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Abstract: This chapter presents the basic features of high-order integral collocation

techniques and demonstrates their application to engineering problems. Emphasis is

placed on the advantage of the integral collocation approach over the conventional

differential approach in the treatment of multiple boundary conditions, complex

geometries and domain decompositions.
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1 Introduction

Physical phenomena are usually modelled in terms of ordinary differential equa-

tions/partial differential equations (ODEs/PDEs). The DE can only rarely be solved

in an exact manner. As a result, one must resort to numerical techniques to ob-

tain approximate solutions of the DE. The aim of numerical techniques is to reduce

the differential system to an equivalent set of algebraic equations where a solution

becomes obtainable. To achieve that, the field variable and the DE need to be

discretized, relying on the assumption that any continuous quantity can be approx-

imated by a set of continuous functions.

The governing equation can be represented in a strong, weak or inverse form. The

strong form, which is associated with point-collocation techniques such as finite-

difference [1] and pseudospectral [2] methods, does not require the integration of

the DE. The continuous domain is simply replaced by a set of discrete points. The

point-based solution is found using the concept of zero-value of error at certain points

over the domain. On the hand, the weak and inverse forms, which are associated

with element-based techniques such as finite-element [3] and boundary-element [4]
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methods, involve volume and boundary integrals, respectively. The problem domain

or its boundary is divided into a set of small elements. The element-based solution

is determined using the concept of distribution of error within the domain or along

the boundary. Each form has some advantages over the others for certain classes

of problems. The weak and inverse forms possess a smoothing capability, while the

strong form features a mesh-free property.

In a “differential” numerical technique, the field variable approximation is based on

a set of known basis functions with corresponding unknown coefficients. Expres-

sions for its derivatives are then obtained through differentiation. Approximation

schemes can be classified into two categories: low order and high order. Each cat-

egory has its own strengths and weaknesses. The former is straightforward to use.

However, its relative low accuracy requires a very fine structure, which could lead

to numerical difficulty, to represent accurately the complex solution. For the latter,

coarse meshes/grids are usually sufficient for most accuracy requirements. However,

high-order approximation schemes should be used with great care. For instant, the

use of Lagrange polynomials of high order has a tendency to give results that are

oscillatory between data values. Any small level of noise in the interpolating func-

tion will be badly magnified through differentiation, causing much larger errors for

its derivative representations.

This chapter reviews a high-order point-collocation numerical approach for elliptic

DEs based on integrated approximants, and associated results recently discussed

in several works, including for example [5-32]. In contrast with the differential

approach described above, Mai-Duy and Tran-Cong [5,8] proposed an integral pro-

cedure, where the starting points of the approximation process are the highest deriv-

atives of the field variable in the given DE. Lower derivatives, and eventually the

variable itself, are symbolically obtained by integration. These integration processes

give rise to arbitrary constants that serve as additional expansion coefficients, and
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therefore facilitate the employment of some extra equations. It is shown that this

feature provides an effective way to handle well-known difficult issues associated

with the differential collocation approach such as [14,15,20,21,27,28,30-32]

• the implementation of multiple boundary conditions,

• the description of non-rectangular boundaries in a Cartesian grid, and

• the imposition of higher-order continuity of the approximate solution across

subdomain interfaces.

In addition, the use of integration also improves the quality of the approximation

of derivative functions as well as the stability of a numerical solution owing to its

smoothness property [5-13,16-19,22-26,29].

In this chapter, the integral collocation approach is implemented with radial basis

functions and Chebyshev polynomials. It is noted that other types of basis func-

tions can also be applied. For example, an integrated Sinc function approximation

method has recently been reported by Li and Wu [24]. An attractive feature of

the present high-order integral collocation techniques is that the preprocessing is

simple. The problem domain of regular/irregular shape is discretized by using a

uniform Cartesian grid for radial basis functions and a tensor product grid formed

by Gauss-Lobatto points for Chebyshev polynomials. The approximate expressions

representing the field variable and its derivatives over the domain are constructed

through one-dimensional integrated approximants along grid lines. Superior accu-

racy and convergence of integral collocation techniques over differential collocation

techniques are demonstrated with the solution of differential problems governed

by second- and fourth-order elliptic equations and defined in rectangular and non-

rectangular domains.
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The remainder of the chapter is organized as follows. Sections 2 and 3 give brief

reviews of high-order approximants and collocation methods, respectively. Advan-

tages of the integral collocation approach are presented in Section 4. Section 5

demonstrates its application to engineering problems including structural analysis

and fluid flow problems. Section 6 concludes the chapter.

2 High-order approximants

2.1 Radial basis function networks (RBFNs)

RBFNs are known as a universal approximator. The RBFN allows the conversion

of a function to be approximated from a low-dimension space to a high-dimension

space in which the function is expressed as a weighted linear combination of RBFs

[33]

f(x) =
m∑

i=1

wigi(x), (1)

where {gi(x)}m
i=1 the set of RBFs, and {wi}m

i=1 the set of weights to be found.

According to Micchelli’s theorem, there is a large class of RBFs, e.g., multiquadrics,

inverse multiquadrics and Gaussian functions, whose interpolation matrices obtained

from (1) are always invertible provided that the data points are distinct. This is all

that is required for non-singularity of interpolation matrices, whatever the number of

data points and the dimension of problem [34]. It has been proved that RBFNs are

capable of representing any continuous function to a prescribed degree of accuracy

in the Lp norm, p ∈ [1,∞] [35]. On the other hand, according to the Cover theorem,

the higher the number of RBFs used, the more accurate the approximation will be

[36], indicating the property of “mesh convergence” of RBFNs. These important

theorems can be seen to provide the basis for the design of RBFNs for the solution
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of ODEs/PDEs.

It has generally been accepted that, among RBFNs, the multiquadric (MQ) scheme

tends to result in the most accurate approximation. The present integral approach

implements the MQ function whose form is

gi(x) =
√

(x− ci)2 + a2
i , (2)

where ci and ai are the centre and the width of the ith basis function. The RBF

widths are known to strongly affect the performance of RBFNs. However, there

is still a lack of mathematical theories for specifying their optimal values. For

all numerical examples taken here, the RBF widths are simply chosen as the grid

spacing.

2.2 Truncated Chebyshev series expansions (CSEs)

An approximate function f is sought in the truncated Chebyshev series form [2]

f(x) =
N∑

k=0

akTk(x), (3)

where {ak}N
k=0 the set of expansion coefficients and {Tk}N

k=0 the set of Chebyshev

polynomials of the first kind that are defined by

Tk(x) = cos(k arccos(x)), (4)
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in which −1 ≤ x ≤ 1. The polynomial Tk(x) can be expanded in power series as

T0(x) = 1 (5)

Tk(x) =
k

2

[k/2]∑

m=0

(−1)m 2k−2m(k −m− 1)!

m!(k − 2m)!
xk−2m, k > 0 (6)

where [k/2] is the integer part of k/2.

The Chebyshev polynomials are orthogonal

∫ 1

−1

Tk(x)Tl(x)w(x)dx =
π

2
ckδkl, (7)

where w(x) =
√

1 − x2 is the Chebyshev weight function, ck = 1 for k ≥ 1 and

ck = 2 for k = 0, and δkl the Kronecker delta.

At the Gauss-Lobatto points xi = cos iπ/N, i = 0, .., N , which are widely used in

collocation methods, the coefficients ak are obtained in an explicit form

ak =
2

Nc̄k

N∑

i=0

Tk(xi)

c̄i
ui, k = 0, 1, · · · , N, (8)

where c̄k = 1 for 1 ≤ k ≤ N − 1 and c̄k = 2 for k = {0, N}.

For smooth problems, the Chebyshev approximation scheme exhibits an exponential

rate of convergence as the value of N is increased.
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3 Methods of collocation

Let Ω be a bounded region and ∂Ω be the boundary of Ω. Consider the differential

problem that consists of an elliptic DE

Lu = b, (9)

and a set of prescribed values along ∂Ω, where L is some differential operator, b a

given function and u the field variable.

