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ABSTRACT  

Sensitivity Analysis (SA) is a versatile and well-established tool used in the 

development and application of computer models. Although considered an integral 

part of the modelling process in multiple disciplines, its use in the development of 

process-driven biophysical models is relatively rare. One contributing reason for this 

lack of use is the computational burden associated with performing SA on complex 

models. Literature reports examples of the use of emulators, or metamodels, as an 

approach for reducing the computational burden of complex models, but there are no 

reports of using machine learning based emulators for undertaking SA of the 

underlying process-driven biophysical models. This doctoral thesis explores the 

potential of machine learning emulators (MLEs) in reducing the computational 

burden of performing SA on process-driven biophysical models. Firstly, a new 

method is developed that confirms that the variable importance indices of MLEs are 

comparable to the sensitivity indices produced by the commonly used Morris and 

Sobol methods. This provides the confidence upon which to proceed with 

investigating further the role that MLEs might play in reducing the computational 

burden of SA. Secondly, three different machine learning (ML) algorithms are used 

to generate MLEs of the APSIM-NextGen chickpea model to evaluate if some MLEs 

are better suited to the task of emulating process-driven biophysical crop models. 

The MLEs were assessed on accuracy of predicted values and the computational 

effort required to develop the MLEs themselves. The emulators based on random 

forest models were shown to produce the most accurate predictions, but also required 

the most computational effort to develop and train. Thirdly, two MLEs are used to 

undertake SA of all 22 input parameters of the MLEs, as well as a selected subset of 

six input parameters linked to the phenology of the crop. These analyses required 

more than 40 million simulations to be run. The MLEs were assessed based on their 

speed of execution, and on the Morris and Sobol indices produced. The impressive 

computational speed of the MLEs was quantified in comparison to the speed of the 

process-driven biophysical model. Some discrepancies were also noted between the 

results generated by the two types of MLE, so no firm conclusions could be made 

about the sensitivities of the underlying process-driven model. This work is at the 

juncture of the fields of process-driven biophysical model development, agronomy, 

plant physiology, machine learning emulators, and global sensitivity analysis. The 
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outcomes of this work have implications for model development and model 

application in all these disciplines. Firstly, the Morris method remains a more 

computationally efficient choice, when compared with the development and use of 

MLEs, for the screening of importance of parameters of process-driven models. 

Secondly, the results show that, while both Morris and Sobol analyses produce very 

similar results across different MLEs, the discrepancies indicate that great caution is 

needed if interpreting these results as a way of understanding the underlying process-

driven model and its input-output sensitivities. The results suggest that by using the 

computational efficiency of an MLE, SA of large-scale simulation experiments 

becomes more feasible, and this can contribute to efficiency gains for scientific 

research. The SA of enhanced forms of simulation experiments produced by hybrid 

models, which use the outputs of process-driven models and combine these with 

other sources of data to create new forms of ML based agro-ecological models, is 

suggested by this research as a direction that could be perused to advance agro-

ecological modelling. This work has demonstrated how applied research in these 

areas, when combined, can better serve the needs of researchers and modelling 

practitioners alike. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Developing process-driven biophysical models is a time consuming and expensive 

task. Over the past fifty years, agricultural models have progressed from being 

simple fertiliser versus yield calculator models and price by area profit calculators, to 

highly complex tools that integrate knowledge across multiple science disciplines. 

These approaches have provided ever greater levels of detail in applications for 

improved agricultural practices (Jones et al. 2016). Models vary from the simple 

regression equations, for example, the recommendations derived for fertiliser 

application rates for predicted yield levels, and the effect of time of sowing on the 

yield, to the complex representation of farming systems such as the APSIM 

modelling system (Holzworth et al. 2014; Holzworth et al. 2018), DSSAT (Jones et 

al. 2003), STICS (Brisson et al. 2003) and the CropSyst (Stöckle et al. 2003) 

modelling systems. In the Australian context, the preeminent tool for modelling 

agricultural systems is the APSIM framework (Holzworth et al. 2014; Holzworth et 

al. 2018). Much of the scientific knowledge built into the sub-models that comprise 

these complex modelling systems in agriculture, is based on the findings of carefully 

controlled experiments which have supported the development of mechanistic 

models of the processes involved (Jones et al. 2016). For example, research into the 

phenological process involved in legume crop growth and development by 

Robertson et al. (2002) underpins the APSIM-NextGen chickpea model. More 

complex processes have been modelled from data gathered to describe functional 

relationships, with empirical equations developed to approximate the underlying 

complexity. Examples of these models include the well-known Penman-Monteith 

(Allen et al. 1998) equation used for the calculation of reference evapotranspiration 

and the Priestley-Taylor (Priestley & Taylor 1972) functional equation used for the 

prediction of potential evapotranspiration. Alternative approaches for producing 

models that simulate the world around us are continuously being developed, tested, 

and improved. Currently, however, there are no viable alternatives that are ready to 

replace process-driven modelling systems in their entirety. The development of 
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process-driven biophysical models and modelling systems continues to be an area of 

significant scientific research. 

 

The aforementioned process-driven models have evolved in their ability to describe 

biophysical processes providing an ever increasing level of detail, while researchers 

have also combined more layers of models to simulate ever larger and more complex 

agricultural systems (Brown et al. 2014). As a result of this increased complexity, the 

number of parameters required to define the simulations in these systems, and the 

computational burden to run these simulations, has continued to increase. Another 

problem inherent with this ever-increasing complexity is that the verification of 

model integrity and accuracy of model outputs is also increasingly challenging (Huth 

& Holzworth 2005). 

Sensitivity analysis (SA) is a widely accepted technique used in model verification 

activities. A number of prominent leaders in a range of science, mathematics, policy, 

and economic disciplines agree that the inclusion of SA in systems-based modelling 

must become a best practice standard, but they are also acutely aware of the 

discrepancy between the theory and the practice of model verification and validation 

(Razavi et al. 2021). Advances in computational capacity, whether it be due to 

improvements in hardware performance or software algorithms, are now facilitating 

new trends in SA research, including, but not limited to response surface surrogates, 

polynomial chaos expansions (Liu & Choe 2021), and the grouping of parameters 

into success or failure sets (Bachoc et al. 2020). However, the tools and techniques 

developed in one discipline of research are not readily taken up in the other 

disciplines (Razavi et al. 2021). This has been attributed to a range of reasons 

including, inconsistent terminology and historical bias. Another aspect is the 

computational burden of generating and analysing large data sets, an issue identified 

as one of the significant barriers to the uptake of applying comprehensive SA to 

process-driven modelling systems (Razavi et al. 2021). The advances made in the 

rapidly expanding areas of artificial intelligence (AI) and machine learning (ML) 

offer efficiency gains for the processing and analysis of the large data sets 

(Gollapudi 2016; Ramstein et al. 2019; Dokic et al. 2020; Saiaa et al. 2020). 

Although ML methodologies are ideally suited to investigating problems involving 

large data sets, there is currently very limited published research into any approaches 
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for applying SA based on ML. The use of ML for developing new crop models and 

approaches for agro-ecological modelling is being reported in recent studies (refer to 

Chapter 2, e.g., Deo and Şahin (2015b); Kouadio et al. (2018)). However, these 

approaches generally avoid or bypass the use of the process-driven biophysical 

modelling systems, such as APSIM, which are widely used in Australia and global 

contexts. The power, versatility, and proven fit-for-purpose standing of process-

driven modelling systems  is unlikely to be replaced in the short-term (Holzworth et 

al. 2015). If SA is to truly become an integral part of simulation model development 

and validation, then SA of process-driven biophysical modelling systems must 

remain a focus for research. This doctoral research thesis aims to investigate the 

application of rapidly developing ML methods to the existing problems of 

parametrisation of biophysical crop models, and to the increasingly important issue 

of new methods required for SA of process-driven modelling systems. 

 

1.2 Research aim 

 

While much ML research is focused on developing new modelling approaches using 

new or enhanced data sources, this research looks at the application of the 

developing area of ML to the existing and increasingly important problem of 

applying SA to process-driven modelling systems. The aim of this research is to 

assess if ML based emulators can be used in reducing the computational burden of 

performing SA on process-driven biophysical models. A review of relevant literature 

will explore the current state of knowledge around combining process-driven 

modelling approaches with ML modelling approaches.  

 

1.3 Outline of thesis 

 

This thesis is a seminal research work presenting an investigation into the 

practicalities, applicability, benefits, and limitations of using ML-based emulators 

built to perform SA of process-driven biophysical crop models. In this work the 

methods are applied to the APSIM-NextGen chickpea model as an example. In 

Chapter 2, the most relevant literature is reviewed that describes the following 

aspects of this research work:  
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• Latest approaches in process-driven biophysical model development and 

relevant testing of applications;  

• The evidence-based arguments for sensitivity analysis to be included in the 

development, validation, and application phases of the lifecycle of process-

driven biophysical models; 

• A review of the most common sensitivity analysis approaches used in 

biophysical model development, including the Morris and the Sobol methods, 

is undertaken; 

• The role of emulators in addressing the computational burden is discussed; 

and  

• A discussion on ML algorithms currently used in agricultural applications is 

presented. 

 

Chapter 3 is devoted to the development of a method that allows the sensitivity 

measures produced by the Morris and the Sobol methods to be compared, via a cross 

validation approach, with the measures produced by a ML based emulator of the 

process-driven biophysical model. This initial step was required to verify that the 

MLEs can produce sensitivity analysis that is comparable to the analysis produced 

by standard techniques used on the underlying process-driven model. Chapter 4 

considers three different ML models and further assesses their suitability, in terms of 

computational performance and the accuracy of their predictions, as emulators of the 

process-driven biophysical APSIM-NextGen chickpea model.  The MLEs were 

developed for six APSIM outputs and trained on seven chickpea production 

locations. Accuracy of predictions was assessed for spatial and temporal variations in 

input values. In Chapter 5, the two emulators derived from Chapter 4 which were 

assessed as suitable for further investigation, were used to perform the Morris and 

the Sobol analyses on both the full set of 22 input variables used to develop and 

drive the emulators, as well as a selected subset of six input variables. The 

computational efficiency of the emulators has been demonstrated in this chapter, 

along with the comparative accuracy of the two MLEs. Some limitations of this 

approach for the sensitivity analysis of process-driven models have also been 

identified. In Chapter 6, the most significant findings from Chapters 3 to 5 are 

brought together to summarise the results, and observations made in respect to the 
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feasibility, applicability, and the limitations of using ML emulators to assist in the 

sensitivity analysis of process-driven biophysical models are presented. The practical 

implications of this study are discussed in light of the evidence derived from results 

presented earlier in the thesis.
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Scope of review  

 

It is generally acknowledged that biophysical models provide a valuable tool in the 

study of the components and interactions of environmental, biological, and man-

made systems. Modelling of agricultural production systems had its beginnings as 

far back as the 1940’s and 1950’s (Jones et al. 2016) and continues to expand even 

today in its complexity and focus of application. There has been a progression from 

modelling detailed functional processes and relationships, to crops, to whole farm 

systems and then further to include off farm environmental, economic and policy 

modelling (Robertson et al. 2015; Jones et al. 2016). This progression has been 

matched with an increase in the complexity of the modelling systems and the number 

of input parameters required to drive the models (Holzworth et al. 2015).  Regardless 

of the simplicity or complexity of the model, the model outputs need to be tested and 

validated with real datasets (Montesino-San Martin et al. 2018). Low level modelled 

processes are generally well specified and validated, but as models evolve in size and 

complexity, processes and sub-systems will interact with each other and affect the 

performance of the whole system (Hieronymi 2013). Given that the performance of a 

model as a component in a larger modelling system are likely to be affected by the 

interactions with other components in that system, testing of complex models and the 

modelling systems that they operate in, is an ongoing challenge.  It is important to 

establish appropriate methods with which to test the quality of the modelling system 

as a whole (Bellocchi et al. 2010; Kersebaum et al. 2015). In this thesis, the term 

‘testing’ and ‘tested’ refer to the processes of reviewing data and models for 

correctness, while the term ‘validated’ is used to refer to data and models that have 

been tested and assessed to be correct or produce correct outputs. Testing may not 

result in the assessment of validated. 

 

There are many statistical (linear and non-linear) methods that have been developed 

to assist in the development and testing of models. One approach which has been 

widely utilised is that of sensitivity analysis (SA). In its most simple form, SA tests 

the amount of change in a given output value for given change in a single input 
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parameter. In practice, with potentially hundreds of input parameters in a crop 

model, the computational requirement for testing all levels for all input parameters 

against all other input parameter values quickly becomes impossible. For example, if 

5 parameters are varied across 6 levels each, then this would result in 65 = 7,776 

simulations. If this increased to 20 parameters at 6 levels each, then there would be 

3.6 x 1015 simulations; an infeasibly large number of simulations to run for most 

complex biophysical models on easily accessible computing platforms. This creates 

a challenging modelling environment, one where, even with a good level of expertise 

and due care when using the crop model, modelling outputs cannot always be 

assumed to have been comprehensively validated during model development 

(Montesino-San Martin et al. 2018). 

 

The problem of evaluating model validity is common across all types of models from 

all science disciplines. Thus, research undertaken into model sensitivity and 

uncertainty analysis in disciplines other than agricultural systems modelling may 

benefit the development methodologies for crop models. Of particular interest is the 

rapidly advancing field of machine learning (ML). Modern computing power and 

new techniques present the possibility that some new analysis methodologies might 

be available and applicable to crop model development. This literature review will 

provide an outline of the significant role that agro-ecological modelling plays within 

science research, and the position that the Australian Agricultural Production 

Systems Simulator holds within this space on a global basis. A brief review of the 

history and role of biophysical crop modelling then leads into an outline of some of 

the critical steps involved in model development and testing, highlighting the critical 

need for, but often the absence of, the application of SA. The two most applied SA 

methods in the field of biophysical modelling are summarised. Computation burden 

of applying SA is identified as one of the main hinderances to its adoption, and the 

area of model emulators and metamodels is reviewed for possible solutions to the 

problem. The potential for ML emulators to be part of the solution is identified. To 

put this relatively recent discipline into context with respect to agro-ecological 

modelling, a brief review is made of ML concepts and how they are already being 

applied in this area of science. Three selected ML algorithms, which are considered 

most suitable for developing ML emulators of process-driven biophysical crop 

models, are then briefly introduced. The lack of peer reviewed literature looking at 
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ML emulators of process-driven biophysical models, and how such emulators might 

perform in reducing the computational burden associated with performing SA, is 

highlighted as a gap in the current body of knowledge.  

 

2.2 Overview of agro-ecological modelling 

 

Agro-ecological modelling is used widely throughout the world for a wide range of 

applications including: grower and farmer advice (Carberry et al. 2002; Peake et al. 

2014), production performance analysis (Hochman et al. 2016), policy planning and 

assessment (Brennan et al. 2008), research into resource usage and conservation 

(Qureshi et al. 2013; Kersebaum et al. 2015), plant breeding (Casadebaig et al. 

2016), and climate change effects and adaption research (Asseng et al. 2013; Luo et 

al. 2016; Pembleton et al. 2016; Shukr et al. 2021).  The Agricultural Production 

Systems Simulator (APSIM) (McCown et al. 1995; Keating et al. 2003; Holzworth 

et al. 2014) is Australia’s dominant agricultural systems modelling platform 

(Robertson et al. 2015). In 2002 a review by Donatelli et al. (2002) found APSIM 

and Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et al. 

2003) to be the two most referenced agricultural modelling systems in the world. In a 

later review of the grains industry in Australia (Robertson et al. 2015) it was reported 

that ~95% of grains industry simulation modelling in Australia was with the APSIM 

framework. Development of the APSIM modelling system remains ongoing with 

much effort now going into an updated software infrastructure called APSIM-Next 

Generation (APSIM-NextGen) (Holzworth et al. 2018).   

 

2.3 Biophysical crop modelling 

 

Biophysical modelling allows mechanistic descriptions of biological and physical 

processes to be used to provide quantitative predictions of functional outcomes. 

These mathematical models are usually based on known physical, chemical, or 

biological control processes occurring in crop production systems. The mathematical 

equations which describe them are developed from measured data generated from 

controlled experiments conducted in laboratories, glasshouses, or farm fields. These 

processes often have many model parameters associated with them and their 
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functional limits are generally well understood. Examples of these processes include 

photosynthesis, nutrient and water uptake by roots, translocation within plants. 

Complex processes, such as radiation use efficiency and crop evapotranspiration, are 

generally based on empirical functions which have been developed by modelling 

relationships based on observed data. These empirical functions often involve greater 

degrees of approximation than do the mechanistic model functions and can be the 

source of greater model uncertainty (Jones et al. 2016). Development and 

improvement of biophysical models requires areas of uncertainty, wherever they are 

in the model, to be identified and understood before resources are expended on 

generating and collecting data sets whose purpose is to aid in further model 

development. 

 

2.4 Model development and testing 

 

One of the many changes being implemented as part of the development of APSIM-

NextGen is the requirement that crop models be developed in a common Plant 

Modelling Framework (PMF) (Brown et al. 2014). The PMF takes a high-level view 

of plants as whole organisms and defines the major organs, structures and processes 

that are common across almost all plants. Different plants are modelled, or defined, 

by using different parameter settings for the various components of the framework. 

This framework is an attempt to acknowledge the commonality in the processes and 

growth of plants and in the way crop models represent them. By using a common 

framework, the modelling system developers can achieve a much greater reuse of 

high quality, maintainable code and consistent functional interfaces (Holzworth et al. 

2014; Holzworth et al. 2018). Model developers and users can rely on consistent 

approaches to biological and physiological processes, which can assist with more 

consistent data sets for calibration, validation and ultimately parameter sets for 

model use. As well as requiring all new crop models that are developed for APSIM-

NextGen to be designed and implemented in the PMF, the APSIM Initiative has also 

specified that models must have substantial validation data sets and have validation 

testing sets set up before they will be considered for inclusion in a released 

production version of APSIM- NextGen 
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(https://apsimnextgeneration.netlify.app/development/science/testing/, retrieved 

December 2021).  

 

Although it is considered ‘best-practice’ for SA to be a fundamental part of the 

analysis of model performance ((Saltelli & Annoni 2010; Plischke et al. 2013), the 

reported use of SA is relatively scarce in crop modelling literature. Other science 

disciplines, such as Hydrology modelling, have a much greater reported use of the 

techniques. It is not immediately clear why this is the case, though Bellocchi et al. 

(2010) suggests that the high heterogeneity of input data and the number of 

influencing input parameters in biophysical models, which leads to very large data 

set requirements for SA, could act as a disincentive to modellers following the 

recommended best practices. Almost all reviews of SA acknowledge the 

computational burden that performing such analysis carries with it (Christopher Frey 

& Patil 2002; Iooss & Lemaître 2015; Norton 2015; Stanfill et al. 2015; Razavi et al. 

2021). Computational efficiency is one of the key measures that needs to be 

considered in any assessment of SA for biophysical models. 

 

2.5 Sensitivity analysis 

 

Sensitivity analysis is acknowledged and recommended as the best practice by 

international agencies, such as the National Aeronautics and Space Administration 

(NASA) and national regulatory agencies, for the audit, validation, and application 

of scientific models (Saltelli & Annoni 2010; Plischke et al. 2013).  While published 

literature demonstrates the application of a few SA methodologies to biophysical 

models, and specifically agricultural systems models, SA is not observed to be 

widely applied in the development processes of crop models. Indeed, Razavi et al. 

(2021) argue that despite SA research and practice gaining significant momentum in 

a range of science disciplines over the past few years, its benefits and true potential 

has not been realised. This lack of application of best practice methodologies can be 

attributed to a number of factors, with the computational expense of performing any 

single analysis probably chief amongst them (Bellocchi et al. 2010). With complex 

models having many tens, if not hundreds of input parameters, identifying the key 

inputs to analyse and knowing which SA methodologies are most suitable for 
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addressing which model data or model design questions compounds the issues of 

having to run potentially millions of simulations to perform a thorough analysis. 

 

Sensitivity analysis can be broadly grouped into two categories based on the number 

of input factors being analysed and the scope of values that are tested. Local 

sensitivity analysis (LSA) takes the form of one or a few input factors being varied 

around a nominal point in the problem space. Local minima and maxima of 

functional relationships can be identified, but its application is limited to answering 

very specific questions (Saltelli & Annoni 2010). Global sensitivity analysis (GSA) 

is the more generally applied approach where the influences on some output value 

are assessed across an entire, or global, problem space (Saltelli et al. 2000). 

  

There are a wide range of statistical approaches that can be used when approaching 

the problem of performing SA. Pianosi et al. (2016) reviewed a range of SA 

approaches used for analysis of environmental models. These approaches, which are 

also applicable for the SA of biophysical crop models, ranged from the relatively 

simple and computationally efficient Elementary Effects Test (EET) methods which 

are most applicable for qualitative screening of input parameters, to the much more 

computationally demanding variance-based analysis approaches which are more 

suitable for the detailed analysis of a smaller number of input parameters. Both of 

these are GSA techniques, and each approach has its strengths and limitations. Of the 

EET approaches, the Morris method (Morris 1991) and its revised version 

(Campolongo et al. 2007) have gained a level of popularity as shown by its use in a 

range of simulation experiments (Casadebaig et al. 2016; Sarrazin et al. 2016; 

Pardon et al. 2017; Jaxa-Rozen & Kwakkel 2018). For variance-based SA 

approaches, the most established method is that of Sobol' (Sobol' 1993). Razavi and 

Gupta (2015) and Yang (2011) both acknowledge the prevalent use of the Morris 

method, and the variance-based analysis method of Sobol' (Sobol' 2001) in the 

environmental sciences. These two SA approaches, the Morris method and Sobol 

method, are tried and tested approaches which have been applied in area of agro-

ecological modelling (Ascough II et al. 2004; DeJonge et al. 2012; Iooss & Lemaître 

2015; Pianosi et al. 2016; Thorp et al. 2020).   
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2.5.1 Morris method: Elementary Effects Test 

The Morris method (Morris 1991), later enhanced by Campolongo (Campolongo et 

al. 2007) is also called the Elementary Effects Test (EET) (Saltelli & Annoni 2010).  

It is often used for computationally efficient screening of larger numbers of input 

parameters to determine their importance for a target output. Analysis can be used to 

determine which input factors may be considered as having effects which are (a) 

negligible, (b) linear and additive, or (c) non-linear or involved in interactions with 

other factors (Campolongo et al. 2007), and it has been found to be robust and 

suitable as a SA screening tool for environmental models (Sarrazin et al. 2016). Two 

sensitivity measures are computed by this method: μ, which assesses the overall 

influence of the input factor on the output, and σ, which estimates a factor’s level of 

non-linearity and/or interactions with other factors. The required sample size to 

reliably estimate the input factors’ contribution to the output value is generally 10 to 

100 times the number of input factors (Pianosi et al. 2016). The Morris method has 

been used by APSIM crop modellers (Casadebaig et al. 2016; Pardon et al. 2017). 

The method has limitations in that it assumes linear response functions for input 

parameters and that input parameters are independent of each other. It also does not 

reveal second or higher order interactions between input parameters.  

 

2.5.2 Sobol method: Variance decomposition approach 

The Sobol method (Sobol' 1993) is a variance decomposition method of SA. This 

approach of SA breaks down variation in an output value to attribute the effects to 

variations in individual input parameters and interactions between input parameters. 

The default analysis produces two sensitivity indices, the primary effects index (S1) 

and the total effects index (ST) for each input parameter. The S1 index is a measure 

of that input parameter’s influence, by itself, on the value of the output as a 

proportion of the total variation in the output. The Sobol SA method also allows the 

evaluation of higher-order sensitivity indices which demonstrate the effects of 

parameter interactions. The ST index is a measure of the effect that the input 

parameter has, both by itself and in combination with all other input parameters, on 

the value of the output as a proportion of the total variation of the output parameter. 

The value of ST is most comparable to the measure associated with μ of the Morris 
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method, although it is expressed as a proportion of the output’s variation while μ is 

expressed in the units of the output parameter. Sobol' has a much higher 

computational cost than the Morris method. While there are no strict guidelines as to 

the sample size required to obtain reliable sensitivity indices, Pianosi et al. (2016) 

suggests that the sample size should be approximately 1000 times the number of 

input factors, or greater. Apart from a demonstration paper (Stanfill et al. 2015) 

where the Sobol method is compared to an emulator’s performance for SA of 

selected characteristics of APSIM-wheat, the lack of papers published detailing the 

use of these methods for the analysis of APSIM models points to a lack of SA being 

used in crop model development and application. This highlights the breadth of the 

research gap in this area. 

 

2.6 Emulators and metamodels 

 

In this thesis, the term ‘algorithm’ is used to refer to the logic or design of a method, 

while ‘model’ is used to refer to a functioning implementation of the code developed 

by applying the algorithm to a given set of data. ‘Emulator’ is used to refer to a 

model that has been developed to emulate the functioning, or part thereof, of a more 

complex model. 

 

The issue of the computational burden imposed by performing SA is not new. One 

approach that is quite widely reported in literature for the improvement of 

computational efficiency when undertaking computer simulation experiments or 

analyses is the use of emulators (also referred to in the literature as metamodels and 

surrogate models). The specific terminology used to refer to these tools is largely 

dependent upon the science discipline in which the research work was undertaken. 

Razavi et al. (2012) presented a comprehensive review of the surrogate, or emulator 

models used in the science discipline of water resources. Generally, the purpose of 

these emulators was to simplify an original complex model or function and produce 

statistically consistent outputs with less computational effort. The trade-off usually 

being the limiting of input options or range of values and to some extent the 

accuracy of the analyses. While Razavi et al. (2012) noted the use of artificial neural 

networks (ANN) and support vector machines (SVM) for the generation of surrogate 
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models, a special issue of The European Journal of Agronomy (Volume 88, 2017) 

‘Uncertainty in Crop Model Predictions’, which summarised the ‘current’ research 

being conducted into uncertainty and SA of crop models, does not include any 

references to machine learning (ML) based emulators. This indicates, at least in part, 

the lack of, or slow transference of knowledge and techniques between different 

science disciplines. Data generation and data analysis are key components of the 

development, validation, and application of complex models. The advancement of 

computing power and ongoing developments in Artificial Intelligence (AI) and ML 

research, especially around big datasets that are required to improve complex process 

driven models, presents a field of potential alternate approaches for data generation 

and analysis that might yield computational gains and time savings for the 

developers and end-users of simulation modelling systems. At this time ML 

emulators have not been used to explore improving the efficiencies of conducting SA 

for biophysical crop modelling. A potential approach to improving the computational 

efficiencies of conducting SA is to develop emulators to accurately predict the 

outputs of biophysical models. Then, taking the inputs of the process driven model 

that are of interest to the SA, to use these as the inputs to the ML based emulators to 

predict the output target values. Analysis methods, such as the Sobol method, require 

very large numbers of simulations to be evaluated. If these simulations can be 

evaluated by ML emulators in a fraction of the time taken to undertake the same 

simulations using the process driven models directly, then gains should be possible 

in reducing the computational burden of undertaking the SA. Alternatively, ML 

models can analyse which input parameters are of most significance in calculating 

the output values. If these input parameter importance indices can be shown to be 

comparable to standard statistical indices of importance, such as Morris or Sobol 

indices, then additional simulation runs might not be required to analyse the 

sensitivity relationships between input and output parameters. 

 

2.7 Overview of machine learning concepts 

 

It is beyond the scope of this thesis to explore the considerable volume and depth of 

knowledge that constitutes the research areas of AI, and the more specialised subarea 

of ML. The intention in this thesis is to use ‘off-the-shelf’ existing ML algorithms, 
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or tools, and test if they can be used to improve the efficiencies of SA of biophysical 

crop modelling. To this end a general overview of where these algorithms sit within 

the ML landscape is appropriate.  

 

Machine learning is a term used to describe the ability of computer systems to ‘learn’ 

to perform new functions without having a program written to specifically solve the 

provided problem (Buchanan & Miller 2017). There are three main categories of ML 

algorithms: (a) supervised learning, (b) unsupervised learning, and (c) reinforcement 

learning. Supervised learning algorithms use labelled data sets of discrete or 

continuous variables to ‘learn’ what input values create what output values. The 

models produced can be used to make predictions of output values. Training and 

testing of these models requires large sets of data that contain both the inputs and the 

matching output values. Some of the most commonly encountered ML algorithms 

that can be used for generating supervised learning models are artificial neural 

networks (ANN), random forests (RF) and support vector machines (SVM). 

Emulators of process driven models, as developed in this research, will fall into the 

category of supervised learning models. 

 

Unsupervised learning algorithms are used to develop classification and clustering 

tools. Data need to be of a discrete, categorical nature with associated properties. 

