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Abstract—The automatic and accurate analysis of medical
images (e.g., segmentation, detection, classification) prerequi-
sites for modern disease diagnosis and prognosis. Computer-
aided diagnosis (CAD) systems empower accurate and effective
detection of various diseases and timely treatment decisions.
The past decade witnessed a spur in deep learning (DL)-based
CADs showing outstanding performance across many healthcare
applications. Medical imaging is hindered by multiple sources
of uncertainty ranging from measurement (aleatoric) errors,
physiological variability, and limited medical knowledge (epis-
temic errors). However, uncertainty quantification (UQ) in most
existing DL methods is insufficiently investigated, particularly
in medical image analysis. Therefore, to address this gap, we
propose a simple yet novel hierarchical attentive multi-level
feature fusion model with an uncertainty-aware module for
medical image classification coined Hercules. This approach is
tested on several real medical image classification challenges.
The proposed Hercules model consists of two main feature
fusion blocks, where the former concentrates on attention-
based fusion with uncertainty quantification module and the
latter uses the raw features. Hercules was evaluated across
three medical imaging datasets, i.e., retinal OCT, lung CT, and
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chest X-ray. Hercules produced the best classification accuracy
in retinal OCT (94.21%), lung CT (99.59%), and chest X-ray
(96.50%) datasets, respectively, against other state-of-the-art
medical image classification methods.

Index Terms—Deep learning, Medical image classification,
Early fusion, Feature fusion, Uncertainty quantification, Atten-
tion mechanisms.

I. INTRODUCTION

MACHINE learning (ML) and deep learning (DL) tech-
niques have proven effective across many problems

and diverse benchmark datasets. ML and DL met-hods
extract hidden information from raw data and make pre-
dictions utilizing these models [1]. The performance of
predictive models can be hindered by the uncertainty in
input data and modelling priors. Imprecise or noisy data
and limiting or wrong model assumptions are sources of
uncertainty. Handling uncertainties effectively is crucial
for trustworthy machine learning, particularly in safety-
critical applications like healthcare. Uncertainty quantifi-
cation plays thus an important role in ML [2], [3].

Identifying the sources of uncertainty most affecting the
predictions in our estimation problem is essential to tackle
them [4]. There are two major sources of uncertainty in pre-
dictive modelling. First, irreducible uncertainty in data gives
rise to uncertainty in predictions, also known as aleatoric
(or data uncertainty). The second source of uncertainty is
knowledge or epistemic uncertainty. Epistemic uncertainty
can arise due to wrong assumptions on the model input
variables (e.g., their distribution) or the structure of the
model itself (e.g., an incomplete mechanistic understanding
of the underlying system). Here, the model can produce
erroneous predictions even with perfect measurements.

Dealing with uncertainty in medical image analysis
pipelines is critical as errors propagate through subsequent
image analysis tasks and ultimately can mislead diagnosis.
In this study, we propose a novel uncertainty quantifi-
cation (UQ) method for medical image analysis. Deep
neural networks (DNNs) have demonstrated their potential
in medical image analysis and computer-aided diagnosis.
For example, DNNs exhibited superhuman or comparable
performance against clinicians on diabetic retinopathy de-
tection [5], skin cancer classification [6], [7], and many
more. Different evaluation metrics such as the Receiver
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Operating Characteristic (ROC) Area under the Curve (AUC),
F1-score, specificity, sensitivity or accuracy mainly deal with
the discriminative power of the predictive models assuming
deterministic DNN outputs. Conventional DNNs do not
produce well-calibrated, reliable uncertainty estimates in
their predictions [8]. Uncertainty estimates are, however,
critical in medical image analysis [9]–[11]. Modern DL
models still are insufficiently robust to be deployed in real-
world clinical scenarios [10].

Aleatoric and epistemic uncertainties can thwart fully
automated analysis and diagnosis systems in a clinical
practice where critical life decisions are made. Uncertainty
estimates can enhance the transparency and trustworthi-
ness of ML methods and assist in promoting their uptake.

A. Research Gaps

Feature fusion is a combination of various features ob-
tained from different branches, layers or networks that
can be considered as an omnipresent part of new modern
developed networks. Therefore, a comprehensive literature
review [9], [10], [12] on previous studies reveal several
research gaps in medical image classification:

• Very few studies assess the robustness (robust decision
making) during the testing or consider the influence of
noisy inputs and their uncertainty.