Collocation methods are seen to be the simplest way to discretize the DE. It consists

of two main steps. First, the solution u and its derivatives are approximated by fi-

nite sums of smooth functions that are linearly independent. Then, the coefficients

associated with the basis functions are determined by forcing the approximate so-

lution to satisfy the DE and the boundary conditions at certain points (collocation

points). The choice of functions and distribution of collocation points strongly affect

the accuracy of the solution.

This chapter is concerned with two types of very smooth basis functions, namely

radial basis functions (ϕ ≡ g) and Chebyshev polynomials (ϕ ≡ T ), that are de-

scribed above. In the remainder of the chapter, for consistency of notation between

the two approximation schemes, the subscripts used in CSEs will also start with 1.
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3.1 Conventional differential formulation

RBFNs/CSEs are employed to represent the variable u, followed by successive dif-

ferentiations to obtain approximate expressions for its derivatives

u(x) =
m∑

i=1

αiϕi(x) =
m∑

i=1

αiD
(0)
i (x), (10)

du(x)

dx
=

m∑

k=1

αiD
(1)
i (x), (11)

· · · · · · · · · · · · · · ·

dpu(x)

dxp
=

m∑

k=1

αiD
(p)
i (x), (12)

where D
(1)
i (x) = dD

(0)
i (x)/dx, · · · , D(p)

i (x) = dD
(p−1)
i (x)dx.

It has been proved that there is a reduction in convergence rate for derivative func-

tions and this reduction is an increasing function of derivative order [37,38].

3.2 Present integral formulation

RBFNs/CSEs are employed to represent the highest-order derivatives of the vari-

able u in the given DE, followed by successive integrations to obtain approximate
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expressions for its lower-order derivatives and the variable itself

dpu(x)

dxp
=

m∑

i=1

αiϕi(x) =
m∑

i=1

αiI
(p)
i (x), (13)

dp−1u(x)

dxp−1
=

m∑

k=1

αiI
(p−1)
i (x) + c1, (14)

dp−2u(x)

dxp−2
=

m∑

k=1

αiI
(p−2)
i (x) + c1x+ c2, (15)

· · · · · · · · · · · · · · ·

du(x)

dx
=

m∑

k=1

αiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · · + cp−2x+ cp−1, (16)

u(x) =
m∑

k=1

αiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · · + cp−1x+ cp, (17)

where I
(p−1)
i (x) =

∫
I

(p)
i (x)dx, I

(p−2)
i (x) =

∫
I

(p−1)
i (x)dx, · · · , I(0)

i (x) =
∫
I

(1)
i (x)dx,

and c1, c2, · · · , cp are integration constants. The integral approximation scheme is

said to be of pth-order, denoted by ICSE-p or IRBFN-p, if the pth-order derivative is

taken as the staring point. The differential approximation scheme can be considered

as a special case of the integral approximation scheme by setting the value of p to

zero.

The evaluation of (13)-(17) at a set of collocation points {xi}m
i=1 leads to

d̂pu

dxp
= Î(p)

[p] ŝ, (18)

̂dp−1u

dxp−1
= Î(p−1)

[p] ŝ, (19)

· · · · · · · · ·

d̂u

dx
= Î(1)

[p] ŝ, (20)

u = Î(0)
[p] ŝ, (21)

where subscript [.] and superscript (.) are used to indicate the orders of ICSE/IRBFN
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and derivative function, respectively,

ŝ = (α1, α2, · · · , αm, c1, c2, · · · , cp)T ,

Î(p)
[p] =




I
(p)
1 (x1), I

(p)
2 (x1), · · · , I

(p)
m (x1), 0, 0, · · · , 0, 0

I
(p)
1 (x2), I

(p)
2 (x2), · · · , I

(p)
m (x2), 0, 0, · · · , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(p)
1 (xm), I

(p)
2 (xm), · · · , I

(p)
m (xm), 0, 0, · · · , 0, 0



,

Î(p−1)
[p] =




I
(p−1)
1 (x1), I

(p−1)
2 (x1), · · · , I

(p−1)
m (x1), 1, 0, · · · , 0, 0

I
(p−1)
1 (x2), I

(p−1)
2 (x2), · · · , I

(p−1)
m (x2), 1, 0, · · · , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(p−1)
1 (xm), I

(p−1)
2 (xm), · · · , I

(p−1)
m (xm), 1, 0, · · · , 0, 0



,

· · · · · · , and

Î(0)
[p] =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
m (x1),

xp−1

1

(p−1)!
,

xp−2

1

(p−2)!
, · · · , x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
m (x2),

xp−1

2

(p−1)!
,

xp−2

2

(p−2)!
, · · · , x2, 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(0)
1 (xm), I

(0)
2 (xm), · · · , I

(0)
m (xm), xp−1

m

(p−1)!
, xp−2

m

(p−2)!
, · · · , xm, 1



.

The use of integrated basis functions is expected to overcome the problem of reduc-

tion of convergence rate caused by differentiation. Numerical studies on second-order

differential problems [5,18,19,29] have indicated that the integral approach produces

more accurate results than the differential one. This has recently been theoretically

examined with RBFs by Sarra [22], which show the superiority in accuracy of the

antiderivative approach.

Another important point here is that additional coefficients (integration constants)

can be utilized to handle “extra constraints” related to boundary conditions and

geometries. Details are presented in next section.
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4 Advantages of the integral collocation approach

4.1 Treatment of multiple boundary conditions

For simplicity, consider the approximation of the solution of the biharmonic equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= b(x, y), (22)

in a rectangular domain with double boundary conditions u and ∂u/∂n.

For the differential collocation approach, there is normally one equation employed at

a point. Boundary conditions for second-order equations (single boundary values)

can thus be accommodated in a straightforward manner. However, for higher-order

equations, the solution is required to satisfy more than one prescribed value at a

boundary point. A number of techniques have been developed for handling multi-

ple boundary conditions, including (i) the node-reduction technique (reducing the

number of collocation points used for collocating the governing equation), (ii) the

fictitious-point technique (using fictitious points as additional unknowns), and (iii)

the imposed-kernel technique (modifying the basis functions to incorporate bound-

ary conditions). In contrast, the integral collocation approach has the ability to

deal with multiple boundary conditions in a natural way. The presence of integra-

tion constants allows the use of more than one equation at certain points. Such

extra equations can be utilized for the purpose of imposing the value of the normal

derivative and the governing equation at boundary points.

In currently used notations, ̂ and ˜ denote vectors/matrices that are associated

with a grid line (one-dimensional domain) and the whole set of grid lines (two-

dimensional domain), respectively.
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The integral collocation schemes of fourth order are employed here to discretize

derivative terms in the biharmonic equation. It is more convenient to work in the

physical space than in the spectral space. Consider a horizontal grid line. The

presence of four integration constants in the integral formulation allows one to add

four extra equations to the conversion system. These equations can be chosen to

represent the value of the normal derivative and the governing equation at both ends

of the line. The conversion process of the spectral space into the physical space is

constructed by 


û

v̂


 =




Î(0)
[4]

B̂







α̂

ĉ


 = Ĉ




α̂

ĉ


 , (23)

where Î(0)
[4] is defined as before,

α̂ =




α1

α2

· · ·

αnx



, ĉ =




c1

c2

c3

c4



, û =




u1

u2

· · ·

unx



,

v̂ =




∂u
∂x

(x1)

∂u
∂x

(xnx
)

b(x1) − 2 ∂4u
∂x2y2 (x1) − ∂4u

∂y4 (x1)

b(xnx
) − 2 ∂4u

∂x2y2 (xnx
) − ∂4u

∂y4 (xnx
)



