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ABSTRACT 

 

An electroencephalogram (EEG) signal is an efficient tool for identifying and 

diagnosing neurological diseases. In addition, it is very important for assisting patients 

with a disability to interact with their environment through a brain-computer interface. 

It can also assist scientists and experts to understand the most complex part of the 

human body, the brain. However, finding effective techniques to detect sleep 

characteristics and sleep stages using EEG signals is still a challenging task in sleep 

research, as visual detection requires advanced skills, as well as time, and effort. For 

example, visual scoring of sleep characteristics such as sleep spindles and k-complexes 

is very time consuming, subjective and sometimes does not work accurately because 

it requires experts to identify the presence or absence of sleep characteristics in EEG 

recordings. Consequently, automatically detecting and analysing sleep characteristics 

and stages will help sleep experts and clinical doctors to work more efficiently in 

diagnosing sleep disorders. This project aims to develop new and more efficient 

techniques to identify the characteristics of sleep stage 2 in EEG signals. 

Two new techniques were proposed in this thesis to detect sleep spindles: firstly, a 

wavelet Fourier analysis and statistical model was used. In this method, firstly an EEG 

signal was divided into segments using a sliding window technique. The size of the 

window was 0.5 seconds with an overlap of 0.4 seconds. Then, wavelet Fourier 

analysis (WFA) was used to extract statistical features from each 0.5s EEG signal. The 

extracted features were used as inputs to a Kruskal-Wallis nonparametric one-way 

analysis variance to select the important features. Finally, four classifiers: a least-

square support vector machine (LS-SVM), K-nearest neighbours, a k-means algorithm 

and a C4.5 decision tree, were used to detect the sleep spindles as well as to evaluate 

the performance of the proposed approach. The proposed WFA method was tested on 

two different EEG databases.  
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 Secondly, a novel approach based on a time frequency image (TFI) and a fractal 

technique (FD) was proposed to identify sleep spindles in EEG signals. This method 

was employed in this thesis to investigate the main relationships between behaviours 

of sleep spindles in EEG signals and changes in the nonlinear features. In addition, this 

method was designed to improve the classification accuracy rate and to reduce the 

execution time. In this study, a short time Fourier transform (STFT) was applied to 

obtain a TFI from each EEG segment. Then, a box counting method was then applied 

to estimate and discover the FDs of EEG signals, as well as to extract the features of 

interest. Different sets of features were extracted from each TFI after applying a 

statistical model to the FD of each TFI. Subsequently,  four popular machine learning 

methods (LS-SVM, Naive Bayes, k-means and a neural network) were employed to 

evaluate the performance of the suggested algorithm. The obtained results 

demonstrated that both methods performed well and were effective in detecting sleep 

spindles in the EEG signals.  The FDs algorithm coupled with the TFI technique 

improved the classification accuracy rate and reduced the execution time compared to 

the WFA method. The developed methods using fractal dimensions were applied to 

identify other sleep characteristics such as k-complexes in sleep stage 2.  

Additionally, in this research, a new method was proposed for the detection of k-

complexes in EEG signals based on fractal and frequency features. A dual-tree 

complex wavelet transform (DT-CWT) was applied to analyse EEG recording signals 

into frequency bands for features extraction. To select the most important feature, the 

extracted features were analysed. Subsequently  hybrid features based on fractal and 

frequency features were employed to detect the k-complexes. The extracted features 

were then forwarded to an ensemble classifier to detect the k-complexes in EEG 

signals in addition to evaluating the performance of this method. 

Finally, an undirected graph was used to extract the most important features from FDs. 

The extracted features were forwarded to the LS-SVM and k-means as classifiers to 

evaluate the performance of the proposed feature extraction technique and to detect k-

complexes with high accuracy rate and smaller execution time. The proposed method 

was tested on whole EEG databases. The methods developed in this thesis aim to 

effectively score sleep characteristic wave forms and correctly identify the 

discriminative characteristics of sleep stage 2 such as  sleep spindles and k-complexes 

using EEG signals. Furthermore, the research indicates that the proposed techniques 
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are both practical and effective for identifying and studying the brain behaviour of 

sleep disorders.  

Those methods can assist in the presentation of the most important clinical information 

about patients with sleep disorders. The outcomes from this project will help sleep 

experts and clinical doctors to improve their working efficiency and accuracy and will 

potentially reduce medical costs. 
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CHAPTER 1 

 

INTRODUCTION 

 

The human brain is a complex network comprising billions of neurons which are 

capable of processing information quickly and efficiently. It is a central part of the 

nervous system and is considered to be one of the most important parts of the human 

body. The brain uses electrical signals to send different commands and information to 

body organs through a system of neurons  (Lindsay & Norman 2013; Radocy & Boyle 

2012). These signals are responsible for various human functions such as attention, 

memory, emotions and action. They control our movements and receive and store 

information (Carlson 2002a; Purves et al. 2004; Siuly et al. 2012).  

 In recent years, many researchers have used scientific techniques, such as 

Electromyography (EMG), Electroencephalography (EEG), Electrooculography 

(EOG) signals, positron emission tomography (PET), magnetic resonance imaging 

(MRI), functional magnetic resonance imaging (fMRI), and single photo emission 

computed tomography (SPECT)  for analysing human brain activity (He & Liu 2008; 

Sitaram et al. 2007; Vaughan et al. 1998; Wolpaw et al. 2002). These techniques help 

clinicians, sleep experts and neuroscientific researchers to deeply explore the brain 

structure, and its mechanisms. However, clinical research has  shown that EEG signals 

are the most commonly used techniques to collect and analyse brain signals (Blankertz 

et al. 2007; Grosse-Wentrup et al. 2009) because, as well as being reliable, EEGs are 

inexpensive and easy to use. 

An EEG is an electrical signal obtained by using electrodes attached to the human 

scalp. It measures electrical brain activity and is an efficient tool for identifying and  

diagnosing neurological diseases (Akin & Akgul 1998; Fu et al. 2014; Yasmeen & 

Karki 2017). Furthermore, EEGs are normally utilized to diagnose patients with a sleep 
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disorder based on clinical applications such as identification of sleep stages (Jansen et 

al. 1989; Ranjan et al. 2018; Redmond & Heneghan 2006; Shimada, Shiina & Saito 

2000). Many researchers have used EEG signals as a tool to discover abnormal brain 

activities and sleep disorders using a variety of techniques (Faust et al. 2015; Salem, 

Naseem & Mehaoua 2014; Zhang & Parhi 2014; Zhu, Li & Wen 2014) which are used 

to extract and select discriminative features, as well as to classify EEG recordings. 

Most of these techniques fall under three categories: time domain; different 

transformation techniques; and other approaches. 

Although these techniques have obtained relatively promising results, there is an 

urgent demand to develop new techniques to enhance the diagnosis of sleep disorders, 

and to improve its efficacy in terms of precision and speed because an increase, for 

example, in the accuracy of the identification of sleep stages can bring  significant 

improvements in the diagnosis, and therefore the treatment, of sleep disorders (Al-

Qazzaz et al. 2015; Al-Salman et al. 2018; Bankman & Gath 1987; Herrera et al. 2013; 

Ocak 2008; Sinha 2008). 

Clinical research has shown that EEG signals exhibit different patterns of waves in 

sleep stages depending on the state of a person whether asleep, awake or anesthetized. 

Traditionally, the detection of those patterns in sleep stages, such as sleep spindles and 

k-complexes, depends on visual inspection that is carried out based on the knowledge 

of clinicians. The accuracy and reliability of manual scoring are based on the 

experience of experts, makeing the process tiresome. Visual scoring of those 

waveforms such as sleep characteristics requires much time and  is a tedious workload, 

and a very demanding process because it requires appropriate qualifications and skills, 

expenditure, and more physical effort from experts (Acır & Güzeliş 2004a; Amin et al. 

2016; Kayikcioglu, Maleki & Eroglu 2015; Lee et al. 2004; Zarjam, Mesbah & 

Boashash 2003). It is also a subjective process and susceptible to error meaning that a 

decision made by two experts relating to EEG signals could vary even with the same 

EEG recording(Al-Salman, Wessam, Li, Yan & Wen, Peng 2019; Kemp et al. 2000; 

Miranda, Aranha & Ladeira 2019; Silber et al. 2007). However, developing an 

automatic technique to detect all the patterns in sleep stages is an ongoing challenge 

because typically thousands of those patterns could occur in each EEG recording 

(Agarwal et al. 1998; Al-Salman et al. 2018), having significant impacts on sleep 
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research; therefore, an automatic approach would help experts to carry out EEG 

staging accurately. 

This thesis focuses on developing novel methods for analysing and detecting the 

important characteristics of the sleep stages: sleep spindles in EEG signals, and then 

applying those developed methods to detect k-complexes; one of the distinctive 

transiting bio-signal waveforms in sleep stages that is often used to score sleep stages.  

These proposed methods can be used to detect and analyse EEG signals into different 

categories. The proposed methods will be useful to identify sleep disorders correctly 

and efficiently, detecting the typical patterns in sleep stage 2 of EEG signals. Finally, 

the outcomes of this study could help sleep experts and clinical doctors to improve 

their efficiency and accuracy and may therefore reduce medical costs. Moreover, they 

may help to decrease the cost of treatment for patients because of one of the benefits 

of the proposed methods is that it can run automatically to check the patient’s 

recording. 

1.1 Study Overview and Motivation  

Sleep stages scoring is an important process in sleep research as any errors in the 

scoring of the patient’s sleep electroencephalography (EEG) recordings can lead to 

critical problems (Malafeev et al. 2018; Weiner & Dang-Vu 2016). The sleep stages 

are connected through different physiological and neuronal characteristics such as 

sleep spindles and k-complexes that are used in sleep stages identification by 

physiology experts and researchers, who normally rely on their experience to manually 

recognize them. The process of discriminating sleep stages visually is called sleep 

scoring. Although the visual inspection of sleep scoring has been used as a standard 

method for a long time, it has some deficits and limitations. First of all, it is expensive, 

and requires a high cost; it takes a great deal of  effort and it is also error-prone(Gao, 

Turek & Vitaterna 2016). Moreover, it is a subjective process, meaning that decisions 

made by two sleep experts could vary even in the same sleep recordings. Furthermore, 

the scoring process is carried out by a sleep specialist under either the Rechtschaffen 

and Kales (R&K) (Rechtschaffen 1968) or the American Academy of Sleep Medicine 

(AASM) guidelines. The AASM has been developed to tackle some issues in the R&K 

guidelines (da Silveira, Kozakevicius & Rodrigues 2017; Ebrahimi et al. 2008; Putilov 
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2015; Rechtschaffen 1968; Tsinalis, Matthews & Guo 2016). Developing an automatic 

approach to classify sleep stages could have significant impacts on sleep research by 

helping experts to carry out EEG staging accurately and to relieve the burdens of visual 

inspection (Al-Salman et al. 2018; Lucey et al. 2016; Mousavi, Afghah & Acharya 

2019). 

Much clinical research has revealed that individual sleep stages exhibit unique 

electroencephalogram (EEG) patterns and characteristics that reflect human sleep 

states (Al-Salman et al. 2018). Analysing those brain waveforms is an important task 

for aiding neurologists to score and analyse EEG sleep signals. Two of the distinctive 

transiting bio-signal waveforms that are often used to score sleep stages are sleep 

spindles and k-complexes (Camilleri, Camilleri & Fabri 2014; Miranda, Aranha & 

Ladeira 2019; Richard & Lengelle 1998; Weiner & Dang-Vu 2016).  

Sleep spindles are the most important transient events used to detect stage 2 in EEG 

signals. They are defined as a series of distinct waves are within a frequency range of 

11-16 Hz with a minimum duration of 0.5 seconds (Al-Salman, Wessam, Li, Yan & 

Wen, Peng 2019; Al-Salman et al. 2018; Iber et al. 2007; Lajnef et al. 2015), while a 

k-complex includes a large-amplitude transient waveform with a single negative sharp 

wave followed by a positive sharp wave, and it has a relatively sharp amplitude that is 

more than ±75μV (Al-Salman, W, Li, Y & Wen, P 2019; Bremer, Smith & Karacan 

1970; Da Rosa et al. 1991; Noori et al. 2014; Pohl & Fahr 1995; Rodenbeck et al. 

2006; Strungaru & Popescu 1998; Woertz et al. 2004; Yücelbaş et al. 2018b). In 

Chapters 3, 4, 5 and 6, a detailed discussion about sleep spindles and k-complexes is 

provided. Identifying those occurrences in EEG signals is an ongoing challenge 

because they require high visual skills from experts. 

Recently, various attempts, have been made to identify transient events in sleep EEGs 

such as sleep spindles and k-complexes. Those various attempts, based on research, 

have been used for different transformation techniques such as Fourier, wavelet, 

Teager energy operator and short-time Fourier transform (Al-Salman et al. 2018; 

Bankman et al. 1992; Duman et al. 2009; Erdamar, Duman & Yetkin 2012; Huupponen 

et al. 2007; Lajnef et al. 2015; Sinha 2008) to identify sleep spindles or k-complexes. 

Those techniques are often combined with a support vector machine, a genetic 

algorithm, least square support vector machine, k-means, Naïve Bayes and a neural 
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network (Acır & Güzeliş 2004b, 2005; Al-Salman, W, Li, Y & Wen, P 2019; Al-

salman & Li 2019; Jansen & Desai 1994; Ocak 2008) and most of this research work 

has limitations. 

The main challenge of those techniques is how to detect sleep spindles or k-complexes 

from complicated EEG signals in an  acceptable time and with as high accuracy as 

possible. In addition, the current studies aim to detect and analyse sleep characteristics 

in EEG signals using a specific period of time. Based on the literature, it was found 

that many studies were conducted with one window size, and one database and were 

used to detect sleep characteristics. Although some of those studies obtained relatively 

good results, it is still necessary to develop new techniques, firstly to cope with these 

limitations, and secondly, to achieve a high level of accuracy with less execution time, 

because an increase in the accuracy of sleep characteristics identification can make 

significant improvements in the diagnosis of sleep disorders. 

Hence, the main goals of this thesis are to develop efficient methods that are as 

accurate as possible to analyse and detect the most important characteristics of the 

sleep stages such as sleep spindles and k-complexes in EEG signals. These methods 

focus on two stages: reducing the dimensionality of the EEG data by extracting and 

selecting the most appropriate features, and detecting sleep spindles and k-complexes 

in EEG signals by employing those extracted features, within an  acceptable time and 

with as high an accuracy as possible.  In chapters 3, 4, 5 and 6, a detailed description 

of those stages is provided. 

1.2 Research Problems 

EEG signals contain a large amount of information (data) with several categories that 

exhibit brain activities. Researchers have observed that some of this information 

during recording EEGs could be irrelevant data because it presents noise and artefact. 

Therefore, to reduce unrelated information from EEG recordings, and to extract the 

discriminative features, an automatic method is required to extract appropriate features 

and classify the extracted features by suitable methods. Those processes mainly 

depend on visual inspection that is carried out based on the knowledge of clinicians 

(experts), who visually examine the EEG recording (Al-Salman, Wessam, Li, Yan & 

Wen, Peng 2019; Al-Salman et al. 2018; Diykh & Li 2016; Diykh, Li & Wen 2017; 
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Hernández-Pereira et al. 2016; Kutlu, Kuntalp & Kuntalp 2009; Siuly & Li 2015; Siuly 

& Zhang 2016; Subasi & Ercelebi 2005). However, it is often difficult to recognize 

people who have sleep disorders through visual inspection of EEG recordings. 

Furthermore, visual inspection methods are unsuitable to produce credible results 

because the accuracy and reliability of the manual scoring are based solely on the 

experience of experts. In addition, it is very time consuming, subjective, requires high 

skills from experts, is not a satisfactory procedure unless carried out based on the 

knowledge of clinicians, and is prone to errors. Improved analysis and classification 

of EEG signals automatically will lead to better diagnostic techniques for sleep 

disorders and to the detection of sleep characteristics. Thus, developing new methods 

to detect sleep characteristics from complicated EEG signals is the main goal of this 

thesis. It can reduce the time and effort of experts and can give a more accurate 

diagnosis of sleep disorders. The performance of the developed approaches has been 

evaluated using several assessment tools which are related to the field of detection 

methods, such as accuracy, sensitivity, specificity, F-score, kappa coefficient, the 

receiver operating characteristic (ROC) curve, k-cross-validation,  and Mathew's 

correlation coefficient (MCC).  These measuring tools are used to check the ability of 

the detection methods and performance for identifying sleep characteristics (Al-

Salman et al. 2018; Hernández-Pereira et al. 2016; Ranjan et al. 2018; Wessam, Li & 

Wen 2019). In chapters 3, 4, 5 and 6,  a detailed description about those tools was 

provided. 

Recently, many methods have been developed to extract the desired features from EEG 

signals and then use these features to classify  different EEG categories. Based on 

previous studies in the literature (Acharya et al. 2005; Da Rosa et al. 1991; Halász 

2005; Kiymik, Subasi & Ozcalık 2004; Knoblauch et al. 2003b; Knoblauch et al. 

2003a; Kuriakose & Titus 2016; Lajnef et al. 2015; Nonclercq et al. 2013; Patti, 

Chaparro-Vargas & Cvetkovic 2014; Saifutdinova et al. 2015; Strungaru & Popescu 

1998; Vu et al. 2012; Yücelbaş et al. 2018a; Zhuang, Li & Peng 2016), it seems that 

most of those studies focused on detecting sleep spindles and k-complexes had 

limitations. For example, many did not achieve high levels of accuracy. It was time 

consuming  to perform the required analyses; no execution time was mentioned in all 

previous studies; and they were too complicated for practical applications. 
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Furthermore, it was found that many studies were conducted with one window size 

and were used to detect sleep characteristics. Furthermore those studies employed one 

or two assessment tools to evaluate the performance results. Maximum accuracy 

ranging from 75% to 94 % was reported for the datasets. In our research project we 

obtained an increase of 3.8% in comparison with other sleep studies, an improvement 

which is considered significant in sleep treatment. Finally, most of those methods were 

conducted and tested with one database or small databases rather than a huge dataset 

which made them unsuitable to use in real-time applications.  

To overcome these limitations, this thesis has proposed techniques for detecting the 

most important characteristics of sleep stages: sleep spindles and k-complexes. Those 

algorithms were presented to reduce the time taken, and to extract and select the 

desired features carefully. Thus, this thesis will focus on the following question: 

How to enhance the performance of sleep stage scoring in EEG signals by 

developing advanced detection techniques? 

This question led to the following sub-questions:  

a. How to detect and analyse the sleep characteristics of the EEG signal, such as 

sleep spindles and k-complexes in an efficient way with a high classification 

accuracy? 

b. How to enhance the performance of sleep characteristics detection in EEG 

signals through developed methods to achieve a high level of accuracy with 

less executive time? 

c. How to reduce the feature space of the EEG recordings to represent the 

transient events in EEG sleep stages scoring? 

The main objectives are: 

1-  To develop new methods for the sleep characteristics detection, that will result 

in good detection results (performance, accuracy, and processing speed). 

2-  To improve the working of existing detection methods and reduce the efforts 

required to efficiently detect transient events in EEG signals. 

Based on the experimental results, the developed methods can achieve good detection 

performance through identifying all the characteristics of sleep stage 2 in EEG signals. 
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In addition, these methods can be applied to different types of EEG databases.Thus, 

the hypothesis in this study is that detection of the characteristics of sleep stages such 

as sleep spindles and k-complexes in EEG signals can be improved using fractal 

dimension algorithms and hybrid transformation characteristics. 

1.3 Contribution of the Thesis 

The characteristics of EEG signals in their natural state are nonstationary, complex and 

nonlinear, so it is challenging to extract the appropriate features from big EEG data 

sets for classification (Al Ghayab et al. 2018; Kabir et al. 2018; Li & Wen 2009; 

Selesnick 2011a). The work presented in this thesis focuses on how to detect the 

possible occurrences of sleep characteristics in EEG signals with a high classification 

accuracy and less execution time, and how to study the brain behaviour of sleep 

disorders. In addition, this study focuses on the analysis of the EEG signals, extracting 

and selecting the most appropriate features, making more efficient use of time, 

reducing irrelevant data, and investigating the most suitable classification methods 

using various machine learning classification methods. Thus, in this thesis, four 

techniques, as shown in Figure 1.1,  have been developed for detecting sleep 

characteristics: the sleep spindles  and k-complexes, from EEG signals have been 

detected successfully with high performance (classification accuracy) using the 

proposed detection methods. 
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The developed methods in this thesis have been  published in various journals, relating 

to  the detection and analysis of the sleep characteristics in EEG signals. Those 

research works were reviewed and summarised in terms of the precision of their 

classification.To investigate the performance of those proposed methods, extensive 

experiments have been undertaken in this study. In addition, they were compared with 

recently reported algorithms with different and/or the same databases. The following 

contributions have been made to answer the research questions and achieve the 

objectives: 

1- Developing a robust method for the detection of the sleep characteristics 

such as sleep spindles  in EEG signals, thus improving the detection results 

in terms of accuracy.  

2- Improving the developed methods by presenting new extraction techniques 

that can improve the classification accuracy rate with less execution time. 

3- Designing a new method to analyse and identify other sleep characteristics 

such as k-complexes in the EEG signals. 

EEG 

sleep 
database 

WFA and 
statistical  model 

(First objective)

(Chapter 3)

FD of T-F images 
coupled  with 

Undirected Graph 
features  

(Fourth objective) 
(Chapter 6)

DT-CWT coupled 
with ensamble 

model

(Third objective)

(Chapter 5)

FD of TFI coupled 
with LS-SVM

(Second 
objective)

(Chapter 4)

Figure 1.1: Types of proposed methods developed in each chapter to detect the 

characteristics of sleep stage 2 in EEGs 
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4- Introducing an efficient feature extraction method from the whole EEG 

databases based on undirected graph features to detect k-complexes that 

can improve the classification performance as well as improving system 

performance.  

These several proposed methods have been implemented in Matlab R2018a.The 

databases used in this study are the Dream sleep spindles and the Montreal archive of 

sleep studies Databases (Devuyst et al. 2011; O'Reilly et al. 2014). They have been 

used by many researchers for detecting sleep characteristics: sleep spindles and k-

complexes. More details regarding the database have been provided in chapters 3, 4, 5 

and 6. Furthermore, each method was evaluated using different EEG signals acquired 

from different channels and different detection metrics tools. These metrics  are the 

accuracy rate (ACC) , sensitivity (SEN), specificity (SPE), precision rate (PR) or 

positive prediction rate (PPR), F-measure rate, Mathews’s correlation coefficient 

(MCC), Kappa coefficient (KPP) and k-cross-validation. The receiver operating 

characteristic (ROC) curve was used to evaluate the classification accuracy for the 

proposed algorithms. The ROC curve depends on four parameters: the true positive 

rate (TPR) or recall rate (RR), false positive rate (FPR), positive predictive value 

(PPV) or precision rate (PR), and negative predictive value (NPV). A brief discussion 

about these four contributions is provided below. 

1.3.1 Sleep spindles detection using Wavelet Fourier analysis and  statistical 

featutres 

A robust approach based on hybrid transform and statistical features was presented to 

detect sleep spindles in EEG signals with a high level of accuracy. This approach 

includes two phases: testing and training. The same preprocessing and extraction 

techniques were applied for both phases to identify sleep spindles. Firstly, an EEG 

signal was divided into segments using a sliding window technique. The size of the 

window was 0.5 seconds with an overlap of 0.4 seconds. Then, a discrete wavelet 

transform was used to decompose each EEG segment into a set of details and 

approximation coefficients. Among these parameters, the wavelet detail coefficient at 

level 3 was selected and passed through the fast Fourier transform to identify the 

desired frequency bands. Ten statistical characteristics were extracted from each band. 

To select the most important features and to reduce the dimensions of the features, the 
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Kruskal-Wallis nonparametric one-way analysis variance is used. As a result, a set of 

features is selected to represent each of the 0.5 second EEG segments. Furthermore, 

four different window sizes of 0.25s, 1.0s, 1.5s and 2.0s were also tested in this study 

to detect all the possible occurrences of the sleep spindles in the original EEG signals. 

Finally, four popular machine learning methods: a least square support vector machine 

(LS-SVM), k-nearest, k-means and C4.5 decision tree were used as detectors or trained 

models in order to detect the sleep spindles. From the experiments in Chapter 3, it can 

be observed that the proposed method worked very well compared with other existing 

methods. It also gave better results with 0.5s window than the others. It produced a 

good detection accuracy rate  compared with other existing methods. The method 

efficiently detected the spindles in EEG signals, and assisted sleep experts to analyse 

EEG signals. However, this method needs some further improvements to increase the 

accuracy rate and reduce the execution time by using an effective nonlinear method. 

More details of this approach are given in Chapter 3. The content of the chapter was 

published by the Journal of Biomedical Signal Processing and Control, vol. 48 (2019), 

pp.80-92, doi.org/10.1016/j.bspc.2018.10.004. 

1.3.2 EEG sleep spindles detection based on fractal dimension (FD) coupled with 

time frequency image (TFI) 

To increase the accuracy rate of sleep spindles classification, to reduce the execution 

time and to improve the proposed method FD algorithm coupled with TFI was 

investigated and used in this study to detect the sleep spindles, as can be seen in 

Chapter 4. Moreover, this method provided many improvements to the method 

introduction in Section 1.3.1 above. The EEG signal is divided into segments using a 

sliding window technique. In this study, a TFI is obtained from each EEG segment 

after applying a short time Fourier transform (STFT). A box counting method is 

applied to each TFI to calculate the fractal dimension, as well as to extract the features 

of interest. Then, different sets of statistical features are extracted from each FD of the 

TFI. Finally, a least square support vector machine (LS-SVM) classifier is applied to 

discover the best combination of the features and to classify the extracted features. For 

further investigation of the proposed method, different classifiers, including a k-

means, Naïve and neural networks, are also employed. The experimental results in 

Chapter 4 show that the proposed method with the LS-SVM classifier achieves a high 
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accuracy compared with other recent studies, and reveals that the proposed method 

outperforms the others. The obtained results in Chapter 4 show that the fractal 

dimension algorithm increased the classification accuracy, decreased the execution 

time and effectively identified the sleep spindles compared with the other methods. As 

a result, this method can help neurologists and researchers to identify and analyse sleep 

spindles in EEG signals accurately with less execution time. Details of this approach 

are given in Chapter 4. The content of this chapter was published by the Journal of 

Biomedical Signal Processing and Contro, vol. 41 (2018): pp.210-221, 

doi.org/10.1016/j.bspc.2017.11.019 

1.3.3 Fractal and frequency features coupled with an ensemble classification 

model  to detect k-complexes EEGs  

To detect the k-complexes  in EEG recordings, a dual- tree complex wavelet transform 

(DT-CWT) is utilized and coupled with an ensemble model. EEG signals are first 

partitioned into segments, using a sliding window technique. Then, the DT-CWT is 

used to divide  each EEG segment into a set of real and imaginary parts. After that, a 

total of 23 fractal and frequency features are tested from each sub-band. Then the 

extracted features are analysed. This analysis found that not all the extracted features 

and their combinations have the same effect for detecting the characteristics of stage 2 

EEG waveforms, as shown in Chapter 5. As a result, 12 hybrid features are employed 

to detect the k- complexes. The extracted features are forwarded to an ensemble 

classifier to detect the k-complexes in EEG signals. The detection metrics using the 

accuracy, sensitivity, specificity, kappa coefficient, F-score, and Matthews’s 

correlation coefficient have been used to evaluate this work. The results in Chapter 5 

indicate that, by using the ensemble classifier, its classification accuracy is higher than 

that obtained by the individual classifiers. The experimental results in Chapter 5 

showed that the performance of the proposed method was very satisfactory, with good 

detection accuracy rate. This method can therefore  lead to the development of an 

effective tool for the scoring of automatic sleep  EEG stages and can be useful for 

doctors and neurologists for the early diagnosis of  sleep disorders.  Finally, this study 

can be applied efficiently for real-time detection of k-complexes. The details of this 



 

Chapter 1   Introduction 

 

 

13 

 

technique are provided in Chapter 5. This chapter was published to the journal of 

Neuroscience, 422, pp.119-133  

1.3.4 Detection of EEG K-complexes Using Fractal Dimension of Time-

Frequency Images Technique Coupled with Undirected Graph Features 

This method provided many improvements to the method introduced in Section 1.3.2 

above to improve the detection performance of k-complexes with a whole database. 