There is no concept of a generated output from the input values. Algorithms which 

fall into this category include self-organising maps (SOM) and k-mean nearest 

neighbour (KNN). Tools built on unsupervised learning models are especially useful 

in pursuits such as data mining and image analysis (Buchanan & Miller 2017). The 

third category of ML algorithm, reinforcement learning, is a more specialised branch 

of ML which is utilised primarily in robotics and gameplay (Kaelbling et al. 1996; 

Goodfellow et al. 2016).  

 

When considering performing SA on process driven models, the computational 

burden of generating large data sets is often one of the primary concerns. Data are 

the key to ML models (Jordan & Mitchell 2015; Gollapudi 2016). Their emergence 

in the computing and mathematical communities has, in part, been driven by a need 

to manage, manipulate and analyse huge amounts of data and extract useful features, 

patterns and correlations between covariates and a target variable. They are referred 
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to as ‘data intelligent’ tools because of their focus and reliance on data and the 

information embedded therein. Statistical models can summarise large datasets (Liu 

et al. 2015), but they operate in a very rigid conceptual framework in comparison to 

the data-driven, data-intelligent and unprogrammed framework of ML models. It is 

these features – ability to work with huge datasets, and an ability to be driven by data 

features rather than a predetermined mathematical program, that make ML 

approaches of particular interest for research in the area. The ability to generate an 

ML based emulator for a given set of process driven model’s input values, and have 

it accurately predict the output target values, is a key requirement in potentially using 

ML emulators for undertaking SA of process driven models. The use of ML models 

to assist in SA should be a candidate for research in this space.  

 

2.8 Application of ML in agro-ecological modelling 

 

Machine learning and AI are not uncommon in agricultural applications. Remote 

sensing imagery is becoming commonly used in large scale crop yield prediction 

(Bocca & Rodrigues 2016; Kuwata & Shibasaki 2016; Stas et al. 2016), biomass 

estimation (Ali et al. 2015; Ali et al. 2016) and crop health monitoring (Behmann et 

al. 2015). Machine learning algorithms are also being used for the creation of new 

predictive models for agriculture.  Rainfall prediction models (Acharya et al. 2013; 

Deo & Şahin 2015b), evaporation prediction (Deo & Şahin 2015a; Deo et al. 2015), 

drought (Deo & Şahin 2015a; Deo et al. 2017) and solar radiation estimates (Şahin et 

al. 2014) have all been modelled. These applications have a close fit to the potential 

application of ML algorithms in crop model SA and uncertainty analysis as they are 

creating models which emulate complex biophysical systems. From the literature 

reviewed, a few classes of ML algorithms have been the focus for developing these 

emulators. Specifically, artificial neural networks (ANN), extreme learning machines 

(ELM), random forests (RF) and multivariate adaptive regression splines (MARS). 

The ELM is an advanced form of ANN, so it will be included under literature 

relating to ANNs. Examples of models developed for each are given below under 

their relevant grouping. As this is an emerging and rapidly changing field of study, 

enhanced versions of these approaches and, indeed, wholly new approaches, are 

being researched and reported constantly.  
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2.9 Selected ML algorithms  

 

2.9.1 Artificial Neural Networks 

Artificial neural networks (ANN) have been one of the most utilised ML models in 

biological and environmental systems research where they have been used to predict 

outputs such as yield and biomass (Shastry et al. 2016; Ghimire et al. 2018; 

Sanikhani et al. 2018; Nettleton et al. 2019). Originally designed to imitate the 

functioning of neurons in a brain, ANNs represent some of the earliest ML 

algorithms. They are invariably ‘black box’ models which are trained on input data 

and automatically self-calibrate to classify or predict output values, the internals of 

the ML model generally not being able to be observed by a user of the system.  

 

2.9.2 Multivariate Adaptive Regression Splines 

The Multivariate Adaptive Regression Splines (MARS) algorithm is considered to 

be a form of both regression analysis and ML, as the resulting model is generated, 

tested and refined based solely on the data set being used generate the model. This 

method was developed by Friedman (1991a), and further described in Friedman and 

Roosen (1995). The technique uses recursive partitioning of response functions, or 

splines, by introducing new basis functions to progressively improve a model of high 

dimensional data interactions to predict an output value. The MARS algorithm 

generates a mathematical equation that produces a continuous model with continuous 

derivatives. This equation explains the interactions between explanatory and target 

variables. Evaluation of this equation allows for the generation of surface response 

plots showing input parameter interactions as well as calculating the importance of 

input parameters in the generation of an output value. The MARS algorithm has 

previously been used to create environmental models. For example, it has been used 

in modelling nitrate flux under potatoes (Fortin et al. 2014) and modelling 

evaporative loss from farming systems’ soil and water bodies (Deo et al. 2015).  
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2.9.3 Random Forest 

There are many examples in agricultural research of Random Forest (RF) models 

being utilised. They have been used for yield forecasting (Kouadio et al. 2018; Feng 

et al. 2019; Feng et al. 2020; Obsie et al. 2020; Guo et al. 2021), soil models 

(Gebauer et al. 2019; Hussein et al. 2020) and analysis of remote sensing imagery 

(Belgiu & Drăguţ 2016; Dahms et al. 2016). They are one of the most widely used 

forms of ML frameworks, with Cravero and Sepúlveda (2021) finding that they are 

the second most referenced technique for analysis of big data in agriculture. Random 

forest algorithms use ensembles of decision trees to classify or predict outcomes. 

Decision trees enable great flexibility in the types of data that can be classified and 

analysed, and the inherent ability to evaluate alternate decisions at many nodes 

across multiple trees, hence the name ‘random forest’, provides a robustness to the 

algorithm to cope with imperfect or noisy data. The outcomes of the ensemble of 

decision trees are statistically evaluated using a method called ‘bagging’ to limit the 

influence of noise in the data and to avoid overfitting of the model (Biau & Scornet 

2016). The RF algorithm has been included in this study because of its popularity 

with researchers for use in agricultural and environmental modelling. 

 

2.10  Summary of the knowledge gaps and conclusions 

 

Agricultural production systems simulation, of which crop models are an integral 

part, is extensively used for scientific agricultural research, food and fibre production 

planning and forecasting, climate change adaptation planning, policy assessment and 

planning, risk assessments from farm scale to international negotiations, to name but 

a few. Accurate, robust, and well tested models are critical to the trustworthiness of 

these simulations. Although SA of the models is recognised as best practice for the 

model’s development, testing and application processes, it is not a routinely used 

aspect of the lifecycle of biophysical crop models. There appears to be no single 

answer as to why this is the situation. Undertaking a global SA (GSA) of a crop 

model is a complex task. Many modelling systems are not well designed for 

conducting the multiple iterative simulations required for GSA. In addition, to 

conduct such analyses, most GSA analysis requires programming and computational 

skills on the part of the model users, a skill set that many modellers do not have. 
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Most modern crop models which run in agricultural production systems simulation 

environments, such as APSIM-NextGen, are complex models that require large 

numbers of input parameters. This means that there are extremely large numbers of 

potential combinations of input parameters to be assessed when performing SA. The 

computational overheads of running and analysing the output of such large numbers 

of simulations required to thoroughly analyse a model’s performance quickly 

becomes unworkable. One option for reducing the computational burden of running 

large numbers of simulations is the generation and use of emulator models which 

approximate the functioning of the original complex model, generally with much 

lower dimensionality, or a narrower functional range of input values. This approach 

has been used in other science disciplines, for example the area of hydrology and 

water resources, but a similar level of adoption has not been seen in crop modelling. 

Additionally, the rapidly expanding area of AI and ML has not been adequately 

assessed for its potential application to the area of SA of process driven models. 

There is a knowledge gap in this area as little, if any, ML has been applied to SA for 

process driven biophysical model development, or any process driven models. 

Machine learning algorithms that can efficiently create an emulator to minimise the 

computational burden of running the number of simulations required for SA offer a 

potential path forward to facilitate the use of SA as ‘best practice’ in model 

development. Artificial Intelligence and ML techniques are being used in other areas 

of agricultural research, but not currently in model testing and development.  

 

2.11 Research questions 

 

The overarching research question for this study is:  Are there ML algorithms that 

can be used to perform sensitivity and uncertainty analysis effectively and efficiently 

on process-driven biophysical crop models?   

 

This broad question can be broken down into task focused questions: 

1. When using a ML emulator of a process-driven biophysical crop model, are 

there features of the emulator, such as input variable importance, which are 

comparable to the Morris or the Sobol indices generated by running SA on 

the process-driven biophysical model itself? 
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2. Which ML algorithm, e.g., MARS, ANN, or RF, produces the most accurate 

emulator, and at what computational cost? What are the advantages and 

disadvantages of each algorithm for producing an emulator? 

3. When using a ML derived emulator, can SA be performed using the Morris 

and the Sobol methods, or some other analysis method, which gives 

comparable results to results obtained when run on the process-driven 

biophysical model itself? What considerations need to be considered when 

utilising these approaches? 

 

From these research questions, the research objectives are:  

1. Develop a method that allows the indices of Morris, Sobol and MLEs 

parameter importance to be compared to assess if MLEs report comparable 

SA indicators as the standard traditional methods.   

2. Compare different ML algorithms to assess which are best suited to the role 

of generating MLEs for the process-driven models. These will be assessed on 

their accuracy of predicted values and the comparative computational 

burdens of generating the ML models.   

3. Perform SA on the MLEs using the Morris and the Sobol methods to test the 

speed of performing the analysis and compare the consistency of results 

between the different MLEs.
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CHAPTER 3: PAPER 1 - Evaluation of the 

effectiveness of using machine learning emulators for 

sensitivity analysis of process driven models: A case 

study using a model of chickpea phenology 

 

Preamble 

The purpose of this research chapter is to demonstrate if the input variable 

importance indices generated by machine learning models are correlated with the 

indices generated by the statistical methods of Morris and the Sobol. The Morris 

method is often used as an efficient screening tool to establish which input 

parameters are most important and which have no, or little effect, on output values. 

The Sobol method uses variance decomposition analysis to calculate which variables 

contribute most to the output’s variance, and the interactions between different input 

variables on the output values. In addition to the input importance indices, machine 

learning models, such as the MARS approach, can generate matrices of data which 

record the individual and combined contribution to the output values, of two input 

variables at fine scale across the variables’ value ranges, These data sets can then be 

plotted as surface response curves showing the interaction of the input variables to 

the value of the output target. What is not evident from literature is how these 

machine learning model indices compare with the indices generated by traditional 

statistical analysis methods. 

 

 

3.1 Introduction 

 

Sensitivity analysis is concerned with the mathematical and statistical analysis of 

how the variations in input parameter values contribute to the variations in output 

values of a simulation model. It is an analysis tool that is applicable to modelling in 

general across a wide range of science disciplines and can be used in research which 

utilises anything from simple mathematical models to complex multi-model systems. 

Agricultural systems models, such as APSIM-NextGen (Agricultural Production 
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Systems sIMulator – Next Generation (Holzworth et al. 2018)), are complex 

assemblies of process based biophysical models requiring large numbers of input 

parameters. Development and validation of individual sub-models, as well the 

validation and calibration of the whole of the modelling system consumes significant 

amounts of resources (Jones et al. 2016). By using SA to identify the most and least 

important model inputs determining a target output - for example, maximum and 

minimum temperatures, but not twilight, for emergence duration - the efficiency and 

accuracy of the model development and validation processes can be improved 

(Ascough II et al. 2004; Archontoulis et al. 2014; Norton 2015). There is a 

responsibility for both model developers and researchers to be as efficient as possible 

in producing their results, both in terms of money and time expenditure. Also, in 

practical terms, the amount and type of the computing resources required to perform 

the simulation tasks should be kept to a minimum. Work has previously been done 

on the use of emulators (also referred to as metamodeling in the literature) for 

applications seeking to reduce the dimensionality of complex mathematical models 

and for sensitivity analysis (Ratto et al. 2007; Ratto et al. 2012; Razavi et al. 2012; 

Villa-Vialaneix et al. 2012). Dynamic emulation modelling was formalised by 

Young and Ratto (2009); Castelletti et al. (2012) for the purpose of assisting in the 

SA of high order simulation models and potentially even replace the complex model 

with a reduced-order parametrically efficient emulator. The detailed procedural 

framework developed is undoubtedly robust and thorough, but the lack of its 

widespread adoption in disciplines outside the fields of expertise of the founding 

developers potentially highlights, at least a perceived, issue of complexity. 

 

Despite the field of SA being a data focused discipline, data centric machine learning 

approaches have also not been adopted by practitioners of SA. Lack of familiarity 

with many of the advanced SA methods, their calculation requirements and the 

interpretation of their results has hindered the adoption of formalised and rigorous 

SA practices by the developers of process driven models, which includes biophysical 

crop models. Razavi et al. (2021) discuss six key areas, identified by a 

multidisciplinary group of SA researchers and practitioners, which highlight the 

benefits and challenges of advancing the integration of SA into modelling 

methodologies across a range of disciplines. The advancement of sophisticated 

agricultural systems modelling environments, such as APSIM-NextGen, provides an 
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opportunity for standardised SA methods to be made available to model developers 

and modelling practitioners via simple intuitive interfaces. Development of efficient 

and easily implemented software tools may assist in addressing the underlying 

problem of the discipline of simulation modelling not adopting best practice 

principles with respect to the consistent use of SA. It is the goal of this research to 

assess a data centric methodology that has the potential to address this shortcoming. 

 

Pianosi et al. (2016) reviewed a range of SA approaches used for analysis of 

environmental models. These approaches, which are also applicable for the SA of 

biophysical crop models, ranged from the relatively simple and computationally 

efficient Elementary Effects Test (EET) methods which are most applicable for 

qualitative screening of input parameters, to the much more computationally 

demanding variance-based analysis approaches which are more suitable for the 

detailed analysis of a smaller number of input parameters. Each approach has its 

strengths and limitations.  Of the EET approaches, the Morris method (Morris 1991) 

and its revised version (Campolongo et al. 2007) have gained a level of popularity as 

shown by its use in a range of simulation experiments (Casadebaig et al. 2016; 

Sarrazin et al. 2016; Pardon et al. 2017; Jaxa-Rozen & Kwakkel 2018). The required 

sample size is generally 10 to 100 times the number of input factors (Pianosi et al. 

2016). The Morris method, with its focus on determining which input factors may be 

considered as having effects which are (a) negligible, (b) linear and additive, or (c) 

non-linear or involved in interactions with other factors (Campolongo et al. 2007), 

has been found to be robust and suitable as a SA screening tool for environmental 

models (Sarrazin et al. 2016). It computes two sensitivity measures: μ, which is the 

standardised effect on an output variable of a positive or negative change of an input 

variable, also known as the  elementary effect (Morris 1991), and σ, which estimates 

a factor’s level of non-linearity and/or interactions with other factors. For variance-

based SA approaches, one of the established methods is the Sobol method (Sobol' 

1993). The Sobol method is a global sensitivity analysis approach based on variance 

decomposition, where the total variance of an output parameter’s value is 

decomposed into component variances from individual parameters and their 

interactions.  It does, however, come at the expense of a high computational cost. 

While there are no strict guidelines as to the sample size required to obtain reliable 

sensitivity indices, Pianosi et al. (2016) suggests that the sample size should be 
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approximately 1000 times the number of input factors, or greater. It should be noted 

that, while the two SA approaches, the Morris method and Sobol method, are tried 

and tested approaches (Ascough II et al. 2004; Iooss & Lemaître 2015; Pianosi et al. 

2016), SA is not limited to these approaches and investigating potential efficiency 

gains through alternative methods is a worthwhile endeavour. 

The advancement of computing power and ongoing developments in Artificial 

Intelligence (AI) and Machine Learning (ML) research, especially on big datasets 

required to improve complex process driven models, presents a field of potential 

alternate approaches for data generation and analysis that might yield computational 

gains and bring in time savings for the developers and end-users of simulation 

modelling systems. The field of ML has contributed many different data centric tools 

to a wide variety of problem applications. Data driven methods, as represented by 

ML algorithms, enable computers to produce useful outputs by ‘learning’ patterns 

and relationships in input data without being hardcoded with predetermined rules to 

solve the problems directly. The iterative steps of process driven model development 

– develop/test/refine – involves data generation and data analysis at all stages. Villa-

Vialaneix et al. (2012) compared eight techniques to produce metamodels of a 

biophysical application. The aim of their study was the assessment of the reduction 

in the computational expense of generating model outputs. The focus of our research, 

in contrast, is the investigation of the potential of improving the efficiency of 

undertaking SA directly, rather than the generation of outputs per se. This has the 

effect of shifting the focus from primarily assessing the accuracy of the emulator 

outputs, to being able to review how the sensitivity indices have been calculated. It 

has been noted the ‘black-box’ approach of many ML algorithms do not allow the 

necessary verification that the emulator is ‘credible’ (Castelletti et al. 2012). 

Certainly, for SA, the ability to review the calculation process is desirable. As the 

generation of ML models can be computationally less demanding than running of 

very large numbers of simulations using process driven models, gains in 

computational efficiencies of obtaining SA results might be able to be realised by 

developing the MLEs instead of running the SA directly using the process driven 

models. 



CHAPTER 3: PAPER 1 - The effectiveness of using machine learning emulators 

25 

 

The ML tool selected for this research needed the ability to have its outputs 

compared against the outputs of the Morris and Sobol methods in terms of SA. The 

Multivariate Adaptive Regression Splines (MARS) algorithm (Friedman & Roosen 

1995), as implemented in Adaptive Regression Splines – MATLAB ARES toolbox 

(Jekabsons 2016), was selected for use in this analysis. Technically, the MARS 

method is a data driven regression technique that has some essential features of ML 

methodologies, that being the ability to configure itself to produce useful target 

outputs from given inputs without being specifically programmed to produce these 

outputs. It can, in this respect, be considered a ‘data-intelligent ML’ approach. As 

part of the MARS algorithm, input parameters are assessed for their impact on the 

value of the output variable. This is reported as the input variables index of 

importance. It is these indices that will be compared to the Morris and Sobol indices 

as a method of assessing the sensitivity of the input parameters. The MARS method 

has previously been used to create emulators for environmental models (Fortin et al. 

2014; Deo et al. 2015). In the process of generating an emulator, this method 

produces an accurate analysis of the input variable importance and the input variable 

interactions. Its intuitive outputs, particularly its input importance indices, can 

readily be utilised for the purposes of SA. Additional functionality allows the 

emulator to generate surface plots of the input parameter interactions.  

 

This chapter assesses a new approach to an old problem by investigating how ML 

methodologies might be implemented for the SA of complex process driven models. 

This is not to say that the traditional statistical techniques used for SA are not 

adequate for the task at hand, but the issue of computational burden is a problem that 

warrants research to identify potential gains in efficiency. Using a biophysical model 

as an example, limitations that might be encountered and potential benefits resulting 

from the use of ML algorithms are identified. The focus of this research is not the 

parameter SA per se, but rather the comparison of the results between the different 

approaches and their relative efficiency of execution. The objective of this chapter is 

to establish, by demonstration, whether the parameter importance indices of an MLE 

can provide the same, or comparable information, as the indices produced by the 

traditional SA methods of Morris and Sobol, and if they do, is the computational 

burden of producing these indices reduced compared to the established methods. 
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This will be done in context of a chickpea model in APSIM-NextGen. To date, there 

has been little published research into ML approaches that might be used as 

alternatives to, or in addition to, traditional statistical approaches for SA analysis of 

biophysical models. Alternative methodologies for sensitivity analysis will be 

required if the developers of simulation models are to use such techniques as data 

centric ML when developing, testing, and evaluating their models. If MLEs are 

shown to provide measures which are comparable to those provided by the current 

statistical approaches of Morris and Sobol, then the data centric ML techniques can 

potentially provide such alternative methodologies for the SA of process driven 

models.  The research presented in this chapter will therefore explore the potential 

role that data centric ML techniques can have in the sensitivity analysis of the 

biophysical crop model APSIM compared to the existing statistical approaches of 

Morris and Sobol.   

 

3.2 Methodology 

 

Three approaches to SA are compared in terms of computational efficiency, as 

measured by the number of model evaluations (simulations) that are required to 

produce stable predictions of the influence indices, the order of the predicted 

influence indices, and a comparison of the level of confidence that can be placed in 

the influence index values is provided. 

 

3.2.1 Computing environment 

 

All simulations and data analyses were performed on an Intel Core-i7 7600U CPU 

2.9 GHz based computer with 16 GB RAM running Microsoft Windows 10 

operating system. The APSIM version used was APSIM-NextGen (vers 

2020.02.05.4679) (Holzworth et al. 2018). The APSIM-NextGen chickpea model, a 

redevelopment of the APSIM-Classic chickpea model and based on research by 

Robertson et al. (2002), was used as the crop model. Built-in features of the APSIM-

NextGen User Interface were used to configure and run both the Morris and Sobol 

analyses. The built-in feature of the APSIM-NextGen User Interface for configuring 

and executing factorial simulation experiments was used to generate the data sets of 
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input and output values. These data sets, stored and transferred in comma separated 

values (CSV) file format, were then used for the MARS analysis. The MARS 

analysis was performed using the ARES package (Jekabsons 2016) for MATLAB® 

(ver. R2017b). This analysis was undertaken on the same Windows based computer 

that was used to run the APSIM simulations. 

 

3.2.2 Simulation configuration 

 

The phenology sub-model was the target of the SA testing for this simulation 

experiment, with seven inputs of phenological importance selected for analysis 

against each of seven model outputs. The input parameters are listed in Table 3-1, 

along with the input value ranges used. Values were based on default values used in 

the chickpea model, with value ranges being established to ensure crops grew to 

maturity in each of the simulated locations and for each of the sowing dates used. 

These input parameters and value ranges were used for both the Morris and Sobol 

methods. Factorial experiments were defined and run to generate the data used to 

create the MARS emulators. The same set of input parameters were used with 

discrete values defined for each parameter, also detailed in Table 3-1. The seven 

output variables  from the crop model that were chosen for sensitivity analysis were: 

(1) Days from sowing to emergence (EmergenceDAS), (2) Days from sowing to 

flowering (FloweringDAS), (3) Days from sowing to crop maturity (MaturityDAS), 

(4) Crop biomass at harvest (kg/ha) (Biomass), (5) Weight of harvested grain (kg/ha) 

(GrainWt), (6) Weight of reproductive organs (kg/ha) (PodWt), and (7) Count of 

potential reproductive plant nodes (/m2) (NodeCnt). 
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Table 3-1. Crop model input parameters used for factorial experiments and sensitivity analysis.  

Parameters for the ASPIM-NextGen chickpea’s phenology sub-model are listed with descriptions, input values and input value ranges.  

 

Input Variable 

Name 

Description Values  

Used as factors for 

experiments 

Range  

(min and max 

values) used for 

sensitivity analysis 

BaseTemp Temperature below which phenological development 

ceases 

0, 2, 4, 6 oC 0.0 – 6.0 oC 

OptTemp Optimum temperature for phenological development 24, 26, 28, 30 oC 24.0 – 30.0 oC 

MaxTemp Temperature above which phenological development 

ceases. 

 

34, 36, 38, 40 oC 35.0 – 40.0 oC 

OptTempDD Thermal time accumulated at optimum temperature 25, 26, 27, 28 oCd 25.0 – 28.0 oCd 

CriticalPhotoperiod Photoperiod below which phenological development ceases 6, 7, 8 hours 6.0 – 9.0 hours 

OptPhotoperiod Optimum Photoperiod for phenology development 16, 17, 18, 19 hours 16.0 – 22.0 hours 

Twilight Sun’s angle below horizon which still produces 

photoperiod response 

-2o, -4o , -6o   -2.0o to -6.0o   
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3.2.3 Morris method 

 

The Morris method (Morris 1991) is an EET that can be used for the analysis of 

input parameters’ influence on the value of a model’s output. Campolongo et al. 

(2007) further enhanced the method to improve its robustness in situations where 

effects can return both positive and negative values. The values produced by the 

Morris method are the estimate of the mean of the distribution of the absolute values 

of the elementary effects (EE) defined as μ∗, and the standard deviation of the 

distribution of values (σ). The standardised effect of a positive or negative Δ change 

of an input variable is calculated using Eq. (3.1). 

 

   𝐸𝐸𝑖(𝑋) = [𝑦(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + ∆, 𝑥𝑖+1, … , 𝑥𝑘) − 𝑦(𝑥)]/∆  (3.1) 

 

where Δ is magnitude of step, which is a multiple of 1/(p - 1); p is the number of 

‘levels’, or values, over which the variables can be sampled.  

For each input variable, the mean (μ) and standard deviation (σ) of the set of EEs are 

calculated using Eq. (3.2) and Eq. (3.4).: 

    𝜇𝑖 =  
∑ 𝐸𝐸𝑛

𝑟
𝑛=1

𝑟
   (3.2) 

 

    𝜇∗
𝑖 =  

∑ |𝐸𝐸𝑛|𝑟
𝑛=1

𝑟
   (3.3) 

 

    𝜎𝑖 =  √ 
1

𝑟
  ∑ (𝐸𝐸𝑛

𝑟
𝑛=1 − 𝜇𝑖)2  (3.4) 

 

The strength of the relationship between the i-th input variable and the output 

response due to all first- and higher-order effects that are associated with that 

variable is assessed by the sensitivity index μi  (Campolongo & Braddock 1999). 
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Campolongo et al. (2007) develop the use of μ*, the mean of the distribution of 

absolute values of the EEi, as given in Eq. (3.3). When μ*
i is high in comparison to 

other variables, this input variable has a stronger influence on the output value. 

Conversely, a variable with a low μ*
i value has lesser influence associated with it as 

the same Δ change causes a relatively small change in output (King & Perera 2013). 

The variance (spread) of the finite distribution of the EEi values, denoted by σi, is 

calculated by Eq. (3.4). The greater the value of σi, the greater the indication of 

possible interactions with other variables and/or that the variable has a non-linear 

effect on the output (Campolongo & Braddock 1999). 

 

To simplify comparisons against the other SA methods, the μ∗ values are converted 

from the default output value’s units to a normalised range of values (0 – 1) (Eq. 

3.5). The values of σ were used to calculate the 95% confidence intervals for each of 

the μ∗ values. 

   
( )

s

max

Normali ed

max CI


 


=

 +



  (3.5) 

where μ∗ is the value produced by the Morris method, μ∗max is the maximum value 

of μ∗ for the set of input parameters being analysed and CI μ∗max is the 95% 

confidence interval of the maximum μ∗ value. 

 

The APSIM-NextGen user interface provides a feature for Morris analysis. This 

feature utilises R (R Core Team 2020) libraries to generate the Monte Carlo 

randomised data sets and to perform the statistical analysis of the EET. For this 

analysis, the R package utilised was sensitivity: Global Sensitivity Analysis of Model 

Outputs (Iooss et al. 2020) and the function used was morris: Morris's Elementary 

Effects Screening Method. As the number of simulations executed increase, the value 

of μ∗ becomes more stable and converges towards the true mean value of the 

population of simulations. The value of μ∗ was plotted against the number of 

simulations executed to show the rate of convergence for selected output values. The 

computational requirements of the Morris method are N = n * (p + 1), where N is the 

total number of simulations required, n is the number of sets of simulations that the 

user requests to establish the value of μ∗, and p is the number of input parameters 

being evaluated. For comparison against the other SA methods, these sets of 

https://rdrr.io/rforge/sensitivity/
https://rdrr.io/rforge/sensitivity/
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simulations are simply reported as N, the total count of simulations that are required 

to be executed. In this analysis 520 simulations were performed to calculate the 

parameter importance by the Morris method. Based on the findings of Campolongo 

et al. (2007), who demonstrated empirically that the sensitivity measure calculated 

by the Morris method can be used as a comparison measure against the total effects 

index produced by the Sobol method, the index values base on μ∗ were chosen for 

comparison against the Sobol total order index values. This approach was also 

used by Sarrazin et al. (2016) for their comparative study which included the Morris 

and Sobol methods.  

 

3.2.4 Sobol method 

 

The Sobol method (Sobol' 1993) is a variance decomposition method of SA. This 

approach of SA breaks down variation in an output value, calculated by function 

V(Y) Eq. (3.6), to attribute the effects to variations in individual input parameters 

and interactions between input parameters.  