,

B̂ =




I
(1)
1 (x1) · · · I

(1)
nx (x1) x2

1/2 x1 1 0

I
(1)
1 (xnx

) · · · I
(1)
nx (xnx

) x2
nx
/2 xnx

1 0

I
(4)
1 (x1) · · · I

(4)
nx (x1) 0 0 0 0

I
(4)
1 (xnx

) · · · I
(4)
nx (xnx

) 0 0 0 0




[4]

,

and nx is the number of collocation points on the grid line (nx = m).
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Solving (23) yields 


α̂

ĉ


 = Ĉ−1




û

v̂


 . (24)

Taking (24) into account, the values of derivatives of the variable u at a point on

the line are computed by

∂4u(x)

∂x4
=
(
I

(4)
1 (x), I

(4)
2 (x), · · · , I(4)

nx
(x), 0, 0, 0, 0

)
Ĉ−1




û

v̂


 , (25)

∂3u(x)

∂x3
=
(
I

(3)
1 (x), I

(3)
2 (x), · · · , I(3)

nx
(x), 1, 0, 0, 0

)
Ĉ−1




û

v̂


 , (26)

∂2u(x)

∂x2
=
(
I

(2)
1 (x), I

(2)
2 (x), · · · , I(2)

nx
(x), x, 1, 0, 0

)
Ĉ−1




û

v̂


 , (27)

∂u(x)

∂x
=

(
I

(1)
1 (x), I

(1)
2 (x), · · · , I(1)

nx
(x),

x2

2
, x, 1, 0

)
Ĉ−1




û

v̂


 . (28)

The evaluation of (25)-(28) at the grid points leads to

∂̂iu

∂xi
= D̂ix




û

v̂


 , i = {1, 2, 3, 4}, (29)

where ∂̂iu
∂xi =

(
∂iu1

∂xi ,
∂iu2

∂xi , · · · , ∂iunx

∂xi

)T

and D̂ix is the nx × (nx + 4) matrix of known

quantities related to geometry and discretization.

Expression (29) can be rewritten as ∂̂iu
∂xi = D̂†

ixû + D̂‡
ixv̂, where D̂†

ix and D̂‡
ix are

matrices that are formed by the first nx columns and the last four columns of the

matrix D̂ix, respectively. The extra information vector v̂ (components v3 and v4)

contains some unknown values—the mixed partial derivative ∂4u/∂x2∂y2 at the two

boundary points. Fortunately, these unknown values can be replaced with linear
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combinations of nodal values of the variable u (the detailed expression of ∂4u/∂x2∂y2

will be given later on). As a result, one can express (29) in terms of nodal variable

values only. The values of the ith-order derivative of u with respect to y at the

collocation points along a vertical line will be obtained in the same way.

The approximations for derivatives over 2D grids can be conveniently constructed by

means of Kronecker tensor products. Assuming that the grid points are numbered

from bottom to top and from left to right, the values of derivatives of u at the grid

points are computed by

∂̃iu

∂xi
=
(
D̂ix ⊗ Îy

)
ũ+ k̃ix,

∂̃iu

∂yi
=
(
Îx ⊗ D̂iy

)
ũ+ k̃iy, (30)

where ⊗ is the Kronecker tensor product, Îx and Îy are the identity matrices of sizes

nx × nx and ny × ny, respectively, k̃ix and k̃iy are the vectors of known quantities

related to boundary conditions, and ũ =
(
u1, u2, · · · , unxny

)T
.

The integral collocation approach employs the following relation to calculate the

mixed fourth-order derivative

∂4u

∂2x∂2y
=

1

2

[
∂2

∂x2

(
∂2u

∂y2

)
+

∂2

∂y2

(
∂2u

∂x2

)]
. (31)

This expression reduces the computation of fourth-order mixed derivatives to that

of second-order pure derivatives for which IRBFNs/ICSEs involve integration with

respect to x or y only. Integral schemes of second order are used here to approximate

these second-order derivatives with the extra information being the values of the

corresponding first-order derivatives at the boundary points.

It can be seen that the integrated approximants contain information about boundary

conditions. As a result, it remains only to force these approximations to satisfy the

governing equation. Collocating the PDE (22) at the interior points leads to a

15



determinate system of algebraic equations for the unknown vector of nodal interior

values of the variable u.

The integral and differential collocation approaches are applied to solve the following

test problem

b(x, y) = 4 sin(πx) sin(πy), (32)

ue =
1

π4
sin(πx) sin(πy), (33)

Ω ≡ [−1,−1] × [1, 1], (34)

where ue denotes the exact solution of the problem.

Results concerning the discrete relative L2 error of the solution u, Ne(u), and the

condition number of the system matrix, cond(A), obtained by the two approaches

are presented in Tables 1 and 2 for CSEs and RBFNs, respectively. For the differ-

ential approach, double boundary conditions are implemented here using the node-

reduction technique. The PDE is collocated at the (nx − 4)(ny − 4) interior points

(xi, yj), i = (3, 4, · · · , nx − 2), j = (3, 4, · · · , ny − 2). Along the two vertical lines,

boundary conditions ∂u/∂n are imposed at the 2(ny − 2) nodal points; while along

the two horizontal lines, they are imposed at the 2(nx − 4) nodal points. The dis-

cretized boundaries do not include the four corners of the domain. This leads to a

square set of algebraic equations. Like conventional RBF techniques, the present

differential RBF collocation technique approximates a solution in terms of network

weights. For both cases (RBFNs and CSEs), the performance of the integral ap-

proach is superior to that of the differential approach.
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4.2 Description of non-rectangular boundaries in a Carte-

sian grid

The application of finite-difference and pseudospectral methods to irregularly-shaped

domains requires coordinate transformations. First, a physical domain of complex

geometry is converted into a computational domain of regular geometry. Then, an

equivalent problem is derived by transforming the governing equation into the com-

putational coordinate system. The relationships between the two coordinates sys-

tems are usually given in the form of PDEs. Such a procedure is quite cumbersome.

In contrast, the complicated coordinate transformations are avoided in Cartesian-

grid methods, which are the concern of this section. They are implemented with

ICSEs and IRBFNs. The incorporation of prescribed values on immersed bound-

aries are conducted in a way that does not adversely affect the accuracy of the

numerical method. There are some differences in boundary treatment between the

two present approximation schemes, which are presented through the second-order

Dirichlet differential problem governed by

∂2u

∂x2
+
∂2u

∂y2
= b(x, y), (35)

in a circular domain Ω with a unit radius.

4.2.1 ICSEs

Figure 1 shows an extension of Ω to the reference square that is discretized using

a tensor product grid formed by Gauss-Lobatto points. It can be seen that the

grid points do not generally lie on the boundary of the domain. Integration con-

stants are utilized here to include information on the boundary in the Chebyshev

approximations.
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Lines aa′ and bb′ in Figure 1 present typical cases for the approximation of ∂u/∂x

and ∂2u/∂x2.

4.2.2 Case 1 - Line aa′:

Along this line, there are two boundary points xb1 and xb2. Assume that they are

not grid points. The ICSE-2 scheme can be employed to impose the two boundary

conditions. The conversion of the spectral space into the physical space is based on

the following system




û

ub1

ub2




=




Î(0)
[2]

B̂







α̂

c1

c2




= Ĉ




α̂

c1

c2



, (36)

where Î(0)
[2] is as before,

α̂ = (α1, α2, · · · , αnx
)T , (37)

û = (u1, u2, · · · , unx
)T , (38)

B̂ =



I

(0)
1 (xb1), I

(0)
2 (xb1), · · · , I

(0)
nx (xb1), xb1, 1

I
(0)
1 (xb2), I

(0)
2 (xb2), · · · , I

(0)
nx (xb2), xb2, 1




[2]

,

and nx is the number of collocation points on the grid line.