• Multi-view feature fusion has obtained less attention
in medical image classification. Various fusion tech-
niques such as feature fusion (also called early fusion)
and decision fusion (also called late fusion) improve
DL performance. Ensemble learning can be used to
quantify ML and DL predictions uncertainty.

B. Main Contributions

This work proposes a new, simple, yet effective DL model
considering its uncertainty for medical image classification.
The major contributions of this study are:

• A new hierarchical fusion model coined Hercules for
accurate classification of medical images with two
fusion blocks (Fig. 1 in the supplementary material).

• A modified channel attention (CA) module combining
dropout and Monte Carlo (MC) dropout [8] during
fusion of features obtained from the CA module.

• A novel hierarchical attention fusion block further
enhances the Hercules to process information. Inspired
by [13], a modified multi-view feature fusion model is
proposed using rich feature extractors directly by pre-
trained models.

• Last but not least, the proposed Hercules model not
only considers the important features coming from
attention mechanisms, but it also benefits from richer
features.

The remainder of this manuscript is organized as follows.
Section II summarizes a few relevant studies. Section III for-
mulates the proposed methodology. The main experiment
results of this study are discussed in Section IV. Section V
presents the results and comprehensively compares them
against previous literature. Finally, Section VI concludes the
paper.

II. LITERATURE REVIEW

In this section, a brief review of a few recent studies
conducted on deep learning-based medical data analysis, a
wide range of fusion approaches used for disease identifi-
cation, and, finally the importance of using UQ methods in
medical data (image) analysis.

A. Deep learning-based medical data analysis

Recent progress in image classification due to DL [14]–
[16] is of great assistance to not only the health sector
specifically for disease diagnosis using medical imaging,
but also many other applications [10]. A wide variety of DL
models have shown promising outcomes in complicated di-
agnostic areas across radiology, pathology, ophthalmology,
dermatology and so on. Incorporation of DL techniques
in image-based diagnosis have yielded good results as
the models achieved strikingly human like performance.
Also, automated feature learning capability of DL models
make them adaptable and flexible in learning character-
istics features which help them in providing better clas-
sification results using medical images. Researchers have
used different DL techniques in medical image analysis
pertaining to different areas – detecting carcinogenic lesions
in organs and tissues, understanding pulmonary changes,
brain tumor segmentation, diabetic retinopathy, and so
on [17]–[19]. Lakshmanaprabu et al. [17] in their work have
analyzed CT (computed tomography) scan of lungs to iden-
tify the location and staging of oncogenic tissue using linear
discriminate analysis (LDA) and optimal DNN (ODNN). The
dimension of extracted deep features is reduced using LDA
to identify the nodules present in lungs while ODNN is
used to classify the lung carcinoma with the help of gravita-
tional search algorithm optimizer. Their proposed method
obtained an accuracy of 94.56%, sensitivity of 96.2% and
specificity of 94.2%. Generally, pathologists perform visual
examination of histopathology slides to evaluate the stag-
ing, nature and subtypes of different lesions and tumors.
This is similar for lung cancers where adenocarcinoma and
squamous cell carcinoma are the most common types and
hence necessitates experienced review by pathologists. To
address such necessity, Coudray et al. [18] in their work
used a deep CNN (DCNN) to automatically classify lung
carcinoma. The proposed model used many independent
datasets and evaluated the model performance using area
under the curve.

B. Information Fusion in Medical Systems

In this sub-section, we briefly reviewed few recent pub-
lished studies on fusion-based medical data analysis.
Combining multiple images from different imaging modal-
ities into a single fused image to obtain more defined
information is the central idea behind fusion-based image
analysis. As medical imaging plays an imperative role in
the diagnosis and therapy, detailed and accurate images
are necessary. Fusion technique is one of the solutions
for achieving high spatial and spectral information from a
single image. The issue of image quality and heterogeneity
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can be handled by fusion-based processing of image as
fused image has both high quality as well as intensity [20].
Therefore, inclusion of image fusion in medical image
analysis is an important facet for accurate diagnosis and
prediction. Several studies have been conducted in recent
years with the pivotal concept of image fusion and authors
have analyzed the idea from a different perspective. Among
the various aspects and approaches used for image fusion,
level of fusion, when and how to fuse, what to fuse and
methods required for rule-based fusion [21] are important.
The use of different ways of fusion of one single model
or multiple fusion of more than one deep model has
been employed to analyze the effect of fusion-based image
analysis.
For example, in the area of brain tumor detection fusion-
based image analysis has been proposed by Sharif et al. [22].
Brain surface extraction (BSE) has been used initially
for skull removal followed by an optimization technique
(particle swarm optimization) for tumor segmentation. To
extract the deep and inherent features of tumor, local
binary pattern (LBP) and genetic algorithm (GA) have been
used. The obtained results showed a clear advantage over
existing methods for brain tumor detection. For precise
segmentation of tumor lesion, Grab cut method has been
used in [23]. Serial-based technique has been applied to
concatenate the features obtained through transfer learn-
ing. The fused feature vector when used for classification
achieved a high dice similarity coefficient for brain tumor
segmentation. It is well-known that computed tomography
(CT) scan images used for tumor detection are accompa-
nied by different challenges such as low distinguishability
of the affected region, negative rates and so on.