The preprocessing techniques in Section 1.3.2 were developed to produce a new 

improvement technique to detect k-complexes, and to achieve excellent results in 

terms of detection accuracy and processing time. An efficient method is proposed to 

detect k-complexes from EEG signals based on the fractal dimension (FD) of time 

frequency (T-F) images coupled with undirected graph features. This method as a 

texture descriptor  was developed to make the detection system more robust with a 

shorter processing time and a good detection rate. The EEG signal is first divided into 

segments using a sliding window technique. The size of the window is set to 0.5 second 

(s) with an overlap of 0.4 second (s). Then, each 0.5s EEG segment is passed through 

a spectrogram of short time Fourier transform (STFT) to obtain the T-F images. Next, 

FD as a texture descriptor for each T-F image is calculated based on the box counting 

method. The vector of FD from each T-F image is then mapped into an undirected 

graph. The structural properties of the graphs are used as the representative features of 

the original EEG signals for the input of a least square support vector machine (LS-

SVM) classifier. Key graphic features are extracted from the undirected graphs and 

then used as the key features to detect k-complexes in this study. Finally, the extracted 

graph features are then forwarded to the LS-SVM to identify k-complexes in EEG 

signals and to evaluate the performance of the proposed feature extraction technique. 

To investigate the performance of the proposed method, comparisons are also made 

with several existing k-complexes detection methods in which the same datasets are 

used. The performance achieved superior results, in terms of detection accuracy, 

sensitivity, and specificity to other existing methods in the literature, as shown in 

Chapter 6. Thus, the performance of the proposed method was very satisfactory, in 

terms of detection accuracy and the processing time.The proposed method can help 

physicians with diagnosing sleep disorders and potentially it can reduce medical costs.  

The details of this technique are provided in Chapter 6, the contents of which were 
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published in the Journal Frontiers in Neuroinformatics, 13:45. doi: 

10.3389/fninf.2019.00045 

1.4 Research Outcomes and Significance 

The aim of this research project is to develop novel methods for the detection of the 

EEG characteristics of sleep stages, such as sleep spindles and k-complexes in EEG 

signals. Sleep stages scoring is a process to separate an EEG signal into the six sleep 

stages of Awake, Stage 1 , Stage 2, Stage 3, Stage 4 and rapid eye movement sleep.  

Each stage has unique characteristics such as sleep spindles and k-complexes. Sleep 

stages can be recognised using those characteristics. Experts may spend a long time 

analysing a patient’s recordings in order to classify the stages. This thesis aims at 

identifying those sleep characteristics automatically so that sleep stages can be 

identified easily, thus reducing the time and effort that experts spend on analysing EEG 

signals to identify sleep stages. Experts can use these methods for scoring the sleep 

stages. Moreover, these methods will help to decrease the cost of treatment for patients 

because one of their benefits is that they can run automatically to check the patient’s 

recordings. This software package is easy to use, without the need to have extensive 

training. Moreover, traditional visual inspection is time-consuming and may cause 

fatigue. Thus, this research will help to reduce the cost of treatment. 

1.5 Connections Between Chapters 

This thesis focuses on detecting and analysing the characteristics of sleep stages of 

EEG signals, such as sleep spindles and k-complexes. In addition, it attempts to design 

and develop a new method to extract and select the representative features of sleep 

spindles and k-complexes from EEG recordings. This research uses a hybrid 

transformation and statistical features to detect the most important bio-signals,  

waveforms, in sleep stages 2 (Chapter 3). It proposes a new detection method based 

on the fractal dimension algorithm coupled with time-frequency images to study the 

behaviour of sleep spindles in EEG signals (Chapter 4), which improves the 

classification rate with less execution time. To detect the second most significant 

characteristics (k-complexes) in sleep stage 2, hybrid features coupled with an 

ensemble model were introduced (Chapter 5). This method extracts and selects the 
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most relevant data and ignores irrelevant data from EEG signals, while simultaneously 

detecting k-complexes by blending a fractal technique with the undirected graph 

approach. This approach  is provided for features extraction in the nonlinear method 

(Chapter 6). 

1.6 Structure of the thesis 

This thesis consists of seven chapters and each chapter provides important information 

on the study. The thesis schematic is shown in Figure 1.1. The rest of the thesis is 

structured as follows: 

Chapter 2 provides an overview of sleep characteristics detection techniques and the 

background knowledge of the human brain. Firstly, this chapter introduces 

brief details about the background knowledge of surrounding information 

on the human brain, an overview of EEG signals, sleep stages, the concept 

of some sleep characteristics: sleep spindles and k- complexes and how they 

affect sleep disorders. This chapter then introduces briefly the concepts of 

classification, including its methods and the structure. This chapter then 

focuses on concepts relating to detection of sleep spindles and k- complexes.  

Chapter 3 integrates the hybrid transform technique and statistical features for 

detecting sleep spindles in EEG signals. This chapter introduces a suitable 

machine learning classifier by using four popular classification methods: 

Least square support vector machine (LS-SVM); K-nearest neighbour; 

Decision tree; and k-means.  This chapter provides a comparative study 

between the proposed methods and other existing methods in terms of 

accuracy, sensitivity and specificity. This chapter presents as a published 

journal article in Biomedical signal processing and control (Al-Salman, 

Wessam, Yan Li, and Peng Wen. "Detecting sleep spindles in EEGs using 

wavelet Fourier analysis and statistical features." Biomedical Signal 

Processing and Control, Volume 48 (2019): Pages 80-92. Online URL: 

https://doi.org/10.1016/j.bspc.2018.10.004). 

https://doi.org/10.1016/j.bspc.2018.10.004
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Chapter 4 introduces a new method based on the fractal dimension (FD) algorithm 

coupled with time frequency images (TFIs) for the detection of sleep 

spindles in EEG signals.  A LS-SVM is used in this study as a classifier. 

This method was designed to identify sleep spindles in sleep stage 2 as a 

way to improve the classification rate with less execution time. This chapter 

also presents as a published journal article in Biomedical signal processing 

and control (Al-Salman, Wessam, Yan Li and Peng Wen. "An efficient 

approach for EEG sleep spindles detection based on fractal dimension 

coupled with time frequency image." Biomedical Signal Processing and 

Control, Volume 41 (2018): Pages 210-221: Online URL: 

https://doi.org/10.1016/j.bspc.2017.11.019). 

Chapter 5 provides a dual tree complex wavelet transform (DT-CWT) based on fractal 

and frequency features for detecting other sleep characteristics in EEG 

signals such as k-complexes. This algorithm decomposes each EEG 

segment into a number of sub-bands (real and imaginary parts); an ensemble 

model based on a combination of three classification techniques including a 

LS-SVM, k-means and Naive Bayes, and  is used as a classifier to evaluate 

the proposed algorithm.  This chapter  presents as a published journal article 

in Frontiers in Neuroscience  (Wessam, Al-Salman, Yan Li, and Peng Wen. 

"K-complexes detection in EEG signals using fractal and frequency features 

coupled with an ensemble classification model." Neuroscience , Volume 

422, (2019), Pages 119-133, Online URL:  

https://doi.org/10.1016/j.neuroscience.2019.10.034). 

Chapter 6 integrates the undirected graph technique and the fractal dimension method 

for detection of the k-complexes. This chapter also investigates a suitable 

machine learning classifier by using two popular classification methods: LS-

SVM and k-means. This chapter provides a comparative study between the 

proposed technique and other existing methods in terms of accuracy. This 

chapter  presents as a published journal article in Neuroinformatics (Al-

Salman, Wessam, Yan Li, and Peng Wen. "Detection of EEG K-complexes 

using fractal dimension of time frequency images technique coupled with 

https://doi.org/10.1016/j.bspc.2017.11.019
https://doi.org/10.1016/j.neuroscience.2019.10.034
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undirected graph features." Frontiers in Neuroinformatic, Volume 13 

(2019)Pages 45, Online URL: https://doi:10.3389/fninf.2019.00045. 

Chapter 7 presents a summary and the findings of this study. This chapter also 

provides information relating to future work.   
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Figure 1.2: Shows thesis flowchart for seven chapters.  
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CHAPTER 2 

 

OVERVIEW OF BACKGROUND KNOWLEDGE  

OF BRAIN INFORMATICS AND EEG SIGNAL 

CLASSIFICATION 

 

The main purpose of this research is to develop new methods for detecting and 

analysing the important characteristics of the sleep stages in EEG signals: sleep 

spindles and k-complexes. Those methods could help doctors to diagnose, evaluate 

and treat several neurological diseases, relating to sleep disorders. Before providing 

the overview of the detection, this chapter begins with Section 2.1 introducing the 

human brain (brain EEGs), including brain structures and their functions.  Section 2.2 

provides the necessary information related to the background knowledge about sleep 

EEGs: sleep stages and sleep characteristics. Section 2.3 introduces an overview of 

techniques of analysis and detection in EEG signals (classification techniques), while 

Section 2.3.1 discusses, in general, the concept of classification algorithms of EEG 

signals. In order to have a broad understanding of the detection of sleep characteristics 

in EEG signals, this chapter also provides an overview of detection techniques 

including the methods described in the literature for the detection of sleep 

characteristics in EEG signals, as shown in Section 2.3.2.  All these terms have been 

briefly discussed in this chapter. 
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2.1 Brain EEGs 

In order to understand brain EEGs, Section 2.1.1 provides an overview of the 

background knowledge related to the EEG signal to introduce some terminologies and 

other information related to this research. Section 2.1.2 introduces the 

neurophysiological aspects of the human brain. This section particularly focuses on 

the structure of neurons and the neural system. As a general concept, Section 2.1.3 

provides an overview of EEG signals and their nature. Section 2.1.4 explains the 

electrode placement system. Finally, Section 2.1.5 briefly describes the concept of 

rhythms in EEG signals and provides the necessary information about brain activity.   

2.1.1 Background knowledge of Brain Structures and Their Functions   

The brain is one of the most complex parts of the human body. It receives instructions 

(comments) from the sensor organs and then sends outputs to the neurons. The human 

brain is partitioned into three main parts: cerebrum, cerebellum and brainstem (Gray 

2002), and each part of the brain is associated with different human activities. Figure 

2.1 shows the three major parts of the brain (Sanei & Chambers 2013; Sanei & 

Chambers 2007). These three parts of the brain are briefly presented as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Anatomical areas of the main parts of the brain (Gray 2002; Standring 

2015) 
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2.1.1.1 The Cerebrum is the largest and most important part of the human brain. It 

usually performs the most important functions of the brain, those associated 

with motions, motor functions and movements. It consists of two hemispheres: 

right and left side (Davey 2011), as shown in Figure 2.1. The first is associated 

with creativity while the second is related to logical abilities. Furthermore, each 

side of the hemisphere is divided into four sub-parts (lobes): frontal lobe, 

parietal lobe, occipital and temporal lobes. These lobes are responsible for 

many functions such as problem solving, recognition, orientation and 

movement, visual processing and speech, as well as perception and memory 

(Purves et al., 2004; Carlson, 2002a).     

2.1.1.2 The Cerebellum is the second largest structure of the brain and contains more 

than half of the brain neurons.  The location of the cerebellum is in the lower 

back of the head.  This part of the brain is normally responsible for many 

functions in the brain such as the control of muscle movement, balance and 

posture. It is divided into three lobes: anterior, posterior, and flocculonodular. 

The first and second lobes are associated with the responses of motor 

movements. The flocculonodular lobe is associated with maintaining balance 

(Hall 2015). 

2.1.1.3 The Brainstem is located at the posterior part of the brain (underneath the 

limbic system) and continues to the end of the spinal cord. The brainstem works 

like a bridge to connect the cerebrum with the spinal cord to pass the brain’s 

commands to the body organs. It is associated with vital life functions such as 

consciousness, balance, breathing, mouth movement and control of movements 

of the eyes (Hall 2015; Siuly et al. 2012). 

2.1.2  The neural system of the human brain (Neurophysiology of the human    

brain)    

The brain normally contains billions of neurons which keep the brain active and 

maintain the electrical charge of the brain (Herculano-Houzel 2009; Tatum IV 2014) 

Neurons have the same parts as other cells and they share the same characteristics. 

Neurons use electrochemical signals to transmit commands produced by the brain and 

pass messages from one cell to another.  Neurons have three main parts: cell nucleus 
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(soma), dendrites and long axon (Nunez & Cutillo 1995; Sanei & Chambers 2007). 

The structure of a neuron is presented in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Structure of a typical neuron (Sanei & Chambers 2013; Carlson 2002) 

Each part of the neuron is responsible for a specific task. The cell body (cell nucleus) 

is the control centre of the cell and is responsible for maintaining the integrity of genes 

and for controlling the activities of the cell by regulating gene expression (Carlson 

2002b; Purves et al. 2004). The axon is the last part of the neuron and it is called a 

nerve fibre. The long axon transmits the signal between the cells (Atwood & MacKay 

1989). It is a special cellular extension which arises from the cell body at random and 

is up to one metre long in humans. An axon is sometimes more than one meter long in 

other species. These axons spread an electrical signal between nerve cells and tissues 

in the brain in a non-attenuating manner. When electrical signals are reached, in an 

area in which the neurons are connected, new axons called dendrites receive those 

signals. The dendrite is a short part of the neuron located at the end of each cell. It 

consists of many receptors that receive a neurotransmitter from other cells. It can be 

represented in the form of thin structures extending for hundreds of micrometers and 

it branches several times. This process of branching multiple times leads to a complex 

tree-like structure. 

The neural system is formed by using a small main unit called a neuron cell. It is 

responsible for three major functions. These functions are sensory input, integration 

and motor output, and they describe the following: 
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2.1.2.1 The sensory input 

The sensory input distinguishes and monitors the environment and the changes 

that occur in the human body. It also describes the response of the skin, eyes, 

ears and nose, when they receive stimuli. Furthermore, these functions normally 

record the presence of a change from homeostasis or a particular event in the 

environment, known as a stimulus (Brodal 2004; Noback et al. 2005). 

2.1.2.2 The integration stage or association areas 

The integration stage is a very important part of the central nervous system 

(CNS) as it manipulates the information received by sensory inputs and then 

makes decisions. It consists of the brain and the spinal cord.   

2.1.2.3 Motor output or response  

The response or motor output sends an order to the effector organs on the basis 

of the stimuli perceived by sensory structures which could be muscles or glands.  

The motor output is either involuntary or conscious. For example, contraction 

of smooth muscles, regulation of the cardiac muscle, and activation of glands 

are involuntary (Brodal 2004; Noback et al. 2005). 

As mentioned previously, the CNS consists of two main units. These units are the brain 

and the spinal cord. The first unit can control most functions in the body such as 

speech, memory, and thoughts. In addition, the brain is associated with the spinal rope 

(spinal cord) through the brainstem. The spinal cord function transmits the signals 

between the brain and the body.  Thus, any dysfunctions in the spinal rope could lead 

to a disruption in the transfer of information between the body and the brain.  However, 

there are several lines of defence such as bones and spine that protect the central 

nervous system from injury. Figure 2.3 illustrates the nervous system structure. 
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Figure 2.3 : The central nervous system (Sanei & Chambers 2007)  

 

2.1.3  Overview  of  EEG recordings 

The brain consists of cells called neurons or nerve cells (Holmes & Khazipov 2007; 

Mellinger et al. 2007; Ramadan et al. 2015). The number of neurons in the human 

brain is approximately 10 10. Neurons communicate with each other through electrical 

impulses which occur at regular intervals. Those electrical impulses can be recorded 

as electroencephalogram (EEG) signals using electrodes placed on the scalp. The EEG 

signals require a short time to collect data from the brain.  

EEG signals are considered to be  an electrophysiological monitoring approach which 

measures the change of voltage in the swapped ions of the brain’s neurons 

(Niedermeyer & da Silva 2005), used to record the electrical activity of the brain using 

electrodes placed on the scalp. Physicians and scientists use EEG signals in clinical 

research to trace abnormalities, such as sleep disorders, brain tumours, brain injuries 

and epileptic seizures, in the brain’s behaviours as well as to study brain functions to 

diagnose neurological diseases (Adeli, Zhou & Dadmehr 2003; Felton et al. 2007; 

Hazarika et al. 1997; Orhan, Hekim & Ozer 2011; Rao, Lakshmi & Prasad 2012; Siuly 

& Li 2012; Van Erp, Lotte & Tangermann 2012). 
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In 1842, several studies, were conducted to record activities produced by the brain. 

One of the first was undertaken by Richard Caton, who was a physician practising in 

Liverpool, and who recorded brain activities. Following Caton’s early work, the first 

recording of EEG signals was in 1875, also by Caton (Collura 1993; Lindsley 1936; 

Loomis, Harvey & Hobart 1935; Morshed & Khan 2014), which was considered to be 

the first work to examine brain activity. During this study, electrical activity was 

recorded from the brains of animals, for example cats, monkeys and rabbits.  It was 

also observed that the cerebral hemispheres of animals released electrical signals.     

Thereafter, in 1924, Hans Berger recorded the first human EEG recording and that was 

published in 1929 (Berger 1929; Haas 2003). Berger was a neuropsychiatrist from the 

University of Jena in Germany and in his research, he established one of the most 

important developments in human history, which was a tool to record the activity of 

the human brain (Millett 2001). Moreover, Berger noticed in his experiment that the 

rhythms of brain signals changed with an individual’s state of consciousness, for 

example during sleep disorders and epileptic seizures. Figure 2.4 shows the first EEG 

recording.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: An EEG signal being recorded by Hans Berger (Berger 1929) 
 

Hans Berger (1873-1941) 

 

An EEG recording 

made by Berger 

 

Patient during recording 

EEG signal 

 
 



Chapter 2  Background of brain informatics and EEGs classification 
 

25 

 

To record the brain activity, researchers need to use a number of small discs called 

electrodes placed in different locations on the surface of the scalp with a conductive 

glue or paste.  Each electrode is connected to an attached amplifier and to an EEG 

recording machine. Then, all electrical signals of the brain are converted into wavy 

lines on a computer screen for analysis and further processing, as shown on Figure 2.5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two types of recorded EEG signals: multi-channel and single-channel EEG 

recordings. These recordings normally depend on the number of electrodes that are 

used to capture these signals. Based on clinical research, single EEG recordings (single 

channel) can usually be obtained by using one pair of electrodes, while using more 

than one pair of electrodes at the same time leads to multi-channel EEG recordings. 

The number of possible electrodes needed to obtain EEG signals is between 1 and 256, 

depending on the targeted scalp location and the required signals. Those electrodes use 

the standard international system which describes the locations of electrodes on the 

scalp. 

 

 

Figure 2.5: EEG acquisition systems (Jasper 1958) 
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2.1.4  Electrods Placement System  

The standard system of recording the brain activity is called the 10-20 electrode system 

or international 10–20 system (Jasper, H. H. 1958; Klem et al. 1999; Mason & Birch 

2003; Nicolas-Alonso & Gomez-Gil 2012; Teplan 2002; Towle et al. 1993). It is a 

standard way to describe the locations of electrodes on the scalp. The location of 

electrodes is determined according to the distance among neighbouring electrodes, as 

shown in Fig 2.6.  There are two points on the scalp that help to determine the electrode 

positions, called Nasion and Inion. The first is located at the front of the head, 

alongside the eyes, while the second is located at the back of the head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numbers 10 and 20 come from the distance between each pair of electrodes that 

is either 10% or 20% of the total left right or front back of the human skull (Abhang 

& Gawali 2015; Towle et al. 1993). Furthermore, each electrode has a letter and 

number to identify the hemisphere location and lobes, as shown in Figure 2.6. These 

letters are F, T, C, P and O which correspond to the placement of the electrodes, as 

shown in Table 2.1. For instance, the letter F denotes the front of the skull, T refers to 

the temporal lode, C is used to identify the centre of skull, P refers to the parietal 

section of the skull and the letter O denotes the occipital, while the letter Z refers to 

Figure 2.6: A short explanation for location of electrodes on the scalp using the 

international 10-20 system(Abhang & Gawali 2015; Jasper, H. 1958; Klem et al. 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22: A short explanation for location of electrodes on the scalp using the 

international 10-20 system (Abhang & Gawali, 2015; Klem et al., 1999; Jasper, 1958b) 
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the electrodes that are placed on the midline area. In addition, there are two types of 

numbers which are associated with the location of an electrode. Those numbers are 

used to denote the electrodes placed in the right or left sides of the scalp. The odd 

number refers to the electrode position placed on the left hemisphere, while the 

electrodes with even numbers are placed to the right side of the skull. Table 2.1 

presents a short explanation of the locations of all electrodes.   

 

 

 

 

 

 

 

 

 

 

To record sleep EEGs such as the characteristics of sleep stages, the electrodes CZ-A1, 

O1-A1, C3-A1, FP1-A1 and C3 are commonly used, as shown in Figure 2.6. Moreover, 

the electrodes Fpz-Cz / Pz-Oz are mainly used in recording sleep stages. However, 

sometimes an alternative electrode placement such as C4-A1/ C3-A2 could be employed 

to record EEG signals. EEG signals normally symbolize the different voltages for two 

electrodes. For that reason, there are numerous ways, named montages, of reading 

EEG signals (placement of the electrodes). The type of montages that are used to 

collect a number of EEG channels are presented as an example in Table 2.2. Thus, 

EEG signals could be monitored with one of the following montages that are illustrated 

as follows: 

2.1.4.1 Bipolar Montage  

This montage uses two neighbouring electrodes to record one EEG channel 

(Niedermeyer & da Silva 2005; Nunez & Pilgreen 1991). The entire montage consists 

of a sequential number of channels.  Two electrodes generate one signal channel, for 

example, electrode Fp1 and F3 produce the channel Fp1-F3. The next electrodes are F3 

and C3 that produce the channel F3-C3, and so on, as shown in Figure 2.6.  Each channel 

Table 2.1: Observation for each lobe 

 

Table 2.1: Observation for each lobe 

Electrode Lobe 

F Front 

 
T Temporal 

C Central 

P Parietal 

O Occipital 
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represents the voltage differences between two electrodes that are used ((Fisch & 

Spehlmann 1999; Niedermeyer & da Silva 2005; Siuly & Li 2012).  

2.1.4.2 Referential montage 

With this montage, there is no standard method of using electrodes to score EEG 

signals, and each channel with a referential montage represents the differences 

between one particular electrode and a particular reference electrode. Midline 

positions of electrodes are often used to record EEG signals compared with other 

positions because they do not amplify the signals in one hemisphere.  Another popular 

method of using a referential montage is that of using electrodes A2 and  A1, as 

references; to take a physical or mathematical average of electrodes set to the earlobes 

(Nunez & Pilgreen 1991).  

2.1.4.3 Average montage 

This montage uses an average signal (ARef) ) of all the amplifiers which are 

considered to be a common reference for each channel (Fisch & Spehlmann 1999). 

The outcomes of all the amplifiers are quantified and then their rates are calculated 

(Siuly & Zhang 2016). 

2.1.4.4 Laplacian montage 

Each channel with a Laplacian montage represents the difference between an electrode 

and a weighted average of the surrounding electrodes (Fisch & Spehlmann 1999; 

Nunez & Pilgreen 1991; Suily 2012).  

The patterns of EEG signals are very important for understanding brain activities 

because they  identify, for example, morphological features of EEG signals in each 

sleep stage or for examine rhythmic activities (frequency bands) associated with 

different mental activities or conscious states. The rhythmic activities in EEG signals 

can be divided into five categories. The most common wave patterns of EEG signals 

will be discussed in the next section in cases where individuals are in a state of 

wakefulness, sleep or suffering from a brain disorder. 
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2.1.5  Rhythms of EEG signals (Brain activity) 

An EEG recording contains an array of signals which are usually described using two 

terms: rhythmic activities and wave transients (Fisch & Spehlmann 1999; Thut, 

Miniussi & Gross 2012; Wang 2010; Zaehle, Rach & Herrmann 2010).The rhythmic 

activities (brain waves) depend on the number of electrodes used to record them. They 

are defined as electric rhythmic changes or frequency bands.  The rhythmic activities 

are normally divided into five frequency bands: Delta (δ), Theta (θ), Alpha (α), Beta 

(β) and Gamma (γ) based on their frequencies and using different methods such as a 

wavelet transform or fast Fourier transform (Al-Salman, Wessam, Li, Yan & Wen, 

Peng 2019; Klimesch et al. 1998; Niedermeyer & da Silva 2005; Suily 2012; Vaughan, 

Wolpaw & Donchin 1996; Wolpaw et al. 2002). These waves usually fall within the 

range of 0.5-32 Hz (Teplan 2002) and are used to measure brain waves, as shown in 

Figure 2.7 .  The following sub section briefly illustrates those rhythmic activities:  

Table 2.2:  Shows an examples of montage type for EEG recordings 

Type of montages  

Bipolar montage Referential Montage Average reference montage 

Fp1-F3 

F3-C3 

C3-P3 

P3-O1 

Fp1-F7 

F7-T3 

T3-T5 

T5-O1 

Fp1-A1 

F3-A1 

C3-A1 

P3-A1 

F7-A1 

T3-A1 

T5-A1 

O1-A1 

Fp1-ARef 

F3- ARef 

C3- ARef 

P3- ARef 

F7- ARef 

T3- ARef 

T5- ARef 

O1- ARef 

 

Fp2-F4 

F4-C4 

C4-P4 

P4-O2 

Fp2-F8 

F8-T4 

T4-T6 

T6-O2 

 

Fp2-A2 

F4-A2 

C4-A2 

P4-A2 

F8-A2 

T4-A2 

T6-A2 

O2-A2 

 

Fp2- ARef 

F4- ARef 

C4- ARef 

P4- ARef 

F8- ARef 

T4- ARef 

T6- ARef 

O2- ARef 

Fp = Frontal polar; F = Frontal; C= Central; P=Parietal;  T = Temporal; 

 O=Occipital;  
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Figure 2.7: Example of five frequncy bands of EEG rhythms (Lotte  2008) 
 

 

 

Figure 2.45: Example of different types of EEG rhythms (Lotte, 2008) 
 

 

 

Figure 2.46: Example of different types of EEG rhythms (Lotte, 2008) 
 

 

 

Figure 2.47: Example of different types of EEG rhythms (Lotte, 2008) 
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2.1.5.1 Alpha waves contain frequencies between 8 Hz and 12 Hz with an amplitude 

of 30-50 μV at the awake state (Al-Salman, Wessam, Li, Yan & Wen, Peng 

2019; Gerrard & Malcolm 2007; Klimesch 1999). The alpha wave normally 

appears in the posterior regions of the head on both sides. It is also called the 

posterior basic rhythm and  mainly appears in adults when their eyes are closed 

and they are relaxed.  The most important regions in the brain to record the 

alpha waves are the occipital and parietal regions which are located at the back 

of the skull. 

2.1.5.2 Beta waves have a frequency range of 13 Hz to 30 Hz. The maximum 

amplitude is less than 20 μV  and the beta wave appears on the parietal and  

frontal regions of the scalp. Beta waves are related to many phenomena such 

as thinking, active concentration and body movements (Pfurtscheller & Da 

Silva 1999; Suily 2012).  

In addition, beta wave activity is associated with several brain disorders such 

as autism and intellectual disability as well as the effects of drugs and epilepsy 

which are caused by repeating part of the chromosomes, in particular 

Chromosome 15 (Frohlich et al. 2016). There are two types of beta waves: beta 

I waves and beta II waves. The first type has low frequencies which disappear 

during mental activity, while the second has high frequencies which appear 

during tension and intense mental activity. The beta waves are normally 

associated with active attention, and solving concrete problems.. 