Solving (36) yields 


α̂

c1

c2




= Ĉ−1




û

ub1

ub2



. (39)
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The values of ∂u/∂x and ∂2u/∂x2 at the grid points are then computed by

∂̂u

∂x
= Î(1)

[2] Ĉ−1




û

ub1

ub2



, (40)

∂̂2u

∂x2
= Î(2)

[2] Ĉ−1




û

ub1

ub2



. (41)

4.2.3 Case 2 - Line bb′:

A number of schemes can be applied here. In the following, two typical schemes are

presented.

If the contact point xb is not a grid node, one can use ICSE-1




û

ub


 =




Î(0)
[1]

B̂







α̂

c1


 , (42)

where

B̂ =

[
I

(0)
1 (xb), I

(0)
2 (xb), · · · , I

(0)
nx (xb), 1

]

[1]

.

If the contact point is also a grid node, one can employ ICSE-0 or ICSE-2. For the

latter, the conversion system is given by




û

∂ub

∂x

∂2ub

∂x2




=




Î(0)
[2]

B̂







α̂

c1

c2



, (43)
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where

B̂ =



I

(1)
1 (xb), I

(1)
2 (xb), · · · , I

(1)
nx (xb), 1, 0

I
(2)
1 (xb), I

(2)
2 (xb), · · · , I

(2)
nx (xb), 0, 0




[2]

.

In (43), ∂ub/∂x and ∂2ub/∂x
2 are known values, which are derived from using bound-

ary conditions.

The remaining steps for obtaining the Chebyshev approximations of ∂u/∂x and

∂2u/∂x2 are similar to Case 1 and therefore omitted here for brevity.

The values of ∂u/∂y and ∂2u/∂y2 at the grid points along vertical lines can be

computed in a similar fashion.

The Chebyshev approximations of derivatives at a grid point are expressed in terms

of the nodal values of u along the grid lines that goes through that point. It should

be emphasized that they already contain information about the boundary of Ω

(i.e. locations and boundary values). As with finite-difference, finite-element and

boundary-element techniques, one will gather these approximations together to form

the global matrices for the discretization of the PDE. This task is relatively simple

since the grid used here is regular. By collocating the governing equation at the grid

points and then deleting rows corresponding to points that lie on the boundary, a

square system of algebraic equations is obtained, which is solved for the approximate

solution.

4.2.4 IRBFNs

Unlike ICSEs, IRBFNs have the capability to handle unstructured points with ac-

curacy. The problem domain is embedded in a Cartesian grid with a grid spacing

h. Grid points outside the domain (external points) together with internal points

that fall very close–within a distance of h/8–to the boundary are removed. The
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remaining grid points are taken to be the interior nodes (Figure 2). The boundary

nodes consists of the grid points that lie on the boundaries, and points that are

generated by the intersection of the grid lines with the boundaries.

The one-dimensional IRBFN schemes are employed to discretize the solution and

its relevant derivatives along grid lines. As presented earlier, an IRBFN-p scheme

permits the approximation of a function and its derivatives of orders up to p. To

use integrated basis functions only, one needs to employ IRBFNs of at least second

order. A line in the grid contains two sets of points (Figure 3). The first set consists

of the interior points that are also the grid nodes (regular nodes). The values of

the variable u at the interior points are unknown. The second set is formed from

the boundary nodes that do not generally coincide with the grid nodes (irregular

nodes). At the boundary nodes, the values of the variable u are given. Unlike finite-

difference and pseudospectral methods, the involvement of irregular points here does

not adversely affect the accuracy of the IRBFN scheme.

Consider a horizontal grid line (Figure 3). An important feature of the present

IRBFN technique is that, along the grid line, both interior points {xi}q
i=1 and bound-

ary points {xbi}2
i=1 are taken to be the centres of the network. This work employs

IRBFN-2s to discretize the field variable. The conversion system is constructed as

follows 


û

ub1

ub2




=




Î(0)
[2]

B̂







α̂

c1

c2




= Ĉ




α̂

c1

c2



, (44)
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where Î(0)
[2] is defined as before,

û = (u1, u2, · · · , uq)
T ,

α̂ = (α1, α2, · · · , αm)T ,

B̂ =



I

(0)
1 (xb1) · · · I

(0)
m (xb1) xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) xb2 1




[2]

,

and m = q + 2.

The obtained system (44) for the unknown vector of network weights can be solved

using the singular value decomposition technique




α̂

c1

c2




= Ĉ−1




û

ub1

ub2



. (45)

The values of the first and second derivatives of u at the interior points are computed

as follows




∂u1

∂x

∂u2

∂x

...

∂uq

∂x




=




I
(1)
1 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) 1 0

· · · · · · · · · · · · · · ·

I
(1)
1 (xq) · · · I

(1)
m (xq) 1 0




[2]

Ĉ−1




û

ub1

ub2



, (46)

and 


∂2u1

∂x2

∂2u2

∂x2

...

∂2uq

∂x2




=




I
(2)
1 (x1) · · · I

(2)
m (x1) 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) 0 0

· · · · · · · · · · · · · · ·

I
(2)
1 (xq) · · · I

(2)
m (xq) 0 0




[2]

Ĉ−1




û

ub1

ub2



, (47)
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or in compact forms

∂̂u

∂x
= D̂1xû+ k̂1x, (48)

and

∂̂2u

∂x2
= D̂2xû+ k̂2x, (49)

where k̂1x and k̂2x are the vectors of known quantities related to boundary conditions.

It can be seen from (48) and (49) that the IRBFN approximations of ∂u/∂x and

∂2u/∂x2 at the interior points include information about the boundary (locations

and boundary values).

The incorporation of the boundary points into the set of centres has several advan-

tages:

• It allows the two sets of centres and collocation points to be the same, i.e.

{ci}m
i=1 ≡

{
{xi}q

i=1 ∪ {xbi}2
i=1

}
. Numerical investigations have indicated that

when these two sets coincide, the RBF approximation scheme tends to result

in the most accurate numerical solution [5,6].

• It allows the use of IRBFNs with a fixed order (IRBFN-2), regardless of the

shape of the domain. In contrast, the order of the ICSE scheme depends on

the number of intersections between a grid line and the boundaries.

In the same manner, one can obtain the IRBF expressions for ∂u/∂y and ∂2u/∂y2

at the interior points along a vertical line.

The “local” IRBF approximations along grid lines will be assembled to build the

discrete representation of the PDE. Collocating the governing equation at the inte-

rior points results in a square system of algebraic equations, which is solved for the

values of u within the spatial domain.
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Numerical studies are conducted for the following driving and exact functions

b(x, y) = −2 sin(πx) sin(πy), (50)

ue(x, y) =
1

π2
sin(πx) sin(πy). (51)

Condition numbers of the system matrix and relative L2 errors of the solution u

are shown in Tables 3 and 4 for ICSEs and IRBFNs, respectively. Results indicate

that the two techniques preserve their fast rates of convergence with grid refinement.

The process of handling irregular geometries here is much simpler than that using

coordinate transformations.

4.3 Improvement of continuity order across subdomain in-

terfaces

The use of domain decompositions (DDs) is necessary to handle large-scale domains

and complex geometries. The problem domain is partitioned into a set of subdo-

mains that can be overlapped or non-overlapped. An important feature of DDs is

that the size of the matrices involved is much smaller than that associated with a

single domain. With the recent emergence of parallel computers, the DD methods

have become more attractive because they allow the parallel implementation of dis-

cretization schemes. However, the main drawback of the DD methods is that they

provide a less smooth solution than a single-domain method. Let p be the order

of the governing equation. Conventional DD techniques are only able to impose a

C(p−1) solution across subdomain interfaces, a situation we seek to improve here.

This chapter is concerned with non-overlapping domain decompositions. It is shown

that the integral collocation approach has the capability to force the Cp, instead

of the usual Cp−1, continuity of the approximate solution across the subdomain
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interfaces.