C. Uncertainty Quantification in Medical Data Analysis

In this section, we summarise some more studies on UQ
techniques used in ML and DL for medical data analysis.
For example, Wang el al. in [24] have suggested a double-
uncertainty weighted method that is loosely based on
teacher-student model for semi-supervised segmentation.
This method helped in addressing features as well as
segmentation uncertainty. Also, for unsupervised learning
process, a learnable uncertainty loss has been proposed
such that balance can be maintained between supervised
and unsupervised training processes. The current methods
applied for the purpose of UQs are principally based on
Bayesian networks even though they have their shortcom-
ings. Therefore, researchers have used modified methods
to address the problems such as approximate posterior
inference [25] and frequentist coverage [26]. Uncertainty
has also been addressed using deep ensemble approach
(collection of a broad range of DNNs) [27], [28] as they
provide an advanced approach for handling uncertainty
estimation. Standard deviation of relevance score across
each model is taken into consideration which helps in
providing more accurate and reliable clarifications. This
provides more trustworthy and dependable systems for
healthcare sectors. Probabilistic DL techniques have been

used in building more generalized and effective models to
address the intrinsic and parameter uncertainty and enu-
merate predictive confidence. Extensive studies related to
UQ and estimation in DL are being done such that it helps
in developing more reliable models as DL plays a pivotal
role in medical image analysis. Finally, the combination of
various classifiers (as a kind of late fusion or ensemble) has
been significantly studied for measuring and quantifying
uncertainties in the literature (for example, please see [29]–
[31]).

III. PROPOSED METHODOLOGY: Hercules

In this section, we explain in detail the proposed model
coined Hercules and shown in 1. Hercules model includes
two main blocks:

1) Block 1: Hierarchical multi-view fusion of CA and SA
modules.

2) Block 2: Multi-view feature fusion.

1) Feature Extraction Module: Let us assume a medical
image classification problem where each sample comprises
one image (ximg) and the associated label y ∈ {1, 2, . . . ,
Ncla}. Here, Ncla represents the number of classes (labels).
We define the feature extractor ψr , where r ∈ {1,2, . . . , N } is
the number of pre-trained feature extractors.

We considered a medical image classification problem
that each medical sample is composed of one image (ximg),
and a label y ∈ {1, 2, . . . , Ncla}, where Ncla represents the
total number of classes (labels). Thereafter, we define the
feature extractor ψr where r ∈ {1,2, . . . , N } is the number of
pre-trained feature extractors. In this study, N is equal to 4
as four well-known pre-trained models are used. Therefore,
let us define four sets of features (for each pre-trained
feature extractor) as:

X̃r
img =ψimg

(
Ximg

)
, (1)

where X̃img ∈ Riimg× jimg×kimg in which iimg and jimg×kimg are
the number and order of the feature maps, respectively. As
stated earlier, in Eq. 1, four well-known pre-trained models
are used in this study, i.e., X̃Dens

img , X̃VGG
img , X̃Effi

img, and X̃Res
img.

Finally, we propose a new fusion deep learning model that
estimates the probability of y by assuming a class c ∈ {1,
2, . . . , Ncla} given an image:

ŷ = p(y = c|X̃r
img) (2)