2.1.5.3 Gamma waves have frequencies between 30 Hz and 100 Hz with an amplitude 

less than 2 μV peak-to-peak when a human is attending to something or 

experiencing some sensory stimulation. In addition, it has the lowest amplitude 

compared to other frequency bands. The gamma activity is related to several 

cognitive and motor functions.  Gamma waves also denote a number of neurons 

working together as a network to help these functions work effectively 

(Niedermeyer & da Silva 2005). 
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2.1.5.4 Delta waves contain a frequency range between 0.5 Hz and 4 Hz frequency  

with an amplitude of less than 100 μV. In addition, the shape of the delta wave 

demonstrates the highest amplitudes and the slowest waves. Delta wave 

activity is normally associated with deep sleep, but can also be associated with 

the awake stage with some sleep cases relating to brain disorders. It also 

appears in EEG signals when the human is asleep. 

2.1.5.5 Theta waves have a frequency range between 4 Hz to 7 Hz with an amplitude 

greater than 20 μV. They mainly occur in the parietal and temporal regions 

during sleep. In addition, this type of brain activity can be seen when people 

are drowsy (Cahn & Polich 2006). Theta waves normally increase in EEG 

signals during times of emotional stress such as frustration and disappointment. 

Thus, increasing the number of theta waves in the brain may lead to abnormal 

activity such as deep midline disorders, metabolic encephalopathy or diffuse 

disorders. Finally, this type of wave in EEG signals is normally associated with 

relaxed and creative states. 

Clinical research has revealed that during EEG recordings, individual sleep stages 

exhibit unique features, patterns and characteristics that reflect human sleep states. 

These patterns, which appear during sleep stages, are called sleep spindles and k-

complexes. In addition, vertex waves and sharp waves can be seen during epileptic 

seizures.  These patterns are transient rather than rhythmic waveforms, so detecting 

and identifying them is more difficult than detecting rhythmic activities.  

This research focuses firstly on developing new and robust methods to identify sleep 

spindles in EEG signals. Secondly, it suggests new methodologies to identify k-

complexes, which are the second important characteristics of sleep stages in EEG 

signals. The following section provides more details about sleep stages and their 

characteristics: sleep spindles and k-complexes and how these transient waveforms 

affect human brain neurons. 

2.2  Sleep EEGs 

In order to understand the sleep EEGs, Section 2.2.1 provides an overview of the 

background knowledge related to human sleep and sleep stages in EEG signals.  

General concepts about sleep stages are also discussed in this section. Section 2.2.2 
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provides brief details about the characteristics of sleep stage 2 and how those 

characteristics affect human brain disorders.   

2.2.1 Sleep EEG signals and human sleep 

Sleep is one of the primary functions of the brain and during sleep, some neurons in 

the human body become inactive (Aboalayon et al. 2016; Huang et al. 2014). Any 

disorders in the human sleep cycle can lead to lifelong complications in which the 

mental and physical performances of an individual can be damaged (Aboalayon et al. 

2016). In addition, sleep deprivation can cause many problems for the body of a 

human; for example, it causes reductions in the body temperature, heart rate 

variability, and growth hormone release, while also leading to memory loss, lack of 

concentration and drowsiness (Koshino et al. 1993; Kubicki, Scheuler & Wittenbecher 

1991; Mousavi, Afghah & Acharya 2019). These problems are significant and 

extensive. According to the World Health Organisation (WHO), in the United States, 

around 50-70 million people suffer sleep disorders foor example apnoea and insomnia 

at some stages in their lives. 

Sleep is a dynamic process which consists of two main stages: rapid eye movement 

(REM) and non-rapid eye movement (NREM). The  latter type of sleep (NREM) is 

classified into four stages: : stage 1, stage 2, stage 3 and stage 4 (Al-Salman, Wessam, 

Li, Yan & Wen, Peng 2019; Al-Salman, W, Li, Y & Wen, P 2019; Al-Salman et al. 

2018; Al-salman & Li 2019; Stepnowsky et al. 2013). Humans typically spend 

approximately 75% of the night in NREM sleep and up to 25% in REM sleep. Thus, 

the sleep cycle of a subject is normally divided into six stages in the sleep staging 

procedure: Awake, stage 1, stage 2, stage 3 and stage 4, and REM. The normal sleep 

cycle is shown in Figure 2.8.   
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Figure 2.8: The human sleep cycle (https://www.talkaboutsleep.com 
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Sleep stages scoring is an important process in sleep research as any errors in the 

scoring of the sleep electroencephalography (EEG) recordings of the patient can lead 

to critical problems. The sleep stages are connected through different physiological 

and neuronal characteristics that are used in sleep stages identification by sleep experts 

and researchers. The process of discriminating sleep stages visually is called sleep 

staging or sleep scoring. Normally, it is carried out visually by experts according to 

the criteria of Rechtschaffen and  Kales (R&K) (Rechtschaffen 1968) or the guidelines 

of the American Academy of Sleep Medicine (AASM) (Berry et al. 2012; da Silveira, 

Kozakevicius & Rodrigues 2017; Ebrahimi et al. 2008; Putilov 2015; Tsinalis, 

Matthews & Guo 2016). One of the major shortcomings of these criteria is the use of 

arbitrarily defined thresholds to identify the sleep stages which can lead to unreliable 

outcomes and poor agreement between experts (Su & Smith 1974; Vu et al. 2012). 

Although the visual analysis of EEG recording (sleep scoring) has been used as a 

standard method for a long time, it has some deficits and limitations. First of all, it is 

expensive, requires a high cost and effort,  and is error-prone. In addition, it is also a 

subjective process that means decisions made by two experts of EEG signals could 

vary even in the same sleep recordings. Thus, the low and widely varying inter-rater 

agreement adds to the complexity of the overall scoring process and diagnostic utility. 

The Cohen's κ coefficient of inter-rater manual scoring ranges between 0.46 to 0.89 

(Parekh et al. 2015; Stepnowsky et al. 2013). Some studies have reported an even 

lower κ coefficient (Devuyst et al. 2010; Devuyst et al. 2011). 

According to the guidelines proposed by R&K (Al-Salman, W, Li, Y & Wen, P 2019; 

Wessam, Li & Wen 2019), a human sleep cycle is divided into two main parts: NREM 

and REM. The NREM includes four stages: Stage 1 (S1), Stage 2 (S2), Stage 3 (S3) 

and Stage 4 (S4) as well as awake (AWA), as shown on Figure 2.9.   
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Figure 2.9: Typical 30-second EEG signals of different stages of sleep from 

Sleep-EDF dataset. 

 

 

 

Figure  2.80: The human sleep cycle (https://www.talkaboutsleep.com 
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 Each stage has a distinct set of associated physiological, and neurological features. 

Table 2.3 shows EEG signals showing different sleep stages and their characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: EEG sleep stages, their characteristics and waveforms. 

Sleep stages Characteristics Amplitude 

(𝐮𝐕) 

EEG waveforms 

 

Awake 

Low voltage and 

fast waves, High 

frequency (15-50 

Hz) 

less than 50 

 

Stage 1 

(drowsiness) 

Alpha waves drop 

out (8–13Hz), while 

beta activity is 

increased (4-8Hz), 

positive spikes 

appear with 14-16 

Hz.  

 

50-100 

 

 

 

 

Stage 2 

(light sleep) 

Symmetric, 

synchronous theta 

rhythms, vertex 

waves, having k-

complexes and 

spindles (12-14Hz) 

 

50-150 

 

Stage 3 

(deep sleep) 

Delta activity, slow 

of rhythm at 2–4 

Hz   

 

100-150 

 

 
 

Stage 4 

(very deep 

sleep ) 

Delta (0.5-2Hz) 

activity, more 

slowing of waves.  

S3 and S4 are 

similar and 

combined as a 

SWS, appeared in 

the frequency of 0-

4Hz 

 

100-200 

 

REM sleep Low amplitude 

sawtooth waves. 

Mixed frequency 

(15-30Hz);  

 

less than 50  
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In 2002, the American Academy of Sleep Medicine (AASM) presented a different 

version of sleep stage scoring (Al-Salman, Wessam, Li, Yan & Wen, Peng 2019; Al-

Salman et al. 2018; Diykh & Li 2016; Peker 2016) in which the NREM was reduced 

to 3 stages, with S3 and S4 combined into one stage: the slow wave stage (SWS). 

Furthermore, in the AASM guidelines the allocated times for S1 and SWS were 

changed, and a minimum of three EEG derivations from the frontal, central, and 

occipital regions were recorded. The AASM also considers body movement as a sleep 

stage (Gao, Turek & Vitaterna 2016). The following subsections clarify the sleep 

stages in detail.  

 

2.2.1.1 Sleep Stage 1  is a transition stage between wakefulness and sleep and usually 

cycles between 1 to 5 minutes. During S1, breathing slows and heartbeat 

becomes regular, while blood pressure and brain temperature decrease. Clinical 

research shows that people may suffer from sudden muscle contractions 

followed by a sensation of falling. In addition, the brain waves change during 

stage1 transition from unsynchronized beta (12-30Hz) and gamma (25-100Hz) 

waves to more synchronised beta and gamma waves.  

2.2.1.2 Sleep Stage 2 is the baseline of sleep and the theta activity is clearly 

demonstrated in this stage. Moreover, during stage 2, the human body starts to 

recover from muscle stress and fatigue and reduces brain activity preparing the 

body for transition into a deep sleep from which it is hard to wake up. Although 

S2 and S1 produce a similar range of theta waves, sleep spindles and k-

complexes appear in S2 only (Bolón-Canedo, Sánchez-Maroño & Alonso-

Betanzos 2013; Camilleri, Camilleri & Fabri 2014; Rodenbeck et al. 2006). 

Sleep spindles are defined as short bursts of brain activity in the range of 12-

14 Hz for about half a second, while k-complexes exhibit short negative high 

voltage peaks followed by slower positive k-complexes. They have a frequency 

of 33 Hz and an amplitude of 100 μV (Cătălin et al. 2018).  More details about 

sleep spindles and k-complexes will be explained in the next section.    
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2.2.1.3 Sleep Stage 3 and 4 (SWS)  are categorised as slow wave sleep, and the 

corresponding EEG waves have high amplitudes. Stages 3 and 4 are referred 

to as deep sleep that occurs in the first half of the night. Stages 3 and 4 produce 

similar brainwaves, 50% of which are delta waves, making it hard to classify 

them. 

2.2.1.4 The REM stage is associated with a unique brain wave pattern, and EEGs 

reveal continuous mixed activity (theta wave with some delta waves, alpha 

waves, and beta waves) and 40 ± 80 mV amplitude. During this stage, breathing 

becomes faster, more irregular and slower. In addition, the cycle of sleep from 

deep sleep to awake can easily happen and dreams can be remembered if the 

waking period is too long (Williams, Karacan & Hursch 1974). 

During the awake stage, the brain waves become very slow, and more synchronized, 

with an increase in amplitude. Thus, the EEG signals during the awake stage and REM 

exhibit different patterns, characteristics, and features, making the separation of these 

stages more accurate. As mentioned before, two of the most important bio-signal 

waveforms in sleep stage 2 are sleep spindles and k-complexes.  

Developing accurate algorithms to detect the characteristics of sleep stages and to 

score a patient’s EEG recordings could help sleep experts and clinicians work more 

efficiently in diagnosing sleep disorders. In this thesis, four methods are developed to 

analyse and detect the most important characteristics of sleep stage 2 in EEG signals: 

sleep spindles and k-complexes, thus, helping the physician with early detection of 

sleep disorders. In the next section, we discuss these important characteristics. 

2.2.2  Characteristics of sleep stage 2 in EEG signals  

This section provides more details about the characteristics of sleep stage 2: sleep 

spindles and k-complexes, and how they affect human brain disorders.  

 

2.2.2.1  Sleep Spindles 

Sleep spindles are the most important transient events to detect sleep stage 2 in 

EEG signals. They are defined as a series of distinct waves within a frequency 

range of 12 and 14 Hz with a minimum duration of 0.5 second (s) (Berry et al. 

2012; Devuyst et al. 2006; Grigg-Damberger et al. 2007; Imtiaz & Rodriguez-

Villegas 2014; Rechtschaffen 1968; Warby et al. 2014). These intervals have been 
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extended to be between 11Hz and 16Hz (Al-Salman, Wessam, Li, Yan & Wen, 

Peng 2019; Al-Salman et al. 2018; Clemens, Fabo & Halasz 2005; Devuyst et al. 

2006; Fang et al. 2019; Huupponen et al. 2007; Huupponen et al. 2003; Huupponen 

et al. 2000; Iranmanesh & Rodriguez-Villegas 2017; Ktonas et al. 2009; Kulkarni 

et al. 2019; Schimicek et al. 1994; Warby et al. 2014). Some studies have reported 

that the minimum and maximum durations of sleep spindles are 0.5s and 3s, 

respectively (Duman et al. 2009; Jankel & Niedermeyer 1985; Kabir et al. 2015; 

Yücelbas et al. 2016), with an amplitude from 5 μV to 25 μV (Al-Salman, Wessam, 

Li, Yan & Wen, Peng 2019; Miranda, Aranha & Ladeira 2019; Nonclercq et al. 

2013; Zeitlhofer et al. 1997). Figure 2.10 shows an example of sleep spindles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence or absence of sleep spindles in EEG sleep signals has a high impact 

on the memory consolidation of humans (Adamczyk et al. 2015; Al-Salman, 

Wessam, Li, Yan & Wen, Peng 2019; Barakat et al. 2011; Cox, Hofman & 

Talamini 2012; Diekelmann & Born 2010; Diekelmann, Wilhelm & Born 2009; 

Fogel et al. 2014; Fogel et al. 2012; Lafortune et al. 2014; Lajnef et al. 2015; Morin 

Figure 2.10: Example of sleep spindles detection from EEG data by experts 

(Miranda, Aranha & Ladeira 2019) 

 (Miranda et al., 2019) 
 

 

 

Figure 2.95: Example of sleep spindles detection from EEG data by expert 

(AL-Salman et al., 2019) 
 

 

 

Figure 2.96: Example of sleep spindles detection from EEG data by experts 

(Miranda et al., 2019) 
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et al. 2008; Nishida, Nakashima & Nishikawa 2016; Schabus et al. 2004; Vorster 

& Born 2015). From EEG recordings, it is observed that any change in the density 

of sleep spindles can result  in some sleep disorders, such as insomnia, epilepsy, 

affective disorders, schizophrenia, dementia, mental retardation, 

neurodegenerative diseases and autism (De Maertelaer et al. 1987; Ferrarelli et al. 

2007; Ferrarelli & Tononi 2010; Ktonas et al. 2009; Latreille et al. 2015; Limoges 

et al. 2005; Niedermeyer & Ribeiro 2000; Uygun et al. 2018; Wamsley et al. 2012; 

Wei et al. 1999; Zhuang, Li & Peng 2016). These are important changes because 

the sleep spindles result from the interaction of several regions of the brain such as 

the cortex, the thalamic reticular nucleus, and the hippocampus (Adamczyk et al. 

2015; Ferrarelli & Tononi 2010; Steriade 2006). More details regarding sleep 

spindles have been presented in chapters 3 and 4.   

Consequently, automatically detecting and analysing sleep spindles in EEG signals 

can help sleep experts in diagnosing sleep disorders. Traditionally, the detection of 

sleep spindles depends mainly on visual inspection that is carried out based on the 

knowledge of clinicians; trained experts in sleep clinics. The accuracy and 

reliability of the manual scoring are based on the experiences of experts; the inter-

human agreement is estimated to be around 80% - 90% and the degree of consent 

is 70 ± 8% (Campbell, Kumar & Hofman 1980; Wendt et al. 2012; Żygierewicz et 

al. 1999). Visual scoring of these morphologically distinct waveforms such as  

sleep spindles is very time consuming, subjective and prone to errors because there 

are typically thousands of sleep characteristics, such as spindles occurring in each 

EEG recording (Acır & Güzeliş 2004b; Al-Salman et al. 2018; Nonclercq et al. 

2013). Identifying sleep spindles in EEG signals visually requires high skills from 

experts and a high level of vigilance. Thus, reliable detection of sleep spindles is 

very appealing because it would enhance the accuracy, speed and inter-rater 

agreement of sleep spindles scoring. However, developing an automatic approach 

to identify those occurrences in sleep stages is an ongoing challenge (Al-Salman 

et al. 2018).  
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2.2.2.2  K-complexes 

As mentioned above, k-complexes and sleep spindles patterns are the key 

characteristics of sleep stage2, and consequently, they are often used to identify 

and determine NREM stage 2. Because of this significance, the identification of k-

complexes and sleep spindles in an epoch is very important for sleep experts in 

diagnosing sleep disorders.  

K-complexes were first discovered in 1937 by Loomis, Harvey and Hobart III 

(1938) and this was considered to be one of the most important events in sleep 

EEG studies. K-complexes are important in studying the functional roles in 

diagnosing sleep disorders; it has also been observed they occur concomitantly 

with apneic events in patients with sleep apnea (Van Erp, Lotte & Tangermann 

2012). In some studies a k-complex is defined as a temporary transient waveform 

which is observed by a negative sharp wave followed by a positive sharp wave, 

and it has a relatively sharp amplitude that is more than ±75μV (Devuyst et al. 

2011; Halász 2005; Noori et al. 2014; Richard & Lengelle 1998; Rodenbeck et al. 

2006). In other studies (Camilleri, Camilleri & Fabri 2014; Gala & Mohylova 

2009; Yücelbaş et al. 2018b),  the definition of k-complexes is exactly the opposite. 

It is seen as a positive sharp component and is followed immediately by a negative 

sharp wave. This temporary waveform appears in all sleep stages, but mainly 

occurs in sleep stage 2, and presents in 12-14 Hz waves (Al-Salman, W, Li, Y & 

Wen, P 2019; Jansen & Desai 1994; Wessam, Li & Wen 2019). The waveforms 

duration of k-complexes is between 0.5s and 1.5s. 

Moreover, in other studies (Al-salman & Li 2019; Bremer, Smith & Karacan 1970; 

Da Rosa et al. 1991) it was reported that the duration of k-complexes is between 

0.5s and 1.0s; the minimum peak to peak amplitude value of the k-complexes is 

around 100 μV. Most of the early studies showed that k-complexes could appear 

many times during stage 2 with a maximum time duration between 0.5s to 1.5s. 

Some studies have reported that the maximum time duration of k-complexes is 

between 1s to 3s (Bankman et al. 1992; Cash et al. 2009; Devuyst et al. 2010; 

Erdamar, Duman & Yetkin 2012; Pohl & Fahr 1995; Rechtschaffen 1968; 

Strungaru & Popescu 1998; Vu et al. 2012) and this is one of the standard markers 

of sleep stage 2. However, although other waveforms, such as delta, theta and alpha 

waves, are relatively easy to detect,  an automated detection approach of k-

complexes in EEG signals is a challenging problem (Bankman et al. 1992; Vu et 
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al. 2012). Examples of EEG signals with k-complex events are shown in Figure 

2.11 (Miranda, Aranha & Ladeira 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Overview  of EEGs analysis and classification techniques  

Before providing an overview of the classification techniques, this section introduces 

firstly the generated  concept about analysing and classifying EEG signals. Usually, 

EEG recordings generate and  contain a huge amount of information about human 

activities and the functions of the brain. Classification of EEGs in biomedical research 

plays a significant role in diagnosing brain disorders, especially in sleep stages. 

Developing efficient classification methods is vitally important to analyse EEG 

signals, to extract desired and discriminative features, and to reduce a large amount of 

EEG data. To analyse and classify these features, there are several procedures 

researchers must follow. Figure 2.12 shows the main steps of these procedures. The 

steps are divided into three phases:  

 

 

K-complexes 

 

K-complexe Detection  

 

Figure 2.11: Example of k-complexes waveform detected from EEGs by two 

experts (Miranda et al. 2019). 
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1- The first phase is the segmentation phase. In this phase, the EEG signals are  

segmented into small epochs using sliding window techniques. The size of sliding 

windows was determined empirically during the training phase. For example, sleep 

experts have observed that the characteristics of sleep stages such as sleep spindles 

and k-complexes normally appear in EEG signals for 0.5 seconds to 2 seconds. For 

that reason, the segmentation technique is important in this research to detect those 

morphologies in sleep stages. Figure 2.13 shows an example of EEG signals being 

partitioned into segments of 0.5s with an overlapping segment of 0.4s using a 

sliding window technique. More details regarding the segmentation technique are 

provided in Chapters 3, 4, 5 and 6.  
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Figure 2.12: Block diagram of EEG signal processing 
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2- The second phase is the features extraction and selection phase, which is used to 

select and derive representative features from EEG signals by applying different 

signal processing methods (Al-Salman, Wessam, Li, Yan & Wen, Peng 2019; Al-

Salman et al. 2018; Kumar & Bhuvaneswari 2012). In this phase, the EEG signals 

are analysed and the key features are extracted. This step is important as a way to 

reducing the dimensionality of EEG data and to keep important information while 

the irrelevant data are eliminated. Those two phases are excellent techniques to 

use to extract relevant features and accurately describe EEG signals in order to 

obtain high quality EEG detection. The detailed description of extraction 

techniques of sleep spindles and k-complexes was given in Chapters 3, 4, 5 and 6. 

3- The final phase is the detection stage, in which the extracted features are 

forwarded to different classifiers (classification algorithms) to detect brain 

disorders in humans during sleep stages. This phase depends on the quality of pre-

processing and extraction methods to obtain a high performance using the 

proposed method.  For example, the relevant extracted features of the sleep 

characteristics, such as sleep spindles and k-complexes are classified by using 

classifiers to produce trained models. The detectors can detect different types of 

sleep characteristics based on extracted features. However, many studies using 

unsupervised learning algorithms or pre-processing methods have been used to 

detect the characteristics of the sleep stages, leading to an increase in the 

processing time for the detection stage. Thus, the aim of using supervised learning 

algorithms on this stage is to obtain high system performance with less execution 

time for the testing phase. More details regarding those three phases are provided 

in Chapters 3, 4, 5 and 6. 

In this thesis,  we will firstly start with the detection of  sleep spindles as an experiment 

and we will then use this developed method to detect other characteristics in sleep 

signals such as k-complexes. These methods could assist sleep specialists to diagnose 

sleep disorders as early as possible. The next sections explain in detail some current 

methods and detection techniques which are used to detect sleep spindles and k-

complexes in sleep Stage 2.  
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2.3.1   Concept of classification techniques  

Classification techniques are commonly used for identifying and diagnosing brain 

disorders and are the most popular techniques in the field of biomedical research to 

identify a number of features in different groups, depending on particular 

characteristics of EEG signals. During the classification algorithms, the input data 

(vector of features) are classified into groups based on certain categories which are 

determined by particular features. Those features are normally described by vectors 

which work as descriptions of instances or classes (Li & Wen 2009; Li & Wen 2010; 

Li, Wu & Yang 2011; Lotte 2008; Suily 2012). Furthermore, the aim of the techniques 

is to allocate class labels to the extracted features by observing a set of data on specific 

issues. Algorithms that are utilized to detect or classify the extracted characteristics 

from EEG signals are known as classifiers. The classification techniques are divided 

into two types based on the usage of the features vector: supervised classification and 

unsupervised classification, as shown on Figure 2.14.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. Types of classification learning algorithms; Supervised and 

Unsupervised Machine Learning Algorithms 
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The first type of classification technique (supervised classification) requires labelling 

all the input data, while the action with unsupervised classification does not require 

the labelling of input data to a known class (Huang et al. 2014), as shown in Figure 

2.15.The architecture of unsupervised classification depends on dividing data into 

groups according to the similarities or differences among their elements. However, 

both those methods have a number of important parameters that require training from 

a dataset. More details regarding those two types of classification techniques are 

provided in the next section.  

 

 

Figure 2.15. Supervised vs. unsupervised machine learning algorithms 

2.3.1.1    Supervised  and unsupervised learing classification algorithms  

The supervised classification algorithm, is one of the algorithms associated with 

machine learning that deals with a set of data and  normally has some information 

about the dataset. With the supervised technique, the classification model produced 

based on the class labels information which is given during the training dataset to train 

the classifier. The supervised approach generally assumes that a set of training data 

would have a set of relevant labelled instances which refer to the correct output 

(Brunelli 2009; Duda, Hart & Stork 2012; Morin et al. 2008). There are many 

supervised classification learning algorithms, such as support vector machine (SVM), 

least square support vector machine (LS-SVM), decision trees, neural networks (NN), 

logistic regression linear regression, Bayesian network classifier, fuzzy K-nearest-
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neighbour (KNN), Adaboost algorithms, linear discriminant analysis (LDA), Naive 

Bayes classifier and  K-nearest-neighbour (KNN) algorithms. 

In the supervised classification approach, the database is typically partitioned into two 

sets: a training dataset and a testing dataset.The classifier is constructed using the 

training dataset. Then, the performance of the trained classifier is evaluated by using 

the testing dataset. This process of evaluation is often repeated for the different 

parameters of the constructed classifier. Subsequently, the parameters of the classifier 

are optimized, and selected carefully during the training phase, in order to be ready for 

assigning the class labels to the features with unseen class labels. Thus, the main goal 

to learn a procedure is to maximize the testing accuracy on the testing dataset. 

This study used supervised learning algorithms to produce the trained models and to 

detect sleep spindles and k- complexes. During the experiments, all the EEG databases 

used in this study were divided into two groups of data: the training and testing datasets 

as shown in Figure 2.16. The training dataset is used to train the classifier and build 

the trained model (proposed method) to detect sleep characteristics, while the testing 

dataset is used for evaluating the performance of the trained model. 

 

Figure 2.16: Shows training and testing dataset. 

The unsupervised classification approaches involve grouping the unlabeled input data 

(vector of features) into classes to determine hidden patterns. Normally, an 

unsupervised classification algorithm assumes that the training data has not been 

labelled and attempts to find the inherent patterns in the data to determine the correct 

A set of input EEG dataset

Vector of features

Training set Testing set
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output value for a new instance data (Brunelli 2009). In this type of learning algorithm, 

the class label information is not available even for a small number of data (Suily 

2012).  

Among the common aspects of unsupervised learning approaches, for example, are k-

means clustering, hierarchical clustering, hidden Markov models, independent 

component analysis (ICA),  categorical mixture model and principal component 

analyses (Al-Salman et al. 2018; Hartigan & Wong 1979; Jolliffe 2011; Oberski 2016; 

Rabiner & Juang 1986), and so on. A combination of two classification learning 

algorithms  (supervised and unsupervised) has been explored (Chapelle, Scholkopf & 

Zien 2009), leading to semi-supervised algorithms, which use a combination of the 

small set of labelled data and a large set of unlabelled data.     

In this thesis, different techniques to extract the critical features from the EEG signals 

and to detect sleep spindles and k-complexes have been employed: fractal dimensions 

coupled with time-frequency images, fractal and frequency features based on DT-

CWT, hybrid transform and statistical models, and fractal techniques of time-

frequency images coupled with an undirected graph feature. In addition, least square 

support vector machine (LS-SVM), support vector machine classifier (SVM), k-

means, artificial neural network (ANN), Naïve Bayes (NB), k-nearest, decision tree 

C4.5 and ensemble model are used as tools to classify the extracted features and to 

perform the classification.  More details about those classifiers, which are used as tools 

to detect sleep spindles and k-complexes, are provided in Chapters 3, 4, 5 and 6. This 

section gives a brief explanation for each of the classifiers used in this research.  

