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Abstract. This paper discusses a discretisation scheme which is based on point collocation and integrated 

radial basis function networks (IRBFNs) for the solution of elliptic differential equations (DEs). The use of 

IRBFNs to represent the field variable in a given DE gives several advantages over the case of using 

conventional RBFNs and polynomials. Some numerical examples are included for demonstration purposes.   
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INTRODUCTION  

Computational methods for DEs can be classified into two groups: low- and high-order discretisation schemes. 

The former (e.g. conventional finite-difference, finite-element and finite-volume methods) produces a system of 

algebraic equations which is sparse and can be solved efficiently. However, very dense meshes are typically required 

to achieve accurate results. The latter (e.g. spectral methods) has the ability to give a high level of accuracy using a 

relatively-coarse mesh. However, the structure of its system matrices is typically full. 

RBFNs are a high-order interpolation scheme (e.g. [1]). Unlike schemes based on Chebyshev polynomials and 

Fourier series, RBFNs do not require an underlying structured discretisation.  Some RBFs such as Gaussian and 

multiquadric functions can offer an exponential rate of convergence. Theoretical results indicated that the 

convergence order of an RBFN scheme is a decreasing function of derivative order. 

Point collocation is regarded as the simplest means of discretising an DE, where no integrations are required. One 

disadvantage of the point-collocation approach is that it is seen, in general, not to be as stable as the weak-form 

approach.  

In this paper, we discuss a computational procedure, based on RBFNs and point collocation, for solving elliptic 

problems. A distinguishing feature here is that the RBFN approximations are constructed through integration 

(IRBFNs) rather than conventional differentiation (DRBFNs). This use of integration helps to avoid the problem of 

reduced convergence rate in the approximation of derivative functions. Furthermore, the constants of integration can 

be utilised as extra coefficients from which one can straightforwardly incorporate extra information such as the DE 

on the boundaries and derivative boundary values into the discrete system. The discussion is based on some of our 

previous works on IRBFNs reported in [2-6].  For simplicity, our attention is limited to the case of one-dimensional 

problems.   

The remainder of the paper is organised as follows. In Section 2, a brief review of IRBFNs is given. In Section 3, 

we present a point-collocation scheme incorporating IRBFNs for solving elliptic problems. Numerical results are 

presented in Section 4 to demonstrate attractive features of the point-wise IRBFN approach. Section 5 concludes the 

paper.    

 
 



REVIEW OF IRBFNs 

Consider a univariate function u(x). The integral formulation [2,3] tries to decompose the highest-order 

derivatives of u under consideration, e.g. p,  into RBFs and then integrate them to obtain approximate expressions 

for lower-order derivatives and the function itself 
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scheme is said to be of order p, denoted by IRBFN-p, if the pth-order derivative is taken as the starting point. 

Collocation a function u and its derivatives at a set of collocation points { }n
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where the subscript [.] and superscript (.) are used to indicate the order of the IRBFN scheme and the order of the 

corresponding derivative function, respectively;  
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POINT-WISE IRBFN TECHNIQUE 

In the remainder of the paper, we will use the notation ),([] θη to denote selected rows η  and columns θ  of the 

matrix [],  )([] η  to pick out selected components η  of the vector [], )(:,[] θ  to denote all rows of the matrix [], and  

,:)([] η  to denote all columns of the matrix [].   

Consider a boundary-value problem governed by the pth-order DE 
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where F and b are prescribed functions, with boundary conditions for u, du/dx, ..., 
12/12/ / −− pp

dxud  at x=r and 

x=s.  

The continuous domain of interest is represented by a set of discrete points { }n

jjx
1=
 with rx =1  and sxn = . The 

integral scheme of order p (IRBFN-p) is employed here to approximate the field variable u. Owing to the presence of 

p integration constants, one can add p extra equations to the discrete system. These extra equations can be utilised to 

represent the DE and the values of the derivative boundary conditions at both ends of the domain. The governing 

equation and the boundary conditions can be transformed into the following discrete form 
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where ℜ  is the system matrix of size ( ) ( )pnpn +×+  defined as 
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It can be seen that the DE is collocated at all grid points including the two boundary points x=r and x=s.  

NUMERICAL RESULTS 

We will implement IRBFNs with the multiquadric (MQ) function ( ( ) ,)( 22

iii axxx +−=ϕ  ix  and ia –the 

centre and the width). The two sets of centres and collocation points are chosen to be identical and the MQ width is 

taken as the centre spacing. We measure accuracy of an approximate scheme through the relative 2L  norm denoted 

by eN . 