For the sake of simplicity, the basic features of the present DD scheme are described

through the following second-order ODE

κ
d2u

dx2
+ β

du

dx
+ γu = b(x), (52)

defined on the domain a ≤ x ≤ b and subject to the Dirichlet boundary conditions

at both ends: ūa and ūb.

A substructuring method [39] is applied here, which involves two main steps: (i)

To find the values of the variable u at the interface points/interior-boundary-points

(the interface solution) and (ii) To find the values of the variable u at the interior

points in subdomains (the subdomain solution). The present substructuring tech-

nique is based on the use of integrated approximants (ICSEs/IRBFNs) to represent

approximate solutions in subdomains.

4.3.1 The interface solution

The domain of interest is divided intoM subdomains. Each subdomain is discretized

using a set of n Gauss-Lobatto points via the following coordinate transformation

x[j] =
x

[j]
r − x

[j]
l

2
ξ +

x
[j]
r + x

[j]
l

2
=
L[j]

2
ξ +

x
[j]
r + x

[j]
l

2
, (53)

in which x
[j]
l and x

[j]
r are the coordinates of the boundary points of a subdomain j,

L[j] = x
[j]
r − x

[j]
l , and ξ the Gauss-Lobatto points (−1 ≤ ξ ≤ 1).
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The continuity of the solution and its flux leads to the following constraint equations

u[j]
n = u

[j+1]
1 , (54)

(
du

dx

)[j]

n

=

(
du

dx

)[j+1]

1

, (55)

where j = {1, 2, · · · ,M − 1}.

The present scheme requires the solution u to be continuous, i.e.

u[j]
n = u

[j+1]
1 = ūj, j = {1, 2, · · · ,M − 1}, (56)

and its derivatives to be matched at the interfaces. This approach allows an easy

implementation (automation) of the computer code.

Consider a subdomain j. Using integrated approximations (13)-(17) with p = 2, the

governing equation (52) and the boundary conditions can be transformed into

4κ

L[j]2

n∑

k=1

α
[j]
k I

(2)
k (ξ) +

2β

L[j]

(
n∑

k=1

α
[j]
k I

(1)
k (ξ) + c

[j]
1

)

+ γ

(
n∑

k=1

α
[j]
k I

(0)
k (ξ) + c

[j]
1 ξ + c

[j]
2

)
= b(x[j](ξ)), (57)

n∑

k=1

α
[j]
k I

(0)
k (−1) − c

[j]
1 + c

[j]
2 = ūj−1, (58)

n∑

k=1

α
[j]
k I

(0)
k (+1) + c

[j]
1 + c

[j]
2 = ūj, (59)

where ūj−1 = ūa for j = 1, ūj = ūb for j = M , and the unknowns are the set of

expansion coefficients and integration constants.

The evaluation of (57) at the whole set of Gauss-Lobatto points {ξi}n
i=1 plus the

boundary conditions (58)-(59) results in a determinate system of equations of the
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form

A[j]




α
[j]
1

α
[j]
2

· · ·

α
[j]
n

c
[j]
1

c
[j]
2




=




b
[j]
1

b
[j]
2

· · ·

b
[j]
n

ūj−1

ūj




, (60)

or

A[j]ŝ[j] =




b̂[j]

ūj−1

ūj



, (61)

where A[j] is the known matrix of dimension (n+ 2)× (n+ 2). Unlike conventional

differential formulations, the governing equation (52) is forced to be satisfied at the

two boundary points exactly in (61) (the first and nth rows)

κ

(
d2u

dx2

)[j]

1

+ β

(
du

dx

)[j]

1

+ γu
[j]
1 = b

[j]
1 , (62)

κ

(
d2u

dx2

)[j]

n

+ β

(
du

dx

)[j]

n

+ γu[j]
n = b[j]n . (63)

Solving (61) yields

ŝ[j] =
(
A[j]

)−1




b̂[j]

ūj−1

ūj



. (64)

As mentioned earlier, the interface unknown vector, namely (ū1, ū2, · · · , ūM−1)
T , are

determined by the imposition of continuity of the first-order normal derivative at
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the interfaces

(
du

dx

)[1]

n

=

(
du

dx

)[2]

1

, (65)

(
du

dx

)[2]

n

=

(
du

dx

)[3]

1

, (66)

· · · · · ·
(
du

dx

)[M−1]

n

=

(
du

dx

)[M ]

1

, (67)

where

du[j](x(ξ))

dx
=

2

L[j]

(
n∑

k=1

α
[j]
k I

(1)
k (ξ) + c

[j]
1 + 0

)
=

2

L[j]

[
I

(1)
1 , I

(1)
2 , · · · , I(1)

n , 1, 0
]
ŝ[j].

(68)

Substituting (64) into (65)-(67) and then imposing the prescribed boundary condi-

tions ūa and ūb yield the following square system of equations

Af




ū1

ū2

· · ·

ūM−1




= ĝ, (69)

where Af is the known interface matrix of dimension (M − 1)× (M − 1), and ĝ the

vector of known quantities related to b(x), ūa and ūb.

From (56), (65)-(67), and (62)-(63), it can be seen that the following relations are
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imposed at an interface j

u[j]
n = u

[j+1]
1 , (70)

(
du

dx

)[j]

n

=

(
du

dx

)[j+1]

1

, (71)

κ

(
d2u

dx2

)[j]

n

+ β

(
du

dx

)[j]

n

+ γu[j]
n = b[j]n , (72)

κ

(
d2u

dx2

)[j+1]

1

+ β

(
du

dx

)[j+1]

1

+ γu
[j+1]
1 = b

[j+1]
1 . (73)

Since b
[j]
n = b

[j+1]
1 , (70)-(73) lead to

(
d2u

dx2

)[j]

n

=

(
d2u

dx2

)[j+1]

1

. (74)

Thus, Cp continuity (p = 2 in this example) is automatically satisfied in general.

4.3.2 The subdomain solution

Substitutions of the interface values obtained from solving (69) into (64) yield the

sets of expansion coefficients and integration constants for subdomains, and hence

the solution to the original problem is obtained. It is noted that each subdomain

can be analyzed separately, offering an opportunity for parallelization.

Numerical results are presented for the following data

κ = 1, β = 0, γ = 0, (75)

b = − sin(πx), (76)

ue =
1

π2
sin(πx), (77)

− 1 ≤ x ≤ 1. (78)
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The problem domain is decomposed into 5 subdomains of equal length. Each sub-

domain is discretized using different sets of collocation points. The accuracy of a

numerical technique is presented in the form of the relative L2 norm of the solution u

calculated at a test set of 201 uniformly distributed points. Both CSEs and RBFNs

are applied here. Parameters used in the differential and integral approaches are

exactly the same (e.g. RBF widths are all chosen as grid spacing). Tables 5 and 6

indicate that the DD scheme based on integration performs much better than that

based on differentiation.

The present numerical schemes can be extended to solve higher-dimensional prob-

lems and higher-order DEs. Similarly, the Cp continuity of the solution over con-

tiguous regions is achieved owing to the satisfaction of the governing equation at the

boundary points in each subdomain. The boundary conditions at the interfaces can

be chosen to be {u, du/dn, ..., dp/2−1u/dnp/2−1}, and these unknown values are then

determined by the imposition of continuity in the (p/2), (p/2+1), · · · , (p−1)th-order

normal derivatives across the interfaces.

5 Some applications of the integral collocation

approach

This section presents several applications of the integral collocation approach in

the simulation of engineering problems. The first two problems are concerned with

structural analysis, while the third one is about the motion of a fluid.
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5.1 Free vibration of ring-like structures

The structural element is a ring of rectangular cross-section of constant width and

thickness that varies parabolically according to the relation (Figure 4):

h(θ̄) = h(0)

[
− 4

π2
(r − 1)θ̄2 +

4

π
(r − 1)θ̄ + 1

]
= h(0)f(θ̄), (79)

where r = h(π/2)/h(0). The case of normal, in-plane modes of vibration is con-

sidered here, where only flexural effects are taken into account and one disregards

stretching in the axial direction. Its vibrational behaviour can be modelled by a

sixth-order ODE. The problem is simulated with ICSEs. The obtained results are

compared with those of the optimized Rayleigh-Ritz method [40] and the differential

quadrature technique [41].