2) Attention Mechanism: In this study, the modified
Convolutional Block Attention Module (CBAM) [32] was
adopted to focus and improve the representation of interest
in the input images. In other words, the concept of attention
in deep learning (computer vision) can lead to focusing on
the most important part of input images. We, therefore,
employed CA (Fig. 2) and spatial attention (SA) (Fig. 3
modules) as the main modules of CBAM [32]. The main
motivation behind the combination of channel CA and SA
modules is that each of these branches can significantly
learn ‘what’ and ‘where’ to consider in the channel and
spatial axes, respectively. Unlike most previous studies, we
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Fig. 1: A detailed overview of the proposed Hercules model. As stated earlier, the proposed Hercules model includes
two main fusion blocks. CA (Normal) is the channel attention module with normal dropout, CA (Uncertainty) is the CA
module with Monte Carlo (MC) dropout as our uncertainty quantification module, and SA is the spatial attention module.
We adopted numerous pre-trained models as feature extractors in the proposed Hercules model, including DenseNet201,
VGG19, EfficientNetB7 and ResNet152V2. It should be noted that all the pre-trained models are hierarchically connected.

used a modified version of the CA module with the SA mod-
ule as a part of the proposed Hercules (please see block 1 in
Fig. 1). As stated in Fig. 1, we proposed hierarchical multi-
view fusion of CA and SA modules. The CA mechanism is
widely employed in different architectures of CNNs, which
uses a scalar to evaluate and represent the importance
of each channel. Let X ∈ RC×H×W be the image feature
tensor in a network, C represents the number of channels,
H represents the height of the obtained feature tensor,
and finally W represents the width of the feature tensor.
Therefore, the attention mechanism can be formulated as
[33]:

Att =σ(FC(Compr(X))), (3)

where Att ∈ RC represents the attention vector, σ is the
Sigmoid activation function, and FC is the mapping func-
tions (also called a convolution operation), such as fully
connected (FC) layer or one-dimensional (1D) convolution,
and finally, Compr : RC×H×W → RC represents a compres-
sion method. Using this procedure, we can obtain the
related attention vector of all C channels. We can scale
each channel of input Ximg using the value of corresponding
attention as follows [33]:

Õ(:,i ,:,:) = Atti X(:,i ,:,:), s.t. i ∈ {0,1,2, . . . ,C −1}, (4)

where Õ is the output of the applied attention mechanism,
Atti represents the i-th component of the attention vector,
and finally X(:,i ,:,:) is related to the i-th channel of input.
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Fig. 2: Main CA modules used in this study and difference
with common CA module presented in [32]. Unlike the
common CA module (i.e., Fig. 2a), our proposed CA mod-
ules (i.e., Figs. 2b and 15c) benefit from applying dropout
and MC dropout to prevent over-fitting and quantify un-
certainties.
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Fig. 3 shows the general view of the spatial attention (SA)
module which can be computed as:

FS =σ(FC ([AvgPool(F;MaxPool(F)])) =σ(FC ([Fs
avg;Fs

max])),
(5)

where σ is the Sigmoid activation function, and FC is the
convolution operation, such as fully connected (FC) layer
or one-dimensional (1D) convolution.
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Fig. 3: A general view of the applied SA module as a part
of the CBAM presented in [32].

Therefore, the attention process for both CA (Normal)
and CA (Uncertainty) can be formulated in Eqs. (6) and (7)
as:

FNor
C = MDrop

c (F)⊗F, (6)

FUncer
C = MMCD

c (F)⊗F, (7)

where FNor
C , MDrop

c , FUncer
C , and MMCD

c are regular CA fea-
tures, CA maps with classical dropout, uncertainty CA
features, and CA with MC dropout, respectively. According
to Fig. 1, the final fusion block of the attention mechanism
adopted in our proposed Hercules model can be formulated
as:

FAtt = Concat
[
SADens

img ,SAVGG
img ,SAEffi

img,

SARes
img,SAUncertainty

CA

]
.

(8)

According to Fig. 1, the second fusion block is a multi-
level feature fusion, a modified version of bottom-top
feature fusion proposed by Sindagi and Patel [13]. Thus,
the final feature fusion Ffinal of the two main blocks used
in the proposed model can be formulated as:

Ffinal = Flatten[FAtt,F Level1
img ,F Level2

img ], (9)

where F Level1
img and F Level2

img are the feature fusion obtained at
the first and second levels (i.e., Level1 and Level2).

Hercules totals 162,074,532 parameters, of which
1,298,829 are trainable, and 160,775,703 are non-trainable
parameters. Moreover, the learning rate and batch size are
0.000001 and 32, respectively. In addition, the dropout rate
of the proposed model is 0.3.

3) Model Uncertainty Calculation: The Monte Carlo (MC)
dropout proposed by Gal and Ghahramani [8] is a simple,
yet efficient, UQ approach used for performing variational
inference (VI) on Bayesian Neural Networks (BNNs). The
detailed information on MC dropout can be found in [8],
[34]. The normal dropout simply switches off some random

TABLE I: Details of each class of the datasets analyzed in
this study.