2.3.1.1.1 K-nearest Neighbour Classifier  

The k-nearest neighbour (KNN) is a simple supervised classification 

algorithm which classifies the input data based on a similarity metric such as 

Euclidian distance. The KNN classifies and assigns each population into the 

most common class relating to its neighbours (Bablani, Edla & Dodia 2018; 

Li et al. 2018). The KNN does not require prior learning about the input 

population as the KNN refers to a lazy learning algorithm. More details are 

provided in Chapter 3. 
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 2.3.1.1.2 Least Square Support Vector Machine  (LS-SVM) Classifier  

Because of the popularity of the LS-SVM, it has been widely used to tackle 

binary classification problems and regression analysis using data analysis and 

pattern recognition. It has also been used widely in EEG classification 

research, for example, classification of sleep stages and epileptic seizures, 

motor image, and alcohol. The quality of LS-SVM predication results 

depends on how the   𝛾 and 𝜎 parameters are chosen, as well as the kernel 

function (Abdel-Hadi et al. 2015; Al-Salman et al. 2018; Al-salman & Li 

2019; Li & Wen 2010). The parameters are selected empirically during the 

training phase.  More details are provided in Chapters 3, 4, 5 and 6 

2.3.1.1.3 Naïve Bayes Classifier  

Naïve Bayes is an efficient and effective technique for classification and it is 

commonly used in pattern recognition. It operates based on Bayes' theorem 

and posterior hypothesis. It is an uncomplicated approach, making it useful 

for high dimensionality data. The main assumption of Naïve Bayes is that the 

effect of each attribute of a class x on a given class is dependent on the 

attributes of other classes (Amin et al. 2017; Machado, Balbinot & Schuck 

2013).The Naïve Bayes uses two procedures in the training phase to 

determine the most popular class for each attribute: a maximum probability 

algorithm and a feature probability distribution. More details are provided in 

Chapters 4 and 5.  

 2.3.1.1.4 K-means Classifier  

K-means is one of the unsupervised classification methods and is mainly 

designed to solve clustering problems. It has been widely used to classify data 

in different fields, such as digital images’ classification, time series and 

biomedical data analysis. The method separates a given population into a 

number of clusters based on defining k centroids for each cluster. The process 

is achieved by minimizing the Euclidean distance between an observation and 

the cluster centroid (Al-salman & Li 2019; Manjusha & Harikumar 2016; 

Orhan, Hekim & Ozer 2011). Each observation belonging to the given 

population is associated with the nearest centroid. This step is repeated at each 

iteration to obtain the first level of clustering, and the new k centroids are 
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calculated. In this thesis, the k-means classifier is employed to identify sleep 

spindles and k-complex waves in EEG signals. More details are provided in 

Chapter 6. 

2.3.1.1.5 Decision Tree C4.5 Classifier  

Decision tree C4.5 is one of the most popular classification techniques and 

uses inductive inference tools in pattern recognition. It uses by the splitting 

criteria (Al-Salman, Wessam, Li, Yan & Wen, Peng 2019; Rawal & Agarwal 

2019; Sharma, Agrawal & Sharma 2013; Wang et al. 2014). It is a flowchart 

organised as a tree structure that classifies states by sorting them based on the 

attribute value. A decision tree consists of decision nodes and leaves. Each 

node in tree C4.5 denotes a feature in an instance to be classified. All branches 

refer to the test result, and each leaf node holds the label of class. It classifies 

the instances from the start based on their attribute value and it generates the 

best rule for the classification of the data set. In this research, the decision 

tree C4.5 has been used to detect the characteristics of sleep stages in EEG 

signals.  More details regarding C4.5 are provided in chapter 3. 

 2.3.1.1.6 Artificial Neural network  Classifier 

Artificial Neural Networks (ANNs) are powerful tools for classification 

research; with nonlinear structures which are dependent on the function of the 

human brain. They are commonly used in classification research for 

processing neurobiological signals extracted by different methods such as 

EEG and EMG and have been used by many researchers to identify various 

kinds of brain activities, for example, epileptic seizures and sleep disorders 

(Al-Salman et al. 2018; Subasi & Ercelebi 2005; Wu, Yang & Sun 2010; 

Yasmeen & Karki 2017).  

The architecture of a typical neural network consists of three layers: an input 

layer, a hidden layer and the output layer. In this thesis, the ANN has been 

used to identify sleep spindles in EEG signals.  More details regarding the 

ANN are provided in Chapter 4.  

2.3.1.1.7  Ensamble Classafier  

In this research an ensemble classifier, which includes various single 

classifiers, is used to identify the targeted EEG segment based on different 



Chapter 2  Background of brain informatics and EEGs classification 
 

51 

 

criteria. The final decision of classification is made based on voting.  One 

of the common ensemble approaches for generating diversity aggregation 

(bagging) was used in this thesis to classify the characteristics of the 

extracted features into one of the sleep characteristics.  The approach was 

developed by (Breiman 1996). It is one of the most effective machine 

learning algorithms used to resolve any classification problem by 

considering the decision of multi-classifiers.  Based on the bagging 

technique, each individual classifier has been trained separately and 

combined with other classifiers according to an appropriate criteria (Han, 

Sun & Wang 2015; Raza et al. 2019; Satapathy, Jagadev & Dehuri 2017). 

More details are provided in Chapter 4.  

However, the performance of those classifiers depends greatly on the characteristics 

of the data to be classified. In addition, there is no single classifier working most 

effectively on all given problems. A variety of empirical tests have been employed to 

compare the performance of the classifier to elicit the characteristics of the data that 

determine a classifier’s performance. The confusion matrix and measures of accuracy 

are commonly used to evaluate the quality of the classification methods. In the last few 

years, receiver operating characteristic (ROC) curves have also been used to evaluate 

the performance of classification algorithms based on the trade-off between true- and 

false-positive rates. This research uses several measures: accuracy, sensitivity, 

specificity, F-score and Kappa coefficient, to assess the performance of the proposed 

methods. The confusion matrix and ROC curves are also used to evaluate the 

performance. More details regarding those classifiers and metrics are provided in 

Chapter 3, 4, 5 and 6. 

2.3.1.2  Structure of the sleep characteristics classification  

A classification process includes two phases: the feature extraction phase and the 

classification phase. The extraction for the most important EEG signals features values 

is done at the extraction phase. The classification phase requires a classifier to 

determine the correct class of the EEG signals based on the extracted features. The 

concept of EEG signals classification as an example of sleep spindles (SS) is provided 

in Figure 2.17. From this figure, it can be seen that appropriate EEG signal features 
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were extracted from the SS features space. At the SS features space, the SS features 

are divided into two classes, the SS and Non-SS. 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: An example of the process of the sleep spindles classification in EEGs  

In this thesis, four extraction methods: WFA technique, FD of TFI technique, DT-

CWT technique and FD of TFI technique coupled with Undirected Graph were utilized 

to extract the most critical features from  EEG signals and were then used to identify 

sleep spindles and k-complexes.  At the same time, different machine learning 

algorithms, LS-SVM, k-means, artificial neural network, Naïve Bayes, k-nearest, 

decision tree, and ensemble model were used as tools to perform the classification 

stage (phase) to detect and train the extracted features. 

2.3.2  Commonly used methods for  the detection of characteristics  

Researchers have developed many methods for the detection of sleep characteristics 

in EEG signals. These methods fall into a number of different categories: time domain, 

frequency domain, different transformation techniques, and other methods. In this 

section, we focused on reviewing sleep spindles and the detection of k-complexes. All 

those studies were implemented with the same database as was used in the projects of 

the DREAM sleep spindles Database and Montreal Archive of Sleep Studies (Devuyst 

et al. 2011; O'Reilly et al. 2014). More details about these databases are provided in 

Chapters 3, 4, 5 and 6. In previous studies, various methods have been used for the 

detection of sleep spindles and k-complexes. The detection accuracy of EEG sleep 

spindles and k-complexes reported in the literature has varied.  A range of the 

maximum accuracy of 75% and 94 % was reported for the datasets.  

Features Space   

Class SS 

Class Non-SS  
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However, accurate methods are very important in order to extract the discriminative 

features from EEG signals because these significantly affect the results of detecting 

sleep spindles and k-complexes. For example, if the extracted features using these 

proposed methods are not accurate and not relevant to the EEG signals, the correct 

detection results will be low. A brief summary of the previous research is provided 

below.  

 

2.3.2.1  Time domain methods used for the detection of  the sleep spindles and k-

complexes in EEGs 

In the time domain, the processing shows how the EEG signal changes with time 

because time domain features come from a non-stationary property of the EEG signal. 

Statistical properties of those features change over time, but time domain features 

assume the input data as a stationary signal (Lei, Wang & Feng 2001; Phinyomark, 

Phukpattaranont & Limsakul 2012). Hence, a variation of features can be obtained in 

time domain features when the EEG signals are recorded through dynamic movements. 

Researchers have developed many methods to detect sleep spindles and k-complexes  

in relation to a specified period of time using a variety of techniques. 

Acır and Güzeliş (2004b) used a combination of artificial neural networks to, firstly, 

eliminate the segments of non-sleep spindles from an EEG signal and to secondly 

separate the  remaining EEG segments of sleep spindles. These segments were  

separated by using two classifiers: a radial support vector machine and a 

backpropagation neural network. A classification sensitivity of 94.6% was reported. 

Using autoregressive modelling for features extraction in EEG signals, sleep spindles 

can easily be detected. This method was firstly reported by Görür et al. (2003). The 

model parameters were obtained using the correlation function of the EEG signal as 

the second-order characteristics. In their study, the size of the window was set to 0.5s 

and the classification method was trained using the extracted features. Further, all data 

sets were divided into six folds to train and test the classifiers.  5 folds out of 6 were 

used in the training set and the remaining 1 fold for testing. This process was repeated 

six-times by considering each possible combination. The obtained results were 

investigated using two classifiers: a multilayer perceptron (MLP); and a support vector 

machine (SVM). The obtained accuracies were 93.6% and 94.4% for the MLP and the 

SVM, respectively. Based on the high performances of the proposed method, the 
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researchers reported that an autoregressive model could be used as a feature extraction 

method. 

In 2000, Huupponen et al proposed a method based on autoassociative multilayer 

perceptron networks to identify sleep spindles. An EEG signal, from the channel C4-

A1, was segmented using a window size of 1.0s. The receiver operating characteristic 

curve (ROC) curve  was used in that study to evaluate the proposed method. Average 

sensitivity of 75% was reported.  

In the last few decades,  various  detection methods have been used to identify sleep 

spindles in EEGs using different classifiers; for example, using artificial neural 

networks, support vector machines, radial basis support vector machine, Bayesian 

classification and decision trees (Acır & Güzeliş 2004b; Babadi et al. 2011; Boser, 

Guyon & Vapnik 1992; Duman et al. 2009; Güneş et al. 2011; Kabir et al. 2015; 

Shimada, Shiina & Saito 2000; Wendt et al. 2012). The  results  they obtained were no 

higher than those in this thesis. More details regarding sleep spindles detection 

methods were provided in Chapters 3 and 4.   

Regarding the k-complexes detection methods, time domain features were also used 

to detect k-complexes in EEG signals. Bankman et al. (1992) presented a method based 

on artificial neural networks. In that study, 14 features were extracted from each row 

of EEG signals to detect k-complexes. Then, each row of EEG recordings was used as 

input to the artificial neural networks classifier. In that work, the k-complexes 

detection was achieved in two stages: training stage and testing stage. The same pre-

processing and extraction techniques were applied for both phases.  In the training 

stage, 200 segments of EEG k-complexes and non-k-complexes were used, while in 

the testing stage, 51 k-complexes segments and 49 non- k-complexes were also utilized 

to test the classification method.  To enable more accurate evaluation of the proposed 

method, the extracted features were also classified using a linear discriminant 

classifier. The six cross-validations were also applied in that study. An average 

sensitivity of 90% was obtained with an 8% false-positive rate. Based on the study, 

using the extracted features provided a significantly better performance than using the 

original EEG data. 

Another study was presented by Zamir et al. (2014), in which the features extraction 

and optimization-based procedure model, based on solving a sequence of the linear 

least square problem, was used to detect k-complexes in EEG signals. The 
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performance of the proposed method was evaluated on the basis of one expert scoring.  

In their study, 12 different classifiers were used to evaluate the performance of the 

proposed method. All these classifiers were used with their default sets of parameters. 

They reported that the most accurate classifier was a logistic model tree. An average 

accuracy of 74% was obtained with that classifier. Sherif et al. (1977) utilized a 

mathematical description of the k-complexes morphology to apply a matched filter. 

Average sensitivity and specificity rates of 85, 44% and 52, 43% respectively were 

recorded.  

In 2009, Gala et al suggested a method to identify k-complexes using a clustering 

approach and a neural network classifier. In their study, two features: average 

amplitude, and frequency, were extracted from each 30s EEG signal and then used as 

inputs to a neural network classifier to detect k-complexes and non k-complexes EEG 

segments.  

Several methods have been employed for the detection of k-complexes in EEG signals.  

These include artificial neural networks (Güneş et al. 2011; Jansen 1990; Strungaru & 

Popescu 1998), methodology frameworks (Jobert et al. 1992; Koley & Dey 2012), 

fuzzy recognition (Pohl & Fahr 1995), knowledge based systems (Jansen & Desai 

1994), morphological component analysis (Lajnef et al. 2015), non- smooth 

optimization and classification methods (Moloney et al. 2011) and   fuzzy artificial 

neural networks (Ranjan et al. 2018). Features extraction methods based on the 

detection approach using artificial neural networks (Bankman et al. 1992) and a 

hybrid-synergic coupled machine learning approach (Vu et al. 2012) have been studied 

to discriminate k-complexes segments and non k-complexes segments in EEG signals. 

Features extraction methods based on amplitude and duration measurements have also 

been employed in  recent studies (Hernández-Pereira et al. 2016) to identify k-

complexes from non-k-complexes segments. In that study, five classifiers were used 

to classify the extracted features from a row of EEG signals into the k-complexes 

segment and non-k-complexes segment. Among all the classifiers tested, the support 

vector machine obtained the best results with an accuracy of 88.69%. The 

classification performance was significantly improved at  36% when the correlation-

based feature selection (CFS) algorithm was used. 
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2.3.2.2  Methods used for detection of sleep spindles and k-complexes based on  

different transformation techniques 

Transformation techniques, such as discrete wavelet transform (DWT), Fourier 

transform (FF), short time Fourier transform (STFT), Teager energy operator (TEO), 

and wavelet packet decomposition (WPD), were applied to categorize EEG 

frequencies in a specific range by which the sleep spindles or k-complexes were 

detected (Akin & Akgul 1998; Camilleri, Camilleri & Fabri 2014; Imtiaz & 

Rodriguez-Villegas 2014; Krohne et al. 2014; Lajnef et al. 2015; Patti, Chaparro-

Vargas & Cvetkovic 2014; Tang & Ishii 1995) . The process using those techniques 

demonstrates that the number of the EEG signals fall within frequency bands through 

a number of frequencies. Thus, these techniques are normally used to analyse EEG 

signals with regard to the frequency and the bands. In this section, we will show a 

variety of methods which have been used in order to identify sleep spindles and k-

complexes using different transformation approaches. 

Duman et al. (2009) proposed a short time Fourier transform (STFT), multiple signal 

classification and Teager Energy Operator (TEO) to identify sleep spindles. An EEG 

signal, from channel C3-A2, was segmented using a window size of 2.0s. In their 

study, wavelet transform was firstly used and then applied  using the STFT on a 2s 

window to detect sleep spindles. Subsequently, a TEO was used to measure the 

duration of the sleep spindle. An average sensitivity and specificity of 93% and 88% 

were reported, respectively. 

The STFT was also used with different classifiers such as a support vector machine, a 

multilayer perception, a supervised approach such as clustering technique and a k-

means to recognize the segments of sleep spindles from non-sleep spindles segments. 

In their study, the maximum classification accuracy was 92.4% (Causa et al. 2010; 

Costa et al. 2012; Da Costa, Ortigueira & Batista 2013; Duman et al. 2005; Estévez et 

al. 2007; Gorur et al. 2002; Patti, Chaparro-Vargas & Cvetkovic 2014; Ventouras et 

al. 2005). 

Using a wavelet packet transform and TEO for features extraction in EEG signals, 

sleep spindles can easily be detected. This method was firstly reported by Ahmed, 

Redissi and Tafreshi (2009). In that study, a window of 1.28s without overlapping was 

considered. The TEO was used to improve periodic activity in segments of the EEG 

containing spindles, while the wavelet packet transform was applied to determine the 
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location of sleep spindles accurately in the time-frequency domain. They reported an 

accuracy of 93.7%.  

There are several types of wavelet transform approaches, including wavelet transform; 

discrete wavelet transform; wavelet packet decomposition; short time Fourier 

transform and continuous wavelet transform, combined with different classification 

algorithms such as neural networks, and support vector machines. These approaches 

have been  applied to determine the sleep spindles from EEG recordings (Acır & 

Güzeliş 2004b, 2004a; Akin & Akgul 1998; Bódizs et al. 2009; Da Costa, Ortigueira 

& Batista 2013; Durka & Blinowska 1996; Durka, Ircha & Blinowska 2001; Estévez 

et al. 2007; Gorur et al. 2002; Hekmatmanesh, Noori & Mikaili 2014; Huupponen et 

al. 2000; Lajnef et al. 2015; Parekh et al. 2015; Saifutdinova et al. 2015; Tsanas & 

Clifford 2015; Yücelbas et al. 2016). 

In relation to the k-complexes detection approaches, various efforts to automatically 

identify k-complexes have been reported in the literature (chapters 5 and 6). Some of 

the literature dealt with k-complexes detection (Bremer, Smith & Karacan 1970; 

Devuyst et al. 2010; Erdamar, Duman & Yetkin 2012; Henry, Sauter & Caspary 1994; 

Jansen & Desai 1994; Kam et al. 2004; Parekh et al. 2015; Pohl & Fahr 1995; 

Strungaru & Popescu 1998; Tang & Ishii 1995) using the recording for the whole night 

whilst others dealt with the classification issue (Al-salman & Li 2019; Bankman & 

Gath 1987; Bankman et al. 1992; Hernández-Pereira et al. 2016; Jansen et al. 1989; 

Jansen 1990; Noori et al. 2014; Richard & Lengelle 1998; Shete et al. 2012; Vu et al. 

2012; Zacharaki et al. 2013; Zamir et al. 2014)  utilizing EEG segments of a steady 

length. Those methods are normally applied to analyse EEG signals in both time and 

frequency domains at the same time. The important analysis approaches in frequency 

domain, such as discrete wavelet, are wavelet transforms. 

Using the discrete wavelet transform (DWT) parameters to identify k-complexes in 

human EEGs, k-complexes can easily be classified. This method was firstly proposed 

by Tang and Ishii (1995).The DWT parameters were used to determine the time 

duration and amplitude of k-complexes. In that study, the 4th order B-spline wavelet 

function basis was used, as it was shown to provide a better predication. A different 

set of features was extracted and then used as input to the principle of the minimum 

distance classification to identify k-complexes in EEG signals. That classifier was 

designed and used in that study in order to decide the thresholds of recognition criteria. 
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In their study, they attained 87% sensitivity and 10% false positive rate.  More 

recently, Lajnef et al. (2015) used a tunable Q-factor wavelet transform for the 

detection of k-complexes. In their study, k-complexes were detected based on a 

threshold in two stages: the transient component to identify k-complexes and time-

frequency representation.  The EEG database was collected from 14 subjects. The 

performance of the proposed method was evaluated using ROC curves. It was reported 

that the proposed method could be a valuable alternative to manual k-complex 

detection methods. An average sensitivity and false positive rate of 81.57% and 

29.54% respectively were reported. 

Yücelbaş et al. (2018b) used a method to detect k-complexes automatically based on 

time and frequency analyses. In their study, an EEG signal was decomposed using a 

discrete wavelet transformation.  In that study, db2 and db4 wavelet functions were 

used, which are the most similar to k-complexes, and EEG recordings from the C4-A1 

and C3-A2 channels were also used.  The obtained  results of the proposed method were 

compared with singular value variational model decomposition to determine the 

location of k-complexes in EEGs. An average accuracy rate of 92.29% was achieved.  

Parekh et al. (2015) detected the k-complexes based on a fast non-linear optimization 

algorithm as a model. That model consisted of a transient, low frequency, and 

oscillatory component. The first one captured the non-oscillatory transient waveform 

(k-complexes) in the EEG signals, while the function of the oscillatory component was 

to admit a sparse time-frequency representation. In that study, only the F-score result 

was reported. An average F-score of 0.57% for the detection of the k-complexes was 

achieved. 

Cătălin et al. (2018) proposed a STFT, and continuous wavelet transform (CWT) to 

identify k-complexes from EEG signals. They reported that evaluating the results of 

algorithms reveals that false k-complex detection is as important as real k-complex 

detection.  

However, since some of those techniques such as Fourier methods, discrete wavelet 

transformation, and wavelet transform may not be appropriate for non-stationary 

signals, or signals with short-lived components, alternative approaches have been 

sought (Siuly & Li 2012; Suily 2012). Furthermore,  it must be noted  that although a 

variety of methods have been used, only one or two measures have been employed to 

evaluate the performance of the proposed methods.  This research uses a number of  
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measures: accuracy, sensitivity,  specificity, F-score and Kapps coefficient to assess 

the performance of the proposed methods. The confusion matrix and ROC curves are 

also used to evaluate the performance. More details regarding detection methods of 

sleep spindles and k-complexes were provided in Chapters 3, 4, 5 and 6. 

2.3.2.3  Other methods to detect sleep spindles and k-complexes in EEG signals  

The EEG signals are non-stationary in nature, and can be processed in an efficient way 

by using a combination of algorithms or nonlinear methods (Al Ghayab et al. 2018; 

Bajaj et al. 2017). A variety of useful techniques have been used to detect sleep 

spindles and k-complexes, such as a combination of time domain features and 

frequency domain features (Al-Salman, Wessam, Li, Yan & Wen, Peng 2019; Al-

Salman et al. 2018; Güneş et al. 2011).   

In 2011, Güneş et al. made an attempt to recognize sleep spindles in the time and 

frequency domains. In their research, a six-time domain, 65 frequency domain and 10 

time and frequency domain features were extracted from an EEG signal. The time-

domain features were extracted from each raw EEG, while frequency-domain features 

were extracted after applying welch spectral analysis. Then, statistical measures were 

applied and used to reduce the number of features from 65 to 4. Finally, three types of 

features set: 6 time domain, 4 frequency domain, and 10 both time and frequency 

domain features were used as inputs to the artificial neural network with  Levenberg–

Marquardt to classify sleep spindles. The obtained results of the proposed method were 

evaluated by physicians who were sleep experts. They reported that the proposed 

algorithm could  confidently be used to automatically detect sleep spindles in EEGs.  

An average accuracy of 93.84% was achieved.  

Nonclercq et al. (2013) examined sleep spindles using amplitude-frequency analysis. 

Filtered EEG signals were segmented into small epochs, with a window size of 0.5 s 

and an overlap of 0.25s. Then a statistical model was utilized to obtain a vector of 

features. The most significant features were selected after applying a principal 

component analysis and a sequential features selection technique. The selected 

features were then fed to a classifier. The proposed recognition system was assessed 

against the scoring of two sleep scoring experts using information obtained from seven 

healthy child and six adult patients, respectively, suffering from different pathologies. 



Chapter 2  Background of brain informatics and EEGs classification 
 

60 

 

An average specificity and sensitivity of 94% and 78.5% were reported, but the authors 

did not report results for accuracy 

Liang et al. (2012) developed an adaptive neuro-fuzzy inference system (ANFIS) for 

sleep spindle detection. In that study, a window size of 0.5s was employed. Two 

features were extracted: sigma index and energy of sigma. Those features were used 

as input to the fuzzy interface system to identify sleep spindles. Average sensitivity 

and specificity of the ANFIS were 94.09% and 96.76%, respectively. A method has 

been presented to permit the power of bumps of EEG to be used in automated detection 

of sleep spindles (Najafi et al. 2011). In 2012, Babadi et al.  proposed a method based 

on a data-driven Bayesian algorithm for sleep spindles detection on the EEG. 

Using a band-pass filter for features extraction in EEG signals, sleep spindles can be 

easily detected.  This method was first reported by Schimicek et al. (1994). In that 

study, the pass filter of 11.5-16Hz with peak-to-peak amplitude of 25 µV as a fixed 

amplitude threshold were used to identify sleep spindles. Later algorithms proposed a 

novel deep learning strategy based on a single EEG channel to identify sleep spindles 

from EEG signals (Kulkarni et al. 2019). The other approach detected sleep spindles 

based on the shape of the waveform.  This approach considered that the shape of sleep 

spindles was an application consisting of two thresholds. The higher threshold was 

used to localize activity bursts in sigma frequency, while the lower one was utilized to 

estimate the duration of sleep spindles (Ferrarelli et al. 2007). 

Recently, many researchers have detected sleep spindles based on a Matching Pursuit 

(MP) and filtering technique. Żygierewicz et al. (1999) presented an MP method to 

detect sleep spindles. The maximum sensitivity reported in that study was 90%.  

Schönwald et al. (2006) also employed the MP method to detect sleep spindles based 

on the amplitude, frequency, and duration characteristics of the signals. An average 

sensitivity and specificity of 80.6% and 81.2% respectively were achieved. Durka and 

Blinowska (1996) utilized a set of parameters which were extracted by the MP method 

to detect sleep spindles. In that study the sleep spindles in EEG signals were detected 

according to the changes in the extracted parameters, position, frequency, width, 

amplitude and phase. An average sensitivity of 82% was reported.  

A variety of methods, such as pre-processing, threshold, band pass filtering and 

amplitude thresholding, and  Tunable Q-factor wavelet transform (TQWT) combined 

with morphology component analysis and artificial intelligence, have been proposed 



Chapter 2  Background of brain informatics and EEGs classification 
 

61 

 

to identify sleep spindles in EEG signals. These methods were used to extract the 

desired features from EEG signals and then classify these features into sleep spindles 

and non-sleep spindles segments using different classifiers (unsupervised or 

supervised techniques), for example, artificial neural networks, likelihood, decision 

tree and support vector machines (Bódizs et al. 2009; Duman et al. 2009; Duman et al. 

2005; Ferrarelli et al. 2007; Gais et al. 2002; Gorur et al. 2002; Held et al. 2004; 

Huupponen et al. 2006; Huupponen et al. 2007; Martin et al. 2013; Norman et al. 1992; 

Parekh et al. 2014; Schimicek et al. 1994; Selesnick 2011a, 2011b). More details 

regarding methods of detecting sleep spindles were reported in Chapters 3 and 4.  

Regarding the k-complexes detection methods, Camilleri et al. (2104) suggested 

switching multiple models to detect k-complexes in EEG signals. The advantage of 

this approach is that it offers a unified framework for detecting multiple transient 

events within background EEG data. They obtained 74.75% sensitivity. An earlier 

study was presented by Henry, Sauter and Caspary (1994), in which the k-complexes 

were classified based on matched filtering. Each segment was decomposed into a set 

of orthonormal functions and wavelets analysis. In that study, different criteria: miss 

detection, false alarm rate, and robustness were used and applied to evaluate the 

proposed method. They reported that the proposed method was unable to distinguish 

events in which the patterns were very close. 

In order to identify k-complexes in EEG recordings, Hernández-Pereira et al. (2016) 

presented a comparative study over the k-complex classification task based on 14 

features extracted from each EEG signal. Those features were based on amplitude and 

duration measurements obtained from EEGs to be classified. The performance of the 

proposed approach has been evaluated using the receiver operating characteristic 

(ROC) curve.  The researchers employed five popular classifiers to evaluate the 

proposed method. Their methodology had a 91.40% accuracy rate.  

A variety of reliable methods have been proposed to identify k-complexes in EEG 

signals (Bankman et al. 1992; Berry et al. 2012; Camilleri, Camilleri & Fabri 2014; 

Devuyst et al. 2010; Erdamar, Duman & Yetkin 2012; Hernández-Pereira et al. 2016; 

Jaleel et al. 2013; Jobert et al. 1992; Kam et al. 2004; Koley & Dey 2012; Moloney et 

al. 2011; Parekh et al. 2015; Richard & Lengelle 1998). They proposed the threshold 

technique, non-smooth optimization, switching multiple models, Fuzzy threshold, join 

time and time frequency domain, methodological framework, and matched filtering 
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combined with different classifiers to detect the morphology of k-complexes. They 

reported that it was very difficult to obtain satisfactory performance results because 

there was a wide diversity in EEG and k-complexes appearances among subjects. More 

details regarding k-complexes detection methods were presented in chapters 5 and 6.  

