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Abstract 
Turbulent combustion is commonly modelled using probability density function (PDF) methods; to close these methods, micro-

mixing models are required: these are most commonly based on stochastic particle interactions. While it is standard practice for the 

turbulent diffusion coefficient to be used to specify the amount of mixing, few models account for the corresponding diffusion length 

scale that defines interacting particle separation. This study investigates ensemble averages of the minimum, mean and maximum 

inter-particle distances for random realisations as a precursor to comparing with the diffusion length in real simulations. It was found 

that the ensemble of results for each type of inter-particle distance (minimum, mean or maximum) had a normal distribution. For 1 to 

1000 dimensions, the minimum inter-particle distances for 100 particles were 0.0051 to 12.3406 and the average distances were 

0.3297 to 12.7776. 
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1. Introduction 
 

The world’s dependency on fossil fuel energy 

resources is an important consideration: the energy 

demand up to 2030 is estimated to be about 18 billion 

tons of oil equivalents; about 79 percent of this will be 

fulfilled by oil, gas and coal [1]. The desire to improve 

combustion efficiency with lower emissions has led to 

an increased interest in combustion modelling [2-3] and 

research, especially unresolved problems in turbulent 

combustion. Many researchers have studied and 

modelled turbulent combustion with some success, but 

improvements can be made. Improved control of the 

turbulence process will result in increased combustion 

efficiency. Turbulence increases the mixing rate and 

thereby enhances combustion, which then releases heat 

and generates flow instability by gas expansion which 

further enhances the turbulence process [4].   

Combustion processes require fuel and oxidiser to 

be mixed at the molecular level and the combustion 

efficiency largely depends on the efficiency of 

molecular mixing process, which depends on the 

diffusion process. In order to produce efficient mixing, 

we have to understand the diffusion process at a 

molecular level. The mixing process will form eddies 

of different size, then the strain and shear between 

eddies will improve the mixing rate. This process of 

forming smaller eddies is called the eddy break-up 

process; strain and shear will increase and enhance the 

inter-molecular diffusion. Molecular mixing between 

oxidiser and fuel takes place during these eddy break-

up processes. Because modern computers are not 

capable of simulating the mixing process to the smallest 

scales of turbulence, models are required for all scales 

below the grid resolution, which is normally of the 

order of the inertial interval.   

Mixing processes in turbulent combustion range 

from premixed to non-premixed; the selection of the 

inflow conditions requires careful consideration to 

balance the advantages and disadvantages. The 

Probability Density Function (PDF) model [5] is 

commonly used for transport of scalars; a mixing model 

is required to close its molecular diffusion term. The 

molecular diffusion term – the last in (1) – represents 

transport in reactive scalar space by molecular fluxes 

(Ji,k). Mixing plays an important role in the non-

premixed combustion process since mixing and 

combustion take place simultaneously. The fuel and 

oxidiser must be mixed sufficiently quickly for the 

chemical reactions to occur. 
 

   

  
 

     

   
 

     

   
  

 

   
     

        
 

   
 
 

 
 
     

   
      

                                                                       (1) 
 

In (1), P is the Favre joint PDF of composition,  the 

mean density, ui the Favre mean velocity vector, Sk the 

reaction rate for species k, u” is the velocity fluctuation 

vector and ψ is the composition space vector. There are 

two commonly-used methods to solve (1): discretised 

partial differential equations (PDE) and stochastic 

particles method; the latter is normally used [5]. 

There are two types of liquid molecule movement: 

effusion and diffusion. Effusion is the escape of a liquid 

or gas molecule through a tiny hole and diffusion is the 

movement of a liquid or gas molecule through another 

fluid with random molecular motion. The 

understanding of how particles behave in their random 

motion interaction will be of benefit to turbulent 

combustion modelling. While all mixing models use a 

turbulent diffusion coefficient to determine the decay 

rates of the scalars, few are fully consistent. This is due 

to those models not organising the inter-particle 

interaction so that the separation of particles is based on 

the diffusion length scale. 

The current work is a preliminary study of the 

effect of the number of stochastic particles and the 

number of dimensions on the inter-particle distance. 
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Future work will include analysis of the behaviour of 

current models with the turbulent diffusion length scale. 

The principles of this study may also be used to 

develop improved mixing models. 
 

2. Particle Diffusion 
 

Diffusion is the random movement of small 

particles arising from motion due to thermal energy, 

with length scales ranging from nanometres to 

millimetres. For the larger length scales, the bulk 

movement of the fluids is normally due to convection 

[6]. When large molecules diffuse, Brownian motion is 

observable under a microscope but for small-molecule 

diffusion the Brownian motion is hard to observe 

except under carefully controlled experimental 

conditions. Particles and molecules are very dynamic 

and always moving from one space to another 

especially from areas of high to low concentration.  
 