5.1.1 A circular ring with supports

Since the structure is symmetric, only half of the domain is considered. Introduc-

ing the dimensionless variable θ = θ̄/π, the governing differential equation can be

expressed in the form

β1v
[6] + β2v

[5] + β3v
[4] + β4v

′′′

+ β5v
′′

+ β6v
′ − Ω2

(
fv

′′

+ f
′

v
′ − π2fv

)
= 0, (80)

with boundary conditions

v(0) = v
′

(0) = v
′′′

(0) = 0, v(1) = v
′

(1) = v
′′′

(1) = 0,
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where v[q] = dqv/dθq, v is the tangential displacement, θ is the dimensionless vari-

able, Ω is the dimensionless frequency, and

0 ≤ θ ≤ 1,

β1 = φ/π4, β2 = 3φ
′

/π4, β3 = (2φ/π2) + (3φ
′′

/π4),

β4 = (4φ
′

/π2) + (φ
′′′

/π4), β5 = φ+ (3φ
′′

/π2), β6 = φ
′

+ (φ
′′′

/π2),

φ = [f(θ)]3, f(θ) = −4(r − 1)θ2 + 4(r − 1)θ + 1.

The variable coefficients in (80) involve sixth-order polynomials in θ. Six data

sets, {7, 9, · · · , 17} Gauss-Lobatto points, are employed to study the convergence

behaviour of the present method. Results concerning the fundamental frequency

coefficient are shown in Table 7. They are compared well with those of [40] and [41].

It can be seen that the present method achieves a high level of accuracy using only

a few grid points. For r = 1.5, at least 4 significant digits remain constant when

n ≥ 13.

5.1.2 A completely-free ring

In this case, a quarter of the ring structure is considered. It is convenient to introduce

the dimensionless variable θ = θ̄/(π/2) here and the governing equation can be

written as

β1v
[6] + β2v

[5] + β3v
[4] + β4v

′′′

+ β5v
′′

+ β6v
′ − Ω2

(
fv

′′

+ f
′

v
′ − π2fv/4

)
= 0, (81)

with boundary conditions

v(0) = v
′′

(0) = 0, φ
′

(0)
[
v

′

(0) + 4v
′′′

(0)/π2
]

+ 4φ(0)v[4](0)/π2 = 0,

v(1) = v
′′

(1) = 0, φ
′

(1)
[
v

′

(1) + 4v
′′′

(1)/π2
]

+ 4φ(1)v[4](1)/π2 = 0,
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where

0 ≤ θ ≤ 1,

β1 = 16φ/π4, β2 = 48φ
′

/π4, β3 = (8φ/π2) + (48φ
′′

/π4),

β4 = (16φ
′

/π2) + (16φ
′′′

/π4), β5 = φ+ (12φ
′′

/π2), β6 = φ
′

+ (4φ
′′′

/π2),

φ = [f(θ)]3, f(θ) = −(r − 1)θ2 + 2(r − 1)θ + 1.

Convergence studies are conducted using five data sets of {5, 7, · · · , 13} Gauss-

Lobatto points. Table 8 shows the fundamental frequencies obtained by the present

method together with those of [40] and [41]. It can be seen that they are in good

agreement. Highly accurate results are obtained with the present technique. For

r = 1.5, at least 4 significant digits remain constant when n ≥ 9.

5.2 Laminated composite plate

Laminated fibre composite plates have been extensively used in many fields of en-

gineering such as aeronautics and space industries. Much research effort has been

dedicated to improve the ability to predict the behaviour of these structures.

Using the first-order shear deformation theory, the equilibrium equations for moderately-

thick laminated composite plates without membrane action can be written in the

form [42]

A45

( ∂2w

∂x∂y
− ∂ψy

∂x

)
+ A55

(∂2w

∂x2
+
∂ψx

∂x

)
+ A44

(∂2w

∂y2
− ∂ψy

∂y

)

+ A45

( ∂2w

∂x∂y
+
∂ψx

∂y

)
+ q(x, y) = 0, (82)
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D16

(
− ∂2ψx

∂x2

)
+D26

(
− ∂2ψy

∂x∂y

)
+D66

( ∂2ψx

∂x∂y
− ∂2ψy

∂x2

)
+

D12

(
− ∂2ψx

∂x∂y

)
+D22

(
− ∂2ψy

∂y2

)
+D26

(∂2ψx

∂y2
− ∂2ψy

∂x∂y

)

= A44

(∂w
∂y

− ψy

)
+ A45

(∂w
∂x

+ ψx

)
, (83)

D16

(
− ∂2ψx

∂x∂y

)
+D26

(
− ∂2ψy

∂y2

)
+D66

(∂2ψx

∂y2
− ∂2ψy

∂x∂y

)
+

D11

(
− ∂2ψx

∂x2

)
+D12

(
− ∂2ψy

∂y∂x

)
+D16

( ∂2ψx

∂y∂x
− ∂2ψy

∂x2

)

= A45

(∂w
∂y

− ψy

)
+ A55

(∂w
∂x

+ ψx

)
, (84)

where w is the transverse displacement of a point situated in the middle plane, the

xy plane; ψx and ψy are respectively the rotations of the transverse normal, i.e. in

the z direction, with respect to the y and x axes; q(x, y) is the transverse load; and

Dij =
1

3

n∑

k=1

(h3
k − h3

k−1)(Qij)(k) i, j = 1, 2, 6, (85)

Aij = κ
n∑

k=1

(hk − hk−1)(Cij)(k), (86)

in which κ = 5/6 is a shear correction factor, h is the thickness of the laminate, and

Qij and Cij represent the stiffness constants of a unidirectional orthotropic composite

making an angle θ with the principal material x-axis. Equations (82)-(84) involve a

large number of derivative terms, some of which are mixed partial derivatives.

The IRBFN method is applied to the static analysis of the bending behaviour of

a simply-supported cross-ply laminate a × a with a cut-out concentric square hole

a/2×a/2. The composite plate consists of four layers 00/900/900/00 under a uniform

pressure q0. The material properties are chosen to be

E1 = 25E2, ν12 = 0.25,

G12 = G13 = 0.5E2, G23 = 0.2E2
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Different grids are employed for the study of grid convergence. A typical grid is

plotted in Figure 5. Results are presented in dimensionless forms according to the

following relations

w → 100E2h
3

q0a4
w, (87)

{σxx, σyy, τxy} → h2

q0a2
{σxx, σyy, τxy}, (88)

{τyz, τxz} → h

q0a
{τyz, τxz}. (89)

Good convergence is achieved as shown in Table 9. Figure 6 shows distributions of

the displacement and in-plane stresses calculated at z = h/2.

5.3 Driven-cavity viscous flow

This problem is usually used as a model for the understanding of physical flows and

for the testing of new numerical schemes in CFD. The lid-driven cavity flow possesses

physically unrealistic characteristics (discontinuous velocity) at the edges of the lid.

This leads to a rapid change in stress near those points, thereby making the nu-

merical simulation difficult. In the context of Newtonian-fluid flow, Ghia, Ghia and

Shin [43] have reported accurate solutions for a wide range of the Reynolds number

using a multigrid finite-difference scheme with very dense grids. These results have

often been cited in the literature for comparison purposes. Recently, by using the

Chebyshev collocation technique, which exhibits exponential convergence/spectral

accuracy, for the calculation of a regular part of the solution, and by using analytical

formulae to obtain the singular part, Botella and Peyret [44] have provided bench-

mark spectral results on the flow at Re = 1000. It will be shown that the IRBFN

results are in closer agreement with the spectral solutions than the finite-difference

ones.