In summary, from the literature, it is be observed that there are numerous signal 

processing techniques used for the feature extraction and detection stages, but there 

are limitations. The drawbacks of these methods,  for example, are that they do not 

produce sufficient accuracy for the detection of sleep spindles and k-complexes in 

EEG signals and do not work well when the data size is very large. In addition, all the 

methods above have used only a part of the database in their study. Furthermore, these 

methods may require a long time to gain results because no execution time was 

mentioned in all previous studies. Moreover, many sleep studies were conducted with 

one window size and they were tested on a single-channel EEG signal. In addition, the 

current studies were used to detect and analyse a specific characteristic of sleep such 

as sleep spindles or k-complexes in EEG signals using one database.The average of 

accuracy for detection of sleep spindles and k-complexes was between 68%-92%. To 

overcome these limitations this research aims to introduce novel methods for the 

detection of the sleep spindles and k-complexes in EEG signals. 

2.4  Summary of chapter 

This chapter provides an overview of the detection of sleep stages characteristics in 

EEG signals and also provides necessary background knowledge related to the sleep 

characteristics: sleep spindles and k-complexes. Firstly, this chapter presents an 

outline of the concept and structure of the human brain and its functions, an overview 

of EEG signals, the fundamentals of sleep stages, sleep characteristics: sleep spindles 

and k-complexes that appear during sleep stages and how they affect sleep disorders 

of the human brain. The classification concept is also discussed in this chapter. 

Following this overview, this chapter discusses the detection of sleep spindles and k-

complexes in EEG signals and also reviews which methods were utilized for the 

detection of sleep spindles and k-complexes in the previous study. Based on previous 

studies in the literature, it seems that there are limitations associated with the existing 

methods that are used to detect sleep spindles and k-complexes.  Hence, the 

development of new detection algorithms is needed for a reliable diagnosis of 
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neurological diseases, such as sleep disorders.  In the next chapter, a new method based 

on wavelet Fourier analysis and statistical features coupled with a least square support 

vector machine (LS-SVM) classifier is introduced to detect sleep spindles in EEG 

signals. This proposed method is also tested and investigated to identify sleep spindles 

in EEG signals with two different EEG recordings (databases) acquired from different 

channels.  
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CHAPTER 3 

 

DETECTING SLEEP SPINDLES IN EEGS USING 

WAVELET FOURIER ANALYSIS AND 

STATISTICAL FEATURES 
 

3.1 Introduction 

Sleep stages scoring is an important process in sleep research as EEG recordings play 

an essential part in the diagnosis of sleep disorders such as apnea and insomnia, so any 

errors in the scoring of the patient’s EEG recordings can lead to critical problems. 

Developing a new technique to classify and analyse EEG signals is, therefore, a 

significant factor in the field of biomedical research. One of the most important bio-

signal waveforms in sleep stage EEG signals is sleep spindles. To relieve some of the 

burdens of visual scoring such as cost and human error, various techniques have been 

developed to detect sleep spindles more effectively.   

The content of this chapter is an exact copy of a published article in the biomedical 

signals processing and control journal  by AL-Salman et al. (2019). It explains a new 

method based on wavelet Fourier analysis with statistical features to detect sleep 

spindles in EEG signals. In the proposed method,  sleep spindle detection is achieved 

in two phases: a training phase and a testing phase. This study aims to establish a 

method to determine an optimal classification method to extract features by using a 

combination of discrete wavelet transform and fast Fourier transform. This chapter 

focuses on three main points: segmentation techniques, extracted features and 

detection results. Firstly, an EEG signal was divided into segments using a sliding 
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window technique. The size of the window is 0.5 s, with an overlap of 0.4 s. Secondly, 

a wavelet Fourier analysis (WFA) technique is used to extract features from each EEG 

segment. Then, Kruskal-Wallis nonparametric one-way analysis variance is applied to 

select the important features and to reduce the dimensionality of the data, representing 

each of the 0.5 s EEG segments. Finally, the extracted features are forwarded to four 

classifiers to detect the sleep spindles: K-nearest neighbours, a least-squares support 

vector machine (LS-SVM), a K-means algorithm and a C4.5 decision tree. The 

experimental results demonstrated that the proposed feature extraction algorithm with 

the LS-SVM classifier produces the best performance, when compared to the other 

three classifiers.The results were also compared with other existing methods, based on 

some performance evaluation measures, and an evaluation showed that the proposed 

method is better than the other methods examined. It also  yielded a high detection rate 

compared with the state-of the art approaches using the same database. The proposed 

method has been tested on two different EEG databases: DREAMS datasets and 

Montreal Archive Sleep Studies.  
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a b s t r a c t

One of the more difficult tasks in sleep stage scoring is the detection of sleep spindles. Developing an
effective method to identify these transitions in sleep electroencephalogram (EEG) recordings is an ongo-
ing challenge, as there are typically hundreds of such transitions in each recording. This paper proposes
a statistical model and a method based on wavelet Fourier analysis to detect sleep spindles. In this work,
spindle detection is achieved in two phases: a training phase and a testing phase. An EEG signal is first
divided into segments, using a sliding window technique. The size of the window is 0.5 s, with an overlap
of 0.4 s. Then, each EEG segment is decomposed using a discrete wavelet transform into different levels
of decompositions. The wavelet detail coefficient at level 3 (D3) is selected from these parameters, and
this is passed through a fast Fourier transform to identify the desired frequency bands {�, �, �, ı, �}. Ten
statistical characteristics are extracted from each band. Nonparametric Kruskal-Wallis one-way analysis
of variance is used to select the important features, representing each of the 0.5 s EEG segments. To detect
all possible occurrences of sleep spindles in the original EEG signals, four different window sizes of 0.25,
1.0, 1.5 and 2.0 s are also tested. Finally, the extracted features are used as the input to four classifiers

to detect the sleep spindles: a least-squares support vector machine (LS-SVM), K-nearest neighbours, a
K-means algorithm and a C4.5 decision tree. The obtained results demonstrate that the proposed method
yields optimal results with a window size of 0.5 s. The maximum averages of accuracy, sensitivity and
specificity are 97.9%, 98.5% and 97.8%, respectively. This method can efficiently detect spindles in EEG
signals, and can assist sleep experts in analysing EEG signals.

© 2018 Elsevier Ltd. All rights reserved.
. Introduction

Sleep spindles are one type of transient waveforms in non-
apid eye movement (NREM) sleep, often encountered in stage 2
leep (stage 2). They can be used to identify stage 2 NREM through
hanges in their amplitudes. Their duration is typically between
.5 and 2.0 s [14,25,7,1,4]. According to the Rechtschafen and Kales
R&K) criteria, the frequency range of sleep spindles is between
2 Hz and 14 Hz. This interval was extended to 11 Hz to 16 Hz after
he American Academy of Sleep Medicine (AASM) released a new

ersion of their sleep scoring guidelines in 2002 [37,16,15,43,23].
ig. 1 shows an example of sleep spindles in multi-channel EEG
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746-8094/© 2018 Elsevier Ltd. All rights reserved.

66
signals, taken from [15]. The CZ-A1 channel shows a sleep spindle
occurring at 23 s and another at 26 s with a different amplitude.

The detection of sleep spindles is one of the critical tasks in
the recognition of stage 2 sleep, as their characteristics mean
they require a great deal of effort to identify visually. Manual
inspection is subjective and time-consuming, since there are typ-
ically hundreds of spindles in each EEG recording. Consequently,
automatic approaches for spindle detection have been devel-
oped [2,8,18,32,34]. Most of the existing automatic methods were
designed to detect both sleep spindles and K-complexes simulta-
neously, but are generally used to detect only one of these. Some
sleep spindle detection methods have been developed based on the
analysis of EEG signals using a discrete wavelet transform or fast
Fourier transform [2]. These transformation techniques are applied
to categorize the frequencies of EEGs within a specific range, thus

allowing sleep spindles and K-complexes to be detected [7]. Gorur
et al. [21] utilized a short-time Fourier transform to decompose
EEG signals. In their study, two different classifiers were employed:

https://doi.org/10.1016/j.bspc.2018.10.004
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2018.10.004&domain=pdf
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Fig. 1. An example of sleep spindles from the DREAMS

support vector machine and a multilayer perceptron; classifica-
ion accuracies of 95.4% and 88.7% were achieved using these two
lassifiers. Ahmed et al. [1] detected sleep spindles by applying a
avelet packet transform and the Teager energy operator. They

eported an accuracy of 93.7%. Patti et al. [35] also employed a short-
ime Fourier transform with an adaptive window size to extract
our features: sigma power, sigma index, sigma index 2 and sigma
ower 2. A supervised approach was used to cluster the extracted
haracteristics.

Yucelbas et al. [45] used a fast Fourier transform, autoregressive
ultiple signal classification and a Welch filter to identify sleep

pindles. The detection phase was carried out by a neural network
lassifier. Duman et al. [18] proposed a short-time Fourier trans-
orm, multiple signal classification and a Teager energy operator to
dentify sleep spindles. Güneş et al. [22] made an attempt to rec-
gnize sleep spindles in the time and frequency domains. In their
esearch, six time-domain and 65 frequency-domain features were
xtracted from an EEG signal. Nonclercq et al. [30] examined sleep
pindles using time features. The filtered EEG signals were seg-
ented into small epochs, and a set of statistical characteristics
ere then extracted to form a vector of features. The most sig-
ificant features were selected after applying principal component
nalysis and a sequential features selection technique. The selected
eatures were then fed to a classifier.

Wavelet Fourier analysis were used to improve the performance
f glaucoma classification [47], and were also employed in speech
ecognition [49,27,40], proving that a combination of wavelet and
ourier transforms is an effective approach to extract the desired
requencies from a signal. In this paper we use the hybrid wavelet
ourier analysis to extract key features from EEG data for detecting
leep spindles, which is innovative and efficient as sleep charac-
eristics in EEG signals are conditionally detected based on either
avelet or Fourier transform.

In the study, a single-channel EEG signal is firstly divided into
mall segments using a sliding window technique, and the length of
he window is determined empirically. Each EEG segment is passed
hrough a wavelet transform. After decomposing each EEG segment
nto different frequency levels, the level 3 (D3) detail is selected,
ince it yields better results than others. A fast Fourier transform is

pplied to D3, and a set of 10 statistical features are extracted. An
S-SVM is used to differentiate the EEG segments into spindles and
on-spindles. To determine the best window size, various window
izes of 0.25 s (s), 0.5 s, 1.0 s, 1.5 s and 2.0 s were tested, and it was

67
ase: 6 s of EEG recording containing two spindles [15].

found that a length of 0.5 s was more efficient than other window
sizes. The extracted features were also forwarded to a C4.5 decision
tree, and K-means and K-nearest neighbour classifiers. The results
show that the proposed method combined with the LS-SVM gives
better results than those obtained by the other classifiers. Compar-
isons are also made with previous research studies, and the results
show that the proposed method outperforms the other techniques.

The rest of this paper is organised as follows: Section 2 describes
the EEG datasets used. In Section 3, the main steps of the proposed
method are explained. Section 4 discusses the simulation phase and
reports the results. Section 5 presents the conclusions of this study.

2. EEG data and pre-processing

In this study, two publicly available databases are used for the
proposed method to identify sleep spindles in EEG signals. The two
databases are the DREAMS datasets (Devusty, 2011) [15] and Mon-
treal Archive Sleep Studies (MASS) (O’Reilly et al., (2014) [42]. The
following section briefly explains the details of the datasets.

2.1. The dream sleep spindles database

The sleep database includes eight recordings from different par-
ticipants, recorded at the Circuit Theory and Signal Processing Lab
at the University of Mons-TCTS Laboratory [15]. The eight subjects
had various pathologies (dysomnia, restless legs syndrome, insom-
nia, apnoea/hypopnoea syndrome), and were aged between 31 and
53 years. Three EEG channels of CZ-A1 or C3-A1, FP1-A1 and O1-
A1, two channels of electrooculography (EOG) data of P8-A1 and
P18-A1 and one channel of electromyography (EMG) were recorded
from each subject. The data were sampled at frequencies of 200 Hz,
100 Hz and 50 Hz. Sleep EEG data of 30 min durations were scored
and all sleep spindles were detected manually by two experts, and
the starting and ending times were also marked. All recordings
were scored according to the R&K criteria. The first expert scored all
eight recordings, while the second expert annotated six of the eight.
Thus the automated detection results in this paper were compared
with the detection of only the first expert.

In this study, EEG recordings from the CZ-A1 channel were

used, sampled at 200 Hz. Table 1 illustrates the number of sleep
spindles for each subject, the maximum and minimum duration
of the sleep spindles, and the number of epochs with and with-
out spindles. The database, along with additional information, is
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Table 1
Number of sleep spindles in each EEG recording.

Subject ID. Number of
segments with
sleep spindles

Number of
segments
without sleep
spindles

Maximum
spindle
duration (s)

Minimum
spindle
duration (s)

1 52 3547 1.6700 0.5000
2 60 3599 1.4600 0.4900
3 5 1795 1.4600 0.6100
4 44 1799 1.8000 0.3900
5 56 1219 1.2800 0.5000
6 72 2342 1.3000 0.5000
7 18 1869 1.2200 0.5000
8 48 4589 1.8900 0.5400

Table 2
The number of sleep spindles in each EEG recording.

Subject ID. Number of
segments with
sleep spindles

Number of
segments
without sleep
spindles

Minimum
spindle
duration (s)

Maximum
spindle
duration (s)

1 708 30320 0.5 s 1.6s
2 1141 32360 0.5 s 1.2s
3 1156 28640 0.5 s 1.2s
4 810 27600 0.5 s 1.0 s
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obtained from the first level of the decomposition through which
5 1040 18958 0.5 s 1.3s
6 905 20280 0.5 s 1.1s

ublicly available online at: http://www.tcts.fpms.ac.be/∼devuyst/
atabases/DatabaseSpindles/

.2. Montreal archive of sleep studies database

The database was recorded from 19 subjects: 8 males and 11
emales. The subjects aged between 30–55 years. The EEG signals
ere recorded in a 20 min intervals during one night. The EEG sig-
als were sampled at 256 Hz. Each EEG recording included 19 EEG
hannels, four channels of EOGs, one channel of EMG and one chan-
els of ECG channels. In this database the visual scoring of sleep
pindles was carried out also by two experts. The first expert anno-
ated 19 recordings, including sleep spindles according to the AASM
ules, while the second only annotated 15 out of 19 recordings. In
his study, the EEG scoring from different subjects were chosen
andomly, and EEG recordings from the C3 channel were used, all
ampled at 256 Hz. The datasets can be accessed through https://
assdb.herokuapp.com/en/. Table 2 shows the sleep spindles for

ach subject, their maximum and minimum duration of the sleep
pindles used in this research. The experiments were conducted
sing Matlab software (Version: R2015) on a computer with the
ollowing settings: 3.40 GHz Intel(R) core(TM) i7 CPU processor

achine, and 8 GB RAM.

. Methodology

Spindle detection is achieved using two phases: training and
esting. The EEG signals are divided into segments using a sliding
indow technique, and the size of the window was set to 0.5 s

fter an extensive simulation. Each EEG segment is passed through
wavelet Fourier transform to identify the desired frequency bands
�, �, �, ı, �}. Ten statistical characteristics are extracted from each
and, and 50 features are selected to represent each of the EEG seg-
ents. The extracted features are used as input for four classifiers:

S-SVM, K-nearest neighbour, K-means and the C4.5 decision tree.

or further analysis, windows of 0.25, 1.0, 1.5 and 2.0 s were also
ested, and our findings showed that the 0.5 s window gave bet-
er results than the others. Fig. 2 illustrates the process used in the
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proposed method. The wavelet and Fourier transform functions in
Matlab 2015b were utilized in this implementation.

3.1. EEG signals stratification

Sleep spindles in EEG data mainly occur during sleep stage 2
from 10 Hz to 15 Hz. They can be recognized according to their low
amplitude and high frequency. Sleep experts have observed that
sleep spindles normally appear in EEG signals for 0.5 s to 2.0 s. A
sliding window technique was utilized by Li et al [29] for the clas-
sification of EEG signals. It was also utilized by Al-Salman et al [4]
and Zhuang et al [48] to detect sleep spindles in EEG signals. Their
results showed that applying a sliding window technique helped
to improve satisfactory classification results. In this study, a whole
EEG signal is divided into segments using the sliding window tech-
nique. The window size used is 0.5 s with an overlapping of 0.4 s.
Fig. 3 shows an EEG signal being partitioned into overlapping seg-
ments.

3.2. Wavelet fourier analysis (WFA)

A discrete wavelet transform (DWT) and fast Fourier transform
(FFT) are commonly used to transform a signal into the frequency
domain. FFT is applied to obtain the spectral information of sig-
nals, while DWT is used to analyse the waveforms of signals. The
literature suggests that combining DWT with FFT could be a robust
and efficient way to extract important frequency information from
non-stationary signals [40,47]. Tarasiuk et al. [40] showed that
by applying FFT to the wavelet coefficients, the most important
frequency information of the signals were obtained with a few
required multiplications. After testing different wavelet functions,
the Daubechies wavelet function of order six (db6) was used in this
study, as it was shown to provide better predication [13].

Suppose a signal, x, can be decomposed into different frequen-
cies using a DWT, which is defined as follows [11,17,31,29]:

D� (a,b) = 1√
a

∫ ∞

−∞
x (t) �

(
t− b

a

)
dt (1)

where a is a scale parameter and b is a translation parameter,
D (a, b) denotes the discrete wavelet coefficients and  is the
wavelet function.

To decompose the signal x, a series of low-pass filters (LPF) and
high-pass filters (HPF) must be used. The HPF and LPF are used with
scaling and wavelet functions, which are defined as:

∅a,b (x) = 2
a⁄2 h ( 2a x− b) (2)

�a,b (x) = 2
a⁄2 g ( 2a x − b) (3)

where ∅a,b (x) is a scaling function based on a low-pass filter, and
a,b (x) is a wavelet function based on a high-pass filter.

The EEG signals have a non-stationary nature. Processing EEG
signals by passing them through filtering techniques helps to reveal
hidden patterns in signals. As sleep spindles have unique frequency
patterns that cannot be detected without filtering EEG signals, we
use these filters to process the signals.

The decomposition procedure starts by passing a signal through
the filters. The detail (D1) and the approximation (A1) were
EEG signals passed through the high pass and low pass filters. For
further decomposition, the same process can be performed for A1.
This process is repeated to obtain the desired output.

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
https://massdb.herokuapp.com/en/
https://massdb.herokuapp.com/en/
https://massdb.herokuapp.com/en/
https://massdb.herokuapp.com/en/
https://massdb.herokuapp.com/en/
https://massdb.herokuapp.com/en/


W. Al-Salman et al. / Biomedical Signal Processing and Control 48 (2019) 80–92 83

Fig. 2. Block diagram for sleep spindles detection methodology.

nting an EEG signal into windows.
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Fig. 4. Algorithm flowchart for determining the decomposition level number.
Fig. 3. An example of segme

To obtain the desired frequencies, FFT is applied separately to
ach level of the wavelet detail coefficients, D1–D5. FFT is defined
s:

X
(
ejw

)
=

∞∑
n=−∞

x(n)e−jwn (4)

here the time index n is discrete, andw is the normalized angular
requency. The transform pair of the DFT is defined as:

X (k) =
N−1∑
n=0

x(n)Wnk
N ←− x (n) = 1

N

N−1∑
k=0

X (k)W−nkn (5)

After the application of FFT, the EEG signals are normally defined
s the congregation of five basic frequency bands: alpha (�), beta
�), gamma (�), delta (ı) and theta (�). They are distinguished by
heir different frequency ranges, as discussed below.

Alpha waves contain frequencies between 8 Hz and 13 Hz, and
ave an amplitude of less than 10 �V in the awake state. Beta waves
ave a frequency range of 13–30 Hz; their maximum amplitude is

ess than 20 �V, and they appear in the parietal and frontal regions
f the brain. There are two types of beta waves: beta I and beta
I. The former has low frequencies which disappear during mental
ctivity, while the latter has high frequencies which appear during
ension and intense mental activity. Theta waves have a frequency
ange of between 4 Hz and 8 Hz, and an amplitude of less than 100
V. They mainly occur in the parietal and temporal regions dur-

ng sleep. Delta waves have a frequency range of between 0.5 Hz
nd 4 Hz and an amplitude of less than 100 �V. Gamma waves
ave frequencies of between 30 Hz and 100 Hz with a peak-to-peak
mplitude of less than 2 �V in humans when attending to sensory
timulation.
A number of experiments were conducted to investigate the
ffective levels of DWT. It was found that D3 provided better rep-
esentative characteristics for identifying the sleep spindles in EEG
ignals. D3 was thus passed to FFT to obtain the most significant

69
frequencies for detecting sleep spindles. Fig. 4 shows the algorithm
used to extract the statistical features and to determine the number
of the decomposition levels using the WFA.
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Fig. 5. A graphical diagram of the proposed method for the main steps of the features extraction using the WFA.

Table 3
P-value of the selected features; features in bold are not used in this work, as they are insignificant.

Band F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 1.1578e-51 1.1952e-78 3.1358e-59 2.7878e-51 4.1558e-78 3.4778e-78 5.1555e-65 6.8748e-89 5.7894e-81 4.7578e-97
2 3.0025e-22 9.4526e-45 3.9852e-45 1.3452e-12 5.1052e-75 2.3352e-10 7.0052e-45 6.0142e-75 1.1452e-18 2.1792e-10

-65 1.1092e-14 4.0052e-12 7.1252e-16 2.2152e-11 1.2102e-21
-10 1.9694e-22 4.2171e-51 2.2032e-54 1.2374e-21 1.1370e-76

0.2414 0.2654 0.2414 0.2412 0.1231
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Table 4
Classifiers’ parameters used during the experiments.

Classifier Parameters

LS-SVM RBF kernel, �=10 and � = 1
K-nearest neighbour K = 7 is used, which denotes the number of the

nearest neighbours.
k-means k, ci and xk , where k is the number of clusters

and k = 2. ci is the centre of the clusters and
ci=1, and xk is the data points.

Decision tree Inputs = training patterns (training set);
Outputs = test targets (sleep spindles and
3 4.2352e-23 2.1209e-23 1.0082e-62 2.1102e-67 1.1302e
4 3.234e-90 1.1700e-37 3.1204e-78 0.2774e-47 1.3214e
5 0.0121 0.0345 0.0478 0.0187 0.2541

.3. Feature extraction and segmentation

To reduce the dimensionality of EEG data and to extract useful
nformation, 10 statistical features are extracted from each band
o represent EEG data. These 10 statistical features are the median,
aximum, minimum, mean, mode, range, standard deviation, varia-

ion, skewness and kurtosis [20,28,38,42]. Fig. 5 shows the main steps
f the feature extraction process. The features were extracted from
ve bands (�, �, �, ı, �). Many studies have reported that most of the

eatures extracted from EEG signals are not likely to work for large
atasets. Computational hypothesis testing is a powerful statistical
pproach for evaluating the extracted features.

In this paper, nonparametric Kruskal-Wallis one-way analysis
f variance was used to determine the most powerful features [10].
eatures from � band were not chosen, as they were not significant
n classifying the sleep spindles (p < 0.05) [39]. Table 3 shows an
xample of these features, and those shown in italic are insignif-
cant. However, only four bands (�,�,�,ı) were used in this work,
ince these features can shed a light on the issue, as reported in the
iterature [16]. To represent the EEG data associated with a sym-

etric distribution, the mean and standard deviation features are
sed, while median and range have been shown to be the appropri-
te measures for a skewed distribution. The other features are used
o extract other important information from the EEG data.

.4. Classification

The features extracted from each EEG segment were used as the

nput for the LS-SVM as well as K-means, K-nearest neighbour and
4.5 decision tree classifiers. The performances of these classifiers
ere compared in terms of classification accuracy. Based on the

iterature [29, 30, 31, 17 4], we found that those four classifiers

70
non-spindles segments)

are considered the most popular and effective methods in biomed-
ical signal classification. The training parameters of the selected
classifiers were presented in Table 4.

3.4.1. K-nearest neighbour
K-nearest neighbour is one of the most straightforward learn-

ing methods [44]. This algorithm depends on Euclidian distance
to compute the similarity between the training case and the case
in the classification record. A record is kept in order to store the
classification performance and similarity results. Several distance
metrics are used to define the distance in the K-nearest neighbour
algorithm. Based on the training session, the Euclidean distance is
used in this paper. In order to classify an instance, the similarity
with K-nearest neighbours is computed, and the class correspond-
ing to the maximum number of votes is assigned as an output class

of the instance. A total of k different values of the K-nearest neigh-
bour classifier were tested. It was found from simulation that the
best results were achieved for k = 7.
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.4.2. Decision tree
C4.5 is the most widely used inductive inference tool in pattern

ecognition. The tree construction follows a top-down approach,
n which the tree construction starts from a training set or tuples.

tuple is a collection of attributes and a class value. An attribute
ay have a continuous or discrete value, while a class can have

nly discrete values. A decision tree consists of decision nodes and
eaves. At each decision node, an attribute is specified, which is
ested for its ability to classify a training sample. Initially, the root
ode is associated with the whole training set and the weight value

or each case is set to one. In order to construct a decision tree,
he C4.5 algorithm employs a ‘divide and conquer’ approach; the
ttribute with the highest information gain is selected for testing at
node, and a child node is then created for each possible outcome
f the class. This process is repeated for each attribute associated
ith each node, leading to the selection of the best attribute for the
ode [36,19].

.4.3. LS-SVM
The LS-SVM is a powerful approach in the field of biomedical

ignals classification [9,4], and has been widely used in EEG clas-
ification research. Siuly et al. [29] used the LS-SVM to classify
otor image data, and Al Ghayab et al. [3] also employed the LS-

VM to identify epileptic seizures. It was used for the detection of
leep spindles in EEG signals in our previous work [4]. The LS-SVM
epends on two hyper parameters, � and�. Those parameters can

nfluence the classification accuracy negatively if they are elected
mproperly. In this paper, the LS-SVM parameters were selected
mpirically during the training phase. The radial basis function
RBF) kernel was used. The parameters were set to � = 10 and � = 1
fter a series of experiments were conducted and the polynomial
ernel chosen.

.4.4. K-means
K-means is considered one of the simplest approaches in

iomedical data classification. This algorithm partitions obser-
ations into a number of groups, according to similarities or
issimilarities among the patterns. Each observation is associated
o the group with the nearest centroid. This approach has been
idely used to classify data in different fields such as digital image

lassification, time series and biomedical data analysis. The K-
eans algorithm identifies the cluster centre and other elements

y reducing the squared errors based on an objective function. The
ain objective of using a clustering algorithm is to identify the

luster centre and to associate each element having the same char-
cteristics with the nearest cluster centre. In K-means clustering,
he Euclidean distance is usually used as the dissimilarity measure.
his was used by Orhan et al., [33] to detect epileptic EEG signals,
nd by da Costa et al., [12] for the detection of sleep spindles. The
ost important parameters used in the K-means algorithm are k,
ci and xk, and the algorithm is defined as follows:

means =
k∑
i=1

∑
k

||xk − ci||2 (6)

here k is the number of clusters, ci represents the centres of the
lusters, and xk represents the data points. In this paper, the number
f data points refers to all the data mentioned in Section 3, and the
lustering number is two (sleep spindles/non-sleep spindles).
.5. Statistical measures for evaluating performance

The performance of the proposed method is evaluated and
ested using several statistical measures k-fold cross-validation,
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sensitivity, specificity and accuracy. This section gives a brief
description of each statistical measure used.

• K-fold cross-validation: This is a popular measure of assessing
the classification accuracy, and is used to describe the perfor-
mance of the proposed method. The dataset is divided into six
subsets of equal size; each subset contains an equal number of
EEG segments that includes sleep spindles and non-sleep spin-
dles. One of these subsets is used as the testing set, while the
remaining subsets are used as the training set. All subsets are
tested in turn. The testing classification accuracy for all subsets is
calculated and recorded, and their average accuracy is computed
below.

Performance = 1
6

∑6

1
accuracy(R) (7)

where accuracy(R) is the accuracy over the results from six itera-
tions.