Dataset Disease Class # Samples

Retinal OCT Retinal disease

CNV 37455
DME 11598
DRUSEN 8866
Normal 51390
Total 109309

Lung CT COVID-19

NiCT 5705
nCT 9979
pCT 4001
Total 19685

Chest X-ray Pneumonia
Normal 1583
Pneumonia 4273
Total 5856

neurons of the model at each training step, whereas, MC
dropout relies on the repeated random sampling proce-
dure to obtain a distribution of input samples. Gal and
Ghahramani [8] showed that, the normal dropout approach
can be interpreted as a Bayesian approximation which is
a well-known probabilistic model. In other words, various
networks with different dropped out neurons can be treated
as MC samples from the space-related to all available
models. Therefore, this can provide mathematical grounds
to have a precise reason regarding the method’s uncertainty.

IV. EXPERIMENTS

In this section, we first briefly describe the datasets used
in our study. We present the experimental results obtained
by our proposed fusion model.

A. Datasets

In this research, we evaluated the proposed Hercules
model using three publicly available medical imaging
datasets [11], [12]: optical coherence tomography (OCT),
COVID-19 lung CT scans and pneumonia chest X-ray im-
ages. Table I explains the datasets used in our study. Fig. 4
shows some randomly selected samples of the retinal OCT,
lung CT, and chest X-ray image datasets, respectively.

(a) Retinal OCT (b) Lung CT (c) Chest X-ray

Fig. 4: Some randomly selected samples of retinal OCT, lung
CT, and chest X-ray datasets.

We randomly split the data into two main sets which
80% of data was used for training and the rest (20%) used
as our test set. There are two important points regarding
the studied datasets in this work. First, we include both
binary and multi-class medical image classification tasks.
Furthermore, we used different attained images of body
parts, i.e., retinal OCT, lung CT, and chest X-ray (Table I).
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TABLE II: Performance comparison of various deep learning
models and our proposed Hercules fusion model applied to
the retinal OCT dataset at the validation stage.

Method Class
Performance (%)

Precision Recall F1-score Accuracy

BARF (Direct) [12]

CNV 80.39 100 89.12 -
DME 97.14 95.20 96.16 -

DRUSEN 99.45 72.80 84.06 -
Normal 93.85 97.60 95.68 -
Average 92.70 91.40 91.25 91.40

BARF (Cross) [12]

CNV 81.70 100 89.92 -
DME 99.15 93.20 96.08 -

DRUSEN 99.48 77.20 86.93 -
Normal 93.94 99.20 96.59 -
Average 93.56 92.40 92.38 92.50

Hercules (Ours)

CNV 95.35 95.70 95.48 -
DME 91.63 87.37 89.48 -

DRUSEN 80.58 72.77 76.51 -
Normal 96.64 97.86 97.25 -
Average 94.50 93.97 94.23 94.21

TABLE III: Performance comparison of various deep learn-
ing models and our proposed Hercules fusion model applied
to the lung CT dataset at the validation stage.

Method Class
Performance (%)

Precision Recall F1-score Accuracy

BARF (Direct) [12]
nCT 100 98.49 99.23 -
NiCT 97.10 100 98.52 -
pCT 99.87 99.37 99.61 -

Average 98.99 99.28 98.12 99.11

BARF (Cross) [12]
nCT 99.40 99.74 99.56 -
NiCT 99.55 98.94 99.24 -
pCT 99.62 99.62 99.62 -

Average 99.52 99.43 99.47 99.49

Hercules (Ours)
nCT 99.75 99.65 99.69 -
NiCT 99.39 99.47 99.42 -
pCT 99.50 99.62 99.55 -

Average 99.59 99.59 99.56 99.59

B. Experimental Results

To evaluate the effectiveness of the proposed Hercules
fusion model from different perspectives, we experimented
on three real medical image datasets as listed in the previ-
ous sub-section (see sub-section IV-A). The obtained results
for the retinal OCT, lung CT, and chest X-Ray datasets are
shown in Tables II, III, and IV, respectively. The recently
proposed fusion models [12], i.e., direct-based BARF and
Cross-based BARF, are applied to all three medical datasets.
In all tables, the best and second-best (accuracy) obtained
results are shown in red and blue colours, respectively. In
this study, we reported the weighted average while Abdar
et al. [12] used the macro average in their study for the
the retinal OCT and chest X-Ray image datasets. Therefore,
we also reported the macro average for the CT dataset after
applying BARF models. The number of epochs used in both
Direct-based BARF and Cross-based BARF models tested on
the lung CT dataset is 20 epochs as increasing the number
of the epochs led to an increase in the validation loss.