 
Runge’s Phenomenon 

 

 
FIGURE 1. Function interpolation: Runge's phenomenon. It is noted that the approximate function is plotted using  501 

uniformly-distributed points. 
 



When using algebraic polynomials to represent certain functions that are sampled at equally-spaced points, the 

error between the function and the interpolating polynomial can grow quickly as the number of sample points 

increases, which is called Runge's phenomenon. Figure 1a illustrates this phenomenon for the interpolation of a 

function  11),251/(1)( 2 ≤≤−+= xxxu . The oscillation between the interpolating points, especially in the 

region close to the boundaries, is significantly magnified when changing from 6 to 11 points. To minimise/eliminate 

the oscillation, it is necessary to employ Chebyshev nodes that cluster at the boundaries of the domain or to use 

piecewise low-order polynomials. For the latter, the quality of the interpolation is improved by increasing number of 

polynomial pieces. 

It is interesting to see the behaviour of IRBFNs when they are applied to interpolate the above function.  As 

shown in Figure 1b, there is no oscillation between the interpolating points for the IRBFN-2 scheme. Indeed, the 

interpolation error is reduced with increasing number of equidistant points. IRBFNs can thus work well with the 

equidistant points. 

 
FIGURE 2. High-order DE: accuracy by DRBFNs and IRBFNs 

 

Multiple Boundary Conditions 

The problem here is to find a function u(x) satisfying the following fourth order DE 
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over a specified interval  111 ≤≤ x , subject to the boundary conditions for u and du/dx at both ends of the 

domain. The exact solution can be verified to be 
xx xexexxxxu −++−+= 32)( . To study convergence, four 

sets of 6, 11, 17 and 21 equally-spaced points are employed for both DRBFNs and IRBFN-4s. For all study cases,  

eN s of the solution u are calculated at a test set of 101 uniformly-distributed points. By collocating the DE at the 

whole set of grid points, the integral and differential approaches produce square and non-square (over-determinated) 

systems, respectively. For the latter, by not applying the DE at two boundary points together with two interior points 

(for example, interior points adjacent to the boundaries are set aside here), the system becomes determinated.   Figure 

2 shows that the integral approach yields very accurate results and also a high convergence rate while the opposite is 

true for the conventional differential approach. Solutions converge apparently as  )( 04.0−hO ,  ( )17.2hO   and  

( )16.7hO  with h being the centre spacing for the differential (non-square and square) and integral approaches, 

respectively.  

 

 



Higher-Order Smoothness of the Solution Across the Subdomain Interfaces 

Consider the following second-order DE 

                   [ ] 10,)100cos(900)100sin(99795

2
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with Dirichlet boundary conditions u(0)=0 and 
5)100sin()1( −= eu . The exact solution can be verified to be 

xexxu 5)100sin()( −=  which is highly oscillatory. The domain is partitioned into two subdomains of the same 

size, and each subdomain is discretised with uniformly-distributed points. Ten grids are considered with their 

densities varying from 21 to 201 in increment of 20. A test set of 201 uniform points is used to compute the error 

eN . 

Unlike DRBFNs, IRBFN-2s allow the exact satisfaction of the DE at the interface points. As a result, the 

approximate solution is a 
1

C  function across the interface for DRBFNs and 
2

C  for IRBFNs. Table 1 presents  eN s 

of DRBFNs and IRBFNs. The performance of the latter is far superior to that of the former regarding both accuracy 

and convergence rate.  

 

TABLE 1.  Domain decomposition, 2 subdomains:  2L  errors by the differential and integral approaches. 

n/subdomain DRBFNs IRBFNs 

21 1.7e+0 2.7e-1 

41 8.3e-1 3.4e-2 

61 5.7e-1 1.0e-2 

81 4.4e-1 4.6e-3 

101 3.6e-1 2.3e-3 

121 3.1e-1 1.3e-3 

141 2.7e-1 8.4e-4 

161 2.4e-1 5.5e-4 

181 2.1e-1 3.8e-4 

201 2.0e-1 2.7e-4 

 )( 32.1hO  )( 37.3hO  

CONCLUSIONS 

In this paper, we discuss the use of IRBFNs in the point-collocation scheme for solving elliptic DEs. The 

employment of integration to construct the RBF approximations has the capability to enhance the quality of the 

approximation of derivative functions. Further attractive features include: (a) uniformly-distributed points can be 

employed for the discretisation without suffering from Runge’s phenomenon, (b) extra information can be 

incorporated into the discrete system in a proper way, and (c) the approximate solution achieves a higher order of 

smoothness across the subdomain interfaces. Results obtained from various test problems are very encouraging.  
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