• Sensitivity or true positive rate (TPR) or Recall: This is used to
estimate the performance of the classification method by measur-
ing the proportion of the actual positive prediction. It is defined
as [45]:

Sensitivity (SEN) = TP
TP+ FN

(8)

where TP means the actual sleep spindle waves that are correctly
detected using the proposed method, and FN means the actual sleep
spindles that are incorrectly marked as non-sleep spindles.

• Accuracy: This refers to as the number of correctly classified
cases, and is calculated by dividing the aggregation of the classi-
fication results by the total number of the cases. The accuracy is
defined as:

Accuracy (ACC) = TP+ TN
Total number of cases

(9)

where TN is the actual non-sleep spindles that are correctly classi-
fied using the proposed method as non-sleep spindles.

• Specificity: This is used to calculate the proportion of actual neg-
ative prediction. It is defined as :

Specificity (SPE) = TN

TN + FP (10)

where FP refers to the number of sleep spindles that are incorrectly
determined by the proposed method.

• Kappa coefficient: This measures the agreement in the perfor-
mance between two models. It is defined as below:

Cohen’s kappa coefficient (k) =
TP+TN

N − Pre
1− Pre

(11)

Pre = TP+ FN
N

.
TP+ FP

N
+

(
1− TP+ FN

N

)
.
(

1− TP+ FP
N

)
,

and N = (TP+ FP+ TN+ FN) (12)
• F-score: This is one of the most important measurements used
to show the overlap between the sets of true spindles and the
spindles found using the proposed method. The F-score is defined
as a harmonic means of precision (PPV) and recall (TPR) [26]:
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− Score = 2 .
(PPV .TPR)
PPV+ TPR

(13)

here PPV is the precision or positive predictive value, calculated
s:

Precision (PPV) = TP
TP+ FP

(14)

. Experimental results

To evaluate the performance of the proposed method, extensive
xperiments were conducted using the dataset discussed in Section
. The datasets were divided into six groups with no overlap, and the
roposed method was applied to all groups. In the training phase,
ll LS-SVM parameters were determined and adjusted. The wavelet
nd Fourier transform functions in Matlab 2015b were utilized in
his implementation, and the experiments were carried out using

atlab 2015b on a computer with 8GB RAM, i7 processor CPU, 3.40
HZ Intel (R) i7.

.1. Spindles detection using a window size of 0.5 s
A window size of 0.5 s was used to separate the EEG signals into
egments, with an overlap of 0.4 s A vector of 4×10 extracted char-
cteristics was fed to the LS-SVM. Fig. 6 shows the results obtained
sing the proposed method with a window size of 0.5 s. The perfor-

Fig. 7. Receiver operating characteristics curve for sleep spindles and n

72
thod using a window size of 0.5 s.

mance of the proposed method was evaluated in terms of accuracy,
sensitivity and specificity. The dataset was divided into six sub-
sets. The proposed method was tested six times and all the results
obtained were recorded. At each iteration, one group was used as
a testing set and the rest as the training set.

From Fig. 6, we can see that the proposed method achieves a
high performance, with an average accuracy, sensitivity (recall)
and specificity of 97.9%, 98.5% and 97.8%, respectively. The results
demonstrate that the lowest accuracy using the proposed method
is 96% for the LS-SVM classifier.

To assess the discrimination capability of the proposed method,
a receiver operating characteristics (ROC) curve was established in
this paper. The ROC is a suitable metric in studying the dependency
of sensitivity (recall) and specificity. It is an essential and significant
method to recognize the performance of the binary classifier, and
it is commonly used in medical decision making. The relationships
among true positive rate (recall), false negative rate, false positive
rate and true negative rate were investigated in this study using the
ROC curve. The receiver operating characteristics (ROC) curve for
different classification tasks is shown in Fig. 7. From the obtained
results, we can be noticed that the proposed method correctly pre-

dict the sleep spindles in EEG signals. The area under the resulting
ROC (AUC) was calculated in this study. The AUC is a portion of the
area under the ROC curves. The highest area under the curve of 0.97
was recorded for classification take with the LS-SVM classifier.

on- spindles EEG signals (relation of recall using four classifiers).
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Table 5
Performance evaluation using different classifiers.

Classifier Accuracy Sensitivity Specificity

LS-SVM 97.9% 98.5% 97.8%
K-nearest neighbour 90% 95% 89%
C4.5 93% 92% 91%
K-means 89% 90% 86%

Table 6
Performance from all classifiers using different window sizes.

Classifiers

Window size Performance LS-SVM C4.5 K-means K-nearest neighbour

1.0 s
Accuracy 87.1% 82% 79% 80.1%
Sensitivity 88.3% 81% 78% 84%
Specificity 82.3% 76% 71% 70%

1.5 s
Accuracy 78.1% 73% 69% 70.1%
Sensitivity 87.6% 80% 78% 83%
Specificity 75.8% 69% 64% 67%

2.0 s
Accuracy 68.6% 64% 60% 61%
Sensitivity 73.5% 66.5% 64.5% 69.5%
Specificity 65.3% 59.3% 54.3% 57.3%
Accuracy 74.5% 69.6% 65.6% 66.6%
Fig. 8. Performance of the propose

.2. Effect of different window sizes

To detect all possible occurrences of the sleep spindles in the
riginal EEG signals, and to assess the ability of the proposed
ethod to identify the sleep spindles, four other window sizes of

.0 s, 1.5 s and 2.0 s were also tested. The EEG signals were first
egmented based on a window size of 1.0 s with an overlap of
.8 s. The features described in Section 3.3 were extracted, and the
atasets were divided into six subsets. The proposed method was
hen applied separately to each group. Fig. 8 shows the perfor-

ance of the proposed method in terms of accuracy, sensitivity
nd specificity using different window sizes. It was observed that
he proposed method has the capacity to detect sleep spindles at
window size of 1.0 s. The obtained results were compared with

he scoring by an expert 1. There was only slight disagreements
etween the proposed method and the expert’s scoring.

A second experiment was conducted using a window size of
.5 s. From the results in Fig.8, it can be seen that the accuracy

n some groups was degraded as the window size increased. The
btained results were compared with the scoring by an Expert 1.
t was shown that, there were large disagreements between the
roposed method and Expert1 in some datasets.

Fig. 8 also shows the experiment results using a window size of
.0 s A maximum accuracy of 68% was obtained. It appears that it
as difficult to detect sleep spindles in EEG signals with this win-
ow size, which makes sense since the most of the occurrences of
leep spindles have a window size of 0.5 s. Several previous studies
sed a window size of 0.25 s with an overlap of 50%, which was also
ested in this research. The maximum accuracy was 74.5% and the
esults are shown in Fig. 8. It appears that this window was too short
o detect sleep spindles. It was, therefore, found that a window size
f 0.5 s yielded the best results among those examined. The findings
n this paper confirm that sleep spindles occurring in EEG signals
ave an average duration of 0.5 s. All the results in Figs. 6 and 8
ere carried out using the LS-SVM classifier.

.3. Performance evaluation based on different classifiers

The extracted features from each EEG segment were for-
arded separately to the LS-SVM, K-means, C4.5 decision tree

nd K-nearest neighbour classifiers in order to determine the best
lassifier for detection of sleep spindles. In these experiments, a
indow size of 0.5 s was used. The results obtained from these
lassifiers were compared in terms of accuracy, sensitivity and
pecificity. The results shown in Table 5 demonstrate the perfor-
ance of the proposed method and the LS-SVM is better than the

ther three classifiers.

73
2.5 s Sensitivity 88.3% 81.3% 79.3% 84.3%
Specificity 58.5% 52.5% 47.5% 50.5%

To shed more light on the comparison, the performance of the
proposed method was also compared based on 6- fold cross valida-
tion. The EEG data was divided into six folds. The plot boxes for each
fold based on 6-fold cross validation is shown in Fig. 9. According to
the results in Fig. 8, it was observed that there was an improvement
achieved with the proposed method to detect the sleep spindles in
EEG signals when the LS-SVM classifier was used to classify the
features compared to the k-means, K-nearest neighbour and C4.5
classifier. It is clear from these results, the extracted features based
on the WFA coupled with the LS-SVM classifier have better abil-
ity to distinguish the sleep spindles in EEG signals. In addition, we
can see that the highest accuracy obtained by the LS-SVM was 97%,
while the lowest accuracy was from K-means with 89% accuracy.

4.4. Performance evaluation of other classifiers with different
window sizes

The performances using different classifiers and different win-

dow sizes were assessed in this section. Four experiments were
conducted, each using a different window size. The performance
from these four classifiers were tested individually, using window
sizes of 0.25, 1.0, 1.5 and 2.0 s. The results were recorded. Table 6
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Fig. 9. The classification accur

hows the classification results in terms of accuracy, sensitivity
nd specificity. From these results, it can be seen that the LS-SVM
chieved the highest performance among all the classifiers.

.5. Comparison with previous studies

To evaluate the proposed method, comparisons were also
ade with previous studies. To carry out a fair compari-

on, all the selected studies were conducted using the same
atasets as described in Section 2. Table 7 presents a com-
arisons of the results of the proposed method and those of
24,35,21,15,30,41,48,34,45,46]. Some of those studies did not
eport specificity or accuracy in their results, and they are marked
ith (-) in Table 7.

Imtiaz et al., [24] detected sleep spindles based on two fea-
ures: Teager energy and spectral edge frequency. A window size
f 0.25 s with an overlap of 50% was used in their study. They
btained an accuracy, sensitivity and specificity of about 91%, 80%
nd 98%, respectively, in detection of sleep spindles. In compar-
son, our method outperformed that approach, even though the
roposed method was applied to larger datasets containing all the
EG recordings in the database. Another study was reported by
atti et al., [35], in which sleep spindles were identified based on
Gaussian mixture model. A window size of 1.5 s without overlap
as used in this study. Four features were employed for detec-

ion, and the maximum sensitivity was 74.9%, while our proposed
ethod attained 98.5% sensitivity with a window size of 0.5 s. Gorur

t al. [21], applied a short-time Fourier transform to distinguish
EG sleep spindles, using a static Hamming window of 0.5 s. They
chieved an average of 95.4% accuracy using an SVM and 88.7% with
neural network, which are lower than the results obtained using
ur method.

Another study was reported by Devuyst et al., [15] in which
systematic assessment method was applied to detect sleep

pindles, using a window size of 0.5 s with an overlap of 0.1 s.
verage values for sensitivity and specificity of 70.20% and 98.6%
ere reported, respectively, and these are lower than the results

chieved in the current study. Nonclercq et al. [30], detected sleep

pindles using amplitude-based feature extraction, with a window
ize of 0.5 s and an overlap of 0.25 s A specificity and sensitiv-
ty of 94.2% and 78.5 were obtained, which was comparable to
hose achieved in this paper, but the authors did not report results

74
sed on 6-fold cross validation.

for accuracy. Tsanas et al. [41], detected sleep spindles based on
a continuous wavelet transform and local weighted smoothing,
reporting sensitivity and specificity of 76% and 92%, respectively.
It can be seen that the sensitivity of 96.8% obtained by our method
is higher than that reported by Tsanas et al., [41].

Another study was presented by Zhuang and Peng [48] in which
sleep spindles were detected based on a sliding window-based
probability estimation method. An EEG signal was passed through
a Mexican hat wavelet transform, and a set of wavelet coefficients
were employed. A window size of 1.0 s with an overlap of 50%
was used in that study. An average sensitivity of 50.98%, f-score
of 0.58% and a specificity of 99% were reported. Although the aver-
age specificity in that study was higher than those by our proposed
method, our method achieved higher values of sensitivity and f-
score of 98.5% and 0.71%, respectively, and also higher than those
from Zhuang and Peng [48]. An optimization algorithm to estimate
the components in the proposed signals model was presented by
Parekh et al. [34], for the detection of K-complexes and sleep spin-
dles in EEG signals. In that study, sleep spindles and k-complexes
were detected separately, based on low-frequency and oscillatory
components. A window size of 1.28 s was used for the STFS with-
out overlap. The authors reported approximately 96.4% accuracy,
70% sensitivity, 97.8% specificity, 0.70 f-score and 0.67% kappa coef-
ficient for sleep spindles detection. Thus, our method gave better
results than other methods in terms of accuracy, sensitivity, f-score
and kappa coefficient, with a window size of 0.5 s and an overlap
of 0.4 s.

The proposed method was also compared with other methods
in which different datasets were used. One study was reported by
Yucelbas et al., [45] in which sleep spindles were detected using an
FFT, autoregressive multiple signal classification and a Welch filter.
The detection phase was carried out by a neural network classifier.
A maximum accuracy of 84.84% was reported, although the results
changed when principal component analysis was used, which gave
a maximum accuracy of 94.8%. According to the results, the pro-
posed method performed better than that of Yucelbas et al., [45]. A
second study reported by Yucelbas et al. [46], used an STFT artificial
neural network, EMD and DWT to detect sleep spindles in EEG sig-

nals. The average sensitivities in that study were 55.9%, 100% and
99.4%, respectively. In addition, an average specificity using those
method of 69.62%, 78.45% and 70.75% were reported. Our method
obtained a higher classification specificity. In summary, compar-
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Table 7
Performance comparison of the proposed method and other existing methods.

Author Method Accuracy Sensitivity Specificity F-score Kappa
coefficient

Imtiaz et al. (2013) Teager energy and spectral edge frequency 91% 80 98%
Patti et al. (2014) Gaussian mixture model – 74.9%. –
Gorur et al. (2002) Short-time Fourier transform with an SVM and

neural network
95.4%, 88.7% – – – –

Devuyst et al. (2011) Systematic assessment method – 70.20% 98.6% –
Tsanas et al.(2015) Continuous wavelet transform with Morlet

basis function
76% 92% – –

Nonclercq et al. (2013) Sleep spindle detection using amplitude-based
feature extraction

– 78.5 94.2 – –

Zhuang and Peng (2016) Sliding window-based probability estimation
method to detect sleep spindles

– 50.98% 99% 0.58

Parekh et al (2015) Optimization algorithm for the detection of
K-complex and sleep spindles

96.4% 70% 97.8% 0.70 0.67

Yucelbas et al. (2016) FFT, autoregressive multiple signal
classification and Welch filter to identify sleep
spindles

84.83% without
PCA
94.8% with PCA

– – – –

Yucelbas et al. (2016) STFT- artificial neural network, empirical mode
decomposition and DWT

–
–
–

55.9%, 100%
and 99.42%

69.6%
78.45%
70.75%

–
–

–
–

97.9% 98.5% 97.8% 0.71 0.90
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Table 8
Six-fold cross-validation using the four classifiers (MASS dataset).

Classifier Average accuracy STD

K-nearest neighbour 93.2% 2.3
C4.5 94% 1.9554
The proposed method Statistical features and wavelet Fourier
analysis

sons with previous studies shows that using WFA was effective
nd appropriate for the detection of sleep spindles in EEG signals.
t was also found that the window of 0.5 s gives better results than
.0 s. 1.0 s, 1.5 s and 0.25 s.

. Discussion

Sleep spindles are important transient events indicating sleep
tage 2 in EEG signals. In this study, a new technique is presented
or the detection of sleep spindles based on wavelet Fourier anal-
sis and statistical features, which gives better results compared
ith using Fourier and wavelet transforms, separately. Our find-

ngs show that not all the frequency bands obtained through the
avelet Fourier transform are useful in detecting sleep spindles.
s a result, only features from the ı, � , ˛, ˇ bands were used in

his research. Further investigations and discussions are as follows:

The wavelet decomposition level was determined based on the
accuracy of sleep spindles detection. At each level, the wavelet
coefficients were investigated by extracting the features men-
tioned in section 3.3. The extracted features were forwarded to
the LS-SVM classifier. The accuracy of the sleep spindles detec-
tion at each level was calculated against the bio-marks flagged by
the sleep experts. The accuracies were recorded and compared
with those from other wavelet levels. It was showed that D3 pro-
vided the best features vector to identify the sleep spindles. Fig.10
shows the accuracies of the sleep spindles detection against the
wavelet coefficients of D1-D5. From Fig. 10 it can be noticed that
the best detection accuracy of the sleep spindles was obtained
from D3.
The performance of the proposed method was also tested using
F-score and kappa coefficient measurements. These were com-
puted for each subject, and the average results were investigated.
The average F-scores and kappa coefficients for the proposed
method were 0.71 and 0.90, respectively. Based on the literature,
the results obtained for F-score and kappa coefficient provided
evidence that the proposed method has the potential to classify
sleep spindles and non-spindles in EEG signals.

In our experimental results, we used single-channel sleep EEG
signals. The execution time of the algorithm was recorded over
a one-hour period of EEG recordings, and the results showed
that the proposed method typically took an average of 165.36 s

75
k-means 94% 1.8602
LS-SVM 97.5% 1.5620

to process one hour of a single-channel EEG signal, beginning
with pre-processing the EEG signal and ending with the classi-
fication phase. In future work, we aim to detect sleep spindles
using multi-channel EEG signals.

4 The proposed method was also evaluated using Montreal archive
of sleep studies (MASS) dataset [32]. The same methodology in
section 2 was used in which D3 coefficients were also passed to
Fourier transform to obtain the desired features. The LS-SVM was
used as a classifier to categorize the extracted features. The fea-
ture set was divided into six subsets. The proposed method was
tested 6 times and all the obtained results were recorded. Fig. 11
shows the results obtained using the proposed method with
MASS database. It is clear that the proposed method achieved
quite similar results using to the Dream Sleep Spindles database.
An average accuracy, sensitivity and specificity of the proposed
method of 97.5%, 99.1% and 96.5% were obtained.

For further investigations, each group of the dataset (MASS)
was tested using 6 cross validation times. Table. 8 shows that the
average accuracy of all the classifiers exceeded 93%. In addition,
we can see that the maximum accuracy obtained by the LS-SVM
is 97%, while the minimum accuracy is 93%, which was from k-
nearest

5 The proposed method was conducted and tested with different
mother wavelet functions reported in Alyasseri et al., [5,6] such as
symlet, biorthogonal and coiflet functions. The proposed method
was also tested with sym 7, coif 3 and bior3.9 mother wavelets.
It was showed that Daubechies wavelet function at order 6 (db6)
provided better results than other functions. Fig. 12 shows the
comparison results among different wavelet functions. Based
on the results in Fig. 12, db6 produced the best performance
compared with other functions, in terms of accuracy, sensitiv-

ity and specificity. The finding shows that the second highest
accuracy, sensitivity and specificity were yielded by coif3 mother
wavelet. However, the performance of sym7 mother function
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Fig. 10. Accuracy of sleep spindles detection by LS-SVM vs. the decomposition level of wavelet coefficient.

Fig. 11. Performance of the proposed method using a window size of 0.5 s and MASS database.

hod u
Fig. 12. Performance of the proposed met

was recorded the lowest classification results. The experimental
results with the LS-SVM classifier show that using Daubechies
wavelet function at order of 6 (db6) is an effective method for
sleep spindles detection. It gave the best classification results
compared with those by sym7, bior3.9 and coif3 mother wavelet

functions. This properly is the reason why Daubechies wavelet
function is commonly used to detect and evaluate the transient
waves in EEG signals.

76
sing different wavelet functions database.

6 Finally, from Table 7, it can be seen that the performance results
obtained from this study are better than those from others. This is
the main advantage of the proposed method. The performance of
the proposed method depends on individual channel signals. We
found that it was hard to have high classification results when

it was applied to a different EEG channels such as the C3-A1.
However, one of the limitations of our proposed method is that
it does not perform well with the C3-A1 channel. Two recordings
from the C3-A1 channel were tested in this study. An average of
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78%, 85% and 74% were obtained for the accuracy, sensitivity and
specificity using the proposed method. The experimental results
show that the proposed method gives better results with the CZ-
A1 channel than with the C3-A1 channel.

. Conclusion

In this paper, an automatic sleep spindles detection method is
resented. The method applies the wavelet-Fourier analysis with
tatistical features to extract the important features from sleep EEG
ignals. In this process, the EEG signals were segmented into small
indows of 0.5 s with an overlapping of 0.4 s. Ten statistical fea-

ures were extracted from each window segment after applying a
avelet-Fourier transformation. The LS-SVM was used to classify

he sleep spindles using the extracted features. The performance
f the proposed method was evaluated using different measures of
ccuracy, sensitivity and specificity. The obtained results were also
ompared with the other existing methods. The evaluation results
how that the proposed method is the best among all the meth-
ds in terms of accuracy, sensitivity, specificity, F-score and kappa
oefficient. Furthermore, C4.5 decision tree, k-means and k-nearest
lassifier were also implemented for comparisons, and the results
ere compared with those by the LS-SVM.

In this study, it was found that the length of 0.5 s gives bet-
er results than 2.0 s. 1.0 s, 1.5 s and 0.25 s. The outcomes of this
tudy can help the physicians with diagnosing sleep disorders and
otentially it can reduce the medical costs. Future work will be
onducted to verify the possibility of using less number of features
nd a shorter window size in sleep spindles detection using EEG
ignals. In addition, we will apply the proposed method to identify
leep spindles by using multi-channel EEG signals.
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3.2 Chapter Summary 
 
Al-Salman et al. (2019) implemented an innovative method based on the wavelet-

Fourier analysis (WFA) with statistical features to extract the important features from 

sleep EEG signals. Ten statistical features were extracted from each 0.5 EEG segment 

after applying a WFA. Thereafter, the key features were forwarded to four classifiers: 

LS-SVM, C4.5 decision tree, k-means, and k-nearest to detect the sleep spindles. The 

experimental results revealed that the proposed feature extraction method combined 

with the LS-SVM classifier was capable of differentiating those sleep spindles with an 

excellent performance, compared to existing methods. Moreover, four other window 

sizes of 1.0s, 1.5s, and 2.0 s were also tested to assess the ability of the proposed 

method to identify the sleep spindles. It was also found that the window of 0.5s using 

the LS-SVM classifier gave better results than a window size of  2.0. 1.0, 1.5 and 0.25s. 

Thus, the proposed method was able to efficiently detect spindles in EEG signals, and 

could therefore assist sleep experts in analysing EEG signals. This method was 

therefore able to assist physicians in diagnosing sleep disorders quickly and efficiently 

and by speeding up the process of diagnosis, it could potentially reduce medical costs. 

Al-Salman et al. (2019) demonstrated that using the WFA method had the potential to 

improve the method of classification and to therefore detect sleep spindles with high 

rate of accuracy and a shorter execution time. 

This study will attempt to validate to further validate the robustness and generalization 

ability of the proposed methods, as presented in Chapter 3, and to investigate the 

efficacy of the proposed methods relative to other benchmark approaches., As a way 

of establishing these benefits, a comparison of the proposed methods to some of the 

more recently reported approaches (the recent state-of-the-art and advanced 

classifiers) in the literature will be undertaken.  Among those studies, for example, one 

by Kulkarni et al. (2019) developed a deep neural network framework integrated for 

online spindle detection (SpindleNet), where the bandpass filtered signal (9–16 Hz) 

and the power features were fused to distinguish spindles and non-spindles. An 

average sensitivity, specificity, and F1- score of 90.07%, 96.19%, and 0.75 on the 

MASS dataset respectively were achieved. A deep convolutional neural network was 

also used to a binary classification task of clinical relevance, namely detecting sleep 

spindles (Usai and Trappenberg, 2019; Chambon, et al., 2019; You et al., 2021; Loza  
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and Colgin , 2021; Lacourse et al., 2019). In their studies, the accuracy rate was not 

mentioned.   

 LaRocco et al., (2018) introduced a new framework (namely Spindler) for spindle 

detection enabled by parametric analysis. Matching studies with Gabor atoms were 

used to decompose the EEG signal and then the spindle was computed for each point 

in a fine grid of parameter values.  Spindler achieved the average F1-score of 0.57% 

and 0.67% on MASS-SS2 dataset. Using wavelet synchrosqueezed transform (SST) 

and random under-sampling boosting (RUSBoost) to identify sleep spindles in EEG 

signals, spindles can easily be detected. This method was firstly proposed by Kinoshita 

et al (2020). The proposed method used the SST for feature extraction and RUSBoost 

for the classifier construction. The performance of the proposed method was validated 

using an open-access database called the Montreal archive of sleep studies cohort 1 

(MASS-C1), which showed an F-measure of 0.70% with a sensitivity of 76.9% and a 

positive predictive value of 61.2%.  Based on the results in Chapter 3, it was found 

that the proposed technique outperformed the state-of-the-art works. 

To sum up, it can be concluded that the research in Chapter 3 has established a 

successful algorithm for reliable classification of sleep spindles in EEG signals. The 

research results in this Chapter indicate that the proposed method can assist 

neurologists and sleep specialists in diagnosing and monitoring sleep disorders. 

However, investigations using other techniques, such as fractal dimension and time-

frequency images, also improved the accuracy rate and reduced the execution time. 

The next chapter will discuss EEG sleep spindles detection based on fractal dimensions 

coupled with time-frequency image. 
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CHAPTER 4 

 

AN EFFICIENT APPROCH FOR EEG SLEEP 

SPINDLES DETECTION BASED ON FRACTAL 

DIMENSION (FD) COUPLED WITH TIME 

FREQUNCY IMAGE (TFI) 

 

4.1 Introduction 
 
In Chapter 3, the DWT and FFT techniques denoted as WFA and based on the LS-

SVM classifier were developed to detect sleep spindles in EEG signals. According to 

the results in Chapter 3, it was found that this combination of techniques yielded 

promising results to detect sleep spindles in EEG signals. In addition, those results 

observed that the sleep spindles exhibited nonlinear behaviours with high processing 

of execution time.  One of the most effective non-linear methods to identify sleep 

spindles, to improve the classification accuracy and to reduce the complexity time is 

the FDs algorithm coupled with TFI.  

In this chapter, the details presented here are an exact copy of a published paper in 

Journal of biomedical signal processing and control by Al-Salman et al. (2019). It 

proposes a robust extraction method to detect sleep spindles in EEG signals.  In this 

chapter, a new combination of the fractal dimension (FD) algorithm and time-

frequency image (TFI) is used to further improve the performance discussed in Al-

Salman et al. (2019). This chapter employs a short time Fourier transform (STFT) to 
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obtain TFI and then applies a box counting method to estimate  the FD of EEG signals  

and to extract the discriminative features from each TFI.  The extracted key features  

are evaluated by using four popular machine learning methods: a k-means, Naive 

Bayes, neural network and least square support vector machine.  Furthermore, the 

proposed method is evaluated using two publicly available databases: Dream sleep 

spindles and Montreal archive of sleep studies, and is also compared with several 

existing methods reported in the literature. The results of the evaluation revealed that 

the  proposed method outperformed the existing methods  and achieved a high 

classification accuracy, sensitivity, and specificity for sleep spindles with different 

channels.  Furthermore, processing required only a short execution time compared 

with the previous method. As a result, the classification rate and execution time were 

improved. 
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a b s t r a c t

Detection of the characteristics of the sleep stages, such as sleep spindles and K-complexes in EEG signals,
is a challenging task in sleep research as visually detecting them requires high skills and efforts from
sleep experts. In this paper, we propose a robust method based on time frequency image (TFI) and fractal
dimension (FD) to detect sleep spindles in EEG signals. The EEG signals are divided into segments using a
sliding window technique. The window size is set to 0.5 s with an overlapping of 0.4 s. A short time Fourier
transform (STFT) is applied to obtain a TFI from each EEG segment. Each TFI is converted into an 8-bit
binary image. Then, a box counting method is applied to estimate and discover the FDs of EEG signals.
Different sets of features are extracted from each TFI after applying a statistical model to the FD of each TFI.
The extracted statistical features are fed to a least square support vector machine (LS SVM) to figure out
the best combination of the features. As a result, the proposed method is found to have a high classification
rate with the eight features sets. To verify the effectiveness of the proposed method, different classifiers,

including a K-means, Naive Bayes and a neural network, are also employed. In this paper, the proposed
method is evaluated using two publically available datasets: Dream sleep spindles and Montreal archive
of sleep studies. The proposed method is compared with the current existing methods, and the results
revealed that the proposed method outperformed the others. An average accuracy of 98.6% and 97.1% is
obtained by the proposed method for the two datasets, respectively.