35



The lid velocity (U) and the side length of the cavity (L) are used as reference

quantities. The dimensionless governing equations for unsteady two-dimensional

incompressible flow of a Newtonian fluid in terms of stream function ψ and vorticity

ω can be written as follows

∂ω

∂t
+

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (90)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (91)

where Re = UL/ν is the Reynolds number(ν: the kinematic viscosity). The vorticity

and stream function are defined by

ω =
∂v

∂x
− ∂u

∂y
, (92)

∂ψ

∂x
= −v, ∂ψ

∂y
= u, (93)

where u and v are two components of the velocity vector in the x− and y−directions,

respectively.

The lid slides toward the right at unit velocity, while the other walls remain station-

ary:

ψ = 0,
∂ψ

∂x
= 0, on x = 0 and x = 1, (94)

ψ = 0,
∂ψ

∂y
= 0, on y = 0, (95)

ψ = 0,
∂ψ

∂y
= 1, on y = 1. (96)

The boundary condition ψ = 0 along the boundaries can be used directly to solve

(91) for the velocity field, while one needs to derive computational boundary con-

ditions for the vorticity transport equation (90). Using (91) and the boundary

condition ψ = 0, expressions for the vorticity on the boundaries are reduced to
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ω = −∂2ψ/∂n2 (n: the local coordinate normal to the wall). After expressing this

normal second-order derivative as a linear combination of nodal first-order deriva-

tive values, imposition of the required boundary conditions ∂ψ/∂n is carried out.

Finally, the remaining first derivative values are written in terms of nodal stream

function values.

The stability of the lid-driven cavity flow was investigated by Poliashenko and Aidun

[45]. For the case of a square cavity, it was reported that the point of bifurcation is

Re = 7763, where the primary steady state becomes unstable. A range of the Re

number, {0, 100, 400, 1000, 3200, 5000}, is considered here. The computed solution

at the lower and nearest value of Re is taken to be the initial solution. The special

case of Re = 0 starts from a fluid at rest. Ten uniform grids, namely 11 × 11, 21 ×

21, · · · , 101× 101, are employed to study the convergence behaviour of the method.

Time steps used are in the range of 0.005−0.5. Steady-state solutions are presented

in detail here, and they are compared with available data in the literature.

Results concerning the extrema of the velocity profiles along the vertical and hori-

zontal centrelines (Re = 100 and Re = 1000) are summarized in Tables 10–11. The

corresponding results obtained by the pseudospectral method [44], finite-difference

method [43,46] and finite-volume method [47] are included for comparison. The

IRBFN results are in better agreement with the spectral solutions than those pre-

dicted by the finite-difference and finite-volume methods.

Iso-vorticity lines of the flow for various Re numbers are shown in Figure 7. The

vorticity-contour values chosen here are the same as those in [43,44], i.e. {-5, -4,-3,-

2,-1,-0.5,0,0.5,1,2,3}. The plots look reasonable when compared to those of [43] and

[44].

It is worth mentioning that although the present IRBFN method is global, it does
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not require any special treatment for the singularity at the two corners. In contrast,

when using the spectral collocation method, it is necessary to employ a subtraction

technique to remove the leading part of the singularity.

6 Conclusion

In the present chapter, an overview of high-order integral collocation techniques

using radial basis functions and Chebyshev polynomials is given. Three impor-

tant features of these techniques are: (i) Using Cartesian grids to discretize the

physical domain, (ii) Using point collocation to discretize the governing differential

equation, and (iii) Employing high-order integrated approximants to represent the

field variable, which result in effective numerical treatment schemes, particularly

for handling irregular boundaries, high-order differential equations and large-scale

domains. Several applications presented in this review illustrate the ability of the

integral collocation approach to solve complicated engineering problems.
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Table 1: Multiple boundary conditions: Condition numbers and errors by CSEs

nx × ny Differential Approach Integral approach
cond(A) Ne(u) cond(A) Ne(u)

6 × 6 4.4 × 102 1.23 × 10−1 1.6 × 102 4.84 × 10−3

8 × 8 3.6 × 103 5.94 × 10−3 1.5 × 103 7.40 × 10−5

10 × 10 2.0 × 104 2.10 × 10−4 8.8 × 103 4.20 × 10−7

12 × 12 9.2 × 104 4.46 × 10−6 3.8 × 104 2.40 × 10−9

14 × 14 3.4 × 105 6.52 × 10−8 1.3 × 105 1.20 × 10−11

16 × 16 1.1 × 106 7.05 × 10−10 4.1 × 105 7.85 × 10−14
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Table 2: Multiple boundary conditions: Condition numbers and errors by RBFNs

nx × ny Differential Approach Integral approach
cond(A) Ne(u) cond(A) Ne(u)

7 × 7 6.3 × 105 1.40 × 10−1 2.4 × 102 1.47 × 10−3

11 × 11 3.4 × 106 1.22 × 10−1 2.4 × 103 1.61 × 10−4

17 × 17 1.8 × 107 1.46 × 10−1 1.8 × 104 4.03 × 10−5

21 × 21 4.4 × 107 1.82 × 10−1 4.5 × 104 2.44 × 10−5

27 × 27 1.2 × 108 2.33 × 10−1 1.3 × 105 1.41 × 10−5

31 × 31 2.1 × 108 2.64 × 10−1 2.3 × 105 1.05 × 10−5

37 × 37 4.4 × 108 3.05 × 10−1 4.9 × 105 7.35 × 10−6

41 × 41 6.7 × 108 3.30 × 10−1 7.5 × 105 5.95 × 10−6

47 × 47 1.1 × 109 3.63 × 10−1 1.3 × 106 4.50 × 10−6
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Table 3: Non-rectangular boundaries: Condition numbers and errors by ICSEs

nx × ny cond(A) Ne(u)
6 × 6 3.9 × 102 3.58 × 10−3

8 × 8 1.1 × 103 8.08 × 10−5

10 × 10 5.3 × 103 6.36 × 10−7

12 × 12 2.1 × 104 7.27 × 10−9

14 × 14 1.0 × 105 4.49 × 10−11

16 × 16 4.8 × 105 3.21 × 10−13

18 × 18 2.0 × 106 4.85 × 10−14

20 × 20 8.7 × 106 3.26 × 10−14
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Table 4: Non-rectangular boundaries: Condition numbers and errors by IRBFNs

nx × ny cond(A) Ne(u)
4 × 4 3.2 × 100 2.90 × 10−1

9 × 9 4.1 × 101 1.11 × 10−3

14 × 14 2.6 × 102 3.63 × 10−4

19 × 19 2.6 × 102 1.36 × 10−4

24 × 24 7.0 × 102 6.67 × 10−5

29 × 29 6.5 × 102 4.36 × 10−5

34 × 34 1.3 × 103 1.33 × 10−5

39 × 39 2.2 × 103 7.87 × 10−6

44 × 44 2.1 × 103 5.35 × 10−6

49 × 49 3.2 × 103 4.07 × 10−6
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Table 5: Domain decomposition: Errors by CSEs

n Ne(u)
(Points/subdomain) Differential approach Integral approach

3 6.63 × 10−2 2.55 × 10−3

5 6.12 × 10−4 4.47 × 10−6

7 2.15 × 10−6 2.16 × 10−9

9 3.94 × 10−9 1.34 × 10−12

11 4.41 × 10−12 8.04 × 10−16

13 3.16 × 10−15 5.40 × 10−16

49



Table 6: Domain decomposition: Errors by RBFNs

n Ne(u)
(Points/subdomain) Differential approach Integral approach

11 4.34 × 10−1 4.92 × 10−4

21 4.25 × 10−1 1.23 × 10−4

31 4.22 × 10−1 5.53 × 10−5

41 4.21 × 10−1 3.12 × 10−5

51 4.20 × 10−1 2.00 × 10−5

61 4.20 × 10−1 1.39 × 10−5

71 4.20 × 10−1 1.02 × 10−5

81 4.19 × 10−1 7.83 × 10−6

91 4.19 × 10−1 6.19 × 10−6

101 4.19 × 10−1 5.02 × 10−6
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Table 7: Free vibration of a non-uniform ring with constraints: fundamental fre-
quencies. It is noted that DQ and RR stand for the differential quadrature and
Rayleigh-Ritz methods, respectively.

