam  

  

Fig B5.2 Transducer consists of Wheatstone Bridge and crystal silicon beam with a 1000 

Ohm resistor implanted each side, surrounded by 4 pins. An entomology pin was used as 

hook and a Plexiglass cover gave protection of transducer hook when not in use. 

 

Figure B5.3 shows a photograph of the microelectrode apparatus enclosed in a mesh 

Faraday cage. Representative left atrial recordings and transmembrane action potentials 

are shown. 
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Fig B5.3 Microelectrode stage holding tissue bath and left atria and microscope used for 

visualising impalements (A). The traces on the right show examples of left atrial 

transmembrane action potentials (B) and basal contractions at 1.8mM calcium (C). 

 

 

B5.3 Experimental protocol for Transmembrane action potentials and contractility 

of isolated atria 

The heart was quickly dissected in ice cold pre-carbogenated (95% O2/5% CO2) TPSS. 

The right atrium, right ventricular free wall and left ventricle and septum were dissected, 

blotted for 3 seconds and weighed. The left atria (LA) was removed and a stainless steel 

hook was positioned into the pulmonary vein opening, before transferring into a 1 mL 

Perspex organ bath. The LA was pinned onto a small rubber mat, and the hook connected 

to the force transducer (model AE801, SensoNor, Horten, Norway). The tissue was 

perfused continuously with carbogenated TPSS at a flow rate of 3mL/min and a 

temperature of 35±0.5oC. The LA was held at an optimum preload of 3.5±0.5 mN 
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throughout the experiment, and field stimulated via platinum electrodes at 0.5 ms pulse 

width and 1 Hz, 25% above threshold (Grass SD9 stimulator, W. Warwick, RI, USA).  

After a 30 minute equilibration period the LA was impaled 4-5 times at different sites 

with a 3 M KCl filled glass microelectrode (World Precision Instruments, New Haven, 

CT, USA, 150F glass, 10-50 MΩ resistance). Data was recorded using a PowerLab and 

Chart 4.1.1 software (A.D. Instruments, Castle Hill, Australia), at 1000 samples/sec and 

then an average of the 4-5 recordings was calculated. A concentration response curve 

(CRC) to CaCl2 was generated following transmembrane action potential (TAP) 

recordings. 
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