 

   𝑉(𝑌) =  ∑ 𝑣𝑖𝑖 + ∑ 𝑣𝑖𝑗𝑖<𝑗 +  ∑ 𝑣𝑖𝑗𝑘𝑖<𝑗<𝑘 + ⋯ +  ∑ 𝑣1…𝑝1…𝑝      (3.6) 

 

where vi is the amount of variance due to the i-th parameter Xi, and vij is the amount 

of variance due to the interaction between parameter Xi and Xj. The sensitivity of 

single parameter or parameter interaction, i.e., Sobol'’s sensitivity indices of 

different orders, is then calculated based on their proportional contribution to the 

total variance V by using Eq. (3.7) for first-order indices, Eq. (3.8) for second-order 

indices, and Eq. (3.9) for the total-effects indices: 

 

   First-order index     𝑆𝑖 =  
𝑣𝑖

𝑉
               (3.7) 

 

   Second-order index  𝑆𝑖𝑗 =  
𝑣𝑖𝑗

𝑉
             (3.8) 

 

   Total-effects index  𝑆𝑇𝑖 =  𝑆𝑖 +  ∑ 𝑆𝑖𝑗𝑗≠𝑖 + ⋯         (3.9) 
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where Si measures the sensitivity from the main effect of Xi, Sij measures the 

sensitivity from the interactions between Xi and Xj. The total-effects index, STi, 

measures the main effect of Xi, plus the effects of all its interactions with parameters 

other than Xi (second-order index values). Note: Si and Sij are limited to the value 

range (0 ≤  𝑆𝑖  ≤ 1), while total-effects indices can sum to a value greater than 1. 

 

The default analysis generally produces two sensitivity indices, the main or primary 

effects index (S1) and the total effects index (ST) for each input parameter. The S1 

index is a measure of the input parameter’s influence by itself on the value of the 

output. The ST index is a measure of the effect that the input parameter has, both by 

itself and in combination with all other input parameters, on the value of the output. 

The value of ST is most comparable to the measure associated with μ∗ of the Morris 

method. 

 

The version of APSIM-NextGen used for this research has an interface for 

conducting Sobol analyses. This feature calls an R subsystem which used the 

SobolSalt function in the sensitivity: Global Sensitivity Analysis of Model Outputs  

(https://CRAN.R-project.org/package=sensitivity) (Iooss et al. 2020) package library 

to generate the randomised sets of simulations and to analyse the simulation outputs. 

The APSIM modelling system generated and ran the crop model simulations. For 

comparison against the other SA approaches, the ST values for each input parameter 

were plotted, along with their 95% confidence intervals. For brevity, three of the 

seven outputs, ones which most clearly showed the range of responses and allowed 

clear comparisons between methods, were chosen for presentation in the results. The 

calculation of the Sobol statistics involves the evaluation of multiple samples from 

population of values generated by the Monte Carlo sampling plan. These samples 

generate slightly different values for the Sobol statistics S1 and ST. As the sample 

size increases, the variations in the predicted values of these statistics decreases. The 

Sobol method calculates the Root Mean Squared Error (RMSE) of each of these 

statistics providing an indicator of the stability of the statistic. As a measure of 

convergence towards stable predicted values, the RMSE of the ST values was plotted 

against the number of simulations executed. The computational requirements of the 

Sobol method are N = n * (p + 2), where N is the total number of simulations 

https://rdrr.io/rforge/sensitivity/
https://cran.r-project.org/package=sensitivity
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required, n is the number of sets of simulations that the user requests to establish the 

value of ST, and p is the number of input parameters being evaluated. For 

comparison against the other SA methods, these sets (n) of simulations are simply 

reported as N, the total count of simulations that are required to be run. 

 

3.2.5 MARS method 

 

The Multivariate Adaptive Regression Splines (MARS) approach to SA is 

considered as a form of advanced data analysis tool with feature extraction skill 

utilising ML algorithms. This is an explanatory method developed by Friedman 

(1991a), further described in Friedman and Roosen (1995). The technique uses 

recursive partitioning of response functions by introducing new basis functions to 

progressively improve a model of high dimensional data interactions to predict an 

output value. Unlike many ML models based on Artificial Neural Networks (ANN) 

which are described as ‘black boxes’ for the lack of transparency as to how they 

achieve an output, MARS generates a mathematical equation that produces a 

continuous model with continuous derivatives. This equation, which aims to explain 

the interactions between explanatory and target variables, is made up of basis 

functions which form the splines, and parameters that describe knot locations and 

hinge details and can be reported during model development. Evaluation of this 

equation allows for the generation of surface response plots showing input parameter 

interactions as well as calculating the importance of input parameters in the 

generation of an output value, or SA as it is referred to in this text. The method also 

meets the criteria for a ML data analysis tool as the resulting model is automatically 

determined by the data used to generate the model and does not require additional 

programming to address the specific problem that the data relates to. The data 

determines the model. Consideration of the performance of other ML algorithms 

which represent the ‘black-box’ approaches will be considered in subsequent 

chapters of this research. For this study, the Jekabsons implementation of the MARS 

method, referred to as Adaptive Regression Splines (ARES) (Jekabsons 2016), was 

used under MATLAB®. Reports produced by APSIM-NextGen listing the chickpea 

model’s input parameters and their values, as well as the seven outputs and their 

values for each simulation run were used to generate datasets. These datasets were 
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then read into MATLAB, pre-processed to remove data of simulations that did not 

produce a crop, and randomised to ensure a consistently mixed dataset. The datasets 

were split into 80/20 proportions as training and testing subsets, then passed into the 

ARES routines. Prior testing using similar crop model simulation datasets had shown 

that the ARES model building routine, aresbuild, performed best, based on a balance 

between processing time and final model accuracy, with parameters for the 

maximum number of basis functions, maxFuncs, set to 101 and the maximum level 

of input parameter interactions to analyse, maxInteractions, set to 4. All remaining 

parameters were set, by omission, to use default values. The default settings use a 

piecewise-cubic regression function for the model generation (Jekabsons 2016).  

 

The ARES build process generates a model, also known as an emulator, which takes 

as inputs the values of the input parameters selected for reporting by the APSIM-

NextGen crop model and predicts the output value used as the target for the build of 

the emulator. To assess the predictive ability of the emulator, test data not used in the 

building of the emulator is run through the emulator and the values of the target 

output parameter evaluated against the true values generated by the APSIM 

modelling system. The accuracy of the emulator improves with an increase in the 

size of the training dataset. As the size of the training dataset increases, the 

variability of the predicted values decrease, as measured by the RMSE of the 

predicted values. To facilitate a comparison with the Sobol method, the RMSE value 

of the predicted values of the test dataset has been used to evaluate the convergence 

towards a stable emulator that has low predictive error. The convergence towards a 

stable prediction for the ARES model is an analysis of the stability of an output 

value produced by the model. This means that there is only one value series to plot 

per model output, rather than the series of seven input values plotted for Morris and 

Sobol methods. 

 

The aresimp function (Jekabsons 2016) was run by the MARS emulator models to 

report the importance indices for each input parameter. The most influential input 

was assigned an index value of 100, with each other input given an index value 

proportional to this input’s significance. Input parameters that did not contribute to 

the calculation of the output were assigned an index value of zero. For the purpose of 

comparison against the other SA methods, the MARS input importance indices were 
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converted to a zero to one value range and presented graphically. The derivation of 

these indices of importance is based on the complex mathematical equation which 

describes the relationship between each input and the output value.  

 

Sensitivity indices of input parameter importance produced by the ARES emulator 

are mathematically derived from the complex regression equation which describes 

the emulator. The variability of predictions is associated with the output value, not 

with the prediction of the sensitivity indices as is the case with the other SA 

methods. The predictive ability of the emulator has been assessed using two 

statistical values, the coefficient of determination (R2) and the coefficient of 

efficiency (COELM, also known as Legates-McCabe index). The mathematical 

formulae are shown in Eq. (3.10) for R2 and Eq. (3.11) for COELM (Legates & 

McCabe Jr 1999). 
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Where n is the number of data points, x values are the values generated by the 

APSIM modelling system (‘observed’) and y values are the predicted values 

generated by the ARES emulator. 

 

The R2 statistic is a widely used goodness-of-fit measure for testing how well a 

model fits the observed data but it does come with limitations that can produce 

biased assessments of a model’s ability to simulate observed data (Willmott 1981; 

Willmott et al. 1985; Legates & Davis 1997). The COELM index, developed by 

Legates and McCabe Jr (1999) is a more robust measure of the goodness-of-fit 

between observed and predicted values as it addresses the short-comings of the R2 

statistic. In evaluating the accuracy of MARS model to emulate the results of the 
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APSIM model, both the R2 and the COELM indices were assessed, with the values 

closer to unity for both statistics assessed as being more favourable. 

 

The indices of input importance for the ARES model are calculated as part of the 

model generation and training process by calling function aresimp. Jekabsons (2016) 

notes that the variable importance estimates are calculated according to the work of  

Friedman (1991a) Section 4.4: 

 

“The relative importance of a variable is defined as the square root of the 

generalised cross validation (GCV) of the model with all basis functions involving 

that variable removed, minus square root of the GCV score of the corresponding full 

model, scaled so that the relative importance of the most important variable (using 

this definition) has a value of 100.” 

 

They are calculated on a 0 to 100 scale, with the input having the most significant 

influence on the output value assigned a value of 100. Other inputs are assigned 

values proportionate to the most significant input based on their influence on the 

output value. Inputs that do not contribute to the output value are assigned an index 

of importance value of zero. 

 

3.2.6 Comparisons methodology 

 

MARS emulators were developed for each of the output targets. Morris and Sobol 

SA were then performed on the inputs for each of the output targets and their results 

and computational effort compared to the sensitivity results, as measured by variable 

importance indices, and the computational effort of the MARS emulators. The SA 

methods were compared on three features: the rate of convergence towards stable 

input index of importance values; the consistency of these index values with 

expected results and with the values produced by the other SA methods; and the 

amount of information or insight about the input parameter’s influence on the crop 

model’s performance. The measure of the rate of convergence towards stable index 

values reflects the computational efficiency of the method. For the Morris method, 

while there might be statistical approaches to yield accurate convergence measures, 

for example, those used by Sarrazin et al. (2016), the purpose of this research is to 
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compare the usefulness of these SA approaches for use by developers and users of 

biophysical models. From this perspective, the ubiquitous approach of ‘assessment 

by visual inspection’ of the convergence plots was the most appropriate. For the 

Sobol method, the plotting of calculated RMSE values for the influence indices 

allows a simple comparison of the convergence of the underlying index values 

against the convergence of the MARS method. For the MARS method, the 

additional statistics of the R2 and COELM indices provided additional indicators of 

the stability of the emulator and therefore of the input importance indices. Using the 

underlying concepts of analysing the convergence of predicted outcomes towards a 

stable result and using an index for the assessment of the significance of an inputs 

contribution to an output’s value, a comparison can be made between these diverse 

methods for their usefulness in the SA of biophysical crop models. 

 

To enable a graphical comparison of the importance indices generated by each of the 

three methods, the Morris significance indices based on the value of μ∗, and the total 

effects indices, ST, of the Sobol method, were normalised to the 0 to 100 scale and 

graphical plots generated. A similar approach was used by Sarrazin et al. (2016), 

who normalised Morris indices to a 0 to 1 range for comparison against Sobol Total 

Effects Indices. For assessment of the validity of the values of the importance 

indices, the Morris and the Sobol methods offer little in the way of crosschecking 

their accuracy. With the MARS method the user has the statistical analysis of the 

accuracy of the performance of the emulator, in the form of the R2 and COELM 

indices, to assess whether the results are trustworthy. The R2 statistic, while not the 

most robust measure for measuring goodness-of-fit between two data sets, has been 

included in the analysis as it is the most widely used and recognised statistic of this 

type and so forms a useful baseline for the comparison with other goodness-of-fit 

statistics. The Legates-McCabe index is less well known but has been shown to be 

much more discerning in its analysis of goodness-of-fit. For these reasons, both 

statistics have been used and are presented in the results of this experiment.  

Assessment of the level of insight that the SA method provides into the input 

parameter’s influence on the crop model’s performance was subjective and done on 

the basis that more information is almost always desirable, especially where there is 

no additional computational load required. 
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3.2.7 Expanded data sets 

 

The detailed analysis of comparing the index values of individual input parameters 

against each other across each of the SA methods is a necessary and suitable 

approach to establish confidence in how the different methods compare against each 

other. This approach was not, however, suitable for comparing the SA methods 

across larger data sets. For this purpose, the sensitivity index values of each method 

were chosen, as described in previous sections of this research, to normalise these 

values using a zero to one hundred range, and then use simple xy-scatter plots to 

visually observe the agreement between the methods. The input parameters having 

the most significant effect on the output grouped at or near the 100 mark on the 

sensitivity scale, while values assessed has having no impact, or very little input, 

grouped at the low end of the scale close to zero. Even where the rankings of factors 

were consistent between methods, the actual index values vary between methods, so 

greater variation around mid-range index values was anticipated to be seen in the 

scatter plots. This approach for comparing methods is not presented as a statistically 

robust method. It was simply a method to allow rapid visual inspection of large data 

sets as to whether the different SA methods are roughly in agreement. 

 

To expand the crop simulation data set, simulations were developed for three 

different sowing times at each of three geographically diverse cropping locations 

(Table 3-2). These configurations were selected to reveal expected changes in the 

chickpea phenology sub-model’s sensitivity to different input factors. The growth of 

crops is driven, or limited, by different environmental factors under different 

growing conditions. The SA was used to reveal which factors were driving the crop 

growth under which scenario.
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Table 3-2. Locations and sowing dates for crop simulations covering three diverse production locations and three sowing dates for each location. 

Name Latitude/Longitude Sowing Dates 

Gorgan, Iran 36°51′N / 54°16′E 15 Nov, 15 Jan, 15 Mar 

 J F M A M J J A S O N D 

Mean MaxTemp (°C) 12.6 14.2 16.7 21.1 26.4 30.8 32.7 34.1 30.8 26.1 18.9 13.5 

Mean MinTemp (°C) 3.0 3.9 6.6 10.9 15.4 20.3 23.4 23.8 20.6 14.7 9.0 4.4 

Mean Rain (mm) 42.9 37.1 60.4 85.2 47.4 20.6 23.6 13.3 21.8 30.1 66.6 45.2 

Mean SolarRadn (MJ/m2/d) 9.3 12.7 15.6 18.3 21.9 24.7 23.9 23.0 19.1 14.7 10.1 8.0 
 

   

Kununurra, Australia  15°38′S / 128°44′E 9 May, 1 Jun, 15 Jun 

         J      F M A M J J A S O N D 

Mean MaxTemp (°C) 36.3 35.8 35.9 35.7 32.9 30.7 30.5 33.0 36.2 38.4 38.8 38.0 

Mean MinTemp (°C) 25.3 25.0 24.4 22.2 19.2 16.4 15.1 17.0 20.6 24.1 25.5 25.9 

Mean Rain (mm) 209.2 216.0 142.7 30.1 7.0 3.0 1.4 0.1 5.2 23.5 59.6 142.6 

Mean SolarRadn (MJ/m2/d) 19.0 18.4 19.8 20.6 19.6 19.1 20.3 22.6 24.4 25.0 24.0 21.1 
 

   

Warwick, Australia 28°12′S / 152°06′E 1 May, 1 Jun, 15 Jul 

 J  F  M A M J J A S O N D 

Mean MaxTemp (°C) 29.7 28.6 27.0 24.2 20.6 17.6 16.8 18.5 22.5 25.2 26.9 29.0 

Mean MinTemp (°C) 17.0 16.9 14.8 12.0 9.1 5.5 3.4 4.7 7.4 10.1 13.6 15.4 

Mean Rain (mm) 59.6 62.5 38.2 42.4 51.0 20.4 33.3 18.4 17.2 45.0 45.3 72.4 

Mean SolarRadn (MJ/m2/d) 22.9 20.7 19.2 15.9 12.3 11.7 12.5 16.4 20.1 21.7 22.9 23.6 
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3.3 Results 

 

The primary focus of the type of SA that was considered in this chapter is the 

identification of the input parameters which have the greatest, or least, influence on 

the value of a given model output and the efficiency, in terms of the number of 

simulations run, required for this identification.  All three approaches provide values, 

in a variety of forms, which achieve this objective. Each approach also provided a 

basis to order the importance of input parameters, with varying degrees of accuracy. 

 

3.3.1 Efficiency of convergence  

 

3.3.1.1 Morris Method Convergence 

The panels of Figure 3-1a show how the influence index, the predicted value of μ∗ 

converge towards stable values for the Morris method of SA for three model outputs. 

By visual inspection, the values of μ∗ stabilised by around 300 simulation 

evaluations for all of the model outputs. The days to emergence (Figure 3-1a 

Subpanel i) had three principal influencers, base temperature (BaseTemp), optimum 

temperature (OptTemp) and peak thermal effect at optimum temperature 

(OptTempDD). The other four inputs; maximum temperature (MaxTemp), critical 

photoperiod (CriticalPhotoperiod), optimum photoperiod (OptPhotoperiod) and 

twilight angle (Twilight); only had minor influence on the output value. In this 

particular case, the values of μ∗ for the input OptTempDD indicated that 350 

simulations would yield a more stable prediction than 300, but this did vary between 

outputs. The order of the inputs’ influences was established with fewer simulation 

runs, between 150 and 200 simulations, except where the values of the influences are 

close in value, in which case the orderings continue to be unstable up to 500 

simulations, the maximum number of simulations run for this analysis. This was 

most clear in the results for days to flowering (Figure 3-1a Subpanel ii) where four 

input parameters, BaseTemp, OptTemp, Twilight and OptPhotoperiod, are closely 

grouped in the mid-range of influence index values and their orderings continue to 

fluctuate beyond 400 simulations. 
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Figure 3-1. Convergence of predicted values. 

(a) Morris method’s μ∗ values for seven input parameters across three model 

outputs, against a count of model simulations. μ∗ is the elementary effect of the input  

on the output value in the units of the output parameter. (b) Convergence of Sobol 

Total Effects Indices, as measured by the Root Mean Squared Error (RMSE) of the 

estimated index values, against a count of model simulations. The values for seven 

input parameters are shown for each of three model outputs. (c) Convergence of the 

multivariate adaptive regression splines (MARS) models outputs towards prediction 

values with low variance for three model outputs. Outputs: (i) Emergence Days After 

Sowing,  is the days after sowing to emergence; (ii) Flowering Days After Sowing, is 

days after sowing to flowering; (iii) Biomass, is above ground dry weight (kg/ha).  
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3.3.1.2 Sobol Analysis Convergence 

In accordance with present results, around 9,000 simulations are required to see 

convergence and stability of the predicted influence indices for the Sobol analysis 

(Figure 3-1b). However, a greater number of simulations continue to reduce the 

RMSE values of the predicted values, but at a diminishing rate. The Sobol analysis 

reported, by default, the bias and standard error of the predicted index values. Up to 

and including 4500 simulations, there was a spread in the range of margin of error 

for the different input parameters. By 9000 simulations the margins of error become 

very similar, with further simulations only slightly reducing all margins of error for 

all parameter estimates.  

 

3.3.1.3 MARS Simulation Convergence 

The convergence towards stable values for three outputs for the MARS emulator are 

shown in Figure 3-1c. The statistic used to measure the convergence is the RMSE of 

the predicted value of the output and was derived from the MSE value generated and 

reported by the ARES routines during the development and testing of the MARS 

model. Visual assessment of the convergence plots for different model outputs 

revealed that the stability of the predictions for a given number of simulations varied 

depending on the output. For days to emergence and days to flowering (Figure 3-

1ci,ii), RMSE was reduced to 0.02 or below by 4000 simulations, while RMSE for 

Biomass (Figure 3-1ciii) was 0.05 at 4000 simulations but remained above 0.02 up to 

14,000 simulations. 

 

3.3.1.4 Comparison of Convergence Results 

Comparing the convergence graphs of the Morris method (Figure 3-1a) and the 

Sobol method (Figure 3-1b), the computational efficiency of the Morris method was 

evident as the stability of μ∗ was established for each input parameter for each 

output target by 300 to 350 simulations (RMSE of μ∗ values < 0.05). Sobol required 

around 9000 simulations to establish consistently low RMSE values (RMSE of ST 

values < 0.05) for the corresponding inputs across the same output targets. The 

MARS method’s convergence (Figure 3-1c) showed a different pattern. The RMSE 

values of the predictions of days from sowing to emergence (Figure 3-1ci) and days 

from sowing to flowering (Figure 3-1cii) settled at values below RMSE of 0.025 for 
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simulation counts of 4800, with very little gained by running more simulations. The 

RMSE for the prediction of biomass (Figure 3-1ciii) was reduced to approximately 

0.05 by the running of 4800 simulations and was reduced further to about 0.03 by the 

running of 14,000 simulations. A low variance threshold of an RMSE of less than or 

equal to 0.05 was established for the acceptance of the sample size being adequately 

large to produce stable predictions of the measured statistic. A summary is shown in 

Table 3-3. 

 

Table 3-3. Summary of three SA methods for the degree of computational effort. 

Indicated by the number of simulations required, to produce measures of sensitivity 

with low variance (RMSE < 0.05). 

Output Morris Sobol MARS 

EmergenceDAS 300 7000 3000 

FloweringDAS 300 7000 1000 

MaturityDAS 350 9000 4000 

Biomass 400 9000 5000 

GrainWt 400 9000 5000 

PodWt 400 9000 5000 

NodeCnt 350 9000 5000 
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3.3.2 Measures of Parameter Importance  

 

Figure 3-2. Parameter importance indices for seven input parameters for each of the 

three SA methods. 

Indices of 0 are least important and values of 1 are most importantThree model 

outputs are shown; EmergenceDAS is the days after sowing to emergence; 

FloweringDAS is days after sowing to flowering; Biomass is above ground dry 

weight (kg/ha). Input importance indices for the multivariate adaptive regression 

splines (MARS) models were calculated from sample sets containing 9216 data 

points. The indices are defined as the square root of the generalised cross validation 

(GCV) of the model with all basis functions involving that variable removed, minus 

square root of the GCV score of the corresponding full model. Morris method values 

are input parameter influence indices (μ∗) with 95% confidence interval error bars. 

Sobol values are Total Effects Indices calculated from 9000 model simulation runs, 

reported as a measure of input importance with 95% confidence intervals.  

 

3.3.2.1 Morris Parameter Importance  

Parameter importance calculated by the Morris method are reported as influence 

index (μ∗) values with 95% confidence interval error bars derived from the method’s 

σ values for each input parameter. Normalised (0 – 1) values of μ∗ were calculated 

for graphing. These results were derived from 520 simulation evaluations of the crop 

model. This represents 65 data sets as the computational requirements for the Morris 

method is: Simulation count = n * (p + 1), where n is the number of data paths (data 

sets) through the input parameter space, and p is the number of input parameters 

being evaluated. For these results, this equated to 520 = 65 * (7 + 1) simulations. The 

value of 65 data sets, a user definable input to the Morris calculation, was established 

after reviewing multiple runs involving from 20 to 100 data sets. A value between 60 

and 70 data sets was shown to be optimal. The Morris values in Figure 3-2 show 
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how the most influential input parameters vary between model outputs. For days to 

emergence (Figure 3-2 Emergence Days after Sowing), the most influential input 

parameters are BaseTemp, OptTemp and OptTempDD, while the other four inputs, 

MaxTemp, CriticalPhotoperiod, OptPhotoperiod, and Twilight, had minimal effect 

on the output value. From the other panels (Figure 3-2 Flowering Days after Sowing, 

Biomass), critical photoperiod (CriticalPhotoperiod) was the standout influence on 

days to flowering, while CriticalPhotoperiod and BaseTemp appear to be driving the 

phenology’s contribution to biomass production for this data set.  

 

The confidence intervals reveal that, with the exception of BaseTemp for emergence 

and CriticalPhotoperiod for flowering, the rank order of the input parameter 

influences was not absolutely certain. Where influence values are close, the 

confidence intervals overlap significantly. This was consistent with the observation 

in the analysis of the convergence of the Morris method, that the order of input 

parameter influences remains uncertain, even when the number of simulation 

exections was increased. The identification by the Morris method of the most 

important influencers and the insignificant influencers was still correct.  

 

3.3.2.2 Sobol parameter importance  

Sobol Total Effects Indices were calculated using 9,000 simulations. The values, 

with 95% confidence intervals, are displayed in Figure 3-2 for the seven input 

parameters for each of three model outputs. The BaseTemp was the most influential 

input parameter for determining the value of the model output days to emergence 

(Figure 3- 2). The influence indices for the output days to flowering (Figure 3-2)) 

show the input CriticalPhotoperiod was the most influential input parameter. The 

input parameters BaseTemp and OptPhotoperiod were identified as the next ranked 

indices, with Twilight having a value that was close to the values of these two, but 

with a wider margin of error, so its ranking was more uncertain. For the output 

Biomass, the input parameter BaseTemp has a clear ranking of one, with 

CriticalPhotoperiod being ranked number two, while MaxTemp had the lowest 

ranked influence factor. The influence indices of the other four inputs parameters 

had values which were too close together to assert an order of ranking.  
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3.3.2.3 MARS method parameter importance 

The importance indices for each input parameter were reported by the MARS 

emulators (Figure 3-2). Results for the days to emergence (Figure 3-2) showed 

BaseTemp as the most significant input factor with an index of importance of 100, 

OptTemp with an index of importance of 37 and OptTempDD with an index of 

importance of 15. The other four input parameters, MaxTemp, CriticalPhotoperiod, 

OptPhotoperiod and Twilight, were identified as unused by the MARS model and 

given importance indices of zero. It is worth noting that for the MARS analysis, the 

values reported reflect the analysis of the emulator, not an analysis of the functioning 

of the APSIM crop model itself. This is a limitation of using an emulator as an 

approximation of a full model.  Results for the days to flowering show that 

CriticalPhotoperiod was the most important input parameter, MaxTemp as unused 

and the remainder of the inputs falling between index of importance values of 13 and 

45. The input MaxTemp was classified as having an input importance of just 2.8 on 

the 0 to 100 scale by MARS. Input importance for Biomass (Figure 3-2)) showed 

CriticalPhotoperiod and BaseTemp as the most important input factors, with all 

inputs making a contribution to the calculation of the biomass output.  

 

3.3.2.4 Comparison of parameter importance results 

When comparing the parameter importance indices, the Morris method had notably 

larger confidence intervals (error bars) than the Sobol method for each of its input 

parameters. The shorter confidence intervals provided greater distinction between 

values when assessing the index value’s order and greater accuracy when assessing 

the index’s probable true value. The Morris estimates, however, required only 6% of 

the number of simulations (520 simulations instead of 9216 simulations) that the 

Sobol method required. The MARS importance indices were not reported with 

confidence intervals. Parameter importance rankings, based on the median index 

values, were consistent between all three methods with the exception of one pair of 

parameters values in each of the MARS method’s flowering and biomass rankings. 

For the Morris and the Sobol methods, OptTempDD and Twilight inputs ranked fifth 

and sixth, respectively. For the MARS method this order was reversed to Twilight 

being ranked fifth and OptTempDD being ranked sixth. If the confidence intervals of 

the Morris and Sobol methods were taken into consideration, then it was not possible 
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to assert that this discrepancy in order had any significance as either order fell within 

the margins of error. Additionally, these are both showing low levels of sensitivity 

compared to more important parameters. The ranking of the more important 

parameters is consistent between methods. 

 

In comparing the values of the importance indices relative to other indices calculated 

by the same method, more discrepancies between the methods became apparent. For 

the days to emergence, the Morris method (Figure 3-2) had the same pattern for the 

relative values of the indices to that of the MARS method (Figure 3-2), with the 

exception that the MARS values for CriticalPhotoperiod, MaxTemp, OptPhotoperiod 

and Twilight were zero where Morris values were close to zero. The Sobol method 

had only BaseTemp as significantly higher than all the other indices, with the other 

six index values all close to 0.3. None of the Sobol Total Effects indices for the days 

to emergence had a value of zero within their error margin, which was notably 

different from the results of the MARS method. The results for the days to flowering 

(Figure 3-2) also showed consistency between the Morris method and the MARS 

method. The results for the Sobol method (Figure 3-2) showed the index value for 

CriticalPhotoperiod as being 0.75, which was about one and a half times the values 

of the other input parameters. The Morris and MARS methods indicated that the 

importance of CriticalPhotoperiod was three to four times the value of the other 

input parameters. A similar situation was observed for the biomass output (Figure 3-

2), where the range of values for the Sobol total effects index was much narrower 

than the range of values for either the Morris index or the MARS index of 

importance. 