ICSEs DQ RR
r 7 9 11 13 15 17 [41] [40]

1.0 2.2659 2.2667 2.2667 2.2667 2.2667 2.2667 2.2667 2.274
1.1 2.4134 2.4137 2.4137 2.4137 2.4137 2.4137 2.4137 2.416
1.2 2.5531 2.5569 2.5568 2.5568 2.5568 2.5568 2.5568 2.557
1.3 2.6690 2.6975 2.6966 2.6966 2.6966 2.6966 2.6966 2.697
1.4 2.7086 2.8387 2.8334 2.8334 2.8334 2.8334 2.8335 2.834
1.5 2.5572 2.9886 2.9673 2.9677 2.9677 2.9677 2.9678 2.970
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Table 8: Free vibration of a non-uniform ring without constraints: fundamental
frequencies. It is noted that DQ and RR stand for the differential quadrature and
Rayleigh-Ritz methods, respectively.

ICSEs DQ RR
r 5 7 9 11 13 [41] [40]

1.0 2.6822 2.6833 2.6833 2.6833 2.6833 2.6833 2.687
1.1 2.8450 2.8452 2.8452 2.8452 2.8452 2.8452 2.846
1.2 3.0063 3.0062 3.0062 3.0062 3.0062 3.0062 3.006
1.3 3.1672 3.1665 3.1665 3.1665 3.1665 3.1665 3.167
1.4 3.3279 3.3262 3.3263 3.3263 3.3263 3.3263 3.326
1.5 3.4886 3.4857 3.4858 3.4858 3.4858 3.4858 3.486
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Table 9: Laminated composite plate: Displacement and stresses.

Density w(a/2, a/8) σxx(a/2, a/8, h/2) σyy(a/2, a/8, h/2) τxy(a/2, a/8, h/2) τyz(a/2, 0, 0) τxz(0, a/2, 0)
17 × 17 2.9590 × 10−2 8.0824 × 10−4 3.7160 × 10−3 1.6625 × 10−8 −4.3448 × 10−2 −4.0660 × 10−2

25 × 25 2.9900 × 10−2 1.3515 × 10−3 3.7761 × 10−3 1.5205 × 10−9 2.1391 × 10−1 1.0193 × 10−1

33 × 33 3.0060 × 10−2 1.2745 × 10−3 3.9142 × 10−3 1.6929 × 10−10 2.9333 × 10−1 1.4319 × 10−1

41 × 41 3.0148 × 10−2 1.1473 × 10−3 3.9290 × 10−3 1.9078 × 10−11 3.1695 × 10−1 1.5514 × 10−1

49 × 49 3.0199 × 10−2 1.0453 × 10−3 3.9460 × 10−3 −5.5379 × 10−13 3.2419 × 10−1 1.5870 × 10−1

57 × 57 3.0232 × 10−2 9.6820 × 10−4 3.9525 × 10−3 1.7980 × 10−11 3.2681 × 10−1 1.5993 × 10−1

65 × 65 3.0253 × 10−2 9.1134 × 10−4 3.9576 × 10−3 1.4088 × 10−11 3.2804 × 10−1 1.6048 × 10−1
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Table 10: Lid-driven cavity flow, Re = 100: Extrema of the vertical and horizontal velocity profiles through the centre of the cavity.

Method Density umin(error %) y v2max(error %) x vmin(error %) x

Present 11 × 11 -0.18388(14.091) 0.484 0.14175(21.061) 0.242 -0.20870(17.770) 0.814
21 × 21 -0.21085(1.490) 0.464 0.17450(2.823) 0.239 -0.24734(2.545) 0.808
31 × 31 -0.21367(0.173) 0.459 0.17895(0.345) 0.237 -0.25278(0.402) 0.810
41 × 41 -0.21408(0.019) 0.458 0.17960(0.017) 0.237 -0.25368(0.047) 0.810

FVM 64 × 64 -0.21315(0.416) — 0.17896(0.340) — -0.25339(0.162) —
[47]

FDM(ψ − ω) 129 × 129 -0.21090(1.467) 0.453 0.17527(2.395) 0.234 -0.24533(3.337) 0.805
[43]

FDM(u − p) 129 × 129 -0.2106 (1.607) 0.453 0.1786 (0.540) 0.234 -0.2521 (0.670) 0.813
[46]

Benchmark -0.21404 0.458 0.17957 0.237 -0.25380 0.810
[44]
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Table 11: Lid-driven cavity flow, Re = 1000: Extrema of the vertical and horizontal velocity profiles through the centre of the
cavity. It is noted that cpi and stagg stand for consistent physical interpolation and staggered, respectively.

Method Density umin(error %) y vmax(error %) x vmin(error %) x

Present 11 × 11 -0.16933(56.422) 0.244 0.14892(60.492) 0.218 -0.20926(60.298) 0.906
21 × 21 -0.28334(27.081) 0.254 0.25166(33.236) 0.185 -0.35962(31.771) 0.875
31 × 31 -0.33588(13.560) 0.192 0.32263(14.408) 0.167 -0.46097(12.543) 0.891
41 × 41 -0.36667(5.636) 0.177 0.35368(6.171) 0.163 -0.49844(5.434) 0.903
51 × 51 -0.37859(2.568) 0.174 0.36588(2.934) 0.161 -0.51356(2.565) 0.907
61 × 61 -0.38300(1.434) 0.174 0.37060(1.682) 0.160 -0.51939(1.459) 0.908
71 × 71 -0.38496(0.929) 0.173 0.37279(1.101) 0.159 -0.52199(0.966) 0.908
81 × 81 -0.38603(0.654) 0.173 0.37403(0.772) 0.159 -0.52344(0.691) 0.909
91 × 91 -0.38671(0.479) 0.173 0.37482(0.562) 0.159 -0.52436(0.516) 0.909

101 × 101 -0.38717(0.360) 0.172 0.37536(0.419) 0.158 -0.52499(0.397) 0.909

FVM,stagg. 128 × 128 -0.38050(2.077) — 0.36884(2.149) — -0.51727(1.861) —
FVM,cpi. 128 × 128 -0.38511(0.890) — 0.37369(0.862) — -0.52280(0.812) —

[47]
FDM(ψ − ω) 129 × 129 -0.38289(1.462) 0.172 0.37095(1.589) 0.156 -0.51550(2.197) 0.906

[43]
FDM(u − p) 256 × 256 -0.3764 (3.132) 0.160 0.3665 (2.770) 0.152 -0.5208 (1.192) 0.910

[46]

Benchmark -0.38857 0.172 0.37694 0.158 -0.52708 0.909
[44]
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a a′

b b′

Figure 1: ICSE discretization.
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Figure 2: IRBFN discretization.
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x1 x2 xq

xb1 xb2

Figure 3: Points on a grid line in the IRBFN discretization scheme consist of interior
points xi (◦) and boundary points xbi (2).
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Figure 4: Free vibrations of rings: (a) with constraints and (b) without constraints.
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Figure 5: Laminated composite plate: a typical IRBFN discretization.
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w τxy

σxx σyy

Figure 6: Laminated composite plate: Displacement and in-plane stresses at z =
h/2.
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Re = 0, uniform grid = 71 × 71 Re = 100, uniform grid = 81 × 81

Re = 1000, uniform grid = 91 × 91 Re = 3200, uniform grid = 101 × 101

Figure 7: Lid-driven cavity flow: Iso-vorticity lines of the flow for various Re num-
bers.
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