2.1 Brownian Motion 
 

The mechanism for Brownian motion was 

discovered in 1785 by Ingenhousz, who noticed the 

irregular motion of coal dust particles on the surface of 

alcohol [7]. In 1827 Brown observed the movement of 

suspended pollen grains in water [8] and further 

research was initiated by Einstein, Smoluchowski, 

Perrin, Langevin and Lorentz which  shows that it was 

caused by very frequent collisions of the particles with 

other particles, resulting in random or thermal motion. 

The notable development in diffusion seems to be the 

theoretical solution by Einstein in 1905 [9]. 
 

2.2 Molecular Diffusion 
 

Fick’s law [10–13], describing the variation of 

non-uniform particle distributions, is derived from the 

model of random motion or random walks. If we know 

the number of particles at each point along the x-axis at 

time t, then we can find how many particles will move 

across unit area in unit time from point x to point x + a. 

Brownian motion [14] states that the average distance 

   a particle moves in duration (  ) is: 
 

                                                   
 

where the molecular diffusion coefficient is: 
 

   
  

      
                                         

 

 

R is the gas constant (8.3145 J/mol K), T is absolute 

temperature, NA is Avogadro number (6.22x10
23

 mol
-1

), 

  is viscosity and r is the radius of the particle. 
 

2.3 Turbulent Diffusion 
 

Turbulent diffusion is the modelling of the mixing 

process for all scales of turbulence below the grid 

resolution. For the mixture fraction Z, this is 

conventionally represented by the scalar dissipation 

rate: 

    
  

  
 
 

                                          

 

In Curl’s [15] and modified Curl’s mixing models 

[16,17], when particle pairs are selected, the average 

distance between the pairs is equal to the overall mean 

inter-particle distance in the ensemble. In reality, the 

closer a particle is to another, the more likely it is to 

mix and this is the weakness of Curl’s and modified 

Curl’s model. This localness was solved by mixing the 

nearest pairs of particles in the Euclidean Minimum 

Spanning Trees (EMST) model [18]: the average 

distance between interacting particles is equal to the 

average minimum inter-particle distance. In two 

implementations of the Multiple Mapping Conditioning 

(MMC) model, pairs of stochastic particles were 

selected so that their spacing in reference space was 

small (but not necessarily closest), thus preserving the 

localness [19,20]. 
 

3. Methodology 
 

Gas molecules are in constant, rapid, random 

motion and diffuse quickly throughout any space. The 

molecular diffusion process can be modelled by making 

the stochastic particles interact. Note that the inter-

particle distance is a consequence of the ensemble of 

realisations and the diffusion length is a property of the 

turbulence.  In order to provide an estimate of the inter-

particle distance, a pseudo-random generator was 

utilised to produce multi-dimensional ensembles. 

Particles were uniformly distributed within each 

dimension, taking values between 0 and 1 (although in 

practice particles are almost certainly distributed 

differently, this is an indicative study of the behaviour). 

The values for the minimum, average and maximum 

inter-particle distance were determined for up to 1000 

particles and up to 1000 dimensions; multiple 

realisations were averaged to reduce the stochastic 

error. Table 1 lists the numbers of particles (P) tested 

and corresponding number of realisations (R). 
 

Table 1: List of number of particles (P) and realisations (R). 
 

 
 

There were fifteen different dimensionalities simulated: 

1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 400, 500, 750 

and 1000.  Every particle realisation was simulated for 

each number of dimensions. 
 

4. Results and Discussion 
 

The results for the inter-particle distances are 

described in this section. Figure 1(a) shows the 

ensemble average for 1000 particles as a function of 

dimensionality. The average minimum, average mean 

and average maximum distances increase with the 

number of dimensions. This is guaranteed because for 

one dimension the maximum possible inter-particle 

distance is 1.0; for two dimensions, the max is     

(=1.414); for three dimensions, the max is    and so 

on. From dimension 1 to 100, all distances rapidly 

increase but the rate of increase diminishes as the 

dimension increases with the rate approximately linear. 

P 5 10 20 30 40 50 100 200 300 400 500 1000

R 1000 500 300 250 220 170 100 75 50 40 30 20
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The ensemble standard deviation in Fig. 1(b) 

indicates the accuracy of the ensemble means in 

Fig. 1(a). For dimensions 1–50, the values for the 

maximum distance had significantly greater spread than 

the minimum and average distances. For higher 

dimensions, the spread stabilised and the average 

standard deviations throughout dimension 50 to 1000 

for minimum, average and maximum are 0.00626, 

0.00673 and 0.00821 respectively. 

Figure 1(c) shows that the distributions of the 

minimum, average and maximum distances fit the 

normal distribution as expected by the central limit 

theorem, and also found for 50,000 particles in a 

diffusion flow [21]. The cumulative distribution 

function (cdf) for the lower (cdf(X) = 0.0015), middle 

(cdf(X) = 0.5005) and upper (cdf(X) = 0.9995) values of 

the distribution are reported in Table 2.  

To confirm that the corresponding distributions for 

all tests were normal, a t-test was performed on each 

ensemble of data, with the null hypothesis that each 

ensemble had a normal distribution.  The result from 

the t-test was a failure to reject the null hypothesis with 

probability 1, at the 5% significance level. The results 

for the confidence interval were calculated using (5) 

and shown in Fig. 2. 
 