As shown in Tables II, III, and IV, our proposed Hercules
model outperformed the other two fusion models, i.e.,
Direct-based BARF and Cross-based BARF. Our proposed
fusion model achieved the accuracy of 94.21%, 99.59%,
and 96.50% for the retinal OCT, lung CT, and chest X-ray
datasets, respectively. The training curves of the proposed
Hercules model are shown in Figs. 5, 6, and 7, for the retinal

TABLE IV: Performance comparison of various deep learn-
ing models and our proposed Hercules fusion model applied
to the chest X-Ray dataset at the validation stage.

Method Class
Performance (%)

Precision Recall F1-score Accuracy

BARF (Direct) [12]
Normal 100 72.22 83.86 -

Pneumonia 85.71 100 92.30 -
Average 92.85 86.11 88.08 89.58

BARF (Cross) [12]
Normal 100 73.93 85.01 -

Pneumonia 86.47 100 92.74 -
Average 93.23 86.96 88.87 90.22

Hercules (Ours)
Normal 93.94 93.05 93.49 -

Pneumonia 97.43 97.77 97.59 -
Average 96.50 96.50 96.50 96.50

OCT, lung CT, and chest X-ray datasets, respectively.
In addition, the validation curves of the proposed model

are shown in Figs. 8, 9, and 10, for the retinal OCT, lung
CT, and chest X-ray datasets, respectively.

Finally, we provided the accuracy and loss curves versus
epochs of our proposed fusion model during the training
and validation stage in Fig. 11. As stated in Fig. 11, our
proposed fusion model can converge at certain local optima
and achieve better local optima. It is illustrated by the
smaller losses during training and validation stages with all
three medical image datasets used in this study. Our results
demonstrate that the proposed fusion model can achieve
better sub-optimal performance.

V. DISCUSSION

Medical data analysis is one of the significant appli-
cations of artificial intelligence (AI) technologies. In the
last few decades, many ML and DL methods have been
broadly applied to various applications such as engineering,
computer vision and image processing, natural language
processing (NLP), weather forecasting, healthcare, etc. [10].

The impressive performance of these DL methods is a
reason to use the methods to analyze medical data. In
this study, we, therefo-re, apply different well-known DL
methods for the classification of various medical image
datasets. However, most DL methods rarely achieve the
desired performance due to the lack of labelled medi-
cal datasets. Different fusion approaches, therefore, have
been proposed to deal with this issue [11], [12], [35]–[38].
Inspired by previous studies, we propose a novel fusion
model for efficient medical image classification named the
Hercules model. Unlike most previous fusion models, the
proposed Hercules fusion model takes advantage of a new
approach called deep hierarchical attentive multi-view fu-
sion to overcome uncertainties and over-fitting. Meanwhile,
the Hercules fusion model still shows the early raw valuable
features with more useful information.

We developed a novel hierarchical multi-view feature
fusion model in two main levels, as stated in Fig. 1. As
we indicated in Figure 1, in the first fusion block, we
hierarchically obtain the features from the first feature
extractor (i.e. DenseNet201) and we followed this strategy in
all four pre-trained models. Unlike the previous multi-view
feature fusion, we did not use original features extracted
by models (here pre-trained models), but we proposed a
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Fig. 5: Precision, Recall and F1-score per epoch of the proposed Hercules model for the retinal OCT dataset at the training
stage.
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Fig. 6: Precision, Recall and F1-score per epoch of the proposed Hercules model for the lung CT dataset at the training
stage.
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Fig. 7: Precision, Recall and F1-score per epoch of the proposed Hercules model for the X-Ray dataset at the training
stage.

feature fusion based on the attention mechanism. The use
of an attention mechanism can be used to detect the most
important features in each stage and then combine them.
In addition, as most of the previous studies did not consider
the uncertainty of their model, we tried to include an
uncertainty quantification module in the CA (see the block
CA (Uncertainty) block in Fig. 1). Unlike previous studies
on those applied CA mechanisms [39]–[41], the applied CA
blocks include either simple dropout or MC dropout to deal
with over-fitting and uncertainty in the attention modules
(see Fig. 2). We quantify uncertainties while applying the
attention mechanism. This is the first study on medical im-
age classification considering uncertainties in the attention
mechanism merged with a bottom-up multi-view feature
fusion to the best of our knowledge. The main cause of
over-fitting in different deep learning methods is the lack
of sufficient training data. These experimental outcomes

indicate that our new fusion model can prevent over-fitting
problems caused due to limited medical training data.