© 2017 Elsevier Ltd. All rights reserved.
. Introduction

Sleep scoring is a challenging task in sleep classification research
ue to the characteristics of the sleep stages vary [12,31,39].
ccording to the Rechtsaffen and Kales (R&K) guidelines [49], a
uman sleep cycle is divided into two main parts: the non-rapid
yes movements sleep (NREM) and rapid eyes movements sleep
REM), where the NREM includes four stages namely: Stage 1 (S1),
tage 2 (S2), Stage 3 (S3) and Stage 4 (S4).

The guidelines of the R&K have been modified by the American
cademy of Sleep Medicine (AASM) in 2002. The AASM presented a
ifferent version of sleep scoring [28] by which the NREM is reduced

o three stages, with S3 and S4 are combined into one stage as
low wave stage (SWS). Much clinical research have revealed that
ndividual sleep stages exhibit unique electroencephalogram (EEG)
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patterns and characteristics that reflect human states whether
he/she is awake or asleep. Those characteristics of sleep stages
reflect the changes in brain neurons and muscles at each sleep
stages [11]. Analyzing those brain waveforms is an important task
for neurologists to score and analyse EEG sleep signals [17,29].

Two of the important transiting bio-signal waveforms in sleep
stages are sleep spindles and k-complexes that are often used to
score sleep stages [28]. Sleep spindles are the most important tran-
sient events to detect sleep stage 2 in EEG signals. They are defined
as a series of distinct waves which are within a frequency range of
11–16 Hz with a minimum duration of 0.5 s (s) [60,28]. Some stud-
ies reported that, the minimum and maximum durations of sleep
spindles are 0.5 s and 3s, respectively [30,60,13], with an ampli-
tude from 5 �V to 25 �V [34]. The presence or absence of sleep
spindles in EEG sleep signals has a high impact on the memory con-
solidation of humans [35,42]. From EEG recordings, it is observed
that any change in the density of sleep spindles can result in some

sleep disorders, such as insomnia and schizophrenia and autism
[20,59]. Consequently, automatically detecting and analyzing sleep
spindles can help experts in diagnosing sleep disorders.
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Traditionally, the detection of sleep spindles mainly depends
n visual inspection that is carried out based on the knowledge of
linicians or sleep expert. The accuracy and reliability of the man-
al scoring are based on the experiences of experts. Visual scoring
f sleep spindles is very time consuming, subjective and prone
o errors due to there are typically thousands of sleep spindles
ccurred in each EEG recording [1]. Identifying sleep spindles in EEG
ignals visually requires high skills from experts. However, devel-
ping an automatic approach to identify those marked occurrences
n the sleep stages is an ongoing challenge.

Various attempts were made in identifying sleep spindles based
n Fourier, wavelet and hybrid transforms [16,27,54,26]. Machine
earning methods, such as support vector machines, neural net-

orks, and genetic algorithms, were also employed to classify the
xtracted features by those transformation techniques [2,3,38].
ücelbaş et al. [61] used a short time Fourier transform (STFT)
ombined with an artificial neural network to detect sleep spin-
les in EEG signals. The STFT was also used as a feature extractor by
a Costa et al. [14]. The extracted features were fed to a K-means
o recognize the segments of sleep spindles from non-sleep spin-
les segments. Estévez et al. [18] propounded a merge neural gas
odel with the STFT to analyse EEG signals. A maximum sensitiv-

ty of sleep spindles detection was 62.9%. Güneş et al. [24] utilized
he STFT to decompose an EEG signal. The most discriminating fea-
ures were extracted from the frequencies of interest. The extracted
eatures were forwarded to two machine learning methods: a sup-
ort vector machine and a multilayer perceptron to detect sleep
pindles.

Recently, many researchers reported the detection of sleep
pindles based on a matching pursuit and filtering techniques. Ven-
ouras et al. [58] utilized a bandpass filter with an artificial neural
etwork to detect sleep spindles. The obtained results in terms of
ensitivity and accuracy were reported. In that study, an average
f 87.5% accuracy was achieved. Żygierewicz et al. [66] presented a
atching pursuit method to detect sleep spindles. The maximum

ensitivity reported in that study was 90%. Schönwald et al. [52]
lso employed the matching pursuit to detect sleep spindles based
n the amplitude, frequency, and duration characteristics of the
ignals. An average of sensitivity and specificity of 80.6% and 81.2%
ere achieved, respectively.

According to the literature, we found that the fractal dimen-
ion has been proved to be an efficient approach to explore the
idden patterns in digital images and signals. It has been used to
nalyse EEG signals to trace the changes in EEG signals during dif-
erent sleep stages, and also was employed to recognize different
igital images patterns. Yang et al., [63] and Sourina et al. [56]
pplied a fractal dimension technique to analyse sleep stages in
EG signals. Ali et al. [7] also utilized a fractal dimension technique
or voice recognition. Furthermore, a time frequency image (TFI)
as been used to analyse different types of EEG signals, such as
EG sleep stages signals. Bajaj and Pachori [9] identified EEG sleep
tages based on time frequency images. Fu et al., in [22] used a time
requency image as a features extractor for epileptic seizures classi-
cation. Bajaj et al., [8] also classified alcoholic EEGs based on time

requency images.
Although the existing methods have achieved some good results

n sleep spindles detection, a considerable amount of further
mprovement on the existing methods are still in demand. In this
aper, the fractal dimension combined with time frequency images

s used to detect sleep spindles in EEG signals. Firstly, each EEG
ignal is partitioned into segments of 0.5s. Then, each segment is
ransformed into a time frequency image using a short time Fourier

ransform (STFT). Each TFI is converted into a binary image. The
ox counting technique is applied to each TFI and the statistical
eatures are extracted from the FD. Different set of statistical fea-
ures are extracted and tested from the FDs to figure out the best
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combination of features for detecting sleep spindles. Different clas-
sifiers are also used to validate the proposed method. The obtained
results showed that the proposed method achieved a high accuracy
for detecting sleep spindles in EEG signals.

The rest of this paper is organized as follows: Section 2 describes
the EEG datasets used. Section 3 presents the methodology of the
proposed method. The experimental results are explained in Sec-
tion 4. Finally the discussions, conclusions and future work are
provided in Section 5.

2. Experimental EEG data

In this study, two different datasets were used to evaluate the
proposed method for detecting sleep spindles in EEG signals. Those
databases that are publicly available are: the DREAMS datasets
(Devusty) [15] and Montreal Archive Sleep Studies (MASS) (O’Reilly
et al. [40]. The following section briefly explains the details of the
two datasets.

2.1. The dream sleep spindles dataset (Datsaet-1)

The EEG data sets used in this paper were collected through the
Dream Project at University of Mons-TCTS Laboratory (Devyust
et al.). The sleep EEG data sets were recorded from eight sub-
jects with various sleep diseases, such as dysomnia, restless
legs syndrome, insomnia, and apnea/hypopnea syndrome. The
subjects were aged between 30 and 55 years. The signals were
recorded in 30 min intervals during a whole night. The recorded
signals were scored, and the ending and starting time instances
of the sleep spindles were marked. Six of the EEG recordings
were sampled at 200 Hz, while the other two recordings were
sampled at 100 Hz and 50 Hz. Each EEG recoding included with
two EOG channels of P8-A1 and P18-A1, three EEG channels of
CZ-A1 or C3-A1, FP1-A and O1-A1, and one EMG channel. The
sleep spindles in the Dream database were detected manually
by two experts. The first expert scored all the eight recordings,
while the second expert annotated six recordings out of the eight
EEG recordings. In this study, the CZ-A1 channel and the EEG
recording sampled at 200 Hz were used. The subjects selected
were subject IDs 2, 4, 5, 6, 7 and 8. Table 1 shows the number
of the segments that were used in this research. The dataset
along with additional information is publicly available from:
http:\\www.tcts.fpms.ac.be/∼devuyst/Database/DatabaseSpindles

2.2. Montreal archive of sleep studies (Dataset-2)

The database was recorded from 19 subjects: 8 males and 11
females. The age of the subjects was between 30–55 years. The
EEG signals were recorded in 20 min intervals during a whole
night. The EEG signals were sampled at 256 Hz. Each EEG recording
included 19 EEG channels, four Electrooculography (EOG), elec-
tromyography (EMG) and Electrocardiography (ECG) channels. In
this database the visual scoring of sleep spindles were carried
out aslo by two experts. The first expert annotated 19 recordings,
including sleep spindles according to the AASM rules, while the sec-
ond only annotated 15 out of 19 recordings, including sleep spindles
according to the R&K criteria. In this study, the EEG scoring from six
subjects were chosen randomly. The subjects selected were subject
IDs 1, 2, 7, 9, 14 and 18. Table 2 shows the number of segments that
were used in this research. The datasets can be accessed through
http://www.ceams-carsm.ca/en/MASS. Tables 1 and 2 included five

columns: namely, subject ID, the number of segments with sleep
spindles, the number of all segments in all EEG signals, minimum
and maximum sleep spindles. The experiments were conducted
using Matlab software (Version: R2015) on a computer with the
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Table 1
The number of segments for each subject (Dataset-1).

Subject ID. No. of segments with sleep spindles No. of all segments in EEG signals Minimum Spindle Period (second) Maximum Spindle Period (second)

ID2 60 3599 0.5s 1.1s
ID4 44 1799 0.5s 1.8s
ID5 56 1219 0.5s 1.2s
ID6 72 2342 0.5s 1.5s
ID7 18 1869 0.5s 1.3s
ID8 48 4589 0.5s 1.9s
Total 298 15417 – –

Table 2
The number of segments for each subject (Dataset-2).

Subject ID. No. of segments with sleep spindles No. of all segments in EEG signals Minimum Spindle Period (second) Maximum Spindle Period (second)

ID1 1040 28958 0.5s 1.3s
ID2 1141 32360 0.5s 1.2s
ID7 905 20280 0.5s 1.1s
ID9 810 27600 0.5s 1.0s
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ID14 708 30320
ID18 1156 28640
Total 5760 168150

ollowing settings: 3.40 GHz Intel(R) core(TM) i7 CPU processor
achine, and 8 GB RAM.

. Methodology

In this study, an efficient technique to detect sleep spindles is
resented based on a short time Fourier transform (STFT) and the
riginal EEG signals are divided into segments by a sliding window
echnique. The size of the window is set to 0.5 s with an overlapping
f 0.4s. Then, each EEG segment is passed through the STFT to obtain
ts time frequency image (TFI). The obtained TFI is transformed into
n 8-bit binary image. Then, a box counting method is applied to
ach TFI to calculate the fractal dimension, as well as to extract
he features of interest. Eight statistical features are extracted from
ach FD of the TFI. The extracted features are used as the input
o different classifiers, including a LS SVM, K-means, Naive Bayes
nd a neural network. For further investigation, different features
ets, including two, four, six and eight features sets, from each TFI,
re tested. Comparisons are then made with the previous studies.
he obtained results showed that the proposed method provided
etter classification results than the other methods. Fig. 1 depicts
he methodology of the proposed method.

.1. Segmentation

In this paper, a sliding window is used to segment the EEG
ignals into small intervals. A window size of 0.5 s is empirically
elected and used to separate EEG signals with an overlapping of
.4s. Different window sizes are tested and applied in order to figure
ut the best window size. The obtained results from the proposed
cheme revealed that a window of 0.5 s gives better results than
ther window sizes. Fig. 2 shows an EEG signal being divided into
egments with an overlapping of 0.4s.

.2. Spectrogram

The main formula of the STFT is defined as [8,9]:

∞∑

(n,ω) =

m=−∞
x [m]w [n−m] e−jwn (1)

here x [m]w [n−m] is a short time of signal X at time n.

85
0.5s 1.6s
0.5s 1.2s
– –

The discrete STFT can be formulated as

X (n, k) = X (n,ω) |ω = 2�k
N

(2)

where N refers to the number of discrete frequencies.
Before calculating the Fourier transform, the centered function

w = [m] at time n was multiplied with signal X. The Fourier trans-
form is an estimate at time n, and the window function of signal
X is considered close to time n. To obtain the STFT, a fixed pos-
itive function was used, which is denoted asw [m]. However, the
spectrogram can be formulated as:

S (n, k) = |X (n,ω) |2 (3)

An EEG signal is transformed into time frequency domain. Then,
the spectrogram of the STFT is applied to obtain the time frequency
images (TFIs) of the EEG signals. The STFT spectrogram is defined
as the normalized and squared magnitude of the STFT coefficients.

The STFT coefficients are obtained using a sliding window in
time domain in order to divide the signals into smaller blocks. Each
block is then analyzed using Fourier transform to determine their
frequencies. Thus a time varying spectrum can be obtained. Based
on Eqs. (1) and (2), the spectrogram of the signal can be calculated
from the square of the discrete STFT.

Based on the literature, it is found that the spectrogram is an
effective approach to analyse non-stationary and periodic signals.
In this paper, the spectrogram is applied to each EEG segment to
obtain the TFIs.

3.3. Fractal dimension based on box counting method (BCM)

Fractal is a scale which is used to represent a geometric pattern
that cannot be represented by a classical geometry. It allows to
measure the degree of complexity of an object. Based on fractal
concept, each figure is presented using a series of fragments that
each one can be represented as a figure. Those fragmented parts
can be used to reflect the original image. There are some criteria
used to define the fractal:

(1) Fractal is a simple structure with small scales.
(2) Fractal cannot be described using the traditional Euclidean

geometry.
One of the main fractal features is that it possesses scaling prop-
erties. By using a fractal, an one-dimension object can be segmented
into n equal parts. Each part can be scaled down by a ratio of r = 1

n .
Another example is for two-dimensional objects. For example,

a square area in a plane, which can be separated into n self-similar



W. Al-salman et al. / Biomedical Signal Processing and Control 41 (2018) 210–221 213

Fig. 1. The methodology of the proposed method for sleep spindles detection.
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Fig. 2. An example of segme

arts, with each one scaled by a factor of r = 1√
n

. Further, a solid
ube is an example of three-dimensional objects, which could also
e partitioned into n little cubes with each one is scaled down by
ratio of r = 1

3√n
. D-dimensional self-similar objects are, therefore,

caled down by a factor of r = 1
D√N

. They can be partitioned into n

maller parts, with each one is scaled down by a factor of r = 1
D√N

.

As a result, a self-similar object of N parts can be scaled by a ratio
from the whole. Its fractal or similarity dimension is given by:

= Log (N)(
1
) (4)
Log r

The fractal dimension is normally not an integer number. For
xample, von Koch curve is constructed from four sub-segments.
ach one is scaled down by a factor of 1

3 . By applying the above

86
an EEG signal into windows.

equation, the fractal is equal to 1.26. The obtained results are often
a non-integer value that is greater than one and less than two.

Extracting features from images is a common step that is used in
various image applications, by which the important features, such
as texture and color features can be pulled out. A fractal dimension
(FD) technique is one of the powerful methods to extract the hid-
den patterns in images [45]. It is commonly used to explore the
key patterns in biomedical signals and images [37]. It has been
used to analyse and classify EEGs, EMG and ECG [62,21,32]. The
term of fractal dimension refers to any fractal characteristics, such
as information dimensions, capacity dimensions and correlation

dimensions [47]. In this paper, the capacity dimensions are used.

A box counting algorithm is one of the fractal dimension meth-
ods, which is used to obtain the FD of an image or a signal [50,61]. In
this paper, the box counting algorithm is used to estimate the FD of
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Table 3
The numbers of non-empty grid (box size) in ten scale.

Box size ı 1 2 4 8 16 32 64 128 256 512 1024

No. of box N
(

ı
)

435823 110918 28205 7321 1973 571 166 42 12 4 1

Log(1/�) 0 0.30102 0.60205 0.90308 1.20411

logN
(

ı
)

5.6393 5.04500 4.45032 3.8645 3.29512
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ig. 3. An illustration of the box counting algorithm to create the size (ı) and the
umbers of boxes Nı .

TFI to detect sleep spindles in EEG signals. Each TFI is converted
nto a gray scale image. Each gray scale image is then translated
nto a binary image before applying the box counting algorithm.

To convert a grayscale image into a binary image, a predefined
hreshold value (ı) is used based on the following equation.

m (p(i))> ı→ 1; Im (p(i))< ı→ 0 (5)

here Im is an image,p (i) refers to the ith pixel, andı is a predefined
hreshold. Each pixel value is set to 0 or 1, based on Eq. (5). If the
ixel value is greater than or equal to the threshold, then the pixel

s set to 1, otherwise 0.
The main concept of the box counting method can be described

s follows: assume X is a TFI, and we need to determine the FD of
. The following equation is used [60,45].

ˇ = lim
ı→0
logN(ı)/log(1/ı) (6)

here Dˇ is a fractal dimension,N
(
ı
)

is the total number of boxes,
nd ı is the size of boxes that is required to cover image X. In order
o cover the entire TFI in this paper, different sizes of boxes are
ested and N

(
ı
)

and ı are determined. For example, to estimate
he FD of a TFI, firstly, the TFI is normalized by rescaling it from the
ize of n x n to the size of m x m. We use an image scaling technique
alled nearest neighbour to rescale the TFIs. A TFI is converted from
ne resolution/dimension to another one without losing the visual
ontent. Nearest neighbour is one of the fastest and simplest forms
f rescaling techniques. During enlarging (upscaling), the empty
paces will be replaced with the nearest neighbouring pixels. For
hrinking, the pixel sizes are reduced. One of the TFIs is used as a
eference image or a base image to construct a new scaled image.
his new rescaled image is used to rescale other IFIs. The number
f the boxes that are required to cover a TFI and the size of each
ox are then investigated. That means at each iteration, a different
umber of boxes with different sizes of boxes are tested until the

alues of ı and N are decided. Fig. 3 shows an example of how to
reate the size and the number of boxes using the box counting
lgorithm. By using Eq. (6), the fractal of each TFI can be obtained
rom a slope of the least square fit of logN

(
ı
)
= versus− log

(
1/ı

)
.
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1.50514 1.80617 2.10720 2.40823 2.70926 3.01029

2.75663 2.22201 1.62324 1.07918 0.60206 0

Table 3 shows the number of the boxes that are required to cover
the entire TFI by which the FD can be estimated.

If the box size � is 32 and the number of boxes that are required
to cover the curve is 571, based on the equation , logN

(
ı
)
=

versus− log
(

1/ı
)

, the fractal value for the sixth features (FD6) is
equal to 1.788. The same procedure is applied to get all the fea-
tures. The fractal dimension values are between 1 and 2 and all the
FD values are non-integer.

3.4. Extracted features

As mentioned before in Section 3.3, the FD is calculated after
transferring an EEG signal into a TFI using the STFT. The obtained
result of the TFI is converted into an 8-bit binary image. To
extract the features from each image, the box-counting algorithm is
applied to each TFI and a set of statistical features are then extracted
based on the fractal estimation values. Each element in the frac-
tal dimension features is computed using Eq. (6) and the fractal is
obtained based on the slope of least square best straight line. Ten
fractal dimension features are extracted from each TFI, and they are
denoted as FD = {FD1, FD2, FD3 . . . FD10}, where the number of the
features corresponding to the number of iterations used to cover
each TFI. Different numbers of boxes with different sizes of boxes
are tested until an optimal number of boxes is obtained to cover
the whole TFI. At each iteration, a fractal feature is extracted. The
procedure is repeated 10 times in this paper when the maximum
number of boxes to cover the whole TFI is reached. As a result, 10
features are extracted. A statistical model is then used to extract
the statistical characteristics of the fractal dimension features and
the number of the features is reduced to eight [63].

Different combinations of these statistical features including
two, four, six and eight features sets, are tested in this paper to find
out the best combination to represent each TFI. Table 4 presents
the formulae of the eight statistical features.

• Fmean = mean (FD)
• Fmax = max (FD)
• Fmeadin = median (FD)
• FSD = standard deviation (FD)
• Fmin = min (FD)
• FSk = skewness (FD)
• Frang = Range (FD)
• Fku = kurtosis (FD)

Where N is the length of FD, m is the mean of the FD [16,34,53].

3.5. Classifiers

To evaluate the performance of the proposed method to detect
sleep spindles in EEG signals, different classification methods are
used and tested. The features extracted from each TFI are used as
the input to the LS SVM as well as to a K-means, Naïve Bayes and
neural network classifiers. The used classifiers are briefly discussed
in this section.
3.5.1. Least square support vector machine (LS SVM)
The LS SVM is a robust method for signals regression and classi-

fication. It is a popular classifier due to its high accuracy and with a
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Table 4
Definitions of the statistical features.

No. Features name Formula No. Features name Formula

1 mean (FD) Fmean = 1
N

N∑
n=1

FDn 5 standarddeviation (FD) FSD =

√
n∑
n=1

(FDn −m)
2
n−1

2 max (FD) Fmax = max[FDn] 6 Range (FD) Frang = Fmax−Fmin

3 min (FD) Fmin = min [FDn] 7 skewness (FD) FSk=

N∑
n=1

(FDn −m) 3
(N−1)SD3
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4 median (FD) Fmeadin =
(
N+1

2

)th

inimum execution time. Many researchers have used the LS SVM
n EEG signals classification. It was used by Suily et al. [55] for the

otor image classification, also by Al Ghayab et al. [6] for detecting
he epileptic EEG signals.

The LS SVM depends on two hyper parameters,� and�. The two
arameters can positively or negatively affect the performance of
he proposed method. It is necessary to choose those parameters
arefully in order to obtain the desired classification results. In this
tudy, the radial basis function (RBF) kernel was used, and the opti-
um values for � and � are set to � = 10 and � = 0.5, selected during

he training session.

.5.2. K-means
The K-means is widely used to classify data in various fields,

uch as biomedical signals, digital images and time series classifi-
ation. It is generally known as a clustering algorithm [41,19]. The
rchitecture of this classifier depends on dividing data into groups
ccording to their similarities or differences among their elements.
he K-means identifies the cluster center and other elements by
educing the squared errors based on an objective function. The
ain objective of using a clustering algorithm is, firstly, to iden-

ify the cluster center. Secondly, it associates each element which
as the same characteristics with the nearest cluster center. In this
aper, K-means is used to distinguish between sleep spindles and
on spindles segments.

.5.3. Neural network
The backpropagation algorithm of a neural network is a super-

ised learning algorithm. It is commonly used in classification
esearch [10]. It was used by Bishop et al. [25] to classify k-
omplexes in sleep EEG signals. The connection weights in each
teration are updated. The architecture of a typical neural network
onsists of three layers, namely, an input layer, a hidden layer and
he output layer. The input layer is fed with the input features. The
econd layer is a hidden layer. It has five neurons with an activation
unction of y (x) = 1/ (1+ e−�x). The number of the hidden layer and
eurons are determined empirically. The value of � is set to 1. The
umber of iterations is set to 1000, the target error is set to 10e-5.
he learning rate is set to 0.05.

.5.4. Naïve bayes (NB)
Naïve Bayes is an efficient and effective technique for classifica-

ion and it is commonly used in pattern recognition. It works based
n the applications of Bayes’ rules and posterior hypothesis. The
aïve Bayes assumes that each attribute influences differently on a
iven class. It has received a great attention from many researchers
s it is simple and fast [4]. Puntumapon et al. [46] used a naïve clas-

ifier for classifying cellular phone mobility. Rakshit et al. [48] also
mployed this classifier to classify left and right movement pat-
erns in EEG signals. In this paper, Naïve Bayes is also employed to
etect sleep spindles.

88
kurtosis (FD) Fku =
n=1

(FDn −m) 4
(N−1)SD4

3.6. Performance evaluation

The accuracy, sensitivity and specificity measurements are used
to evaluate the performance of the proposed method to detect sleep
spindles [64,51,65]. The main formulas of those statistical measure-
ments are defined as.

Sensitivity (SEN) or true positive rate: It is used to estimate
the performance of the classification method by measuring the
proportion of the actual positive predication. It is defined as:

Sensitivity (SEN) = TP

TP + FN (7)

where TP (true positive) means the actual sleep spindle waves that
are correctly detected using the proposed method, FN (false neg-
ative) shows the actual sleep spindles that are incorrectly marked
as non-sleep spindles.

Accuracy: it refers to the number of correctly classified cases. It
is calculated by dividing the aggregating of classification results by
the number of cases. The accuracy is defined as:

Accuracy (ACC) = TP + TN
Total number of the cases

(8)

where TN (true negative) is the actual non-sleep spindles that are
correctly classified using the proposed method as non-sleep spin-
dles

Specificity: it is used to calculate the proportion of the actual
negative predication. It is defined as.

Specificity (SPE) = TN

TN + FP (9)

where FP (false positive) refers to the number of sleep spindles that
are incorrectly determined by the proposed method.

F-score: it is one of the most important measurements that are
used to show the overlapping between the sets of true sleep spin-
dles and the found sleep spindles by using the proposed method.
F-score is defined as a harmonic mean of precision (PPV) and recall
(TPR):

F − Score = 2x
(PPV.TPR)
PPV + TPR (10)

where PPV is precision or positive predictive value that is calculated
as

Precision (PPV) = TP

TP + FP (11)

Kappa coefficient: it measures the performance agreement
between two models. It is defined as.
Cohen′s Kappa Coefficient (k) = pr (a)− pr (e)
1− pr (e)

(12)

where pr(a) and pr(e) represent the actual agreement and chance
agreement respectively.
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Table 5
The performance of the proposed method based on two features set.

Dataset-1 Dataset-2

Fold sensitivity% specificity% accuracy% sensitivity% specificity% accuracy%

Fold1 73 75 78 39.2 87.6 81.9
Fold2 76 72 74 55 85 79
Fold3 74 76 76 77 81 77
Fold4 75.5 74 77 60 80 81
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Fold5 72 73 75
Fold6 76 75 76.
average 74.41 74.16 76.

K-cross-validation: It is a popular measure to assess the clas-
ification accuracy. It is used to describe the performance of the
roposed method. The dataset is divided into k equal subsets. One
f them is used as the testing set, while the rest subsets are used as
he training set. All the subsets are tested. The testing classification
ccuracy for all the subsets are calculated and recorded.

In this paper, k = 6 (6-cross-validation) is used. Therefore, the
verage accuracy is computed as below.

erformance = 1
6

6∑
1

accuracy(R) (13)

here accuracy(R) is the accuracy for the 6 iterations.
Receiver Operating Characteristics (ROC): The ROC curve is

suitable metric in studying the dependency of sensitivity and
pecificity. The relationships among true positive rate, false neg-
tive rate, false positive rate and true negative were investigated
n this paper using the ROC. The ROC curve represents by a graph
n which the false positive rate is plotted on the x-axis while the
rue positive rate is plotted on the y-axis. The left lower point (0,
) indicts the method dose not commit false positive errors and
ose not obtain true positive rate, while the upper right point (1,
) represents the opposite strategy. The perfect point in the ROC is
epresented by the point (0, 1).

. Experimental results

In this study, the proposed method is developed to detect sleep
pindles based on fractal dimension and time frequency image. All
he experiments were conducted with the databases discussed in
ection 2. The EEG signals were divided into segments using a slid-
ng window technique. The size of the window was set to 0.5 s

ith an overlapping of 0.4s. Then, the EEG signal was, firstly, con-
erted to a TFI using a STFT. Each TFI was converted into an 8-bit
inary image. The fractal dimension based on the box-counting
ethod was used to extract the desired features from each TFI.

he obtained results showed that the extracted features using the

ox counting algorithm yielded accurate results. The experiments
ere conducted using Matlab software (Version: R2015) on a com-
uter with the following settings: 3.40 GHz Intel(R) core(TM) i7 CPU
rocessor machine, and 8 GB RAM.

able 6
he performance of the proposed method based on four features set.

Dataset-1

Fold sensitivity% specificity% accuracy%

Fold1 84 86 89
Fold2 81 84 88
Fold3 83 82.6 84.6
Fold4 80.5 84 85
Fold5 83 85.5 84
Fold6 82 87 86
average 82.25 84.85 86.1

89
76 83 80
72 79 75
63.2 82.6 78.9

The number of square boxes that were required to cover the
entire curve is investigated in this paper. Eight statistical features
were extracted after obtaining the FDs based on the box-counting
method. Those features were considered as the key features, and
were then forwarded to different classifiers of LS SVM, K-means,
Nave Bayes and a neural network. For further investigation and to
evaluate the performance of the proposed method, different sets of
features, including two, four, six and eight features, were used to
detect sleep spindles. The results were discussed in the next section.
According to the experimental results, the proposed method with
eight features achieved high classification results, with an average
accuracy of 98.6% for Dataset-1, and 97% for Dataset-2.