 

3.3.3 Comparison of additional results 

 

The MARS method delivered several potentially useful additional outputs. Firstly, 

the MARS model building process developed a detailed and precise mathematical 

equation which described the contributions and interrelationships of all input 

parameters required to produce the predicted output value: a listing of the equation 

for the ARES emulator for Days to Emergence is included in Appendix I. Secondly, 

as an option when running the MARS model, additional statistics can be generated to 
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provide simple validation of the performance of the model. Statistics generated 

during the research phase of this project included: correlation coefficients (r), 

RMSE, residual root mean squared error (RRMSE), mean absolute error (MAE), and 

relative mean absolute error (RMAE). A third optional output of the MARS 

approach is the ability to create surface plots of the interactions between a set of any 

two input parameters, as shown in Figure 3-3.  The panel on the left side of Figure 3-

3 shows the interactions between twilight and critical photoperiod for their combined 

impact on biomass over the input parameters’ normalised input ranges. Twilight is 

shown to have an increase in its effect as its value increases while critical 

photoperiod is low but has a constant effect as critical photoperiod nears its upper 

limit. Critical photoperiod is shown to be the predominant driver of the combined 

effect of these two input parameters, with increasing critical photoperiod having 

increased effect. The right-hand panel of Figure 3-3 shows a similar but opposite 

effect for the interaction between base temperature and optimum temperature effect. 

Base temperature is shown to be the primary driver of the interactions, with values 

low in its range having a significant effect while higher values have reduced effects, 

regardless of the value of the optimum temperature effect. 

To produce these surface plots of the interactions between two input parameters and 

their combined contribution to the value of an output variable, a database of a great 

many input parameter value settings and the value of the sensitivity index, as it is 

affected by varying each of the other input parameters of interest, is required to be 

built. The Morris and Sobol sensitivity indices are calculated as the mean effect on 

the output value for the range of values of the input parameters used for the analysis 

run. To calculate the sensitivity indices for each point of interest across all input 

ranges and input interactions would require a very large number of individual SA 

runs. While, in theory, this could be done for Morris and Sobol sensitivity indices, 

the issues of running such large numbers of simulations makes the approach 

impractical. 
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Figure 3-3. Surface plot produced from data generated by the multivariate adaptive 

regression splines (MARS) method. 

This plot shows the interactions between two input parameters, BaseTemperature 

and CriticalPhotoperiod, and their combined contribution to the biomass output 

value. The input variables are shown with 0 to 1 value scales which equate to the 

minimum and maximum values of these variables used to develop the MARS model. 

The contribution to output value, the z-axis, indicates the relative importance the 

combined values have in contributing to the biomass value as a proportion of each 

input’s maximum contribution for this output across all combinations of inputs. 



CHAPTER 3: PAPER 1 - The effectiveness of using machine learning emulators 

50 

 

Table 3-4. MARS model input importance indices. 

Seven input parameters for each of seven models of output targets. The models were 

developed based on 15360 APSIM simulations, with the simulation data set split 

80/20 between training and testing of the MARS models (12,288 training / 3,072 

testing simulation data points). The accuracy of the models was assessed by 

calculating the R2 coefficient of determination and the COELM index for the 

agreement between the APSIM output values and the values generated by the MARS 

model. 

Input  

Parameter 

Output Targets 

EmergenceDAS FlowerDAS MaturityDAS Biomass GrainWt PodWt NodeCnt 

BaseTemp 100 30 33 100 22 25 35 

OptTemp 37 24 16 58 24 24 26 

MaxTemp 0 2 24 12 16 16 0 

OptTempDD 14 13 28 15 7 7 20 

Twilight 0 34 32 26 40 41 23 

OptPhotoperiod 0 39 36 39 39 41 33 

CriticalPhotoperiod 0 100 100 99 100 100 100 

r2 0.999 0.998 0.996 0.983 0.968 0.966 0.981 

COELM  0.976 0.956 0.940 0.871 0.810 0.805 0.868 

 

 

Values for seven MARS models developed to predict outputs are shown in Table 3-

4. Included as measures of confidence are the R2 and COELM indices. These values 

assess the accuracy of the MARS models to predict the true output value for the sets 

of test data. All models demonstrated very high predictive ability. The slightly lower 

COELM index values (in the range of 0.80 to 0.85) calculated for the grain weight 

and pod weight models reflect outputs that were more complex to calculate, or that 

were being influenced by input parameters that were not included in the analysis, and 

so have output values that could not be calculated with the same level of confidence 

as outputs that have less complex influences from inputs parameters. 

 

By expanding the number of APSIM crop simulations to include a range of sowing 

dates and a range of crop production regions, the sensitivity of the phenology routine 

of the crop model to different environmental situations was able to be assessed. In 

place of the detailed analysis of the sensitivity indices of each SA method, the 

indices of each method were normalised to a common scale and compared using 

simple scatter plots. The results from the expanded set of simulations showed a 

reassuring level of agreement between the three SA methods. The agreement 
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between the Morris method and the MARS method (Figure 3-4b) was stronger than 

the agreement between the Sobol Total Order Index (Sobol St) method and either the 

Morris method (Figure 3-4a) or the MARS method (Figure 3-4c). The combined R2 

values for each of these comparisons; Morris to Sobol (St), Morris to MARS, and 

Sobol (St) to MARS; were 0.81, 0.89, and 0.82, respectively. The majority of zero 

value indices for the MARS method, evident in both Figure 3-4b and Figure 3-4c, 

represent the indices for CriticalPhotoperiod, OptPhotoperiod and Twilight for 

Emergence Day after Sowing for all sowing times at all locations. This is a reflection 

that these input features were not used in any of the MARS emulators for Emergence 

Days after Sowing. 
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Figure 3-4. Scatter plots of the normalised index of importance values. 

All input factors on all outputs for each of (a) Morris versus Sobol Total Order (St); 

(b) Morris versus MARS, and (c) Sobol (St) versus MARS for the expanded data set 

of three crop production locations. The R2 values of the linear regressions are shown. 

The index of importance values are a measure of the relative importance of each 

input parameter for its effect on a given model output parameter. Indices of 

importance range in value in this analysis from 0 for no contribution to the output, to 

100 for the most significant contribution. Values for indices of seven input 

parameters and their importance for each of seven output parameters have been 

included in these data sets for analysis. 
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3.4 Discussion 

 

This research has focused on three aspects of SA techniques; efficiency, accuracy, 

and level of insight into parameter interactions; to assess the applicability of the 

MARS method for the SA of process driven models, using a model of chickpea 

phenology as an example. Each method of SA uses a different approach to analyse 

the problem, produces different measures of interaction between inputs and outputs, 

and their accuracy is assessed using different statistical measures. This lack of a 

common approach to the analysis and subsequent measures of statistical performance 

of each method meant that observable end results with justifiable measures of 

performance have been used as the basis of comparisons. 

 

3.4.1 Efficiency  

 

Efficiency has been measured by the number of APSIM simulations required for the 

SA method to be able to consistently determine the significance that each input has 

on an output value. With the MARS method, the number of simulations required for 

accurate predictions of the output values and, by extension, for accurate prediction of 

input parameter importance indices, varied with the output target. Both the Morris 

and Sobol statistical methods take very different approaches to estimating the 

importance of input parameters compared to the data driven algorithm of the MARS 

method, and this variation in determining input importance between different output 

targets was not observed for these statistical methods.  Outputs, such as days to 

emergence and days to flowering, are determined in the crop model by less complex 

processes than outputs such as biomass and grain weight. This is partially due to the 

time period involved, with emergence and flowering occurring earlier in the 

simulation process than the outputs which are reported at the time of harvest. The 

complexity in calculating the impacts of all inputs on the output value is reflected in 

the number of simulations required to determine these relationships. Consequently, 

the days to emergence and days to flowering required fewer simulations, about 4000, 

to establish very accurate predictions, while predictions for biomass were continuing 

to improve with greater than 10,000 simulations. Using the MARS method, 500 

simulations produced R2 and COELM index values of 0.95 and 0.84 for days to 
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emergence and values of 0.98 and 0.86 for days to flowering. The input importance 

indices with this number of simulations were consistent with the Morris method at 

350 simulations, noting that the confidence intervals for the Morris method are quite 

wide. This indicates that, in situations where the calculation of the output value is 

not complex, the MARS method can have computational efficiency of the same 

order of magnitude as the Morris method. For more complex output values, 

computational requirements were in the order of ten times that required for the 

Morris method, being 4000 simulations as compared to 350 simulations. The MARS 

method was still twice as efficient as the Sobol method at 9000 simulations in this 

comparative study. Consistent with other research (Morris 1991; Campolongo et al. 

2007; Pianosi et al. 2016; Sarrazin et al. 2016; Jaxa-Rozen & Kwakkel 2018) the 

Morris method was found to be very computationally efficient, returning stable 

predictions of the importance of all input parameters after 350 simulation runs.  This 

is within the guidelines for expected values reported by Pianosi et al. (2016). The 

Sobol method required approximately 9000 simulations to be run to determine the 

first order and total order effects indices with low margins of error. These findings 

show that the MARS approach is closer to the Morris method in terms of efficiency. 

Both these methods may be considered to be more efficient than the Sobol method. 

The focus of the Sobol method is to produce a comprehensive sensitivity analysis 

with the ability to analyse multiple orders of input parameter interaction. 

 

3.4.2 Accuracy  

 

The second aspect of SA that has been considered was the accuracy of the analysis 

of input parameter importance. Each analysis method has a different way of 

determining the significance that variations in the input parameter is having on the 

output. Morris uses EET, Sobol apportions the variation in the output value to 

individual inputs and MARS analyses the increase in the value of the generalized 

cross validation (GCV) when removing an input variable. It is expected that the 

differing approaches will yield some variations in the values reported for input 

parameter importance. Where inconsistencies are observed between the outputs of 

the different methods, expert knowledge of the underlying relationships is required 

to assess which result has the higher probability of being correct. A result of 
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particular interest in the analysis of the chickpea phenology is that of the input 

importance indices for the days to emergence. In the field, soil temperature is the 

primary driver for emergence with minimal influence from day-length or solar 

radiation, other than from the heating effect on the soil. The chickpea model uses 

minimum and maximum temperatures from the climate file to calculate the 

accumulation of thermal time and this is used to determine the rate of emergence of 

the crop. The Morris method ranks the importance of the factors, most significant to 

least significant, as: BaseTemp, OptTemp, OptTempDD, MaxTemp, 

OptPhotoperiod, Twilight, and CriticalPhotoperiod; with the three light factors being 

rated close to zero. This was an expected result. The results of the MARS method 

agreed with the results of the Morris method. For the MARS method, the four input 

factors; CriticalPhotoperiod, OptPhotoperiod, Twilight and MaxTemp; are reported 

as not used in the calculation of the days to emergence. That is, for the MARS 

emulator, the days to emergence was completely insensitive to the values of these 

factors. The results of the Sobol analysis were less clear. While the ranking of the 

factors could not be considered as different, within the margins of error, from the 

rankings of the other two methods, the values of the total effects’ indices were 

consistently higher than expected. All input parameters, apart from BaseTemp, were 

analysed as having total effects index values, within margins of error, of 0.3. All 

input parameters apart from BaseTemp having consistent effect was not in 

agreement with this expectation, nor with the results of the other two methods. The 

reason for these Sobol values being higher than the Morris and MARS values was 

not immediately evident but is a function of the interactions between input 

parameters, the underlying concept of proportion of variance and the effect that 

normalising these values has on their reported value. What was clear, however, was 

the more consistent agreement between the results of the Morris and the MARS 

methods than either of these methods with the results of the Sobol method. This 

observation can be attributed to the fact that the Sobol analysis approach is focused 

on providing a comprehensive and accurate analysis of input parameter sensitivities, 

while the Morris and MARS approaches are more suitable for efficient estimations 

of approximate sensitivities. 
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3.4.3 Confidence in reported values 

 

As part of the review of the accuracy of the reported values, consideration was also 

given to the level of confidence that could be placed in the reported values, and if 

there were any additional indicators that might highlight erroneous analysis. Morris 

and Sobol report only the values calculated from the data analysed. Careful review of 

results and expert knowledge is required to detect if errors might have occurred. For 

example, early data sets for this research included combinations of input parameters 

which resulted in a failure to produce a crop yield in a small number of instances for 

one location. While valid for the crop simulation, these few data combinations 

corrupted the Sobol analysis. The error was not found until the results were shown to 

be inconsistent with those of the Morris and MARS analyses and a detailed review 

was undertaken to identify the problem. For the MARS method, the level of 

confidence that can be placed in the order of the input parameters and the values of 

their indices of importance corresponds directly to the level of confidence that can be 

placed in the ability of the emulator to predict the output values. This approach 

forms the basis of many of the input selection analyses reported in literature (Kursa 

& Rudnicki 2010; Salcedo-Sanz et al. 2014; Chowdhury et al. 2015; Li et al. 2016; 

Prasad et al. 2017; Chekole 2019; Gebauer et al. 2019). In this research both the R2 

and COELM index values have been used as measures of the accuracy of the emulator 

in predicting the output values. Two factors affect the accuracy of the emulators. 

Firstly, the number of simulations used to develop the emulator, with less complex 

outputs, such as the days to emergence, requiring less simulations than outputs that 

involve more input factors and more complex computation, such as biomass. The 

predictive abilities of all emulators improved with more simulation data (Ma et al. 

2014; Şahin et al. 2014; Taormina & Chau 2015; Karandish & Šimůnek 2016). 

Secondly, the accuracy of the emulators appeared to be limited if the input 

parameters did not provide all the data required to calculate the output values, even 

when large numbers of simulations were evaluated. Input parameters other than the 

phenologically sensitive ones being assessed, such as rainfall in the case of biomass, 

would be expected to contribute to the output value. The ability of the emulator to 

accurately predict the output produced by the biophysical crop model was 

compromised, and this was reflected in the lower values of R2 and the COELM index 

which do not improve significantly when more simulations were included in the 
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training data set. During the assessment process, it was found that the R2 and COELM 

indices were simple and intuitive measures with which to assess the level of 

confidence that could be placed in the predictions of the SA outcomes for the MARS 

method. 

 

3.4.4 Additional benefits 

 

While all three methods return index of importance values (Morris 1991; Sobol' 

2001; Campolongo et al. 2007; Jekabsons 2016), what is not evident from the 

reported results is how this index of importance value might vary across the range of 

input values and how one input might be interacting with another input parameter. 

Once the MARS emulator was built during the analysis process, surface plots were 

created (e.g., Figure 3-3) showing the interactions of a pair of selected input 

parameters and their combined contribution to the output over the ranges of values 

tested for the inputs on a normalised (0 – 1) scale (Jekabsons 2016). This graphical 

output can be useful in providing a simple visual understanding how parameters are 

interacting, for assessing if a response is linear or not, to identify if a local minima or 

maxima has been targeted or assist in refining input parameter settings by targeting a 

feature in the response surface that is of particular interest. The Morris method 

provides a sigma value which indicates the level of non-linearity of the input 

parameter or its level of interaction with other input parameters, while the value of 

μ∗ itself is a mean of all the elementary effects of the specific input parameter. The 

Sobol method can evaluate first, second and further orders of effects (levels of 

parameter interactions) as well as the total order effects, but there is no simple way 

of visualising how these interactions vary across the input parameter’s selected range 

of values. Another feature that the MARS method provides is that of the emulator 

that is generated. For some applications, the creation of this emulator may well be 

the focus a development exercise (Kouadio et al. 2018; Lawes et al. 2019). This 

research has demonstrated that a range of modelling practitioners may well derive 

significant benefits for SA out of the process of developing the emulator. Whether or 

not the emulator itself has a particular use would depend on the task being 

undertaken. 
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One disadvantage of the MARS method is that model interpretation can be difficult 

if two input parameters are closely correlated. The MARS algorithm will randomly 

select one of the input features and develop the emulator based on its influence. The 

correlated feature may be evaluated as not contributing any additional predictive 

power, and so will be assessed as having a zero or low index of importance 

(Boehmke & Greenwell 2019). The Morris and Sobol methods will assess each 

input’s effects on the output value, regardless of correlation with any other input 

feature. Another disadvantage of the MARS method is that it does require extra steps 

to generate the emulator before the SA results are known. This involves both some 

data manipulation of the APSIM simulation outputs, as well as computational 

processing time for the generation of the emulator. For this research, the 

development of the MARS emulators was undertaken using MATLAB® (ver. 

R2017b). There are alternative code libraries available for other language platforms 

including R and Python (Rudy 2017; Milborrow 2019). As an indication of the 

additional computational time required for the MARS method, where this study 

required approximately two hours to run 15,360 APSIM-NextGen simulations, an 

additional 45 minutes was required for the MATLAB routines to generate the seven 

emulators for the seven selected output targets. This additional time covered the 

generation of the individual emulators, which took between three to twenty minutes 

for an individual emulator depending on the complexity of the calculation process, 

the testing of the emulators, generation of log files and summary spreadsheets and 

the generation of several surface plots per emulator. While it is a significant amount 

of time, the potential time and computational savings offered over the Sobol method 

are not insignificant. When the additional insights offered by the MARS method are 

taken into consideration, the benefit to cost ratio of using this method becomes 

attractive. Some advantages and disadvantages of the different methods are listed in 

Table 3-5. 
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Table 3-5.  Advantages and disadvantages of using the Morris, Sobol and MARS 

methods. 

Findings from the study allow comparisons with using the MARS methods to 

undertake sensitivity analysis of process driven models. 

Method Advantages Disadvantages 

Morris Computationally very efficient. 

Elementary Effects Test (EET) a 

simple concept to understand and 

form accurate conclusions from. 

No detailed analysis of input 

parameter interactions. 

Sobol First, second and total order 

interactions of input parameters 

possible. 

 

Computationally expensive to very 

expensive. 

Proportion of variation of response 

analysis approach requires careful 

consideration of results to form 

accurate conclusions. 

MARS Computationally more efficient 

than Sobol method (40% to 80% 

gains compared to Sobol first order 

analysis). 

Mathematical equation produced 

detailing the contribution and 

interactions of each input 

parameter. 

Data produced by emulator allows 

2D and 3D graphics to be plotted to 

allow visualisation of parameter 

interactions and output response. 

Analysis of the goodness of fit 

value for the emulator’s predicted 

values against the observed values 

gives a good measure of the 

accuracy and trustworthiness of the 

reported SA results. 

Additional computing steps and 

computing power required to 

generate ML emulator. 

Results can be misleading if closely 

correlated input parameters are 

included. One parameter may be 

selected while the other is omitted 

from inclusion in the development 

of the emulator. 

 

3.5 Conclusion 

 

The results of the research presented in this chapter have answered in the affirmative 

the first of the research questions of this thesis, that is: that there are features of 

MLEs, specifically input variable importance, which are comparable for the purposes 

of SA, though not identical, as the indices generated for the input parameters of the 

process-driven model itself by the Morris and the Sobol methods. Morris and MARS 
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are most directly comparable as they involve simplified methodologies for the 

calculation of sensitivity indices, while the Sobol approach is a more comprehensive 

analysis method and generates sensitivity indices for (potentially) multiple orders of 

input parameter interactions. From this point of view, the Sobol approach may be 

considered to produce a more accurate sensitivity analysis than either of the Morris 

or MARS approaches. Development, parameterisation and application of process 

driven models require that appropriate adjustments are made to the input parameters 

that drive the model’s response functions. The determination of which input 

parameters are most influential in determining particular outputs is determined using 

SA. More advanced SA techniques can reveal how those input parameters interact 

over a selected range of input values. This research has shown that the data centric 

MARS method produces sensitivity importance indices with similar computational 

efficiency of the Morris method for simply calculated output values and can be about 

twice as efficient as the Sobol method for complex output values. The confidence 

that can be placed in the order and the values of the importance indices can be 

crosschecked in the case of the MARS method with the statistical accuracy of the 

emulator. Additional insights into how the input parameters affect the model’s 

output values are offered by MARS method but are not offered by the Morris or 

Sobol approaches. 
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CHAPTER 4: PAPER 2 - Comparison of machine 

learning methods emulating process driven crop 

models 

 

Preamble 

A range of ML algorithms was considered for inclusion in the previous research 

chapter, Chapter 3, of this thesis. These included random forests (RF), artificial 

neural networks (ANN), extreme learning machines (ELM), and multivariate 

adaptive regression splines (MARS). The MARS algorithm was selected due to a 

user’s ability to analyse what was happening in calculating the indices of parameter 

importance. This research was exploratory in nature, so it was important to be able to 

investigate what was happening if the results did not match expectations. Each of the 

other ML approaches operated as ‘black boxes’, where the internal calculations of 

the model are not available for analysis. The MARS models allowed the objective of 

this phase of the research to be met by showing that there is a high correlation 

between the parameter importance indices produced by the MARS method and the 

indices produced by the Morris method, and to a lesser extent, to the indices of the 

Sobol method. 

The next phase of the research, the focus of Chapter 4 of this thesis, involved 

expanding the number of parameters of interest for inclusion in the SA. This was 

done by evaluating chickpea time-of-sowing simulated trials across multiple 

locations in Australia. In preparing the experimental design and undertaking 

preliminary testing for this phase of the research, it became evident that the MARS 

method eliminated from its models, inputs that it assessed as having no, or very small 

effects, on the output values. The dropping out of input parameters rendered 

thorough SA impossible. An alternative approach to conducting SA using ML 

models was sought. It was identified that the speed of model development and highly 

efficient execution times for the MLEs could be utilised to alleviate the 

computational burden of undertaking traditional approaches for SA. The focus of the 

second and third research chapters (Chapters 4 and 5) of this thesis then pivoted to 

assessing the potential to use MLEs to run the very high number of simulations 

required for SA. The MARS method was included to maintain continuity with the 
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first research chapter. The RF and ANN approaches were included in addition to 

MARS method as they were the most used ML algorithms in the context of 

agricultural crop modelling. Subsequently, only the RF and ANN models were 

assessed as being suitable to undertake the Morris and Sobol analyses presented in 

Chapter 5 of this thesis. The pivot in thinking between Chapter 3 and Chapter 4 is not 

evident in the text of the chapters and could lead to confusion on behalf of the reader. 

What has been learnt from the need to redirect the research focus is that there is no 

single ML approach that is suitable for all situations, and that without quite thorough 

testing, there is no way of being certain that a particular approach will fulfil the 

objectives of a given task. In addition to this pivot in thinking, the software 

environment used to develop and test the MLEs was changed from MatLab (the 

machine learning thesis supervisor’s preferred platform) to an R environment, as this 

was what APSIM used as its interface for statistical analysis. This change is reflected 

in the source code of the algorithms implemented, and the reported speed of model 

development and model execution in the case of the MARS/ARES models. 

 

4.1 Introduction 

 

The agricultural and environmental science disciplines have long utilised the power 

of computer modelling for scientific enquiry and knowledge advancement (Jones et 

al. 2016). Mechanistic models have been developed for many biological and 

environmental processes, and these models have subsequently been integrated 

together to form whole of system simulation computing environments which are 

complex and computationally expensive to configure, validate and run (Keating et al. 

2003; Holzworth et al. 2014). New developments in computer modelling are often 

driven by the need for cost reduction and improved efficiencies, as these two 

concepts are integral in the functioning of most modern economies and exist as non-

negotiable goals for most projects. As computing costs have progressively reduced 

over the past few decades, the size and complexity of experiments and analysis based 

on computer modelling has grown. These simulation experiments can require the 

running of many thousands, or even millions of model runs, and produce extensive 

amounts of data (e.g. Phelan et al. (2018) and Casadebaig et al. (2016)). A reduction 
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in the computational costs of producing large amounts of data is one area that is a 

target of improved efficiency efforts. 

 

Machine learning (ML) approaches for predictive modelling are having a significant 

impact on many areas of society, including areas of scientific research, not the least 

of which are agricultural and environmental sciences. Computational efficiency in 

producing predicted outcomes is one benefit of ML algorithms (Balakrishnan & 

Muthukumarasamy 2016; Karandish & Šimůnek 2016; Shastry et al. 2016; Singh et 

al. 2017; Ryan et al. 2018; Feng et al. 2019; Niazian & Niedbała 2020). Much 

research involving ML technologies revolves around the approaches being able to 

take diverse data sources, such as remote imaging and multiple sensor inputs, and 

predict outcomes such as vegetation type, soil water content, biomass and crop health 

(Shakoor et al. 2017; Prasad et al. 2018; Lawes et al. 2019; Feng et al. 2020; Obsie et 

al. 2020; Zhang et al. 2020; Fajardo & Whelan 2021; Guo et al. 2021; Paudel et al. 

2021), while the potential computational efficiency gains have received much less 

attention. Systems modelling, be it for weather, environmental or agricultural 

systems, are undertaken using complex, process driven models. The agricultural 

production systems simulator (APSIM-NextGen) (Holzworth et al. 2018) is one such 

modelling system in the agricultural and environmental sciences domain. While 

process driven modelling systems like APSIM-NextGen provide extensive modelling 

and research opportunities due to their complexity and flexible configuration, they 

are computationally expensive. This limits experimental designs where resources are 

insufficient to run large numbers of simulations (e.g. Casadebaig et al. (2016)). 

Sensitivity analysis (SA) often requires large numbers of simulations to evaluate the 

interactions between changes in input factor values and the effects these have on 

target output values. While the expectations and requirements to validate models 

using SA continues to grow (Razavi et al. 2021), the ability to undertake thorough 

SA of complex systems models is compromised by the limitations imposed by 

computing power. 

 

There are studies which consider the use of emulators to improve the efficiency of 

performing SA on complex environmental models. For example, Stanfill et al. (2015) 

and (Ryan et al. 2018) both used the statistical approach of generalised additive 

models to improve computational efficiency of SA applications. Wallach and 
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Thorburn (2017) and Sexton et al. (2017) discuss the relatively new approach, at 

least in crop modelling research, of utilising machine learning based emulators 

(MLEs) to improve computational efficiency in uncertainty analysis. Apart from 

these studies, little research, has been done on the potential of using ML approaches 

to improve the computational efficiency of SA of complex process-driven 

biophysical models. The research undertaken in Chapter 3 of this thesis looked at 

comparing SA measures generated using traditional statistical methods applied to the 

process-driven model directly, and the measures of variable importance generated for 

an MLE. The MLE approach showed little or no gain over the efficient Morris 

method for the purpose of screening parameters. It did, however, demonstrate 

significant potential computational gains over the Sobol variance decomposition 

method.  More research is required to assess if a wider range of biophysical 

modelling scenarios can similarly benefit from using ML to undertake SA. 

Underlying this question is the issue of whether any particular ML approach is better 

able to be trained to predict the outputs of complex systems models. This issue has 

not been adequately addressed in literature. 

 

The objective of this research was to demonstrate that, by using input parameters 

used to configure and run APSIM-NextGen chickpea crop simulations, MLEs could 

be developed which are able to predict selected APSIM model outputs. If this is 

demonstrated, then the use of these MLEs would allow the replacement of the 

APSIM system model with a small and efficient predictive model that is effective for 

the range of input parameter variations used in the training data set. These MLEs 

could then be used to undertake SA of the underlying modelled relationships. A 

further objective was to test and see, when the input parameters used to develop the 

MLEs were diverse enough and contain enough variation in values observed, if the 

MLEs developed were robust enough to be able to accurately predict crop outputs for 

all locations within the regions covered by the training data set. To fulfil these 

objectives, the APSIM-NextGen chickpea model was configured to simulate crop 

production over a 120-year period at seven locations throughout the chickpea 

production regions in Australia. Six model outputs were reported and further used to 

train emulators based on three ML algorithms: 1) artificial neural network (ANN), 2) 

multivariate adaptive regression splines (MARS) and 3) a random forest (RF)), using 

24 input factors from the APSIM simulations. The MLEs were assessed for 
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predictive accuracy, input variable importance and computational effort. The 

assessments of model performances were conducted for the locations for which the 

MLEs were trained, as well as two additional locations not included in the training 

data set to test emulator robustness. 

 

4.2 Methods 

 

Three MLEs representing different ML algorithmic approaches were developed from 

data generated from APSIM simulations of chickpea growth, development, and yield 

for seven locations in the Australian chickpea production regions. The MLEs were 

trained on 80% of the generated data and then tested using the remaining 20% of 

data. Goodness-of-fit of emulator generated data against the original APSIM data for 

six model outputs were analysed and are presented in the results section. The output 

targets were as follows: 1) days from sowing to emergence (EmergenceDAS), 2) 

days from sowing to flowering (FloweringDAS), 3) days from sowing to first fruiting 

pod (PoddingDAS), 4) days from sowing to crop maturity (MaturityDAS), 5) above 

ground crop biomass at harvest (kg/ha) (Biomass), and 6) weight of harvested grain 

(kg/ha) (GrainWt); cover some of the more significant chickpea model outputs for 

monitoring and assessing crop growth from emergence to harvest. Additionally, two 

test locations within the chickpea production area, but not included in the original 

seven locations, were used to generate the ML data that was then compared against 

the APSIM generated outputs for further benchmarking purposes. 