Another strength of the proposed fusion model is to
consider its uncertainty during predictions. Like our pre-
vious study [12], good performance of the fusion model
is considered and quantifying of uncertainty is considered.
Thus, to better reveal the importance and impact of our
proposed Hercules fusion model, its performance is com-
pared with other methods in Table V. Our new fusion model
outperformed the other state-of-the-art medical image clas-
sification methods. Table V also reveals that very few studies
considered UQ methods, whereas most of the previous
studies did not quantify uncertainties. The visual explana-
tion of the proposed Hercules fusion model using Gradient-
weighted Class Activation Mapping (Grad-CAM) and Grad-
CAM++ techniques is presented in Fig. 12 for the retinal
OCT, the lung CT and chest X-Ray datasets, respectively.
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Fig. 8: Precision, Recall and F1-score per epoch of the proposed Hercules model for the retinal OCT dataset at the
validation stage.
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Fig. 9: Precision, Recall and F1-score per epoch of the proposed Hercules model for the lung CT dataset at the validation
stage.
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Fig. 10: Precision, Recall and F1-score per epoch of the proposed Hercules model for the chest X-Ray dataset at the
validation stage.

Finally, the probability distribution of the predictions for
each class obtained by the proposed Hercules fusion model
for the retinal OCT, lung CT and chest X-Ray datasets are
presented in Figs. 13, 14, and 15, respectively. In Figs. 13,
14, and 15, we show misclassified samples in orange color
and the correctly classified samples in blue color. Note that
in Figs. 13, 14, and 15, Mis means the misclassified samples,
and Cor means the correctly classified samples.

It should be noted that since Ning et al. [45] just reported
the outcomes per each class, we report the average of the
obtained results in [45].

According to Figs. 13, 14, and 15, we make 500 predictions
for one sample test and plot its distribution for each
dataset. As stated in Figs. 13, 14, and 15, we can see that
the proposed Hercules is correct and also fairly certain
about its predictions. These figures show that there is not
overlap between true class and the other classes in each

dataset. In other words, having more overlap between the
distributions shows that the model is fairly uncertain about
its predictions. For example, in Fig. 13, the prediction dis-
tributions of misclassified samples belonging to CNV, DME,
and NORMAL classes (orange color) are concentrated close
to zero whereas the prediction distribution of DRUSEN class
(blue color) is concentrated close to one. It is worth noting
that there may exist some hard samples to classify and we
therefore refer them to medical experts to decide what to
do with those examples. An important point in Figs. 13, 14,
and 15 is that the overall distribution represents the model’s
uncertainty (the x-axis) for 500 predictions per each sample
test. However, each bar chart shows the model’s prediction.

Altogether, the key advantages of using the proposed Her-
cules are as follows: 1) It considers a multi-view approach
of feature extraction plus a multi-level feature fusion, 2)
The Hercules model also uses an UQ method, i.e., MC
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Fig. 11: Accuracy vs Loss per epoch curves obtained for our proposed Hercules model during training and validation
stages using retinal OCT, lung CT and chest X-ray datasets.

TABLE V: Comprehensive comparison of our results with existing techniques on automated medical image classifica-
tion.

Dataset Study Year Method # of Samples
Performance (%)

UQ Method
Precision Recall F1-score Accuracy

Retinal OCT
Abdar et al. [12] 2021 BARF (Cross) 109309 93.56 92.40 92.38 92.50 Yes
Zhang et al. [42] 2021 TS-SSL1 (1%) 109309 N/A N/A N/A 82.60 No
Zhang et al. [42] 2021 TS-SSL (10%) 109309 N/A N/A N/A 93.60 No
Wang et al. [43] 2021 DVAS2 109309 89.74 93.30 91.36 95.13 No
Yang et al. [44] 2021 ResNet-50 (224) 109309 N/A N/A N/A 77.60 No
Ours 2021 Hercules 109309 94.50 93.97 94.23 94.21 Yes