                
 

  
                  (5)   

 

Here X is the interval (normally 0.90, 0.95 or 0.99; 0.95 

was chosen here),   is 1-X and df is the degrees of 

freedom.  

From Fig. 2, the largest (worst) confidence 

intervals were for low dimensionality and particles, 

which correspond to the smallest inter-particle 

distances.  This is to be expected because the random 

error increases as the number of particles decreases 

(mitigated to some extent by having a much larger 

ensemble). In addition, because the mean value is close 

to zero, it is possible that the distribution is bounded, 

which would result in a violation of the normal 

distribution. The ensemble mean values for each of the 

minimum, average and maximum inter-particle distance 

for all cases are shown in Fig. 3. As noted previously, 

the inter-particle distance increases with the number of 

dimensions. Figure 3(a), which is the average minimum 

inter-particle distance, shows that the isolines are 

angled up, which is to be expected. Consider an 

ensemble containing two particles in a domain where 

the possible location is bounded. If another particle is 

added, the average minimum distance is likely to 

reduce because the new particle is expected to be at 

least as close to one of the original particles as the 

original pair was to each other.  As more particles are 

added with a consistent distribution, the average 

minimum distance will continue to diminish.  
 

Table 2: The lower, middle and upper values for the cdfs in Fig. 1(c). 
 

 cdf(X)  0.0015  0.5005  0.9995 

Minimum 11.77 12.18 12.53 

Average 12.60 12.90 13.18 

Maximum 13.25 13.62 13.95 
 

 
Figure 1: Statistical analysis for 1000 particles. (a) Ensemble 

mean (b) ensemble standard deviation (c) distribution of 1000 

realisations for 1000 particles and 1000 dimensions. 

 

The opposite behaviour is expected for the average 

and maximum distance [Figs. 3(b) and 3(c)]. There is a 

lot of empty space in the domain when the ensemble is 

only 2 particles. An additional particle will either be 

located between the original pair or closer to the edge 

of the ensemble; the latter case is more likely to occur, 

therefore the average and maximum distance will be 

larger for the two extreme particles than when there 

were only 2 particles. For large numbers of particles, 

the average and maximum inter-particle distances show 

asymptotic behaviour: an additional particle has little 

effect because when the number density of the particles 

is already high, the new particle is likely to be located 

very close to an existing one. Therefore the average and 

maximum distances will not be significantly affected. 
 

 
Figure 2: Confidence interval for particle distance, a) minimum,  

b) average and c) maximum. 
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Figure 3: Inter-particles distances of every dimension for min, 

average and max distance. 
 

The inter-particle distance for low numbers of 

dimensions is low and it increases with number of 

dimensions, due to the maximum possible inter-particle 

distance being proportional to the square root of the 

number of dimensions. The inter-particle distances for 

100 and 1000 particles with 1000 realisations are 

summarised in Tables 3 and 4. For the range of 1 to 

1000 dimensions, the minimum inter-particle distances 

for 100 particles are 0.0051 to 12.3406, the average and 

maximum distances are 0.3297 to 12.7776 and 0.7385 

to 13.4612. Note that the values for 1000 particles are 

similar (except for the minimum at 1 dimension, which 

is a factor of 10 smaller as expected), indicating that 

this change in number of particles only affects the size 

of ensemble required to reduce errors. 
 

Table 3: Summary of inter-particle distance for the particles (P) and 

dimensions (D): 100 particles. 

(P,D) (100,1) (100,500) (100,1000) 

Minimum 0.0051 8.5575 12.3406 

Average 0.3297 9.0344 12.7776 

Maximum 0.7385 9.6796 13.4612 

 
Table 4: Summary of inter-particle distance for the particles (P) and 

dimensions (D): 1000 particles. 

(P,D) (1000,1) (1000,500) (1000,1000) 

Minimum 0.0005 8.3894 12.1760 

Average 0.3317 9.1158 12.8952 

Maximum 0.7476 9.8393 13.6237 

5. Conclusions 
 

The diffusion process in many turbulent 

combustion models is often simulated by mixing 

random pairs of particles. The distance between these 

particles is very important to ensure that locality of 

mixing occurs. Care must be taken that one particle 

does not repetitively mix with only one other 

(nominally the nearest), since their properties will at 

some stage reach their paired mean, terminating the 

mixing for that pair. To prevent this, it is necessary to 

randomise particle pairings by being less restrictive on 

the closeness of particle pairs without losing localness.  

This study examined the inter-particle distance, 

implicitly used in popular turbulent combustion 

models, by generating ensembles of random particles. 

The analysis was carried out for up to 1000 particles, 

realisations and dimensions, showing the large 

variations as parameters are changed. By understanding 

the behaviour of the inter-particle distances, it may be 

possible to describe the shortcomings of models that 

neglect the diffusion length scale and devise new 

models that incorporate the diffusion length scale for 

potentially improved accuracy. 
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