 

4.2.1 Computing environment 

 

All simulations and data analyses were performed on an Intel Core-i7 7600U CPU 

2.9 GHz based computer with 16 GB RAM running Microsoft Windows 10 

operating system. The APSIM version used was APSIM-NextGen (version 

2020.02.05.4679) (Holzworth et al. 2018). The APSIM-NextGen prototype chickpea 

model was used as the crop model. Built-in features of the APSIM-NextGen User 

Interface were used to configure and execute factorial simulation experiments which 

generated the data used for building the MLEs.  
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4.2.2 Machine learning based emulators 

 

The MLEs were developed and run in an installation of R (version 4.0.3 (2020-10-

10)) (R Core Team 2020) in Microsoft Windows. The R environment was also used 

for data preparation and manipulation, reporting and graphics generation, with the 

packages ggplot2 (version 3.3.3) (Wickham 2016) and other packages from the 

tidyverse library (version 1.3.0) (Wickham et al. 2019) primarily used for these 

functions. The three MLEs, which are detailed below, were: nnet representing an 

ANN, Earth representing a MARS implementation and a Random Forest 

representing a decision tree implementation. 

 

4.2.2.1 Artificial Neural Network 

An ANN is a computing paradigm which consists of a massively interconnected 

network of nodes acting in parallel which simulate the actions of biological neurons. 

Each network connection is characterised by a weighting factor. Each neuron 

calculates the sum of its weighted inputs and produces an activation level output 

value via a generally nonlinear activation function. Models based on ANNs are 

developed by adjusting the number of neurons, number of layers of neurons 

(topology), neuron characteristics of activation functions and bias, and the 

sensitivities to training responses (Lippmann 1987). In this experiment, the standard 

R library, nnet (version 7.3-15, 2021-01-21)  based on the work of Venables and 

Ripley (2002) has been used to implement a feed-forward neural network with 20 

nodes in its hidden layer and utilising 100 iterations for self-configuration. These 

settings were established by trial and error as optimal for predictive accuracy. The 

number of nodes was tested over the range of 10 nodes to 40 nodes, using increments 

of 2 nodes. The iterations for self-configuration were tested over a range of 50 to 200 

in increments of 10. Default settings were utilised for all other model parameters. 

The ANN algorithm has been included in this study because of its general 

applicability in environmental and biological studies and its wide use as a baseline 

for comparative ML studies.  
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4.2.2.2 Multivariate Adaptive Regression Splines 

The MARS method for modelling is a flexible regression modelling approach which 

has its roots in the recursive partitioning approach used in some forms of regression 

analysis. Continuous models with continuous derivatives are generated by repeatedly 

splitting product regression splines and introducing new basis functions for 

additional splines. This continues until the addition of more splines fails to improve 

the fitting of the response curves to the sampled data (Friedman 1991a). For this 

study, the earth package (version 5.3.0) (Milborrow 2020) in R was used to 

implement the MARS algorithm. The MARS algorithm has been included in the ML 

approaches for this study to follow on from the research conducted in Chapter 3 of 

this thesis. It provides an interesting comparison for computational performance and 

predictive accuracy with the other two pure ML based approaches. 

 

4.2.2.3 Random Forest 

Random forests are a computing paradigm based on an ensemble of decision trees. A 

random selection of features is used to split each node, with the accuracy of 

prediction used to weight the strength of each tree. The generalisation error for 

forests reduces as the number of trees increase and correlation between strong 

individual trees increases. Random forests have been shown to be quite robust with 

respect to outlier data points and noise within datasets (Breiman 2001; Sexton & 

Laake 2009). The implementation of the RF algorithm used was the randomForest 

package (version 4.6 – 14 2018-03-22) (Liaw & Wiener 2018) in the R environment. 

Default values were used for all model settings. The default settings include that the 

number of features to be included in each decision tree is (p/3), where p is the 

number of input parameters. The default settings also specify that the algorithm 

calculates, via its internal code, the number of decision trees that are formed to 

optimise its predictive accuracy during its learning phase. The RF algorithm has been 

included in this study because of its wide applicability and use in agricultural and 

environmental modelling. 

 

 

4.2.3 Simulation configuration 
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Simulations of chickpea crops were configured in APSIM-NextGen for seven 

locations throughout the chickpea growing regions in Australia (Figure 4-1) for 120 

years (1900 to 2019). Reports were configured in APSIM to record all relevant input 

settings, summarise weather details, report the days after sowing of key crop 

development phases and report final above ground biomass and grain yield. The 

report produced one row of data at each harvest event, the report row constituting 

one ‘observed data’ set. The input settings and summarised weather details were used 

as the inputs to train the MLEs, with the crop development times, biomass and yield 

details used as the output targets for training and testing. In addition to the seven 

locations used to train the MLEs, two extra test locations, not included in the training 

and testing data sets, were used to test the robustness of the MLEs for locations 

outside the development data set. 

 

4.2.3.1 APSIM simulation configuration 

A typical soil type for the area was selected for each location. The details of these are 

shown in Table 4-1. All simulations had plant available soil water reset to 70% 

capacity on 1st March in each simulation year. Sowing dates were simulated for each 

5-day interval from 30 March until 5 August. Row spacing was consistent at 0.5 m, 

sowing depth was 50 mm, and plant population was 30 plants/m2 for northern sites 

(above 32o S), and 40 plants/m2 for southern sites (below 32oS). Two chickpea 

genotypes, Desi and Kabuli, were sown at each location, with three varieties for each 

genotype; Seamer, HatTrick and CICA1521 for Desi; Monarch, Almaz and Kalkee 

for Kabuli. The genotypes differed from each other in four phenological parameters, 

each defined in terms of thermal time; ShootLag, VegTarget, LateVegTarget and 

FloweringTarget.  
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Figure 4-1. Chickpea growing regions in Australia and the seven locations used to 

develop machine learning MLEs.  

These seven locations (green dots), ordered by latitude are: 1) Emerald, Qld, 2) 

Bongeen, Qld, 3) Mungindi, NSW, 4) Mingenew, WA, 5) Gunnedah, NSW, 6) Clare, 

SA, and 7) Horsham, Vic. Additionally, two independent test locations (yellow dots) 

were also included: 8) Goondiwindi, Qld, and 9) Mildura, Vic. 
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Table 4-1. Soil descriptions by location used for chickpea crop simulations.  

The soil type descriptions and reference codes refer to the APSoil database of soils 

from which the properties of the modelled soils were sourced. 

Location APSoil description 
and code 

Profile depth (mm) Plant available water 
capacity (mm) 

1. Emerald Grey Vertosol  
(No 106) 

1500 282 

2. Bongeen Black Vertosol  
(No 001) 

1800 335 

3. Mungindi Grey Vertosol  
(No 906) 

1800 339 

4. Mingenew Clay 
(No 71) 

1800 320 

5. Gunnedah Black Vertosol  
(No 1174) 

1800 285 

6. Clare Clay Loam on Clay 
Loam over Clay 
(No 290) 

1500 284 

7. Horsham Grey Cracking Clay 
(No 1008) 

1300 341 

8. Goondiwindi Grey Vertosol 
(No 219) 

1800 262 

9.Mildura Sandy Loam over 
Sandy Clay Loam 
(No 332) 

1400 142 

 

4.2.3.2 Machine learning emulator inputs 

The development and evaluation of MLEs were assessed for six output targets of 

interest for chickpea production: EmergenceDAS, FloweringDAS, PoddingDAS, 

MaturityDAS, Biomass and GrainWt. The final development involved data for seven 

production locations around Australia, with additional testing of the MLEs 

undertaken using two additional locations which were not included in the 

development and testing data set.  Input factors (Table 4-2) used to train the MLEs 

were sourced from the reports generated by APSIM-NextGen. Weather details were 

summarised for three blocks of time from the day of sowing: 0 to 30 days, 31 to 60 

days and 61 to 90 days. Temperatures, both maximum and minimum, were averaged 

for each time block, while rain and solar radiation were summed to give totals for 

each time block. Soil water was represented in two ways. Firstly, a single value of 

how much plant extractable soil water (mm) was present at sowing (SowingESW) 

was included. Secondly, the soil’s water holding capacity, measured as the plant 

available water capacity (mm) (PAWCmm) and the sowing water content as a 

fractional value of this (FracPAWCmm), were included in the input parameters. 
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These two measures are highly correlated within a soil type, but variable between 

soil types. 

Table 4-2. Machine learning input factors used for the development of each of the 

three ML emulator types.  

The same inputs were used to develop MLEs for each of the six output targets. 

Input Factor 

Name 

Description 

AvgMaxT0_30 Average maximum temperature for 0 to 30 days after sowing 

AvgMaxT31_60 Average maximum temperature for 31 to 60 days after sowing 

AvgMaxT61_90 Average maximum temperature for 61 to 90 days after sowing 

AvgMinT0_30 Average minimum temperature for 0 to 30 days after sowing 

AvgMinT31_60 Average minimum temperature for 31 to 60 days after sowing 

AvgMinT61_90 Average minimum temperature for 61 to 90 days after sowing 

Cv 
Chickpea cultivar (coded as 1 to 6 for the different 

genotype/cultivar combinations used) 

FloweringTarget Phenological parameter. Differs between genotypes. 

FracPAWCmm Amount of soil water present at sowing. As a fraction of PAWC. 

Lat Latitude of the sowing location. 

LateVegTarget Phenological parameter. Differs between genotypes. 

PAWCmm Soil’s plant available water capacity to 1.5m depth (mm) 

Population Sown plant population in plants /m2 

Radn0_30 Sum of solar radiation for 0 to 30 days after sowing 

Radn31_60 Sum of solar radiation for 31 to 60 days after sowing 

Radn61_90 Sum of solar radiation for 61 to 90 days after sowing 

Rain0_30 Sum of rainfall for 0 to 30 days after sowing 

Rain31_60 Sum of rainfall for 31 to 60 days after sowing 

Rain61_90 Sum of rainfall for 61 to 90 days after sowing 

ShootLag Phenological parameter. Differs between genotypes. 

SowDepth Sowing depth of crop 

SowingDOY Sowing date as Day Of Year 

SowingESW Extractable soil water at sowing 

VegTarget Phenological parameter in thermal time. Differs between genotypes. 

 

4.2.3.3 Machine learning emulator targets 

Six APSIM-NextGen chickpea model outputs were recorded in the APSIM reports, 

along with their corresponding input factor values, to create ‘observed data’ sets. 

Each of the three ML approaches was assessed on how well an emulator could 

predict the output values generated by the APSIM-NextGen simulation, as well as 

assessing the time taken, indicating computational effort required, to develop each 
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ML emulator. This was undertaken on a comparative basis to assess differences 

between the various approaches. 

 

4.2.4 Statistical measures for ‘goodness-of-fit’ 

 

The ‘goodness-of-fit’ between the APSIM generated target values and those 

generated by the MLEs was assessed using the following statistical measures: (4.1) 

mean bias (MB), (4.2) mean absolute error (MAE), (4.3) root mean squared error 

(RMSE), (4.4) coefficient of determination (R2), and (4.5) coefficient of efficiency 

(COELM, also known as Legates-McCabe index) (Legates & McCabe Jr 1999). These 

metrics were used to compare the ML predicted versus APSIM-generated values 

datasets to determine the degree of match between the tested datasets.  

 

Mean bias (MB) measured in days or kg/ha, depending on the output 

  𝑀𝐵 =  
∑ (𝑦𝑖−𝑥𝑖)𝑛

𝑖=1

𝑛
  (4.1) 

 

Mean absolute error (MAE) measured in days or kg/ha, depending on the output 

 MAE =  
∑ |(𝑦𝑖

𝑛
𝑖=1 −𝑥𝑖)| 

𝑛
 (4.2) 

 

Root mean squared error (RMSE) measured in days or kg/ha, depending on the 

output 

 𝑅𝑀𝑆𝐸 =  √(
∑ ((𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1 )

𝑛
) (4.3) 

 

Coefficient of determination (R2) 

2

2

2 2 2 2
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  −  
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 (4.4) 

 

Coefficient of efficiency (COELM : Legates McCabe index) 
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In equations 4.1 through 4.5: ‘n’ is the number of pairs of (APSIM-generated (x), 

predicted (y)) values, where ’APSIM-generated’ is the APSIM generated value; and 

‘predicted’ is the ML emulator generated value for the model output. ‘i’ is the output 

generated from the ith set of input parameters. The six target outputs generated were: 

EmergenceDAS, FloweringDAS, PoddingDAS, MaturityDAS, Biomass and 

GrainWt. 

 

4.2.5 Variable importance 

 

The contribution that each input factor (Table 4-2) has towards the value of the 

output target (EmergenceDAS, FloweringDAS, PoddingDAS, MaturityDAS, 

Biomass or GrainWt) is calculated by the ML algorithm. The values reported (Figure 

4-2) have been standardised so that the most significant input is assigned an 

importance index value of 100, non-contributing inputs are given a value of zero (0) 

and all other inputs are rated with index values proportionate to the most influential 

input. The implementations of the ML algorithms for ANN, MARS and RF all had 

internal routines that calculated and reported variable importance indices. Each of 

these routines was configured to report index values rated on the reduction in the 

residual sum of squares (RSS) value of generated predictions versus the actual target 

values when the input parameter being assessed was included in the model. That is, 

the input that resulted in the greatest reduction in the RSS when it was added to the 

algorithm was assigned an importance index of 100 (Friedman 1991a; Milborrow 

2019).  

 

4.3 Results 

 

4.3.1 Performance based on training data set 
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Results from the training data set, where the MLEs were trained on a random subset 

of 80% of the data and then tested on the unused 20% of data, showed that each of 

the three ML approaches, ANN, MARS and RF algorithms, can produce MLEs with 

significant predictive accuracy for each of the six crop output targets (Table 4-3). 

There were no observed occurrences of any model encountering overfitting issues, 

which would have been evidenced by the accuracy of the predictions of the 

validation data set being significantly lower than the accuracy for the training data 

sets. All reported values are those for the validation data sets for each MLE. The 

accuracy of prediction, the importance of input variables used to achieve these 

predictions, and the computational effort required to develop the MLEs, did vary 

between the approaches. Across all outputs, the RF emulators showed the best and 

most consistent accuracy at prediction. This, however, come at significant 

computational investment. 

 

4.3.1.1 Graphical and statistical analysis of ML approaches 

A visual inspection of the ML predicted versus APSIM generated data plots (Figure 

4-2) confirmed the accuracy of the predictions for the six target outputs 

(EmergenceDAS, FloweringDAS, PoddingDAS, MaturityDAS, Biomass and 

GrainWt). The corresponding values from the statistical analyses of the data of these 

graphs is presented in Table 4-3. Of note is the superiority of the RF emulators’ 

predictions for each output target. All three MLEs produced exceptional results for 

predicting the start of flowering (FloweringDAS). Regional variations are evident for 

each ML emulator with northern locations flowering after a shorter duration than 

locations with more southern latitudes (cooler climates). Interestingly, predictions of 

podding date were much less precise for each of the MLEs, with noticeably wider 

variations occurring at Mingenew. This indicates that some crop growth factors used 

within APSIM which affected early pod development were not included in the input 

parameter details, and that this was experienced to a greater extent at Mingenew than 

what it was in the other locations. While producing the most accurate predictions of 

podding date for most locations, most noticeably for Horsham, the RF emulator’s 

predictions for Bongeen were slightly less accuracy than other MLEs. There was no 

clear indication as to why this was the case. The above ground crop biomass and the 

crop yield, reported as GrainWt, were the least predictable outputs for each ML 
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algorithm. Each of the MLEs, on average, under-predicted the values for both 

biomass and crop yield, as indicated by the negative mean bias values (Table 4-3). 

The RF emulators had about one quarter the amount of variance of the other two 

MLEs, as shown by the mean absolute error (MAE) values (Table 4-3). The ANN 

and MARS emulators each produced predictions with a wider distribution around the 

APSIM predicted values than the predictions of the RF emulators. The data points, 

however, are still most densely clustered along the one-to-one line, as Figure 4-3 

shows. Again, RF emulators did a noticeably better job of predicting each of these 

outputs than emulators based on the other ML algorithms.  

 

Further analysis of the least accurate ten percent of predictions for each MLE for the 

outputs biomass and crop yield, showed highly variable results between the three 

MLEs. For the ANN emulators, the least accurate predictions generally resulted in 

significant under-predictions of biomass and crop yield. These results were strongly 

associated with late maturing crops, with a mean MaturityDAS value of 172 days 

compared to an average for the rest of the simulations of 148 days. A likely cause of 

such errors is that environmental factors that caused a decrease in the above ground 

crop biomass and yield in the APSIM simulations occurred late in the crop lifecycle. 

With ML weather inputs only recording meteorological data up to 90 days after 

sowing, weather events or dry conditions late in the crop cycle would not have been 

considered by the ANN emulators. For the MARS emulators, the least accurate 

predictions also tended to result in under-prediction of biomass and crop yield, but 

these were not biased towards late maturing crops. Instead, these simulations tended 

to have drier soil conditions at sowing (low SowingESW) and lower solar radiation 

levels later in the crop’s life. The RF emulators showed a very different pattern 

again, with the least accurate ten percent of predicted biomass and crop yield values 

generally being associated with over-prediction of values. For the RF emulators, the 

poor predictions were more strongly associated with elevated soil water at sowing 

(high SowingESW), higher than average rainfall beyond 60 days and lower solar 

radiation during the same period. Poor prediction of biomass was also associated 

with earlier sowing dates and small LateVegTarget parameter values. The ‘black-

box’ nature of ML models makes detailed and accurate investigation of underlying 

model issues impossible. 
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In the case of the RF emulators, it is worth noting that these outlier values only 

represent between 20 and 40 data points out of a set of 26,185 data points, indicating 

that the visual impact of these points is overstating their importance. This is 

confirmed by the hexbin plot of the distribution density of the data points (Figure 4-

3). One interesting aspect to note that differs between the MLEs is the generation of 

erroneous negative values for GrainWt. RF did not suffer from this feature, while the 

MARS emulators showed this feature for both the crop yield and above ground 

biomass predictions. One of the noted strengths of the RF algorithm is bootstrap 

aggregation, also known as ‘bagging’, which results in an ensemble of RF models. 

This approach has the benefits of reducing bias and variance in the resulting 

prediction model and producing a more representative outcome for variable data 

(Sexton & Laake 2009; Biau & Scornet 2016). A disadvantage of this ensemble 

approach used by the RF algorithm is the increased computational effort required to 

both develop the MLE and to run simulations compared to the ANN algorithm’s 

approach. This pattern of fast emulators being the least accurate in both bias and 

error statistics calculated, as well as the accuracy of predicted target values, is 

observed in the data presented in Table 4-3. This is most likely a reflection of the fact 

that accurate predictions are more consistently produced when greater numbers of 

values are processed and averaged. There appears to be a generalised inverse 

relationship between emulator speed and accuracy of prediction. 
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Table 4-3. The predictive ability of the MLEs against outputs generated by the 

APSIM-NextGen chickpea crop model.  

Statistical measures for goodness-of-fit performance analysis for seven locations 

used to train the machine learning emulators (MLEs). The statistics shown are, MB: 

mean bias reported in days or kg/ha, depending upon the output variable; MAE: 

mean absolute error reported in days or kg/ha, depending upon the output variable; 

RMSE: root mean squared error reported in days or kg/ha, depending upon the 

output variable; R2: coefficient of determination; COELM: coefficient of efficiency 

(Legates McCabe index). The three machine learning MLEs are Artificial Neural 

Networks (ANN), Multivariate Adaptive Regression Spline (MARS) and Random 

Forest (RF). The analysis is for the predictive ability of the MLEs against outputs 

generated by the APSIM-NextGen chickpea crop model. 

 

Emulator/Target MB MAE RMSE R2 COELM 

ANN     
EmergenceDAS (days) 0.00 0.68 0.88 0.95 0.79 

FloweringDAS (days) -0.01 1.15 1.55 0.99 0.93 

PoddingDAS (days) -0.12 5.13 7.88 0.95 0.82 

MaturityDAS (days) -0.02 3.25 4.67 0.98 0.88 

Biomass (kg/ha) -3.64 76.92 102.60 0.92 0.75 

GrainWt (kg/ha) -0.59 35.89 48.44 0.91 0.74 

      

MARS     
EmergenceDAS (days) 0.00 0.69 0.89 0.95 0.79 

FloweringDAS (days) 0.00 1.94 2.54 0.99 0.88 

PoddingDAS (days) 0.02 5.93 8.88 0.93 0.79 

MaturityDAS (days) 0.02 3.97 5.60 0.97 0.85 

Biomass (kg/ha) -0.94 87.62 115.29 0.90 0.72 

GrainWt (kg/ha) -0.40 40.79 54.27 0.88 0.70 

      

RF     
EmergenceDAS (days) 0.00 0.22 0.31 0.99 0.93 

FloweringDAS (days) 0.01 1.00 1.35 1.00 0.94 

PoddingDAS (days) 0.05 2.51 4.37 0.98 0.91 

MaturityDAS (days) 0.01 1.79 2.81 0.99 0.93 

Biomass (kg/ha) -0.26 16.18 27.70 0.99 0.95 

GrainWt (kg/ha) -0.20 12.26 20.37 0.98 0.91 
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Figure 4-2. APSIM generated actual versus machine learning emulator (MLE) 

predicted values. 

Values are for seven locations used to train the MLEs. The output values are for six 

APSIM-NestGen chickpea outputs; EmergenceDAS, FloweringDAS, PoddingDAS, 

MaturityDAS, above ground Biomass and GrainWt.  
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Figure 4-3. HexBin plot of the distribution density of data points for the emulator 

development validation data sets. 

Each panel shows the summary of 26,185 data points. 
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4.3.1.2 Variable importance  

By comparing the influence that the input factors have on the outputs across each of 

the MLEs, patterns and variations can be observed in what is driving each emulator. 

Figure 4-4 highlights the patterns of the index values. For EmergenceDAS, all three 

MLEs were strongly influenced by the maximum and minimum temperatures during 

the first 30 days after sowing. This is expected as emergence is primarily a 

temperature driven response in the chickpea model, and it occurs in the first 30 days 

of the crop simulation. Responses should not be driven by data after this time period. 

The MARS algorithm was the only algorithm tested to detect the ShootLag, which 

differed between genotypes, as a driving input parameter, rating it at an index value 

of 93. Interestingly the R2 and COELM values for the EmergenceDAS predictions for 

the ANN and MARS emulators were consistent values of 0.95 and 0.79, respectively.  

Other output targets showed greater diversity in the input variables identified as most 

important. For the ANN emulators, the input SowingDOY was very significant for 

predicting the output target FloweringDAS, while the MARS and RF emulators rated 

average maximum temperatures between 31 and 60 days after sowing as highly 

influential. PoddingDAS and MaturityDAS showed something of a consist pattern 

between MLEs, with SowingDOY being most important for the ANN emulator, 

while average maximum temperature for 61 to 90 DAS was the most significant for 

the MARS and RF emulators. The RF emulator was the only one to have an 

additional value over 50, that of AvgMinT61_90. 

 

The patterns of rating significance for both biomass and crop yield were similar in 

each of the MLEs. Above ground biomass and crop yield were both strongly 

influenced by SowingESW by all ML algorithms, although RF emulators used the 

closely correlated FracPAWCmm input instead. Only the RF emulator rated the 

latitude (Lat) variable as a significantly important input, which it did for both above 

ground biomass and crop yield. Both the MARS and the RF emulators used the 

AvgMaxT61_90 for crop yield prediction, while no temperature, rainfall or radiation 

inputs were rated above an importance of 36 by the ANN emulator for crop yield. 

  



CHAPTER 4: PAPER 2 - Comparison of machine learning models 

81 

 

 

Figure 4-4. Heat maps of input variable importance for three MLEs.  

Results are for six output parameters. Importance indices are rated from zero (0) for no effect on the output value, to 100 being the input with the most 

significant effect on the output values. Index values are relative to the most significant input rated at 100. 
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4.3.1.3 Computational requirements   

The time taken to train the MLEs is an indicator of the computational costs 

associated with developing each emulator system Table 4-4 shows that there was a 

great spread in the computational requirements needed to develop each type of 

emulator. Times ranged from 12.1 seconds for the MARS algorithm to develop a 

predictive emulator for the output EmergenceDAS, to a high of 17,644.8 seconds 

(4hrs 54mins) for the RF algorithm to produce a predictive emulator for the same 

output. On average, MARS emulators were developed with least computational 

effort, ANN emulators were almost three times more costly, and RF emulators were 

approximately 500 times more costly based on the performance of the code libraries 

and computing environment used for this study. 

 

Table 4-4. Time (in seconds) taken to train each MLE. 

Training data sets used 26,185 data points for each target output. The times are 

representative only and were obtained from developing the MLEs in an R 

environment on an Intel core-i7 laptop computer. 

Output ANN MARS RF 

EmergenceDAS 77.8 12.1 17644.8 

FloweringDAS 77.9 37.4 10930.8 

PoddingDAS 86.5 34.8 16149.9 

MaturityDAS 86.3 31.5 17191.2 

Biomass 76.5 35.0 13544.1 

GrainWt 77.5 34.9 14530.5 

    

Average: 80.4 30.9 14998.6 

(all times in seconds)   

 

 

4.3.2 Performance at test locations  

 

The MLEs developed using data from seven locations within the Australian chickpea 

production regions, were tested using data from two additional locations, also within 

the same production regions. Scatter plots of the APSIM generated values plotted 

against the values generated by the predictive MLEs are shown in Figure 4-5, with 

the statistical analyses of the ‘goodness-of-fit’ of the data values provided in Table 4-

5.  For predictions of EmergenceDAS and FloweringDAS, the three ML algorithms, 
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ANN, MARS and RF, all performed well with consistent R2 values of 0.91 for 

EmergenceDAS and of 0.98 for FloweringDAS. The corresponding values of COELM 

ranged between 0.72 and 0.73 for EmergenceDAS and between 0.86 and 0.88 for 

FloweringDAS. Values for each test location were equally well predicted. For the 

three ML emulators, ANN, MARS and RF, the prediction of MaturityDAS was the 

next most accurate output with R2 values of 0.95 and 0.96 and COELM values ranging 

from 0.72 to 0.82. This was followed by the predictions for PoddingDAS with R2 

values ranging from 0.87 to 0.90 and COELM values ranging from 0.60 to 0.72.  

 

All three ML approaches failed to accurately predict above ground biomass and crop 

yield. The MLEs were incapable of making accurate predictions for the test locations 

based on the data from the training locations. Given that biomass and crop yield were 

both strongly influenced by soil water holding capacity and soil water content at 

sowing (Figure 4-5), it is most likely that insufficient soil types and soil water 

conditions were included in the original data set to allow the test locations to be 

accurately modelled. The test locations effectively fell outside the parameter value 

ranges and effects observed at the training locations and so predicted values were 

nonsense. 
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Figure 4-5. APSIM generated actual versus ML predicted values for two test 

locations. 

Test locations were not used to train the MLEs. Target values are for six APSIM-

NestGen chickpea outputs; EmergenceDAS, FloweringDAS, PoddingDAS, 

MaturityDAS, above ground Biomass and GrainWt.  
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Figure 4-6. HexBin plot of the distribution density of data points for the test location 

data sets.  

Each panel shows the summary of 37,395 data points. 
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Table 4-5. The predictive ability of the MLEs for two test locations against outputs 

generated by the APSIM-NextGen chickpea crop model.  

Statistical measures for goodness-of-fit performance analysis for two test locations. 

The statistics shown are, mean bias (MB) reported in days or kg/ha, depending upon 

the output variable, mean absolute error (MAE) reported in days or kg/ha, depending 

upon the output variable, root mean squared error (RMSE) reported in days or kg/ha, 

depending upon the output variable, coefficient of determination (R2), coefficient of 

efficiency (Legates McCabe index) (COELM). The three machine learning emulators 

(MLEs) are Artificial Neural Net (ANN), Multivariate Adaptive Regression Spline 

(MARS) and Random Forest (RF). 