Lung CT
Abdar et al. [11] 2021 UncertaintyFuseNet 19685 99.08 99.08 99.08 99.08 Yes
Abdar et al. [12] 2021 BARF (Cross) 19685 99.52 99.43 99.47 99.49 Yes
Ning et al. [45] 2020 Deep learning (CNN) 19685 90.28 93.62 N/A 94.59 No
Javidi et al. [46] 2021 RegCS.CapsDenseNet3 (IR = 5) 19685 100 99.70 N/A 99.94 No
Rahman et al. [47] 2021 DenseNet201 18479 94.55 94.56 94.53 95.11 No
Ours 2021 Hercules 19685 99.59 99.59 99.56 99.59 Yes

Chest X-Ray
Abdar et al. [12] 2021 BARF (Cross) 5856 93.23 86.96 88.87 90.22 Yes
Liang and Zheng [48] 2020 CNN 5856 89.10 96.70 92.70 90.50 No
Lujan-Garcia et al. [49] 2020 Xception-Network 5232 84.30 99.20 91.20 87.98 No
Chhikara et al. [50] 2020 Deep CNN 5856 90.70 95.70 93.10 90.10 No
Ours 2021 Hercules 5856 96.50 96.50 96.50 96.50 Yes

1 Twin self-supervision based semi-supervised learning; 2 Deep virtual adversarial self-training with consistency regularization; 3 Regularized cost-sensitive CapsNet.

dropout, to quantify uncertainty inside attention mecha-
nism, 3) In general, the proposed Hercules model quantifies
uncertainties at an early stage of model development,
means that during feature extraction from raw images, 4)
and last but not least, the proposed Hercules model can
be considered as an ensemble model. As stated in [10],
ensemble techniques are very useful methods which help to
quantify uncertainties effectively. Moreover, the radar charts
of all average evaluation metrics (i.e., accuracy, F1-score,
precision and recall) of the applied methods in terms of
the all predicted classes.

According to Figure 16, we can clearly observe that the
proposed Her cul es fusion model achieves the best classi-
fication performance on all datasets and the all evaluation
metrics. This indicates that our new fusion model is entirely
promising to distinguish and classify the characteristics of
different classes in various medical image datasets. Finally,
the computation time obtained for the applied methods
using Core i7-9700KF@3.60 GHz, 64 GB RAM, and NVIDIA
RTX 2080 GPU is shown in Table VI.

VI. CONCLUSION

This study proposed a novel, simple, yet adequately
efficient, feature fusion model with a UQ module based

TABLE VI: The computation time for the applied methods.

Study Method
Time

Hours Minutes Seconds

Retinal OCT
BARF (Direct, 20 Epoch) [12] 13 36 48
BARF (Cross, 20 Epoch) [12] 13 42 59
Hercules (Ours, 200 Epoch) 105 56 40

Lung CT
BARF (Direct, 30 Epoch) [12] 3 22 3
BARF (Cross, , 30 Epoch) [12] 3 22 54
Hercules (Ours, 100 Epoch) 8 35 10

Chest X-Ray
BARF (Direct, 40 Epoch) [12] 1 32 36
BARF (Cross, 40 Epoch) [12] 1 32 1
Hercules (Ours, 100 Epoch) 3 2 1

on a hierarchical attentive multi-level approach (named
Hercules). The proposed fusion model is validated using
three well-known medical image datasets. Our proposed
model has successfully captured the spatial relationships
between features extracted by different pre-trained DL
models and obtained high classification performance us-
ing a new feature fusion approach. The Hercules model
generalizes the attention mechanism concept as a selective
type of feature fusion into the main learning framework.
The Hercules model yielded the highest classification per-
formance owing to the multi-level feature fusion strategy.
Hercules outperformed the other related DL methods, thus
showing its impact on industrial applications by testing
on the medical image classification datasets. We plan to
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(e) Chest X-Ray dataset (sample 1)
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Fig. 12: Visual explanation of the proposed Hercules fusion
model using Grad-CAM and Grad-CAM++ techniques for
the retinal OCT, lung CT, and chest X-ray datasets.

extend our proposed fusion model to perform medical
image segmentation and study the impact of multi-level
feature fusion on the robustness of the segmentation. Also,
this work can be further expanded by employing Bayesian-
based ensemble methods to our proposed method.
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Fig. 13: Visualization of the probability distribution of the predictions for each class obtained by the proposed Hercules
fusion model for the retinal OCT dataset.
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Fig. 14: Visualization of the probability distribution of
the predictions for each class obtained by the proposed
Hercules fusion model for the lung CT dataset.
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the predictions for each class obtained by the proposed
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