Emulator/Target MB MAE RMSE R2 COELM 

ANN     
EmergenceDAS (days) 0.07 0.74 0.95 0.91 0.72 

FloweringDAS (days) 0.61 1.58 2.10 0.98 0.88 

PoddingDAS (days) 3.32 8.97 13.18 0.87 0.60 

MaturityDAS (days) 2.04 3.84 5.42 0.96 0.82 

Biomass (kg/ha) -136.26 193.16 260.08 0.76 0.35 

GrainWt (kg/ha) -21.50 74.85 95.84 0.79 0.39 

      

MARS     
EmergenceDAS (days) -0.08 0.75 0.95 0.91 0.72 

FloweringDAS (days) -0.04 1.77 2.25 0.98 0.86 

PoddingDAS (days) -1.96 6.26 9.17 0.89 0.72 

MaturityDAS (days) 3.68 5.41 7.32 0.95 0.75 

Biomass (kg/ha) 1315.60 2437.08 2772.21 0.62 -7.25 

GrainWt (kg/ha) 227.21 901.09 931.87 0.48 -6.28 

      

RF     
EmergenceDAS (days) 0.02 0.73 0.93 0.91 0.73 

FloweringDAS (days) 0.70 1.74 2.47 0.98 0.87 

PoddingDAS (days) 4.40 7.23 11.43 0.90 0.68 

MaturityDAS (days) 3.88 6.12 9.18 0.95 0.72 

Biomass (kg/ha) 224.23 290.65 374.34 0.20 0.02 

GrainWt (kg/ha) 105.06 134.92 173.40 0.10 -0.09 
      

 

4.4 Discussion 

 

4.4.1 Performance with training data set 

 

The results of this study have shown that MLEs can be developed that are able to 

replace the APSIM system model for the set of input parameter value ranges used for 

testing. They show that all three ML approaches tested are capable of being used to 
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generate predictive regression MLEs for the crop model outputs tested. The 

FloweringDAS prediction was the most accurate output for each of the MLEs, 

indicating that the input factors included did cover all the important driving variables 

for this output. It is revealing that the importance of the input variables (Figure 4-5, 

panel 2) was not consistent between the different algorithms. For FloweringDAS, the 

ANN emulator was heavily reliant upon the time of sowing, with no other input 

coming close to having as significant an impact. The MARS emulator relied almost 

entirely on mid-season maximum temperatures, with its next most important input, 

time of sowing, rated as only half as important. The RF emulator was most strongly 

influenced by mid and late-season maximum temperature. This shows clearly that 

great care must be taken if interpreting the input importance values for MLEs as 

being an accurate predictor of the importance of input factors for an underlying 

model. Different algorithms can, and do, predict the correct answer in the majority of 

instances, using significantly different importance weightings of input values. 

Boehmke and Greenwell (2019) have previously warned that algorithms, like that 

used in the MARS approach, can give misleading results for variable importance 

where there are closely correlated input factors. This is due to the algorithms 

approach of selecting input factors based on their contribution to an output value and 

discarding additional inputs if they do not improve the prediction by some given 

marginal amount. This can result in only one of a closely correlated set of inputs 

being used to predict output values, with the other inputs, although equally as 

influential on the output, rated as not used or of low importance. Breiman (2001) and 

Dumancas and Bello (2015) indicate that the RF algorithm is well suited to cope with 

multicollinearity of inputs, and so is not subject to this limitation to the same degree 

as the MARS algorithm. For neural networks, which is represented by the ANN 

algorithm, the robustness and accuracy of their predictions have been found to be 

adversely affected by collinearity between input factors (Dumancas & Bello 2015; 

Samarasinghe 2016). These authors advise that feature selection needs to be 

undertaken in order to remove non-influential inputs and inputs that exhibit 

collinearity from the data set, before reliable neural net models can be built. For the 

purpose of comparing the ML algorithms based on a consistent approach, this step 

was not undertaken in this study. 

The greatest differences between the accuracy of predictions of the MLEs was for the 

outputs of above ground biomass and grain weight (yield). These two outputs are the 
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ones in the output set most influenced by a wide range of crop, environmental and 

management factors, and represent the sum of everything the crop has experienced. 

They are key outputs for most crop models (Stöckle et al. 1994; Jones et al. 2003; 

Keating et al. 2003; Stöckle et al. 2003).  For these two outputs, the RF emulator was 

clearly a superior predictor than the emulators produced by the other three ML 

algorithms. The reasons for this difference in accuracy are not easily determined. 

Contributing factors are likely to include the inherent suitability of the underlying 

ML algorithm for the data being analysed, and the extent to which the data set has 

been optimised for the ML approach. One factor that was identified during analysis 

of this data was that the summary climate details were only recorded until 90 days 

after sowing, while many of the crops with the poorest predictions of biomass and 

yield reached maturity (as shown by harvest date) well beyond this cut-off. It is 

probable that adverse weather conditions during the final stages of crop growth and 

crop maturation resulted in unpredictable crop vigour and yield loss. Extended 

periods of weather details in the input parameters may have aided in more accurate 

predictions of biomass and yield. While feature selection and dimensionality 

reduction steps are warranted for the neural net based algorithms (Samarasinghe 

2016), the purpose of this study was to compare the performance of the core 

approaches. The investigation of optimal feature selection algorithms would 

constitute a research study in its own right. It is worth noting that, under the 

constructs of this study, where the outputs of the simulation model are being 

predicted rather than real world observations, all potential input factors for the MLEs 

are known, albeit a very large number of them. This makes the possibility of 

identifying a complete set of driving input factors a feasible objective. 

 

Based on the accuracy of predicted values, the RF algorithm is the best of the three 

algorithms tested. The accuracy of predicted output values produced by the RF 

emulators for the locations on which it was trained are good, with the lowest 

accuracy being for both PoddingDAS and GrainWt at R2 = 0.98 and COELM = 0.91. 

With this level of accuracy, the RF emulators could be used to predict with a high 

degree of confidence, any of the six model outputs for any of the seven training 

locations for input values within the range of values observed in the training set. The 

design of this experiment meant that one set of input factors was tested for their 

ability to be used to predict each of the six outputs. With careful review and iterative 
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testing, it should be possible to improve the predictive accuracy for any chosen 

output. 

 

The computational costs involved in developing, or training, the MLEs (Table 4-4) 

varied widely between the different algorithms. A key feature of this study that 

differs from many studies into the development of ML models or MLEs, is the 

expected use and life timeframe of the emulator. To be useful as a tool to run SA on 

a systems model, a ML emulator needs to be able to be rapidly developed, used, and 

discarded rather than having an iterative development and retention lifecycle. This is 

because each SA will be based on a different scenario and designed to test different 

input parameters or different ranges for input parameter values each time they are 

run. As the MLEs are generated for specific sets of inputs and can only be used to 

predict outputs for input settings within the value ranges with which they were 

developed, reuse of MLEs is limited. Even where MLEs can be reused, great care 

would be required to ensure the value ranges of all input parameters were within the 

development limits of the MLE, and the mix of those inputs was of a pattern that was 

not dissimilar to patterns used to develop the MLEs. While broadly applicable MLEs 

might be possible to produce, a narrowly applicable MLE developed for a specific 

application is a safer option if unpredictable outcomes are to be avoided. 

Comparisons of development times of ML models are not readily available  in the 

literature. In this study the MARS algorithm was, on average, almost 500 times faster 

to train than the RF algorithm, with the ANN algorithm being approximately 200 

times faster than the RF algorithm. It must be noted that this represents just one 

snapshot of specific implementations of three algorithms out of potentially dozens of 

alternative algorithms. The code used to develop the algorithm solution, the 

computing environment utilised to run the code and the computing hardware that the 

ML was run on, all have the potential to significantly affect the outcomes of such a 

comparison. Advances in, or reimplementation of, any of these factors, or the 

selection of alternative algorithms or environments, will have effects on the 

outcomes. For this study, the outcome is clear; the RF algorithm was the most 

accurate of the ML approaches, but it came at a significant computational cost. The 

superior results from the RF emulator are in contrast to Kouadio et al. (2018) who 

found an extreme learning machine, which is an advanced form of ANN algorithm, 

superior at forecasting coffee yield. Obsie et al. (2020) reported an extreme gradient 
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boosting model produced better results than a RF model for blueberry yield 

prediction, although both the gradient boosting model and the RF model performed 

better than a multi linear regression approach. Other researchers (Jeong et al. 2016; 

Dayal et al. 2019; Feng et al. 2019; Lawes et al. 2019; Feng et al. 2020) have chosen 

RF models as their preferred ML approach in studies predicting crop growth. 

 

4.4.2 Performance with test locations 

 

A second part of this study independently assessed the robustness of the MLE 

solutions, and what potential they might have for replacing the APSIM-NextGen 

modelling system for the specific prediction task for which they were developed. The 

three ML algorithms were not as accurate in predicting the chronological 

development of the crop, that is the EmergenceDAS, FloweringDAS, PoddingDAS 

and MaturityDAS, as for predicting the training data set, but predictions were not 

unrealistic for the ANN, MARS and RF emulators, as shown in Figure 4-5 and 

associated statistical values in Table 4-5. This fulfills the second aspect of the 

objectives for this chapter, that the MLEs, if developed with sufficiently diverse data 

sets, are robust enough to predict outputs for any location in the production region, 

regardless of whether that location was used in the training data set or not. The 

FloweringDAS predictions, with R2 values 0.98 and COELM values ranging from 

0.86 to 0.88 for each of the algorithms, were the most accurate of the predictions for 

the test locations. The other statistical measures generated to test the accuracy of the 

emulators, MB, MAE and RMSE, all followed the same relative patterns of which 

was the most to least accurate emulator, with RF being the most accurate, ANN 

being next, and MARS being the least accurate. With this level of accuracy, the use 

of any of these three MLEs to predict flowering date as days after sowing, for any 

location within the Australian chickpea production regions, would be justifiable.  

 

By using test locations, most of the input factors used to train the MLEs were able to 

be controlled and ensure that they fell within the ranges used to develop the MLEs. 

Factors that were not controlled and had the potential to fall outside the development 

set boundaries were related to the soil, specifically the water holding capacity of the 

soil and starting soil moisture levels. The predictions for above ground biomass and 

grain weight (Figure 4-5 and Table 4-5) are shown to be erroneous for all three ML 
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algorithms. As noted previously, these outputs reflect the sum of all the factors that 

influence crop growth. Consequently, their predicted values are most likely to reveal 

any weakness in the robustness of the MLEs. Even though the management and 

genomic factors were consistent with the training data, the test locations introduced 

different soils to the simulations. For example, the predictions of biomass and yield 

for Mildura were the least accurate and most varied between the different MLEs. 

Mildura soil was the only sandy loam in the data set and had the lowest water 

holding capacity of any of the soils. This soil was the most in contrast to the other 

soils, and the emulators performed most poorly with it. This is consistent with the 

findings of Shahhosseini et al. (2021) who identified soil water parameters as key 

drivers of ML models used to predict corn yields. Some of the patterns that define 

the relationships between input factors and output values observed at the test 

locations in my study were not present in the training data, so none of the ML 

algorithms could predict them for the new locations. This clearly stands as a warning 

about the potential use of MLEs in replacing process driven models for generating 

predicted outputs. All patterns of input factors affecting output values must be 

included in the training data to develop an ML emulator that is capable of robustly 

predicting outputs. Other recent research integrating process-driven models with ML 

has focused on the effects of climate change on crop yields (Feng et al. 2019; Leng & 

Hall 2020). Both studies have reported significant benefits in integrating the two 

modelling approaches but have not highlighted the dangers and limitations of 

supplying incomplete data sets to the ML models during development. In my study, 

the training data included all required patterns for predicting FloweringDAS but 

lacked details which determine above ground biomass and grain weight. As a result, 

the FloweringDAS predictors are more robust than the above ground biomass and 

yield predictors. 

 

4.5 Conclusion 

 

The results from this chapter have answered the second of the research questions 

presented in Chapter 2 of this thesis, that being: Which ML algorithms produce the 

most accurate emulators, and at what computational cost? And what are the 

advantages and disadvantages of each algorithm for producing an emulator? This 
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study has shown that emulators of crop models, built on ML algorithms, can be 

developed to predict a range of simulated crop outputs. The accuracy of predictions 

varies based the algorithm used and the output being predicted, with the RF emulator 

being the most consistently accurate emulator used in this study. Computational 

costs, measured as the time taken to train the MLEs, also varied by algorithm. The 

MARS emulators were the fastest emulators to be trained in this study, with the RF 

emulators having the longest training times. These findings will have implications 

for the choice of algorithm if this approach of utilising MLEs were to be used to 

improve the time efficiency of running very large numbers of model simulations. 

Additionally, the robustness of the emulator needs to be tested for each output 

variable. There is no set of input factors that will be suitable for all outputs in all 

situations. It is, however, reasonable to assume that it is possible to develop accurate 

predictive MLEs for any output as all input factors for the process driven simulation 

model are known, so it should be possible to generate training data sets with all input 

factors required for the prediction of the target output. A potential disadvantage of 

the MARS algorithm is that it discards input parameters if they are found to be 

unimportant during its development. This could limit its usefulness as a tool for SA 

as parameters of low importance within one scope may become more important if the 

scope is altered by fixing some of the more influential parameters. This is exactly the 

situation encountered during the design phase of the experiment for Chapter 5 of this 

thesis. As a result, the MARS emulator was assessed as not being suitable for 

undertaking SA in the next stage of this thesis, and only the ANN and RF emulators 

were utilised in Chapter 5. 
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CHAPTER 5: PAPER 3 - Substituting process 

driven biophysical models with machine learning 

based emulators for undertaking sensitivity analysis 

 

Preamble 

In the previous chapter, Chapter 4, of this research thesis, emulators of the APSIM-

NextGen chickpea model were developed using machine learning algorithms for 

multivariate adaptive regression splines (MARS), artificial neural networks (ANN) 

and random forests (RF). These emulators were shown to be highly effective in their 

predictive capacity for seven model output parameters, EmergenceDAS, 

FloweringDAS, PoddingDAS, MaturityDAS, Biomass and GrainYield. The accuracy 

of the predictions did vary between the different ML algorithms, with the RF being 

shown to be the most consistently accurate across each of the target outputs. 

In Chapter 5 of this research, the machine learning based emulators (MLEs) will be 

used to undertake Morris and Sobol analyses. With the different approach to 

researching the possibility of using MLEs in the SA of process-driven models that 

was introduced between Chapter 3 and Chapter 4 of this thesis, the results presented 

in this chapter, Chapter 5, are not comparable with the results of Chapter 3. In 

Chapter 3, the parameter importance indices of the MARS model were compared 

with the SA indices produced by Morris and Sobol analyses undertaken on the input-

output sensitivities of the process-driven model. As the MARS algorithm is designed 

to eliminate input parameters which contribute little towards the output values, it has 

been dropped from this experiment because the results of a Morris or Sobol analysis 

without a consistent set of selected input parameters would be meaningless. In 

Chapter 5, ANN and RF emulators of the process-driven model and previously 

generated from the outputs of APSIM-NextGen runs, will be used to run the 

simulations required for Morris and Sobol analyses. These analyses will assess the 

MLEs input-output sensitivities. The aim of this experiment is to test if the 

computational efficiency of the MLEs can be harnessed by undertaking SA using the 

MLEs, with the results reflecting the underlying relationships expressed by the 

process-driven models. 
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5.1 Introduction 

 

Sensitivity analysis (SA) is a recommended part of most research involving computer 

modelling (Plischke et al. 2013; Pianosi et al. 2016; Janssen et al. 2017). Global SA, 

where the sensitivity of outputs is assessed by varying inputs over the entire input 

space, enables analysts to gain insights related to input-output mappings, including 

key drivers of output values and of model uncertainty (Saltelli et al. 2000). 

Knowledge of these key drivers can focus future model development efforts, enhance 

appropriate model application, and guide the allocation of resources for more 

effective and efficient data collection (Plischke et al. 2013). Undertaking global SA 

on complex models with large numbers of model input factors, however, will present 

challenging levels of computational burden. 

 

Significant research has been undertaken to address the problem of high 

computational burden for undertaking SA, as well as for efficiently producing 

predicted outcomes for large numbers of model evaluations when simulation 

experiments are undertaken. A range of approaches have been detailed in literature. 

These include, but are not limited to, the use of high performance computers to 

undertake model runs (Thorp et al. 2020), state dependent parameter metamodeling 

(Ratto et al. 2007), global evolutionary algorithms (Shin et al. 2015), polynomial 

chaos expansion (Shin et al. 2015; Liu & Choe 2021), multiple linear regression 

algorithms (Friedman 1991b; Friedman & Roosen 1995) and ML algorithms such as 

support vector machines (Raghavendra. N & Deka 2014). Many of these approaches 

rely on reducing the dimensionality of the complex model by producing a meta-

model, or emulator, which has lower complexity and faster execution time than the 

original model. Chapter 3 of this thesis developed a method to show that the variable 

importance indices of a MARS based machine learning emulator (MLE) are 

comparable with, but not fully substitutable for, the Morris and the Sobol statistics 

generated from the underlying process-driven model. 

 

Emulators based on ML approaches of artificial neural networks and random forest 

algorithms have been shown to be effective for generating emulators capable of 
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predicting outputs of biophysical crop models, as developed and demonstrated in 

Chapter 4 of this research thesis. While these MLEs have been shown to predict a 

range of APSIM-NextGen chickpea model outputs with a very high degree of 

accuracy, it has not been investigated as to whether they can be used in the SA of the 

process-driven APSIM models by generating the very large number of outputs 

required for SA. No literature is available which addresses the question of whether 

MLEs are useful for the SA of biophysical models.  

 

In the current chapter of this study, MLEs were used to conduct a Sobol first-order 

and total-effects SA, and a Morris method SA. The MLEs were developed to emulate 

six outputs from the APSIM-NextGen chickpea model using two different classes of 

ML algorithm, artificial neural networks (ANN) and random forest (RF). Examples 

of ANN models have been used to predict outputs, such as yield, from biological and 

environmental systems (Shastry et al. 2016; Ghimire et al. 2018; Sanikhani et al. 

2018; Nettleton et al. 2019; Shahhosseini et al. 2021). They are typical of the ‘black 

box’ style of MLE, where models are trained on input data and automatically self-

calibrate to classify or predict output values, the internals of the MLE generally not 

being able to be observed by a user of the system. RF models use ensembles of 

decision trees for classification tasks or prediction of outcomes. They are one of the 

most widely used forms of ML frameworks for both classification and regression 

(Cravero & Sepúlveda 2021). There are many examples in agricultural literature of 

RF models being the ML model of choice and have been used for soil models 

(Gebauer et al. 2019; Hussein et al. 2020), yield forecasting (Kouadio et al. 2018; 

Feng et al. 2019; Feng et al. 2020; Obsie et al. 2020; Guo et al. 2021) and analysis of 

remote sensing (Belgiu & Drăguţ 2016; Dahms et al. 2016). Two analyses were 

undertaken to assess the computational efficiency of the MLEs: one SA involved all 

22 inputs factors, while the second analysis focussed on just six phenology critical 

inputs while holding other input factors constant. The analyses of 22 input factors 

required 2.4 million model evaluations for each of six model outputs for each of the 

two classes of MLE. Along with execution times, comparisons were made between 

the outcomes of the analyses for the two classes of emulator. The objective of this 

research study is to demonstrate the effectiveness of undertaking SA using the 

Morris and Sobol methods by using an MLE to run simulations rather than the 

process-driven model itself. This approach has the potential to greatly reduce the 
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computational burden of running the very large numbers of simulations required for 

SA involving more than twenty input parameters. This research aims to provide 

guidance to researchers and developers of biophysical models as to the suitability 

and practicality of using MLEs to undertake SA of an underlying process driven 

model.  

 

5.2 Methods 

 

Sensitivity analysis was undertaken on MLEs developed in Chapter 4 of this thesis 

using two algorithmic approaches, ANN and RF.  The MLEs were developed as 

emulators of the APSIM-NextGen chickpea model for the prediction of six model 

outputs: 1) days from sowing to emergence (EmergenceDAS), 2) days from sowing 

to flowering (FloweringDAS), 3) days from sowing to first fruiting pod 

(PoddingDAS), 4) days from sowing to crop maturity (MaturityDAS), 5) above 

ground crop biomass at harvest (kg/ha) (Biomass), and 6) weight of harvested grain 

(kg/ha) (GrainWt). The SA involved an elementary effects analysis using the Morris 

(Morris 1991) method, further enhanced by Campolongo et al. (2007) and a variance 

decomposition analysis using the Sobol (Sobol' 2001) method. 

 

5.2.1 Computing environment 

 

All simulations and data analyses were performed on an Intel Core-i9 11900H CPU 

2.5 GHz based computer with 32 GB RAM running Microsoft Windows 10 

operating system. The MLEs, developed in the Chapter 4 of this research thesis, were 

run in R (version 4.1.0  (2021-05-18) (R Core Team 2021) in Microsoft Windows 

under RStudio 1.4.1717 (RStudio Team 2021). 

 

5.2.2 Simulation configuration 

 

Two MLEs have been used to undertake the simulations required to undertake both 

the Morris and Sobol SA. In these analyses, the APSIM-NextGen chickpea model 

has not been used, other than to generate the data that was used to develop the MLEs. 

The MLEs were developed and trained as part of the research undertaken in Chapter 
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4 of this thesis, on data sets generated by running APSIM-NextGen chickpea model 

to simulate crops for seven locations throughout the chickpea growing regions in 

Australia for 120 years (1900 to 2019). The locations ranged from a northern-most 

latitude of -23.569 (location 1, Figure 5-1) to a southern-most latitude of -36.670 

(location 3, Figure 5-1), with the approximate centre point being Gunnedah, NSW 

(location 2, Figure 5-1) at a latitude of -30.954. To perform either a Morris or a 

Sobol SA, input parameters which are not of interest for the analysis must be fixed to 

set values, while the values of input parameters being analysed are varied over 

known controlled ranges, as specified below in Table 5-1. These value ranges were 

within the ranges used for the development of the MLEs in Chapter 4. Input factors 

were fixed to set values by selecting individual simulations from the original 

APSIM-NextGen generated data set. These simulations were for sowings at specific 

locations and formed a set of ‘base’ simulations upon which the SA was 

subsequently undertaken. The simulations selected were for sowings on day-of-year 

100, 150 and 200 at locations Emerald (location 1, Figure 5-1), Gunnedah (location 

2, Figure 5-1) and Horsham (location 3, Figure 5-1). The selected base-simulations 

each demonstrated high agreement with the APSIM-NextGen generated values for 

each of the six output targets. Where all 22 input parameters for the MLEs were 

varied, the base-simulation chosen was sowing two (day-of-year 150) at Gunnedah, 

as this was the mid-point time and central most location around which to vary all the 

parameters. Values of the 22 input factors of the MLEs were varied within the ranges 

used to train the emulators. The name, description and minimum and maximum of 

the value ranges used for SA are listed in Table 5-1. 
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Figure 5-1. Chickpea growing regions in Australia showing the northernmost, 

southernmost, and central locations for crop simulations. 

The three locations indicated (green dots) are: 1) Emerald, Qld, the northern most 

latitude simulated, 2) Gunnedah, NSW, the central location used as the base scenario 

and 3) Horsham, Vic., the southernmost latitude simulated. 
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Table 5-1. Machine learning input factors used for the sensitivity analysis of the ML emulators.  

The same inputs and range of input values were used for the sensitivity analysis of each of the six output targets. 

Input Factor Name Description Minimum 

Value 

Q1 Q2 Q3 Maximum 

Value 

Mean 

AvgMaxT0_30 Average maximum temperature for 0 to 30 days after sowing 10 16 22 27 33 22 

AvgMaxT31_60 Average maximum temperature for 31 to 60 days after sowing 12 17 23 28 33 23 

AvgMaxT61_90 Average maximum temperature for 61 to 90 days after sowing 11 17 24 30 36 24 

AvgMinT0_30 Average minimum temperature for 0 to 30 days after sowing 0 4 8 12 16 8 

AvgMinT31_60 Average minimum temperature for 31 to 60 days after sowing 0 4 7 11 14 7 

AvgMinT61_90 Average minimum temperature for 61 to 90 days after sowing 0 5 9 14 18 9 

FloweringTarget Phenological parameter. Differs between genotypes 100 125 150 175 200 150 

FracPAWCmm Amount of soil water present at sowing. As a fraction of PAWC 0.2 0 1 1 1.0 1 

Lat Latitude of the sowing location -36.0 -33 -30 -27 -24.0 -30 

LateVegTarget Phenological parameter. Differs between genotypes 0 63 125 188 250 125 

PAWCmm Soil’s plant available water capacity to 1.5m depth (mm) 260 280 300 320 340 300 

Population Sown plant population in plants /m2 30 33 35 38 40 35 

Radn0_30 Sum of solar radiation for 0 to 30 days after sowing 150 270 390 510 630 390 

Radn31_60 Sum of solar radiation for 31 to 60 days after sowing 150 298 445 593 740 445 

Radn61_90 Sum of solar radiation for 61 to 90 days after sowing 170 328 485 643 800 485 

Rain0_30 Sum of rainfall for 0 to 30 days after sowing 0 74 148 221 295 148 

Rain31_60 Sum of rainfall for 31 to 60 days after sowing 0 95 190 285 380 190 

Rain61_90 Sum of rainfall for 61 to 90 days after sowing 0 95 190 285 380 190 

ShootLag Phenological parameter. Differs between genotypes 120 125 130 135 140 130 

SowingDOY Sowing date as Day Of Year 90 118 145 173 200 145 

SowingESW Extractable soil water at sowing 60 125 190 255 320 190 

VegTarget Phenological parameter in thermal time Differs between genotypes. 400 450 500 550 600 500 
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5.2.3 Machine learning emulators 

 

Two of the classes of MLEs developed in Chapter 4: ANN models and RF models, 

were assessed as being suitable to be appraised for their usefulness in SA of the 

MLEs. Each class of MLE had emulators for six outputs from the APSIM-NextGen 

chickpea model. An installation of  R (version 4.1.0  (2021-05-18) (R Core Team 

2021) in Microsoft Windows was used to run the emulators. The R environment was 

also used for data preparation and manipulation, reporting and graphics generation, 

with the packages ggplot2 (version 3.3.3) (Wickham 2016) and other packages from 

the tidyverse library (version 1.3.0) (Wickham et al. 2019) primarily used for these 

functions. The standard R library, nnet (version 7.3-15, 2021-01-21)  based on the 

work of Venables and Ripley (2002) has been used to implement feed-forward neural 

networks and develop the ANN emulators. The R package randomForest (version 

4.6 – 14 2018-03-22) (Liaw & Wiener 2018) was used to implement the RF 

algorithm and develop the emulators.  

 

5.2.4 Sensitivity analysis methods used 

 

(The equations presented here in subsections 5.2.4.1 and 5.2.4.2 are repeats of the 

equations presented previously in sections 3.2.3 and 3.2.4 of this thesis. They are 

repeated here for ease of reading and simplicity for referral). 

 

5.2.4.1 Morris method indices 

Morris (1991) developed a method for measuring the effects that a change in an input 

variable has on an output of a mathematical model. Process-driven models are a type 

of mathematical model. The standardised effect of a positive or negative Δ change of 

an input variable can be calculated using Eq. (5.1). This is also known as the 

Elementary Effect (EE) (Morris, 1991).  

 

   𝐸𝐸𝑖(𝑋) = [𝑦(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + ∆, 𝑥𝑖+1, … , 𝑥𝑘) − 𝑦(𝑥)]/∆   (5.1) 

 

where Δ is magnitude of step, which is a multiple of 1/(p - 1); p is the number of 

‘levels’, or values, over which the variables can be sampled.  
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Morris detailed the calculation of two measures, namely the mean (μ) and standard 

deviation (σ) of the set of EEs for each input variable. This was further refined by 

Campolongo et al. (2007) who introduce the modified index, μ*, which allows for 

more robust analysis as positive variations are not cancelled by negative variations. 

They are calculated using: 

    𝜇𝑖 =  
∑ 𝐸𝐸𝑛

𝑟
𝑛=1

𝑟
                  (5.2) 

 

    𝜇∗
𝑖 =  

∑ |𝐸𝐸𝑛|𝑟
𝑛=1

𝑟
                 (5.3) 

 

    𝜎𝑖 =  √ 
1

𝑟
  ∑ (𝐸𝐸𝑛

𝑟
𝑛=1 − 𝜇𝑖)2             (5.4) 

 

The strength of the relationship between the i-th input variable and the output 

response due to all first- and higher-order effects that are associated with that 

variable is assessed by the sensitivity index μi  (Campolongo & Braddock 1999). 

Campolongo et al. (2007) develop the use of μ*, the mean of the distribution of 

absolute values of the EEi, as given in Eq. (5.3). When μ*
i is high in contrast to other 

variables, this input variable has a larger influence on the output value. Conversely, a 

variable with a low μ*
i value has low sensitivity associated to it as the same Δ change 

causes a relatively small change in output (King & Perera 2013). The variance 

(spread) of the finite distribution of the EEi values, denoted by σi, is calculated by Eq. 

(5.4). The greater the value of σi, the greater the indication of possible interactions 

with other variables and/or that the variable has a non-linear effect on the output 

(Campolongo & Braddock 1999). In this research the morris function from the R 

sensitivity package (version 1.27.0) (Iooss et al. 2020) was used to implement the 

Morris screening method. 

 

5.2.4.2 Sobol method indices  

Sobol’s method (Sobol' 1993) is a global sensitivity analysis approach based on 

variance decomposition. In this approach the total variance of a function, V(Y) Eq. 
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(5.5), is decomposed into component variances from individual parameters and their 

interactions: 

 

   𝑉(𝑌) =  ∑ 𝑣𝑖𝑖 + ∑ 𝑣𝑖𝑗𝑖<𝑗 +  ∑ 𝑣𝑖𝑗𝑘𝑖<𝑗<𝑘 + ⋯ +  ∑ 𝑣1…𝑝1…𝑝    (5.5) 

 

where vi is the amount of variance due to the i-th parameter Xi, and vij is the amount 

of variance due to the interaction between parameter Xi and Xj. The sensitivity of 

single parameter or parameter interaction, i.e., Sobol’s sensitivity indices of different 

orders, is then calculated based on their percentage contribution to the total variance 

V: 

 

   First-order index     𝑆𝑖 =  
𝑣𝑖

𝑉
             (5.6) 

 

   Second-order index  𝑆𝑖𝑗 =  
𝑣𝑖𝑗

𝑉
           (5.7) 

 

   Total-effects index  𝑆𝑇𝑖 =  𝑆𝑖 +  ∑ 𝑆𝑖𝑗𝑗≠𝑖 + ⋯       (5.8) 

 

where Si measures the sensitivity from the main effect of Xi, Sij measures the 

sensitivity from the interactions between Xi and Xj. The total-effects index, STi, 

measures the main effect of Xi, plus the effects of all its interactions with parameters 

other than Xi (second-order index values). Note: Si and Sij are limited to the value 

range (0 ≤  𝑆𝑖  ≤ 1), while 𝑆𝑇𝑖 can sum to a value greater than 1. 

 

Sobol has a computational expense, measured as model evaluations, of  (p + 2) * n,  

where p is the number model input factors and n is the number of sample sets the 

users is requesting to be run. Indices are calculated with 95% confidence intervals 

(CIs) with the minimum and maximum index values defining the CI range for each 

index value. When n is small, the CI ranges are relatively large. For indices with a 

true value close to zero, the Si can be reported as negative, which is a meaningless 

result, while the CI range includes the value zero. By increasing the number of model 

evaluations – a larger n, the CI ranges are reduced. The size of n needs to be 

sufficiently large to produce meaningful Si values and narrow CIs. A convergence 

test was undertaken to establish the sample size (n) required. As each input produced 
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a separate index and CI, the mean of the ranges of all CIs of input factors was used to 

establish the level of sampling required to give accurate and meaningful results 

across all output targets. Selected sample sizes (n) between 10 to 100,000 were used 

to establish the convergence towards zero of the CI ranges. Data was combined from 

simulations representing one sowing date (SowingDOY = 150) at each of three 

locations (Emerald, Gunnedah and Horsham). Subsequent Sobol analysis runs were 

all conducted using a sample size (n) of 100,000. In this research the sobolSalt 

function from the R sensitivity package (version 1.27.0) (Iooss et al. 2020) was used 

to implement the Sobol analysis method. 

 

5.2.5 Analysis undertaken 

 

There were two primary foci of the analysis in this research. Firstly, to assess the 

computational effort and time requirements of undertaking large Sobol analyses 

using MLEs, and secondly, to appraise the SA results by comparing the indices of 

the Morris and the Sobol methods produced for the two MLEs developed using 

different ML algorithmic approaches. In this experiment, MLEs developed to predict 

the outputs of the process-driven APSIM-NextGen chickpea model were used to 

undertake the Morris and Sobol analyses to assess the input/output relationships 

being expressed in the modeled scenarios. 

 

To determine the rate of convergence towards stable predictions of the Sobol first-

order and total-effects index values, an initial Sobol analysis was undertaken 

involving six input factors for the MLEs: FloweringTarget, FracPAWC, 

LateVegTarget, Population, ShootLag and VegTarget.  Analyses were run using 

sample sizes of 10, 100, 1000, 10 000, 50 000 and 100 000. Subsequent to this initial 

testing phase, all Sobol analyses were conducted using a sample size of 100,000. To 

address the first research focus, all 22 input factors used to drive the MLEs were 

included in Sobol analyses. The same input data set was used for both the ANN and 

the RF emulators across all six of the output targets. Based on the computational cost 

of Sobol being (p + 2) * n, using a sample size of 100,000 equated to (22 + 2) * 

100,000 = 2.4 million model evaluations per model. There were six MLEs, one for 

each target output to be predicted, by two model classes, ANN and RF. In total, this 

represented 2.4 million * 6 * 2 = 28.8 million model evaluations. The Morris 
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analyses were undertaken using samples of 10,000 and required an additional 2.76 

million model evaluations in total. 

 

In addition to the analysis using 22 input factors, a second series of analyses was 

conducted for a reduced set of six input factors, the remaining input factors being 

held constant for the Sobol analyses. This series of simulations removed the 

variations in the environmental and climatic factors that dominated the first set of 

analyses, thereby allowing the influences of variations in varietal factors to be 

observed. By observing the influences of these factors, that normally have subtle 

effects on the output values, the suitability of MLEs to perform SA can be more 

thoroughly understood, and differences between the analyses by the types of MLE 

can be highlighted. The six input factors being varied for this series of experiments 

were, FloweringTarget, FracPAWC, LateVegTarget, Population, ShootLag and 

VegTarget. To ensure robustness of testing, simulations were selected from the 

original MLE development data test sets which showed very strong correlations to 

the original APSIM-NextGen chickpea results for all six output targets. Three 

simulations were selected, one for each of the sowingDOY 100, 150 and 200, for 

each of the three test locations, Emerald, Gunnedah and Horsham. Sobol analyses 

were again undertaken with sample set sizes of 100,000 and Morris analyses with 

sample sets of 10,000. 

 

5.3 Results 

 

The results of the initial task of establishing the sample size required to obtain 

reliable index values are shown in Figure 5-2. This analysis is for six target outputs 

for both the ANN and the RF MLEs. Values shown are the mean widths of the CIs 

for the six input factors being analysed. Both MLEs showed very similar patterns and 

rates of convergence across all six output targets: EmergenceDAS, FloweringDAS, 

PoddingDAS, MaturityDAS, Biomass and GrainWt. In all cases the first-order 

indices showed greater variability than the total-effects indices for the same sample 

size and the same output target. When the sample size was 50,000 or greater, the CIs 

for both first-order and total-effects variabilility were nearing zero and the 

underlying index values had attained stable estimates.  
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Shown in Figure 5-3 are plots of index values and their CIs for the six input factors 

for three selected outputs: FloweringDAS, MaturityDAS and GrainWt, for sampling 

sizes of 100, 1000 and 10,000. Of note here is the number of RF indices reported as 

negative values for the sample size of 100. This is a clear indication that the 

implementation of the Sobol method used in this study requires a considerably large 

sample size in order to calculate meaningful statistics. 
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Figure 5-2. Convergence of Sobol index mean band widths.  

The mean width of the confidence intervals of six input factors is plotted for the 

Sobol first-order and total-effects indices for sampling sizes from 10 to 100000. 

Twelve machine learning emulators (MLE) are assessed; two classes, ANN and RF, 

for each of six outputs. Each output requires a different MLE. The convergence 

towards zero indicates more stable estimations of the value of the underlying 

statistic. 
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Figure 5-3. Confidence Intervals (CIs) plots.  

Plots are for six input factors for each of two machine learning emulators for three 

selected outputs. The three horizontal panels show the narrowing of the CIs for 

increasing sample sizes. The plots are for location: Gunnedah, sowing #2. 
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5.3.1 Computational efficiency of MLEs 

 

The computational efficiency of the MLEs became evident during this testing. For 

the analyses using a sample size of 100,000, which equates to 800,000 model 

evaluations with the six input factors being assessed, the average time taken to run 

each model was 3.3 seconds for the ANN MLEs and 24.7 seconds for the RF MLEs. 

This included all steps of the Sobol methodology from generating the Monte Carlo 

sampling plan, generating the input data set, running the input data through the MLE, 

combining the generated output with the inputs and calling the Sobol routine to 

generate the Sobol indices. As this represented a negligible time constraint, all 

further Sobol analyses run in this research experiment utilised the large sample size 

of 100,000.  

 

5.3.2 Sobol analysis of all MLE input factors 

 

The Sobol analysis of all input factors for the MLEs involved 22 parameters, and 

required the evaluation of 2.4 million emulator runs for each of two classes of MLE, 

ANN and RF, and six target outputs, giving a total of 28.8 million model evaluations. 

Results are shown in Figure 5-4. The input factors having the greatest effects varied 

between output targets, and also varied, though to a lesser extent, between the MLE 

types. Broadly, the most influential factors were the maximum and minimum 

temperatures, with SowingDOY also having an influence on FloweringDAS, 

PoddingDAS and MaturityDAS, but only for the ANN emulators. The RF emulators 

showed responsiveness to fewer factors than the ANN emulators. In all cases, the RF 

emulators showed first-order index values equal to, or very nearly equal to, the total-

effects index value. This is indicated in Figure 5-4 where the green dots (FirstOrder-

RF values) align with the open green circles (TotalEffects-RF values). The RF 

emulators are shown to be not affected by second order interactions between input 

factors. This is an unexpected result. This result indicates that the RF emulators are 

disregarding second-order interactions in the input factors. This may be due to the 

RF algorithm removing some of the complexities of the process-driven model as the 

RF emulator is only predicting one output target at a time. The exact cause of the 

observation that second-order effects are not being influential is easily anlaysed. The 

ANN emulators, likewise, show close alignment of first-order and total-effects 
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indices – brown dots and brown open circles in Figure 5-4, though not to the same 

extent as the RF emulators. In all cases, the first-order index was greater than, or 

equal to, the total-effects index, so the results are not overtly wrong. 
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Figure 5-4. First-order and total-effects Sobol indices of 22 input factors.  

First-order and total-effects indices were calculated for the 22 input factors that drive the machine learning emulators (MLEs). Two classes of MLE 

were included in the analysis, an artificial neural network (ANN) and a random forest (RF). Emulators for six target outputs: EmergenceDAS, 

FloweringDAS, PoddingDAS, MaturityDAS, Biomass and GrainWt, were analysed.  
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Figure 5-5. Morris analysis for 22 input factors.  

The factors include all input parameters used to drive the machine learning emulators 

(MLEs). Two classes of MLE were included in the analysis, an artificial neural 

network (ANN) and a random forest (RF). Emulators for six target outputs: 

EmergenceDAS, FloweringDAS, PoddingDAS, MaturityDAS, Biomass and 

GrainWt, were analysed. 
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5.3.3 Morris analysis of all input factors 

 

The results of the Morris analysis of the same input factors used for the Sobol 

analysis are shown in Figure 5-5. For the Morris analysis, the µ* value is a measure 

of the mean absolute elementary effect that the input factor has on the output value, 

while the σ value is a measure of the variance of the elementary effects. It is clearly 

seen in Figure 5-6 that the ANN emulators had larger elementary effects and larger 

variances than the RF emulators. This is further shown in Figure 5-6 where the µ* 

and σ values for the two classes of MLE are plotted in XY-scatterplots. The majority 

of points for both µ* and σ fall below the one-to-one line indicating lower values for 

the RF emulators for both statistics. The reasons for this observation are not easily 

discerned as the emulators are ‘black-boxes’ as to how values are actually derrived. 

One possible factor that could be contributing to the RF emulator reporting lower 

effects lies in the part of the method used to assess the influence of input values. The 

RF algorithm uses a processes called bagging to combine and summarise groups of 

output results from clusters of decision trees. It is the bagging effect that helps the 

RF models to be more tolerant of outlier values and noise within the data, without 

thowing out the accuracy of its predicted values. This means that it appears to be less 

reactive to input value extremes, which for the Morris analysis may be reflected in 

lower µ* and σ values being calculated. More detailed analysis of the values 

contributing to the panels in Figure 5-6 were undertaken. The plot of the 

EmergenceDAS values is shown in Figure 5-7. Of note here is that environmental 

factors, such as the temperature values, again dominate the elementary effects, with 

phenological factors, such as FloweringTarget and VegTarget being concentrated 

close to zero in the bottom left quadrant. The lower the values, the less influence 

they have on the output value. Only Biomass and GrainWt showed greater sensitivity 

to non-climate factors, such as FracPAWC, PAWCmm, Lat and Population, with the 

ANN MLEs showing significantly higher sensitivity than the RF MLEs. 
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Figure 5-6. XY-Scatterplots of the mu* and the sigma values for the RF and ANN 

machine learning emulators.  

Values below the one-to-one line indicate smaller elementary effects and small 

variances in the RF emulators than is observed in the ANN emulators.  
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Figure 5-7. Morris statistics for the output target EmergenceDAS from two MLEs, 

artificial neural network (ANN) and random forest (RF).  

Values are shown for the 22 input factors that drive the machine learning emulators. 
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Figure 5-8. First-order and total-effects Sobol indices of six phenology input factors. 

Sobol indices were calculated for the six input factors that are phenology parameters 

or are significant drivers of phenological processes. Environmental factors, such as 

temperatures and rainfall, have been set to fixed values. Two classes of MLE were 

included in the analysis, an artificial neural network (ANN) and a random forest 

(RF).  
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5.3.4 Sobol and Morris analysis of phenologically focused factors 

 

The Sobol and Morris analyses of the 22 input factors that drive the MLEs showed 

that environmental factors, such as temperature, were the dominant driving factors 

for each of the MLEs for the six output targets reviewed. In order to assess the 

effects of the genetic factors included in these input factors, these environmental 

factors were held constant and the factors more directly influencing phenology were 

assessed. This was done by assessing three separate sowing dates for one location, 

and varying only six input factors: FloweringTarget, FracPAWC, LateVegTarget, 

Population, ShootLag and VegTarget. The plots of the Sobol indices for the 

Gunnedah sowings are shown in Figure 5-8. Each of these factors shows increased 

importance for at least one of the outputs for at least one of the MLEs. The different 

sowing times show varying sensitivity to different factors. For example, 

FloweringDAS is shown to be sensitive to ShootLag in the first two sowings for RF, 

but not very sensitive in the third sowing. The ANN emulator shows a similar 

pattern, but for a much lower portion of the variance. For Biomass, Population is not 

a contributing factor for the first sowing for RF, but is a contributing factor for the 

second and third sowings, while ANN shows a small sensitivity for the first sowing. 

ANN also indicates significant second order effects linked to Population of sowings 

two and three, while RF shows no second order effects.  

 

5.4 Discussion 

 

Sensitivity analysis of complex modelling systems requires large numbers of model 

simulations to be run. Efficient screening approaches, such as the Morris elementary 

effects method may take as few as several hundred simulations to be run to provide 

meaningful results, while variance decomposition methods, such as Sobol, often 

require many thousands, or even tens of thousands of simulations to be run. 

Although improvements in computing power continue to make running large 

numbers of simulations less of an issue, there remains great advantages in reducing 

the overall cost of running large simulation sets. It is impossible for a range of 

reasons to directly compare the computational burden of running SA on a process-

driven model with the burden of running MLEs trained to predict the outputs of the 
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process-driven model, but on a simple time of execution basis, the APSIM-NextGen 

chickpea model required in excess of six hours to run 80,000 simulations, while 

ANN based MLEs took 3.3 seconds to generate 800,000 simulation results on the 

computer used in this study. Ignoring the many dissimilarities between these two 

approaches, this represents a speed improvement of approximately 50,000 times to 

produce the model output values required for a Sobol analysis. The RF MLEs 

reduced simulation times by a factor of approximately 6,000 compared to the 

process-driven model. Some of the factors that are not taken into consideration in 

this time comparison are: the process-driven model produces all required outputs in a 

single execution run, while MLEs produce a single predicted output value per model 

execution; a separate MLE needs to be built/trained for each desired output target; 

process-driven models evaluate multiple years of weather data within a single run, 

while MLEs evaluate only a single set of climatic settings within a single run; and 

input setting for process-driven models are much more robust, while MLEs require 

careful input selection to avoid invalid simulation results. These observations are 

supported by Stanfill et al. (2015) who highlights the high level of time and care 

required by researchers to ensure SA undertaken with emulators does not return 

qualitatively incorrect results – an issue that is noted as a common problem with 

non-ML emulators (Stanfill et al. 2015).  None of these issues are inconsequential in 

estimating the time and effort required to generate predicted results of simulation 

models using MLEs. 

 

The Sobol analysis of 22 inputs of the MLEs (Figure 4-5) shows that both the ANN 

and RF emulators are generally sensitive to the same inputs as each other across all 

six target outputs, though the actual proportions of the variations in output values 

assigned to particular inputs varied between them. Of note in Figure 4-5 is that for all 

RF indices, the first-order index of a value coincides almost precisely with the total-

effects index, as shown by the green dot (first-order index) being superimposed on 

the green triangle (total-effects index). The indices of the ANN emulators (brown 

dots and open brown diamond shapes) also show the same tendency, although there 

are some examples where the total-effects index is greater than the first-order index, 

e.g. for SowingDOY in the prediction of FloweringDAS. This coincidence of values 

indicates that the RF emulators and, to a large extent, the ANN emulators, are not 

sensitive to second or higher order input factor interactions, at least in this analysis. 
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A conclusion that there are no second or higher order interactions between input 

factors is certainly incorrect. For example, the sowing location’s latitude (Lat) will 

be interacting with the SowingDOY for the crop’s growth. Molnar et al. (2020) in 

their research about pitfalls in understanding ML model outputs, caution about 

problems with interpreting ML model outputs and linking them with inputs via 

assumed causality. 

Another observation from the Sobol analysis of 22 input factors (Figure 4-5) is that 

ANN emulators are sensitive to more inputs than are RF emulators. Based on the 

results presented in Chapter 4, the predictive abilities of both the ANN and RF are 

quite similar. This indicates that, although the output values are quite similar, the 

MLEs are using different information to achieve their predicted outputs. While the 

results of the SA on the MLEs is not overtly wrong, the results are not entirely 

consistent with those of the original process driven model. The Morris analysis 

undertaken (Figures 4-5 and 4-6) clearly demonstrate the differences between the 

two MLE classes. The elementary effects (µ* values) associated with each of the 

outputs of the ANN emulators were significantly higher - more affected by variations 

in the input values - than were the outputs of the RF emulators, and the variance of 

the output values (σ) was also much higher for the ANN emulators than the RF 

emulators. The clustering of the RF values near the (0,0) origin of the Morris (µ* 

versus σ) plots can be seen in the sample EmergenceDAS plot in Figure 4-7. Overall, 

the Morris method highlights the differences between the ANN and RF emulators 

more clearly, while the Sobol method, which is reporting the proportions of the 

variances observed, tends to show greater consistency between the emulators. 

 

Fixing the values of the environmental input factors by selecting one location and 

three selected sowing dates from the training data set, allowed a second Sobol 

analysis to focus on the six inputs most closely involved in the phenology of the 

crop. These input factors: FloweringTarget, FracPAWC, LateVegTarget, Population, 

ShootLag and VegTarget, showed virtually no sensitivity when included in the set of 

22 input factors, but demonstrate significant contributions to the variability of all six 

output target values when their effects are assessed as a small group of six genetic 

and management input factors (Figure 5-8). Even between the different sowings, 

factors are shown to contribute varing amounts to the output’s variance. For 

example, ShootLag’s contribution to FloweringDAS is significantly more 
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pronounced in sowings one and two (Figure 5-8) for both models, than for either of 

the models in sowing three. The dominance of environmental factors over genetic 

factors in broadscale simulation experiments is logical and observed in all 

biophysical simulation systems (Chen et al. 2016). The effects that genetic 

variations, as represented by phenolgical process settings, have on overall crop 

growth will commonly be orders of magnititude smaller than the effects that 

environmental factors; temperature, water and light, have on the the crop’s growth 

potential. So these results are in keeping with general knowledge. They do, however, 

highlight that the different classes of MLEs respond differently to the same input 

values while producing very similar outputs. 

 

The use of MLEs does offer some interesting possibilities for the design of 

simulation experiments. Exceptional computational efficiency means that the size of 

simulation experiments can be extended into the realms of what has, until now, only 

been possible with the use of large computing clusters. Data, the lack of which is 

possibly the greatest limiting factor to the use of ML models, is largely in the hands 

of the researcher, as the data sets are generated by the running of the process-driven 

model. Carefully selected parameters and experimental design can produce data sets 

that generate robust and highly accurate emulators for specific outputs. Additional 

inputs can be specified for the development of the MLEs, inputs that are not included 

in the inputs of the process-driven model. For example, the summary climatic values 

used in this research were generated as outputs from APSIM. There are no 

equivalent summary values available as inputs to the APSIM-NextGen chickpea 

model. Experiments could be designed to use these inputs to the MLEs to easily 

appraise the influence of climatic variations on crops at different growth stages. 

Novel data sources could also be used, such as remote imagery, provided validated 

output results are available, or can be generated, with which to train the MLEs. The 

SA of such simulation experiments would be expected to generate new knowledge. 

 

5.5 Conclusion 

 

Results from the research undertaken in this chapter of my thesis have answered the 

third research question for this thesis in the negative. That is, that undertaking SA 
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using MLEs cannot be considered equivalent to undertaking SA on the underlying 

process-driven model that the MLEs were built to emulate, regardless how 

accurately the MLEs predict the outputs of the base model. The SA will reflect the 

input/output relationships of the MLE rather than those of the process-driven model. 

Machine learning models developed to emulate the outputs of process-driven 

biophysical models, referred to in this research as machine learning emulators 

(MLEs), have been shown to be highly computationally efficient, both in term of 

their speed of execution and the nominal level of hardware required for them to 

operate. The evaluation of millions of sets of input variables to produce predicted 

output values, and the subsequent SA using either Morris or a Sobol methodology 

was shown to be a very achievable task. The interpretation of the results, however, is 

not so straight forward. The analysis of the MLEs showed variations between the 

ANN and RF classes of model. While not overtly incorrect, the results show that no 

certain conclusions can be drawn about the internal functioning of the underlying 

process-driven model that the ML models were emulating. For the detailed SA of 

input parameters of process-driven models, this research has shown that the approach 

of using MLEs for the analysis using the Sobol method has limitations and may not 

provide the analysis expected. Using this approach to apply the Morris method is 

more robust than applying the Sobol method with respect to consistency of results 

from the underlying process-driven model. The approach does offer advantages in 

the areas of computational speed, and the ability to redefine or extend the 

functionality of the underlying process-driven model through the inclusion of new or 

modified data sources. In situations where very large numbers of simulations are 

required to be run and the computational burden of running the required number of 

simulations is a limiting factor, then the utilisation of an MLE to improve the 

computational speed is worth consideration. This approach also opens the possibility 

of modified and expanded experimental designs, with the SA of these experiments 

potentially contributing to new knowledge in the research area. 
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CHAPTER 6: GENERAL DISCUSSION AND 

CONCLUSIONS 

 

With simulation modelling playing an increasingly important role in diverse 

disciplines spanning science to medicine to public policy to defence, the need to 

have carefully validated models and certified outputs continues to grow in 

significance. Sensitivity analysis (SA) is one of the critical tools used to validate 

models (Razavi et al. 2021). As models and modelling systems become more 

complex, the computational burden of undertaking thorough analyses becomes more 

challenging. At the same time, the area of machine learning (ML), a discipline rooted 

in the manipulation and analysis of large data sets, continues to develop, and provide 

solutions to previously intractable problems such as remote image analysis 

(Chowdhury et al. 2015; Gilbertson & Niekerk 2016; Pantazi et al. 2016). Rather 

than attempting to replace the process-driven biophysical models that are the 

building blocks of larger and more complex modelling systems, this thesis has 

investigated the potential use of ML emulators to undertake the SA of the underlying 

process driven models. The example process-driven modelling system used in this 

research was the APSIM-NextGen framework. The goal here has been to avail the 

model developer and end user of the most useful and powerful features of each 

modelling approach, the flexibility, robustness and proven fit-for-purpose qualities 

of the process-driven modelling system, and the computational efficiency, data 

processing capacity and innate flexibility inherent in the ML approaches. Through a 

review of the literature (Chapter 2) it was identified that SA, although considered as 

best-practice for simulation model development and validation, is not as widely used 

as it could be, and has very limited adoption of use in the development of process-

driven biophysical crop models. The approach of using MLEs to assist in performing 

SA of process-driven models by alleviating the computational burden, including for 

SA methods as computationally intensive as variance decomposition, has not been 

assessed. This applies to process-driven biophysical models specifically, but also to 

process-driven modelling systems more generally.  

 

In agricultural systems modelling, the two most commonly used SA methods are the 

Morris and the Sobol methods (Morris 1991; Sobol' 1993, 2001; Campolongo et al. 
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2007). The first objective of this research project, the focus of Chapter 3, was to 

establish if MLEs, generated to predict the outputs of a process-driven model, in this 

case APSIM-NextGen chickpea, could be shown to have the same or very similar 

predictions of the sensitivity of output parameters to the input parameters as was 

shown by the Morris and Sobol methods for the underlying process-driven model. 

This has not previously been demonstrated in literature relating to process-driven 

models. Due to the need to be able to determine exactly how the results were being 

calculated, the MARS algorithm was selected as the ML approach to be used in the 

testing. The RF and ANN algorithms were considered, but their ‘black-box’ qualities 

for how output values are calculated meant that they were considered as not ideal for 

this phase of the experiment, and so were not included to generate MLEs. The results 

of Chapter 3 revealed that there is a strong correlation between the sensitivity indices 

calculated for the MLE for seven output parameters, and those calculated for the 

Morris (R2 = 0.89) and Sobol (R2 = 0.82) methods. The implication of this is that a 

SA of a MLE should give comparable, though not identical, results as a SA of the 

process-driven upon which the emulator as based. While this was the desired, and 

expected, outcome, it was not a forgone conclusion as ML is not driven by processes 

that cause the output value, as is the case for process-driven models, but rather by 

statistical analysis of inferred correlations between inputs values and output values 

(Razavi et al. 2021). This approach of generating a MLE of the process-driven model 

does not guarantee creating a method with improved computational efficiency for 

performing SA, nor does it offer a one size fits all solution to performing SA. The 

Morris method was shown to be at least as computationally efficient as the MLE. So, 

for tasks such as screening for important inputs, the Morris method would remain as 

the preferred choice as it does not incur the additional costs of building the MLE. 

However, in the case of the Sobol method, the computational efficiency of the MLE 

showed promising results for potential efficiency gains. 

 

Having established that using MLEs for SA of process-driven models has the 

potential to deliver computational efficiency gains, the next research objective of this 

thesis, the focus of Chapter 4, was to determine which ML algorithms produced the 

best emulators based on accuracy of predictions (outputs) and speed of development. 

In reviewing the use of ML in the areas of agricultural systems modelling (Chapter 

2), it was found that there has been no research published which reference the use of 
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ML based emulators for process-driven biophysical models. Emulators have been 

used in ecological modelling disciplines, such as hydrology, and these include, linear 

regression and support vector machines (Villa-Vialaneix et al. 2012), variable 

importance measures, random forests (Wei et al. 2015), and polynomial chaos 

expansion. One feature that stands out in each of these approaches, except for the 

random forest approach, is that computational gains are obtained primarily by 

reducing the complexity of the problem which is achieved by reducing the number of 

dimensions being considered in addressing the problem. The issue of dimensionality 

reduction is not a trivial one. For an emulator to be suitable for use in SA, it needs to 

respond appropriately to less-common mixes of parameters, as is particularly the 

case in environmental factors like climate, where extreme weather events need to be 

handled. This is because a thorough SA will use a full factorial of parameter values, 

and less common scenarios are likely to be included. Some factors that are of little, 

or no significance generally, might become critically important in extreme situations. 

Eliminating them from the emulator will compromise some outputs. It was this 

aspect of eliminating some input factors from those used to develop the MLE that led 

to questions about the suitability of the MARS algorithm for undertaking SA. It was 

decided to include the MARS algorithm in the experiments for Chapter 4 for 

continuity with the previous chapter, and to provide a base for comparison against 

algorithms that were to be newly included in Chapters 4 and 5.  

 

Machine learning is more commonly used to generate models of systems directly, 

rather than generate emulators of existing process-driven models. The ML 

algorithms used for the generation of predictive agricultural models include MARS 

(Fortin et al. 2014; Deo et al. 2015), ANN (Kuwata & Shibasaki 2016; Pantazi et al. 

2016; Nettleton et al. 2019), and RF (Villa-Vialaneix et al. 2012; Newlands et al. 

2014; Thessen 2016; Kouadio et al. 2018). These algorithms, having been shown to 

be adaptable and appropriate for the generation of models to simulate complex 

agricultural systems and predict crop yields, were selected for the investigation into 

generating ML emulators (Chapter 4). These three ML algorithms represented three 

distinctly different classes of algorithm, (a) MARS a regression-based approach, (b) 

ANN a neural network based approach, and (c) RF a decision tree based approach. 

The extreme learning machine (ELM), an advanced form of ANN that was used by 

Deo et al. (2015) and Kouadio et al. (2018) for ML modelling of crops and drought 
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indices, was also considered for inclusion. However, after a thorough review of the 

performance of an implementation of an ELM in the R computing environment, it 

was decided that the available implementation of the ELM was not fit-for-purpose, 

and a standard ANN was used in its place.  

 

Each of the three classes of algorithm produced emulators that performed 

impressively well in terms of accuracy for each of the six model outputs. The least 

accurate predictor was the MARS emulator for GrainWt with an accuracy of R2 = 

0.88, while each of the RF emulators had an accuracy of prediction between R2 = 

0.98 and R2 = 1.00. The computational effort as reflected in the execution times 

required to generate the emulators showed significant variations with the MARS 

emulator being the fastest to create and train, while the ANN emulators took 

approximately three times longer, and the RF emulators taking approximately 500 

times longer. So, although slower to generate and execute, the RF emulators were 

consistently the most accurate. These details are not often reported in literature, and 

while they represent only a very specific instance of a diverse and complex 

modelling system, the comparison of the performance of the ML approaches may 

well be of interest to biophysical model developers.  

 

Models built on ML algorithms need data, and lots of it (Buchanan & Miller 2017). 

The MLEs generated in this research were developed on data sets generated from the 

underlying process-driven modelling system. As such, there was almost limitless 

amounts of data available to train these emulators. Any issues around the lack of data 

for model generation (Montesino-San Martin et al. 2018) was avoided. However, the 

defining of modelling scenarios to run in the process-driven biophysical modelling 

system in order to create the data to generate the MLEs, is not without its issues. One 

issue that was encountered early in the experimental design process, but not 

recognised fully until much later on, was that of valid parameter ranges. While 

parameters were all well within the valid ranges for the process-driven biophysical 

models, some of the combinations of values resulted in a failure to produce crops. 

Most of the combinations of parameter settings that did fail to simulate a mature crop 

were valid combinations of values, but due to other uncontrolled factors, such as 

weather, the crop failed. This is not an issue in the process-driven modelling system 

and can be used to define acceptable boundaries for parameter setting in given 
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situations, such as time of sowing experiments. For ML models, however, the 

presence in the data of multiple diverse parameter settings which all result in the 

same target value, zero in the case of yield for a failed crop, simply creates noise and 

the model becomes less accurate (Gollapudi 2016). The resolution of this issue, 

without unduly limiting the acceptable ranges of input parameters values, is not an 

easy task, but is one that cannot be ignored if attempting to create MLEs.  

 

A second issue with generating data sets was clearly shown by the simulation of the 

two additional test locations in Chapter 4. Although the MLEs had performed 

extremely well on the training locations (Figure 4-1, locations 1 to 7), and this was 

assessed using previously unseen test scenario data for those locations, the 

performance of the emulators at predicting model outputs at completely new 

locations (Figure 4-1, locations 8 and 9) was very poor. This was because the 

parameter values used, or the pattern of relationship between input values and output 

values, had not been encountered in the training data set. The MLEs simply had no 

‘knowledge’ as to how to predict the output values. This is a known limitation of ML 

predictive algorithms (Buchanan & Miller 2017). This issue highlights the need to 

ensure all scenarios and all parameter value combinations of interest are covered by 

the values and patterns in the training data set. While process-driven models are 

likely to give reasonably accurate answers for scenarios that fall outside the ‘usual’ 

settings, but within the model limits, ML models will not fail gracefully, but are 

more prone to give completely unrealistic predictions. 

 

A third data related issue that became evident during this research was one related to 

dimensionality reduction. The MARS algorithm, by its design, eliminates the use of 

parameters that are deemed to not have sufficient influence on the value of the output 

(Friedman 1991a; Friedman & Roosen 1995). This effectively reduces the 

dimensionality of the model and approximates the details of the system that it is 

trying to predict. While this improves the computational speed of the model 

execution, it also removes details about the system being modelled. In the case of 

SA, this dimensionality reduction can remove some of the parameters that are of 

interest to the analysis, either due to direct influence, or by interaction. It was for this 

reason that the MARS model was deemed to be unsuitable for inclusion in Chapter 5 

of this research, the comparison of the performance of MLEs in undertaking SA. 
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The final part of this research was to compare the sensitivity analyses of the different 

MLEs. The first part of this assessment is contained in Chapter 4 and is covered by 

Figure 4-4 which presents a heat map of variable importance indices. As discussed in 

Chapter 4, this analysis showed clearly that the different MLEs vary in the 

importance that is placed on input variables for calculating the output value. By 

using the Morris or Sobol method to undertake the SA (Chapter 5), these variations 

were less pronounced, but the MLEs still showed variations between their results. 

These results show that none of these measures of sensitivity taken from the MLEs 

provide a reliable analysis of the input-output linkages of the underlying process-

driven model. The comparison would benefit from undertaking both a Morris and 

Sobol analysis on the APSIM-NextGen chickpea model, though a direct comparison 

between the SA of the APSIM model and the MLEs would not be possible due to 

differences between the input parameter sets. 

 

The potential of MLEs to provide a way of alleviating the computational burden of 

running large simulation experiments in APSIM itself was clearly demonstrated. The 

combination of highly accurate predictions, especially from the RF emulators, and 

the extraordinary speed of execution of the MLEs, which produced results many 

thousands of times faster than is possible using a process-driven biophysical model, 

highlights this potential. In relation to using this approach for the SA of the 

underlying process-driven models, the analysis shows that the MLEs generate results 

based on differing patterns of input variable importance, so the approach is not an 

ideal fit for analysing the underlying model. The issue of MLEs being ‘black-boxes’ 

of functionality is part of the problem. It might be summarised as, we can teach the 

machine to learn from the data that we supply it, but it is not easy for humans to 

learn from the machine and be certain about why the results are as they are. To 

generate well validated MLEs from within APSIM-NextGen and use them for 

undertaking simulation experiments or SA, would require a thorough knowledge of 

the development process for generating MLEs and high levels of automation of the 

procedures involved. Insights from this research have revealed that the automation of 

these processes would not be a simple task. Of particular complexity would be the 

selection and cleaning of the data needed to build accurate and robust MLEs that 

fully meet the requirements of the research being undertaken. Molnar et al. (2020) 
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raises a number of concerns around the issue of data selection and input data 

interactions. APSIM can be used to generate very large data sets quite easily, but 

ensuring all parameters used contribute to ‘successful’ outcomes, or determining 

which inputs have resulted in failed outcomes, is not straight forward. The work by 

Shastry et al. (2016) also comments on the essential need to carefully clean data 

before generating ML models. The solution to the problem may well involve 

convolutional ML networks where inputs and outputs are clustered to allow the 

establishment of limits to the ranges of values that will work, and the identification 

of combinations that will fail. Other forms of deep learning networks might also be 

required to ensure the required input parameters are retained if undertaking SA but 

discarded if not needed for other analyses. In short, the potential for automated 

systems appears to be present, but the path to fulfilling them may be a difficult one. 

An alternative way of using MLEs for SA might lie in a new approach to generating 

simulation experiments. The almost limitless potential of process-driven models to 

produce data sets of input and output values goes a long way to overcoming one of 

the greatest limitations to developing ML models, that of the lack of data. Provided 

that data sets are well designed and include all relevant inputs and matching outputs 

over the complete range that a ML model is desired to work, then very accurate and 

computationally efficient MLEs can be developed, as demonstrated by this research. 

In addition, novel data sources, such as remote imagery, can be included in the 

generation of the MLEs, provided validated outputs can be sourced or generated with 

which to train the MLEs. These would be hybrid models which would incorporate 

the outputs of process-driven models and inputs from other data sources, as 

demonstrated in the recent work by Paudel et al. (2021) This opens options for 

simulation experiments that are simply not possible with process-driven models 

alone. The research included in this thesis is at the juncture of the fields of process-

driven biophysical model development, agronomy, plant physiology, machine 

learning emulators, and global sensitivity analysis. The outcomes of this work have 

implications for model development and model application in all these disciplines. 

Firstly, the Morris method remains a more computationally efficient choice, when 

compared with the development and use of MLEs, for the screening of importance of 

parameters of process-driven models. Secondly, the results show that, while both 

Morris and Sobol analyses produce very similar results across different MLEs, the 

discrepancies indicate that great caution is needed if interpreting these results as a 
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way of understanding the underlying process-driven model and its input-output 

sensitivities. The results suggest that by using the computational efficiency of an 

MLE, SA of large-scale simulation experiments becomes more feasible, and this can 

contribute to efficiency gains for scientific research. The SA of enhanced forms of 

simulation experiments produced by hybrid models, which use the outputs of 

process-driven models and combine these with other sources of data to create new 

forms of ML based agro-ecological models, is suggested by this research as a 

direction that could be pursued to advance agro-ecological modelling. 

 

Emulator and surrogate models’ use is well documented in literature (Razavi et al. 

2012), although the use of any form of emulator in the field of agricultural systems 

modelling continues to be a relative rarity. The research included in this thesis attests 

to the significant potential gains offered by MLEs for agro-ecological modelling. A 

recent publication (Razavi et al. 2021) highlights the considerable interest by experts 

in a wide range of disciplines in supporting the notion that SA is such an important 

and integral part of modern simulation modelling, that it deserves to have its own 

discipline in the science and mathematics communities, and that it be taught in 

higher education with formalised curricula. In addition, there is increasing 

recognition of the need to address the questions and concerns around the functioning 

of ML models and the need to offer formal validation of the outputs. The specialist 

research area of ‘Interpretable machine learning models’ (Molnar et al. 2020) has the 

potential to address some of the concerns raised in the discussions of Chapters 4 and 

5 of this thesis about the use of ML in SA. In particular, these concerns include the 

interpretation of ML outputs, variable importance values, and the effect of data 

selection on the reliability of output values. Many of these issues are also raised by 

Razavi et al. (2021) in their review of the current state of knowledge of SA involving 

the use of ML. These research areas will play key roles in advancing the use of ML 

in SA for a wide range of science disciplines.  

 

To summarise: Chapter 3 addressed the question of whether an ML based emulator 

developed to simulate the outputs of a process-driven biophysical model, shows the 

same, or at least comparable, mappings between input parameter values and output 

values when subjected to some form of SA as an analysis performed on the 

underlying process-driven model. A method has been developed that allows the 
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sensitivity indices produced by the Morris and the Sobol methods run on the process-

driven model to compared with the variable importance indices produced by the 

MLE for its input parameters. The results of this analysis showed that the variable 

importance indices of the MLE were very similar to the SA indices produced by, 

particularly, the Morris method, and to a lesser extent to the indices produced by the 

Sobol method. This answered the first research question in the affirmative. 

Subsequent research required for addressing the second research question in Chapter 

4, however, highlighted significant potential limitations in this approach. 

Specifically, if the ML algorithm discards input variables assessed to be of 

insignificant importance (dimensionality reduction), as many of the approaches do to 

maximise computational efficiency, then the SA can no longer be considered to 

represent a true analysis of the underlying process-driven model that is being driven 

by all the input parameters.  

 

In Chapter 4, I addressed the second research question: Can ML based emulators be 

built to accurately predict the outputs of process-driven biophysical models, and if 

so, are some ML algorithms more suited to the task than others based on accuracy of 

predictions and computational effort incurred?  This research question was answered 

in the affirmative, with the results of the research showing that each of the three ML 

algorithms tested, ANN, MARS, and RF, all produced emulators that generated 

accurate predictions, though RF was shown to be the most consistently accurate 

across all output parameters, while the MARS emulators were slightly less accurate 

and less consistent in their accuracy. The computational burden of generating and 

running the emulators was basically the opposite, with the MARS emulators being 

the least expensive to build and run in terms of computational effort, while the RF 

emulators were many hundreds of times more computationally expensive. Additional 

testing of the emulators to generate predictions for test sites that were not included in 

the training data sets but were within the geographical boundaries of the chickpea 

production zones being simulated, showed the need to ensure ML model training 

data sets comprehensively cover all value ranges and combinations that might occur 

in live production data sets. In the case of the test locations used in Chapter 4, soil 

profile values fell outside the ranges for which the MLEs had been trained and as a 

result none of the MLEs were able to generate sensible predictions. The implication 

of this is that MLEs need to be generated to specifically address the problem that 
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they are going to be used to answer. This requirement then focuses attention on the 

need for the careful design of the simulation experiments to be run on the process-

driven modelling system that will generate the required data sets used to train the 

MLEs. As for future studies, the choice of an ML algorithm for developing 

emulators is not a clear-cut decision. Certainly, the robustness and accuracy of the 

RF algorithm should not be undervalued, even with a higher computational cost than 

the ANN and MARS algorithms. As this is a rapidly changing field, newer RF based 

algorithms, such as Gradient Boosted Decision Trees (GBDT) or XGBoost decision 

trees would be well worth investigating. The trends in development are almost 

always towards greater efficiencies. Also, the trend to utilise additional coding 

libraries which are compatible with multiple compliant ML models, may provide 

additional attractive features for models, such as the generation of surface response 

curves for visualising input parameter interactions, as was demonstrated for the 

MARS model in Chapter 3. As no single ML algorithm is the most suitable to solve 

all problems, assessment at the time of solving a problem as to what options are 

available and which approach is best, is a requirement for the foreseeable future. 

 

In Chapter 5, I addressed the third research question: Does performing a Morris or a 

Sobol SA on an MLE yield the same or comparable results as preforming the SA on 

the original process-driven model? This research question was answered in the 

negative, with the SA results reflecting the input/output mappings that were 

occurring in the MLE, rather than those of the original process-driven model. While 

these results were similar and not inconsistent between MLEs, it is not possible to 

make any justified assumptions about these results and what is produced by a SA of 

the original process-driven model. A positive outcome of Chapter 5’s research, 

however, was the demonstration of just how computationally efficient MLEs are, 

even the relatively computationally expensive RF emulators. This observation, along 

with the demonstrated potential to generate highly accurate MLEs for specific 

purposes, as shown by the results of Chapter 4, opens the possibility of undertaking 

other forms of SA using simulation experiments which require numbers of 

simulations that have previously been beyond the scope of most research budgets. 

Also, data sources that are difficult or impossible to include as data sources for 

process-driven models may, in some cases, be readily included as input data for ML 

models. Combining both the process-driven model and additional features that could 
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be added to an MLE opens the possibility of creating hybrid simulation models. 

These possibilities present some very exciting options for further research in the area 

of agro-ecological modelling. 
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APPENDIX A   

 

Sample listing of MARS model generation log 

 

Log file of build of ARES (MARS) model for output: ‘Emergence Days After 

Sowing’ 

for Sowing #3 at Warwick, Australia. 

 

 

    'Building the model (T:EmergDAS)  

==================================================' 

 

Building ARES model... 

Approx number of available knot locations (controlled by useMinSpan 

and useEndSpan): x1:3 x2:4 x3:4 x4:4 x5:4 x6:4 x7:3 

Forward phase  

......................................................... 

Termination condition is met: R2 improvement is below threshold. 

Number of basis functions in the model after forward phase: 56 

Backward phase 

........................................................ 

Number of basis functions in the final model: 40 

Total effective number of parameters: 40.0 

Highest degree of interactions: 3 

Number of input variables in the model: 3 (x3, x5, x6) 

Execution time: 38.92 seconds 

 

model =  

 

  <a href="matlab:helpPopup struct" style="font-

weight:bold">struct</a> with fields: 

 

            MSE: 7.8715e-05 

            GCV: 7.9576e-05 

          coefs: [40×1 double] 

       knotdims:  

      knotsites: [39×1 cell] 

       knotdirs: [39×1 cell] 

        parents: [39×1 double] 

    trainParams: [1×1 struct] 

             t1: [39×7 double] 

             t2: [39×7 double] 

           minX: [0 0 0 0 0 0 0] 

           maxX: [1 1 1 1 1 1 1] 

       isBinary: [0 0 0 0 0 0 0] 

 

  

    'Output Target:EmergDAS' 

 

Info on the basis functions 

========================================= 

Type: piecewise-cubic 

MSE: 7.87152e-05 

GCV: 7.95764e-05 
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R2GCV: 0.998614 

Total number of basis functions (including intercept): 40 

Total effective number of parameters: 40 

Basis functions: 

BF          MSE          GCV        R2GCV           coef    hinges      

basis function 

0             -            -            -      -0.092418                

(intercept) 

3       0.00173      0.00175      0.96954       -0.33044    \_          

C(x5|-1,0.5,0.667,0.833) 

1       0.00132      0.00133      0.97677       -0.31735    \_          

C(x3|-1,0.5,0.667,0.833) 

2       0.00034      0.00035      0.99398         1.0091    _/          

C(x5|+1,0.5,0.667,0.833) 

6       0.00025      0.00026      0.99555         2.8202    _/ _/       

C(x3|+1,0.5,0.667,0.833) * C(x5|+1,0.167,0.333,0.5) 

15      0.00024      0.00025      0.99572        -3.6111    _/ _/       

C(x3|+1,0.5,0.667,0.833) * C(x6|+1,0.5,0.667,0.833) 

25      0.00020      0.00020      0.99647         10.291    _/ \_       

C(x3|+1,0.5,0.667,0.833) * C(x6|-1,0.167,0.333,0.5) 

22      0.00017      0.00018      0.99695        -17.908    _/ _/ _/    

BF20 * C(x3|+1,0.167,0.333,0.5) 

30      0.00016      0.00016      0.99718        -9.3634    \_ \_ _/    

C(x5|-1,0.5,0.667,0.833) * C(x6|-1,0.167,0.333,0.5) * 

C(x3|+1,0.5,0.667,0.833) 

26      0.00016      0.00016      0.99725        -6.5903    _/ \_       

C(x3|+1,0.167,0.333,0.5) * C(x6|-1,0.167,0.333,0.5) 

37      0.00015      0.00015      0.99739          1.583    \_ _/       

BF5 * C(x3|+1,0.167,0.333,0.5) 

5       0.00014      0.00014      0.99750         1.5005    \_          

C(x6|-1,0.5,0.667,0.833) 

39      0.00014      0.00014      0.99751         5.5776    \_ \_ _/    

BF38 * max(0, x5 +0) 

27      0.00014      0.00014      0.99751        -3.2237    \_ \_       

BF1 * C(x6|-1,0.167,0.333,0.5) 

33      0.00014      0.00014      0.99752         2.6298    \_ \_ \_    

C(x6|-1,0.5,0.667,0.833) * C(x5|-1,0.5,0.667,0.833) * C(x3|-

1,0.5,0.667,0.833) 

12      0.00014      0.00014      0.99761        -9.9709    \_ _/ \_    

BF9 * C(x3|-1,0.5,0.667,0.833) 

16      0.00013      0.00013      0.99766        -3.1265    _/ \_       

C(x3|+1,0.5,0.667,0.833) * C(x6|-1,0.5,0.667,0.833) 

31      0.00013      0.00013      0.99767        -5.1669    \_ \_ \_    

C(x5|-1,0.5,0.667,0.833) * C(x6|-1,0.167,0.333,0.5) * C(x3|-

1,0.5,0.667,0.833) 

29      0.00013      0.00013      0.99773         10.933    \_ \_ \_    

C(x5|-1,0.5,0.667,0.833) * C(x3|-1,0.167,0.333,0.5) * C(x6|-

1,0.167,0.333,0.5) 

32      0.00013      0.00013      0.99779         6.9259    \_ \_ _/    

C(x6|-1,0.5,0.667,0.833) * C(x5|-1,0.5,0.667,0.833) * 

C(x3|+1,0.5,0.667,0.833) 

13      0.00012      0.00013      0.99781        -30.502    _/ \_ _/    

C(x5|+1,0.5,0.667,0.833) * C(x3|-1,0.5,0.667,0.833) * 

C(x6|+1,0.167,0.333,0.5) 

23      0.00012      0.00013      0.99782         30.512    _/ _/ \_    

BF20 * C(x3|-1,0.167,0.333,0.5) 

7       0.00012      0.00012      0.99784        -2.3035    _/ \_       

C(x3|+1,0.5,0.667,0.833) * C(x5|-1,0.167,0.333,0.5) 

28      0.00012      0.00012      0.99785         1.5122    _/          

C(x6|+1,0.167,0.333,0.5) 
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4       0.00012      0.00012      0.99794        -1.4285    _/          

C(x6|+1,0.5,0.667,0.833) 

38      0.00012      0.00012      0.99796        -2.1263    \_ \_       

BF5 * C(x3|-1,0.167,0.333,0.5) 

11      0.00011      0.00011      0.99800         -14.68    \_ _/ _/    

BF9 * C(x3|+1,0.5,0.667,0.833) 

24      0.00011      0.00011      0.99802         1.0286    _/ _/       

C(x3|+1,0.5,0.667,0.833) * C(x6|+1,0.167,0.333,0.5) 

19      0.00011      0.00011      0.99803         3.6606    \_ _/ _/    

C(x5|-1,0.5,0.667,0.833) * C(x6|+1,0.167,0.333,0.5) * 

C(x3|+1,0.5,0.667,0.833) 

20      0.00011      0.00011      0.99805         8.6149    _/ _/       

BF2 * C(x6|+1,0.167,0.333,0.5) 

14      0.00011      0.00011      0.99810         9.2566    _/ \_ \_    

C(x5|+1,0.5,0.667,0.833) * C(x3|-1,0.5,0.667,0.833) * C(x6|-

1,0.167,0.333,0.5) 

8       0.00011      0.00011      0.99811         7.6232    _/ _/       

BF2 * C(x3|+1,0.5,0.667,0.833) 

36      0.00011      0.00011      0.99813         27.859    _/ _/ _/    

BF8 * C(x6|+1,0.5,0.667,0.833) 

10      0.00010      0.00010      0.99827        -4.9552    _/ _/       

BF2 * C(x3|+1,0.167,0.333,0.5) 

18      0.00008      0.00009      0.99852         4.2098    _/ _/ \_    

BF10 * C(x6|-1,0.5,0.667,0.833) 

17      0.00008      0.00008      0.99854        -7.4774    _/ _/ _/    

BF10 * C(x6|+1,0.5,0.667,0.833) 

34      0.00008      0.00008      0.99855         2.3485    _/ _/ _/    

BF6 * C(x6|+1,0.5,0.667,0.833) 

9       0.00008      0.00008      0.99856         1.1825    \_ _/       

BF5 * C(x5|+1,0.5,0.667,0.833) 

21      0.00008      0.00008      0.99860       -0.99092    _/ \_       

BF2 * C(x6|-1,0.167,0.333,0.5) 

35      0.00008      0.00008 !    0.99861       0.042691    _/ _/ \_    

BF6 * C(x6|-1,0.5,0.667,0.833) 

  

  

The model 

=========================================================== 

BF1 = C(x3|-1,0.5,0.66667,0.83333) 

BF2 = C(x5|+1,0.5,0.66667,0.83333) 

BF3 = C(x5|-1,0.5,0.66667,0.83333) 

BF4 = C(x6|+1,0.5,0.66667,0.83333) 

BF5 = C(x6|-1,0.5,0.66667,0.83333) 

BF6 = C(x3|+1,0.5,0.66667,0.83333) * C(x5|+1,0.16667,0.33333,0.5) 

BF7 = C(x3|+1,0.5,0.66667,0.83333) * C(x5|-1,0.16667,0.33333,0.5) 

BF8 = BF2 * C(x3|+1,0.5,0.66667,0.83333) 

BF9 = BF5 * C(x5|+1,0.5,0.66667,0.83333) 

BF10 = BF2 * C(x3|+1,0.16667,0.33333,0.5) 

BF11 = BF9 * C(x3|+1,0.5,0.66667,0.83333) 

BF12 = BF9 * C(x3|-1,0.5,0.66667,0.83333) 

BF13 = C(x5|+1,0.5,0.66667,0.83333) * C(x3|-1,0.5,0.66667,0.83333) * 

C(x6|+1,0.16667,0.33333,0.5) 

BF14 = C(x5|+1,0.5,0.66667,0.83333) * C(x3|-1,0.5,0.66667,0.83333) * 

C(x6|-1,0.16667,0.33333,0.5) 

BF15 = C(x3|+1,0.5,0.66667,0.83333) * C(x6|+1,0.5,0.66667,0.83333) 

BF16 = C(x3|+1,0.5,0.66667,0.83333) * C(x6|-1,0.5,0.66667,0.83333) 

BF17 = BF10 * C(x6|+1,0.5,0.66667,0.83333) 

BF18 = BF10 * C(x6|-1,0.5,0.66667,0.83333) 

BF19 = C(x5|-1,0.5,0.66667,0.83333) * C(x6|+1,0.16667,0.33333,0.5) * 

C(x3|+1,0.5,0.66667,0.83333) 

BF20 = BF2 * C(x6|+1,0.16667,0.33333,0.5) 
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BF21 = BF2 * C(x6|-1,0.16667,0.33333,0.5) 

BF22 = BF20 * C(x3|+1,0.16667,0.33333,0.5) 

BF23 = BF20 * C(x3|-1,0.16667,0.33333,0.5) 

BF24 = C(x3|+1,0.5,0.66667,0.83333) * C(x6|+1,0.16667,0.33333,0.5) 

BF25 = C(x3|+1,0.5,0.66667,0.83333) * C(x6|-1,0.16667,0.33333,0.5) 

BF26 = C(x3|+1,0.16667,0.33333,0.5) * C(x6|-1,0.16667,0.33333,0.5) 

BF27 = BF1 * C(x6|-1,0.16667,0.33333,0.5) 

BF28 = C(x6|+1,0.16667,0.33333,0.5) 

BF29 = C(x5|-1,0.5,0.66667,0.83333) * C(x3|-1,0.16667,0.33333,0.5) * 

C(x6|-1,0.16667,0.33333,0.5) 

BF30 = C(x5|-1,0.5,0.66667,0.83333) * C(x6|-1,0.16667,0.33333,0.5) * 

C(x3|+1,0.5,0.66667,0.83333) 

BF31 = C(x5|-1,0.5,0.66667,0.83333) * C(x6|-1,0.16667,0.33333,0.5) * 

C(x3|-1,0.5,0.66667,0.83333) 

BF32 = C(x6|-1,0.5,0.66667,0.83333) * C(x5|-1,0.5,0.66667,0.83333) * 

C(x3|+1,0.5,0.66667,0.83333) 

BF33 = C(x6|-1,0.5,0.66667,0.83333) * C(x5|-1,0.5,0.66667,0.83333) * 

C(x3|-1,0.5,0.66667,0.83333) 

BF34 = BF6 * C(x6|+1,0.5,0.66667,0.83333) 

BF35 = BF6 * C(x6|-1,0.5,0.66667,0.83333) 

BF36 = BF8 * C(x6|+1,0.5,0.66667,0.83333) 

BF37 = BF5 * C(x3|+1,0.16667,0.33333,0.5) 

BF38 = BF5 * C(x3|-1,0.16667,0.33333,0.5) 

BF39 = BF38 * max(0, x5 +0) 

y = -0.092418 -0.31735*BF1 +1.0091*BF2 -0.33044*BF3 -1.4285*BF4 

+1.5005*BF5 +2.8202*BF6 -2.3035*BF7 +7.6232*BF8 +1.1825*BF9 -

4.9552*BF10 -14.68*BF11 -9.9709*BF12 -30.502*BF13 +9.2566*BF14 -

3.6111*BF15 -3.1265*BF16 -7.4774*BF17 +4.2098*BF18 +3.6606*BF19 

+8.6149*BF20 -0.99092*BF21 -17.908*BF22 +30.512*BF23 +1.0286*BF24 

+10.291*BF25 -6.5903*BF26 -3.2237*BF27 +1.5122*BF28 +10.933*BF29 -

9.3634*BF30 -5.1669*BF31 +6.9259*BF32 +2.6298*BF33 +2.3485*BF34 

+0.042691*BF35 +27.859*BF36 +1.583*BF37 -2.1263*BF38 +5.5776*BF39 

  

  

Variable Importance of the model 

==================================== 

Estimated input variable importance: 

Variable    delGCV      nSubsets       subsRSS       subsGCV 

1            0.000             0         0.000         0.000        

unused 

2            0.000             0         0.000         0.000        

unused 

3          100.000            38       100.000       100.000 

4            0.000             0         0.000         0.000        

unused 

5           78.064            37        57.576        57.591 

6           35.184            35        11.581        11.590 

7            0.000             0         0.000         0.000        

unused 

  

    'Output Target:EmergDAS' 

 

Testing on test data 

================================================ 

  

Running Prediction Tests 

============================================ 

Legates = 

    0.9704 

    0.9592 
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    'End of Output Target:EmergDAS' 