4.1. Two features set

Two features {Fmean,Fmax} were tested to detect sleep spindles
in EEG signals. In this case four boxes of size 512 were considered in
this experiment to extract the FDs. Each TFI was presented as a vec-
tor of two statistical features. According to the obtained results, two
features set was not good enough to distinguish the sleep spindles
with an acceptable accuracy. Table 5 reports the obtained results
in term of accuracy, sensitivity and specificity in each fold based on
the two features for the both datasets. The 6-cross validation was
used in this paper. An average accuracy, sensitivity and specificity
of 76%, 74.4% and 74.1% for Dataset-1, while the average accuracy,
sensitivity and specificity of 78.9%, 63.2% and 82.6% for Dataset-2
were recorded. To obtain a higher accuracy, the number of features
was increased to four features in the next experiment.

4.2. Four features set

Four features were also investigated. The four features of
{Fmean,Fmax, Fmeadin, FSD}were extracted from the FDs of each TFI. In
this experiment, 64 boxes of size 128 were considered to extract the
estimates of the fractal dimensions for each TFI. The accuracy, sensi-
tivity and specificity were increased by about 7% when the number
of features was increased to four. Table 6 shows the obtained results

for the both datasets.

We can notice that there are differences in the results when
the number of features was increased. Because the box size and
the number of boxes used to extract the FDs were covered most

Dataset-2

sensitivity% specificity% accuracy%

65.5 98.2 88
75 90 86
79 89 84
81 91 87
76 86 85
72 84 84
74.75 89.7 85.6
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Table 7
The performance of the proposed method based on six features set.

Dataset-1 Dataset-2

Fold sensitivity% specificity% accuracy% sensitivity% specificity% accuracy%

Fold1 96 96 99 79.6 97.8 90.6
Fold2 95 98 95 74 92 91
Fold3 94.5 94 97 69 96 97
Fold4 97 95 96 80 97 93
Fold5 94 97 97 79 94 91
Fold6 93 98 99 78 96 90
average 94.9 96.3 97 76.6 95.4 92.1

Table 8
The performance of the proposed method based on eight features set.

Dataset-1 Dataset-2

Fold sensitivity% specificity% accuracy% sensitivity% specificity% accuracy%

Fold1 97 97.6 99 93.7 99 98.1
Fold2 95 96 98 92 95 98
Fold3 96 97.5 99 96 97 97
Fold4 96 99 98.7 97 98 95

99 99 99
95 94 96

6 95.4 97 97.1

o
p
s
8
s
r
r
e
s

4

F
T
t
s
w
8
{
t
t
t
t
T
t
r
e
o
t
w
s
F
r
t
u
h
s

b
t

Fig. 4. The accuracy, sensitivity and specificity percentages with the number of the
features for Dateset-1.

Fig. 5. The accuracy, sensitivity and specificity percentage with the number of the
features for Dateset-2.
Fold5 98 98 99
Fold6 99 97 98
average 96.8 97.5 98.

f the image region. Also, the proposed method provides a better
erformance by using the four features. The average accuracy, sen-
itivity and specificity of the proposed method with Dataset-1 is
6.1%, 82.25% and 84.85%, respectively. The average accuracy, sen-
itivity and specificity of 85.6%, 74.5% and 89.7% for Dataset-2 were
ecorded. Our finding showed that there were no big differences in
esults when the proposed method was evaluated with two differ-
nt datasets. It is clear that, the proposed method achieved quite
imilar results using two different channels.

.3. Six and eight features

In this case, a vector of six features including {Fmean,Fmax, Fmeadin,
SD, Fmin, FSk} were extracted and used to detect sleep spindles.
able 6 shows the performance of the proposed method based on
he six features with the both datasets. The experimental results
howed that the classification performance by the six features set
ere better than that by the four features set with an increase of

%. The proposed method was also tested with eight features of
Fmean,Fmax, Fmedian, FSD, Fmin, FSk, Frang, Fku}. It was noticed that
he accuracy, sensitivity and specificity were slightly increased, but
here were no big differences between using the six or eight fea-
ures set. The performance results based on the eight features set by
he proposed method with two datasets are presented in Table 8.
ables 7 and 8 show that the six and eight features sets using
he two datasets yielded quite similar results. From the obtained
esults, it is clear that increasing the number of the features to
ight can increase the performance of detecting sleep spindles. The
btained results demonstrated that the proposed method yielded
he best performance with an average accuracy of 98.6% and 97.1%
ith Dataset-1 and Dataset-2, respectively. Figs. 4 and 5 demon-

trate the classification accuracy against the number of the features.
rom Fig. 4 one can notice that the proposed scheme achieves better
esults with an average accuracy of 98% using six and eight fea-
ures with Dataset-1. Fig. 5 shows the average accuracy of 97.1%
sing Dataset-2. The above results show that the proposed method
as potentials to classify EEG signals for sleep spindles and non-

pindles segments.

Fig. 6 presents the classification accuracy based on the num-
er of the features for the both datasets. From Fig. 6, it was found
hat the eight features set yielded the best accuracy with the both Fig. 6. Classification accuracy based on the number of the features.

90
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Table 9
The performance of the proposed method based on F-score and Kappa coefficient.

Type of Database Measurements

F-score Kappa coefficient
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5.3. Comparison with histogram representation
Dataset-1 0.95 0.87
Dataset-2 0.89 0.83

atabases when compared to the results with another features,
ncluding two, four, six and eight features sets. It was observed
hat there were relationships between the number of the features
nd the accuracy. Based on the above results, the proposed method
btained an average of 98.6% and 97.1% accuracy with eight features
et for the two datasets, separately.

For further evaluation, the performance of the proposed scheme
ere also tested using different metrics, including F-score and

appa coefficient. Table 9 reports the average of measurements for
he both datasets. The averages of F-score and kappa coefficient
ere 0.95% and 0.87% for Dataset-1, while the average of F-score

nd kappa coefficient were 0.89 and 0.83 for Dataset-2. All the
esults in Tables 5–9 were carried out using the LS SVM classifier.

. Comparison of study

To evaluate the proposed method, extensive experiments were
onducted to detect sleep spindles in EEG signals. The extracted
eatures were fed into the LS SVM as well as to the neural net-
ork (NN), Naïve Bayes and K-means to evaluate the performance

f the proposed method. We also compared the performance of the
roposed method with other existing studies that used the same
atasets as described in Section 2. Finally, the complexity time was
omputed to evaluate the speed of the proposed method in sleep
pindles detection.

.1. Comparison with different classifiers

In this section, the performance of the proposed method was
ompared using accuracy, sensitivity, specificity and F-score with
ifferent classifiers, including the LS SVM, the NN, K-means and
aïve Bayes. Fig. 7 presents the results of the comparisons. Differ-
nt numbers of segments were selected randomly from the two
atasets. The eight statistical features set was considered in the
omparisons.

Based on the obtained results in Fig. 7, the proposed method
chieved better results with LS SVM than the other classifiers. One
an see that the best accuracy is 98.6% by the LS SVM. Furthermore,
he sensitivity and specificity with the same classifier are 96.8% and

7.5%, respectively. The second highest accuracy, sensitivity and
pecificity 94.6%, 93% and 94%, respectively, were recorded with K-
eans classifier. For further investigation in terms of the efficiency

f the proposed method, F-score was assessed for all the classi-

ig. 7. The performance of the proposed method based on different classifiers.

91
Fig. 8. The ROC curves for the four classifiers.

fiers. The proposed method with the LS SVM classifier yielded the
highest F-score value as 0.95.

The evaluation results for all the classifiers were supported by
using Receiver Operating Characteristics (ROC) curve. From Fig. 8, it
is clear that the biggest area under the ROC curve was constructed
by LS SVM. The second best results was obtained with K-means
classifier, and the area under the ROC curve for artificial neural net-
work was generally lower than other classifiers. The results of the
area under the curve of 0.98 reported were from LS SVM classifier.
From those results, it was evidence that the LS SVM was the best
classifier for detecting sleep spindles in EEG signals.

5.2. Performance evaluation based on time complexity

Comparisons in terms of the time complexity were made for the
both datasets. Fig. 9 shows the results of the comparisons based on
the number of segments and complexity time for each classifier.
Different numbers of segments were used to compare our proposed
method using those classifiers. All the segments were randomly
selected from the both datasets. According to the results, the per-
formance of the proposed method with the LS SVM is better than
those by other classifiers. The minimum time execution of the pro-
posed methods with the LS SVM was 0.41second(s) when dealing
with 100 segments. In addition, one can see that the time slightly
increased when the number of the segments was between 200 and
500. On the other hand, the maximum time of the proposed method
increased to a record of 10.0 s with 1500 segments. From Fig. 9, it
is clear that the longest time was consumed by the NN classifier.
Form the literature, the previous studies that used a time fre-
quency image to extract features from EEG signals were developed

Fig. 9. Time complexity comparisons with different numbers of segments from the
both datasets.
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ig. 10. Comparison of the performance of the proposed method based on histogram
nd fractal dimension features.

ased on analyzing the characteristics of histograms. The charac-
eristics of the TFI histograms were used by Bajaj and Pachori [9] to
dentify EEG sleep stages and to classify alcoholic EEG signals. They

ere also used by Fu et al. in [22] to detect epileptic seizures in
EG signals. In this paper, the characteristics of the TFI histograms
ere also investigated. The obtained results were compared with

hose by the fractal dimension technique. In this experiment, the
istogram features were extracted from each TFI and the per-

ormance of the proposed method was evaluated in terms of
ccuracy, sensitivity and specificity. All experiments were made
ith the both datasets. Eight statistical features of {Fmean,Fmax,

, FSD, F , F , Frang, F } were extracted from each TFI his-
median min Sk ku
ogram. The extracted features were fed to the LS SVM. From Fig. 10,
e can notice that the maximum accuracy, sensitivity and speci-
city obtained by the histogram dimensional features were 65%,

able 10
he performance comparisons of the proposed method with other existing methods.

Authors Method ACC (%) SEN (%

Nonclercq et al. Sleep spindles detection using
amplitude based features
extraction

– –

Imtiaz et al. Teager energy and spectral edge
frequency

91 80

Devuyst et al. a systematic assessment method – 80.3
Imtiaz et al. Line length – 83.6
Kuriakose, et al. Transformation coefficients as

known Karhunen-level
transform

– 86.9

Gorur et al. a short time Fourier transform
with a SVM and neural network

95.4 88

Ahmed et al. Wavelets packets Energy Ratio
and Teager Energy Operator

93.7 –

Tsanas et al. Continuous wavelet transform
with Morlet basis function

76

Patti et al. Gaussian mixture model – 74.9
Zhuang and Peng Utilize a sliding window- based

probability estimation method
50

Patti et al Random Forest classifier 71.2
Yucelbas et al. Fast Fourier transform,

autoregressive, multiple signal
classification and Welch filter

84 without
PCA

Yucelbas et al. Fast Fourier transform,
autoregressive, multiple signal
classification and Welch filter

94with PCA –

Parekh et al Optimization algorithm for the
detection k-complex and sleep
spindles.

96 71

Saifutdinova et al. used an empirical mode
decomposition to detect sleep
spindles in EEG signals

– –

Proposed method Time frequency image based on
fractal dimension

98.6 96.8

Proposed method Time frequency image based on
fractal dimension

97.1 95.4

here ACC = accuracy, SEN = sensitivity, SPE = specificity, KA = kappa coefficient, WE = win
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48% and 93%. It is clear that the obtained results are lower than
those obtained by fractal dimension. Based on the results, extracted
features from TFIs using the box counting method achieved high
classification rates than the histogram features.

5.4. Comparison with the existing methods

To evaluate the performance of the proposed methods, the com-
parisons with other existing algorithms were made. All the selected
studies were conducted using the same databases as described in
Section 2. Table 10 shows the comparisons among the proposed
method and those from Nonclercq et al. [36], Imtiaz et al. [30], Patti
et al. [43], Ahmed et al. [5], Gorur et al. [23] and Devuyst, S., et al.
[15], Kuriakose, et al. [33], Zhuang and Peng [65], Patti et al. [44] and
Yucelbas et al. [64]. Those studies were conducted using Dataset-
1. The proposed method was also compared with some studies in
which Dataset-2 was used. The comparison studies were made by
Tsanas et al. [57], Saifutdinova et al. [51] and Patti et al. [44]. Based
on the results in Table 10, the proposed method yields the best
results comparing with the others.

Nonclercq et al. [36] used a 0.5 s window size with an over-
lapping 125 ms. The maximum sensitivity and specificity in that
study were 75.1% and 94%, respectively. The obtained results using
the proposed methods were better than those by Nonclercq et al.
[36]. Another study was presented by Devuyst, et al. [15]. The used
maximum sensitivity and specificity achieved were 70.20% and
98%, respectively. We can observe that the proposed method per-
formed better than those by Devuyst, S., et al. [15].

) SPE (%) F-score(%) KA(%) WS (s) OVR (s) DB

94 – – 0.5 0.25 DB-1

96 – – 0.25 50 DB-1

97.6 – – 0.5 – DB-1
87.9 – – 1.0 50 DB-1
93.5 – – 0.5 – DB-1

.7 – – – 0.5 – DB-1

– – – 1.28 – DB-1

92 0.46 0.66 1.0 – DB-2
DB-1

– – – 1.5 – DB-1
99 0.58 1.0 50 DB-1

96.73 – – – – DB-2
Private

– – – – – Private

96 0.69 0.67 1.0 75 DB-1

– 0.40 – – – DB-2

98.2 0.95 0.87 0.5 0.4 DB-1

97 0.89 0.83 0.5 0.4 DB-2

dow size, OVR = an overlapping, s=second and DB = dataset.
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Imtiaz et al. [30] reported a Teager energy and spectral edge
requency method to detect sleep spindles. In this study, a window
ize of 0.25 s with an overlapping of 50% was considered, and over
1% of sleep spindles were detected correctly. However, the pro-
osed method archived a 98.6% accuracy, higher than the method
y Imtiaz et al. [30].

Patti et al. [43] used a Gaussian mixture model to identify sleep
pindles in EEG signals. A window size of 1.5 s without overlap-
ing was employed. Four features were extracted and forwarded
o a classifier to detect sleep spindles. An average sensitivity of
4.9% was reported. In comparison, the proposed method achieved
ore than 96.8% sensitivity with a 0.5 window size. Most recently,
hmed et al. [5] introduced a wavelet packet transform and Teager
nergy operator algorithm for detecting sleep spindles. A window
f 1.28 s without overlapping was considered. From the results in
able 9, we can see that the proposed method yielded a better
lassification accuracy, comparing to those by Patti et al. [43] and
hmed et al., [5].

Gorur et al. [23] used a short time Fourier transform to dis-
inguish EEG sleep spindles. They used the same window size of
.5 s without overlapping. In that study, the maximum average of
ensitivity using the SVM and the NN was 95.4% and 88.7%, respec-
ively. According to the results, one can see that the sensitivity of
6.8% by the proposed method is higher than those by Gorur et al.
23]. Another study presented by Zhuang and Peng [64], in which
he sleep spindles were detected based on a sliding window-based
robability estimation method. An EEG signal was passed through
Mexican hat wavelet transform. A set of wavelet coefficients were
mployed. A window size of 1.0 s with an overlapping of 50% was
sed in that study. An average 50.98% sensitivity and 99% specificity
ere reported. Although the average specificity in that study was
igher than our proposed method, but we achieved the highest sen-
itivity and accuracy of 96.5% and 97.9%, respectively, comparing
ith those by Zhuang and Peng [64].

Tsanas et al. [57] detected sleep spindles based on a continu-
us wavelet transform and local weighted smoothing. The paper
eported a sensitivity and specificity of 76% and 92%, respectively.
t is clear that the proposed method achieved better accuracy, sen-
itivity and specificity compared with the existing methods. Patti
t al. [44] applied a Random Forest classifier to detect sleep spin-
les. Three channels in the central EEG signals, including CZ, C3
nd C4, were utilized for detecting sleep spindles. A window size
f 0.5 s without overlapping was used in that study. Three features
f Alpha Ratio, Sigma index and spindle band ratio were employed
or the detection. The maximum sensitivity and specificity of 71.2%
nd 96.73% were reported, respectively.

Another study presented by Saifutdinova et al. [51] used an
mpirical mode decomposition to detect sleep spindles in EEG sig-
als. The average F-score in that study was 40.72%, and 48.59%. The
roposed method obtained a high classification F-score compared
ith the results presented by Saifutdinova et al. [51]. The proposed
ethod was also compared with other methods in which different

atasets were used.
Yucelbas et al. [64] presented the sleep spindles detection

esults using a fast Fourier transform, autoregressive, multiple sig-
al classification and Welch filter. The detection phase was carried
ut by a NN classifier. An average accuracy of 84.8% was reported.
n that study, the results changed when a principle component
nalysis was used. The maximum accuracy was 94%. The proposed
ethod performed much better than those by Yucelbas et al. [64]. In

ummary, the comparisons with the previous studies showed that
sing time frequency image based on fractal dimension is effective

nd suitable to detect sleep spindles in EEG signals.

[
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6. Conclusion

In this paper, a new method to detect sleep spindles in EEG sig-
nals was presented. The proposed method applied time frequency
image and fraction dimension techniques to detect sleep spindles
with a high classification accuracy and low execution time.

A window size of 0.5 s with an overlapping of 0.4 s was adopted
in this study. The EEG signals were converted into time frequency
images by using spectrogram of a short time Fourier transform. A
box counting algorithm was applied to calculate the fractal dimen-
sions (FDs) from each TFI. Eight statistical features were extracted
from each FD. Those features were passed to different classifiers,
including the least square support vector machine, K-means, neural
network, Naïve Bayes classifiers to figure out the best classification
method to detect sleep spindles. The best results of 98.6% accu-
racy, 96.8% sensitivity and 97.5% specificity were achieved with
Dateset-1. It was found that using the TFI with the fractional dimen-
sion can improve the detection of sleep spindles. The outcomes of
this study can help sleep experts to efficiently analyse EEG signals.
In the future work, we will apply the proposed method to detect
K-complexes in EEG signals.
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4.2 Chapter Summary 
 
Al-Salman et al. (2018) identified sleep spindles using fractal dimensions and 

statistical model features.  The efficiency of the fractal dimension (FD) algorithm and 

time-frequency image (TFI) in the sleep spindles detection was investigated for 

extraction features and reduction of a large amount of EEG recordings. One of the 

most important findings in this chapter is that the use of FD techniques to detect sleep 

spindles gave high classification results, accuracy, F-score and kappa coefficient, and 

low execution time. The effectiveness of the proposed method was tested with two 

databases acquired from different EEG sources, with different types of measurements 

and with other state of the art approaches.  It was found that using the TFI with the 

fractional dimension improved the accuracy of detecting sleep spindles. Furthermore, 

the proposed method  increased the possibility  of analysing and detecting other sleep 

characteristics in EEG signals,  thus enabling physicians to diagnose and treat sleep 

disorders.  

The performance of the proposed method, as presented in Chapter 4, was compared 

with other recent methods that used advanced classifiers such as the deep 

convolutional neural network and other classifiers. All those studies used the same 

database as describe in this chapter. Among those studies, for example, one by Chen 

et al., (2021) proposed an efficient method to distinguish between sleep spindles and 

non- sleep spindles by a generic framework based on deep neural networks for accurate 

spindle detection. Firstly, time window applies to adapting to the significantly varied 

durations of spindles in EEG. Then, convolutional neural networks (CNNs) were used 

to obtain the regulated deep features of EEG epochs with variable-lengths. These 

regulated deep features were mixed with the entropy of EEG epochs to support spindle 

classification. They achieved an average F-score of 0.67%. Based on the obtained 

results, the proposed method yielded a higher F-score  compared  with Chen et al., 

(2021). Kulkarni et al., (2019) introduced a novel deep learning approach for single-

channel sleep spindles detection, where the envelope of bandpass filter signals (9-16 

Hz) and power features was used to distinguish sleep spindles and non-sleep spindles. 

An average sensitivity, specificity, and F-score of 90%, 96.1%, and 0.75% were 

reported, respectively. The results were less sensitive to  the proposed method. Other 

studies were presented by You et al., (2021) and Chambon et al., (2018), who 

introduced  a new method based on a deep learning approach to detect sleep spindles
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 in EEG signals, but they reported that the deep learning approach has not been fully 

investigated in the context of automatic sleep spindles in EEG signals.  The average of 

F-score results they achieved was 0.73%, which was less sensitive than the proposed 

method.   

Several recent methods have been employed for the detection of sleep spindles in EEG 

signals using different classifiers. These include a novel deep learning approach 

(Kulkarni et al.,2019), a generic framework based on a deep neural network (Chambon 

et al.,2019), an adaptive framework (You et al., 2021), genetic programming coupled 

with k-nearest neighbors classifier (Parekh et al., 2017), multivariate classification of 

EEG epochs (Lachner-Piza et al., 2018), and a two-stage approach for sleep spindle 

detection using single-channel EEG (Jiang et al., (2021), Time Domain Features 

(Fatima et al., 2020). The results they obtained were no higher than those in this thesis. 

An average classification accuracy rate for the detection of sleep spindles was 95.9% 

by (Kulkarni et al.,2019) which is considered less than obtained by the proposed 

method in Chapter 4. In comparison to these more recently published papers, the 

sensitivities measured for the same dataset using the proposed method were more 

sensitive and are therefore still considered to be state of the art method at the time of 

this thesis submission. 

Both Al-Salman et al. (2019) (discussed in Chapter 3) and Al-Salman et al. (2018) 

showed that the proposed method yields a better performance for all sleep spindles 

detection compared with  other recent studies. Furthermore, the proposed method 

made it possible to analyse other EEG signals, which assisted physicians to diagnose 

and treat brain disorders. Al-Salman et al. (2018) suggested that the FD features 

combined with statistical model features could be used to detect all the occurrences of 

sleep characteristics, such as spindles and k-complexes, in EEG signals efficiently. 

The next chapter will discuss EEG k-complexes detection based on fractal and 

frequency features coupled with ensemble model classifier.  
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CHAPTER 5 

 

K-COMPLEXES DETECTION IN EEG SIGNALS 

USING FRACTAL AND FREQUENCY FEATURES 

COUPLED WITH AN ENSEMBLE 

CLASSIFICATION MODEL  
 
5.1 Introduction 

 
In Chapter 3, the wavelet Fourier analysis and statistical features were presented to 

detect sleep spindles in EEG signals.  In Chapter 4, a new method based on the FD 

algorithm and TFI technique was proposed to analyse and identify sleep spindles with 

high accuracy rate and low complexity time. However, to analyse and detect other 

sleep characteristics in EEG signals such as k-complexes, a novel method was 

presented in this chapter.  K-complexes are important transient bio-signal waveforms 

in sleep stage 2.  

Detecting k-complexes visually requires a highly qualified expert. Furthermore, 

detecting k-complexes in EEG signals using transformation techniques, such as a 

wavelet transform and Fourier transform does not give the promising results that EEG 

signals do because the EEG signals have a nonstationary and nonlinear natural. In 

previous research, Al-Salman et al. (2018) reported that the fractal dimension based 

features achieved promising results for analysing EEG signals as well as for detection 

sleep spindles. As a result, the concept of the fractal algorithm was used in this study 

to identify the second most important characteristics of sleep stage 2: k-complexes.  



 
Chapter 5  Fractal and Frequency feature coupled with an Ensemble    

model to detect k-complexes in EEG signals.  
 

98 
 

The content of this chapter is an exact copy of a published paper in the neuroscience 

journal (2019). It presents an efficient method for detecting k-complexes from 

electroencephalogram (EEG) signals based on fractal and frequency features coupled 

with an ensemble model of three classifiers. The proposed method has a number of 

phases to analyse large amounts of EEG recordings and to identify k-complexes. In 

the first phase, EEG signals are first partitioned into segments, using a sliding window 

technique. In the second phase, each EEG segment is  decomposed into a number of 

sub-bands by using a dual-tree complex wavelet transform (DT-CWT) method. Ten 

sub-bands are obtained after four levels of decompositions, and the high sub-bands are 

considered in this research for feature extraction. Lastly, fractal and frequency features 

are extracted from each sub-band and then forwarded to an ensemble classifier to 

detect k-complexes. The proposed method was tested with Dream sleep database 

published in Chapter 4. The performance of the ensemble detector was evaluated with 

the LS-SVM, k-means and Naive Bayes detector,  through a 6-fold cross-validation 

procedur. Moreover, comparisons were also made with existing k-complexes detection 

approaches for which the same datasets were used. The experimental results 

demonstrate that the proposed feature extraction algorithm with the ensemble model 

produces the best performance compared with the other studies and with individual 

classifiers. Also, the proposed approach was evaluated using several performance 

measurement metrics for k-complex detection methods. The results reveal that the 

proposed approach is efficient in identifying the k-complexes in EEG signals.  
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Abstract—K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes
visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from elec-
troencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of
three classifiers is presented. EEG signals are first partitioned into segments, using a sliding window technique.
Then, each EEG segment is decomposed using a dual-tree complex wavelet transform (DT-CWT) to a set of real
and imaginary parts. A total of 10 sub-bands are used based on four levels of decomposition, and the high sub-
bands are considered in this research for feature extraction. Fractal and frequency features based on DT-CWT and
Higuchi’s algorithm are pulled out from each sub-band and then forwarded to an ensemble classifier to detect k-
complexes. A twelve-feature set is finally used to detect the sleep EEG characteristics using the ensemble model.
The ensemble model is designed using a combination of three classification techniques including a least square
support vector machine (LS-SVM), k-means and Naı̈ve Bayes. The proposed method for the detection of the k-
complexes achieves an average accuracy rate of 97.3 %. The results from the ensemble classifier were compared
with those by individual classifiers. Comparisons were also made with existing k-complexes detection
approaches for which the same datasets were used. The results demonstrate that the proposed approach is effi-
cient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an
effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep
disorders. � 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: K-complexes, dual-tree complex wavelet transform, fractal dimensions, ensemble model, EEG signals.
INTRODUCTION

In the context of sleep research, sleep scoring is a difficult

task due to its irregular behaviors of electroencephalogram

(EEG) signals. Rechtschaffen (1968) suggested a set of

guidelines. Based on these guidelines, experts divide a

human sleep EEG recording into six sleep stages namely:

Awake, Stage 1 (S1), Stage 2 (S2), Stage 3 (S3) and

Stage 4 (S4), and rapid eye movement (REM) sleep

(Gala and Mohylova, 2009; Peker, 2016). Each stage

has a distinct set of associated physiological, psycholog-

ical, and neurological features.
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The four stages of S1, S2, S3, and S4 are classified

as the non-rapid eye movement (NREM) sleep. Sleep

exerts significant influence on human health as poor

sleeping quality can cause a disturbance to the immune

system. The first stage (S1) of sleep is a transition

stage which lasts between 1 and 10 min. During S1,

breathing slows down and heartbeat becomes regular,

blood pressure and brain temperature decrease. Clinical

research shows that people can suffer from sudden

muscle contractions followed by a sensation of falling.

However, during Stage 2, the human body starts to

recover from muscle stress and fatigue. The brain

activity is reduced for moving into a deep sleep (S3 and

S4) from which it is hard to wake up. Although, S1 and

S2 produce a similar range of theta waves, sleep

spindles and k-complexes mainly appear in Stage 2

(Gorur et al., 2002). During REM stage, EEGs reveal con-

tinuous mixed activity (theta wave with some delta, alpha,

and beta waves) and 40 ± 80 mv amplitude, while in S3

(slow wave sleep) EEGs show more than 20% delta

https://doi.org/10.1016/j.neuroscience.2019.10.034
mailto:WessamAbbasHamed.Al-Salman@usq.edu.au
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waves and the amplitude can achieve 150 mv. Stages 3

and 4 are referred to as deep sleep that are combined

as one (Williams et el., 1974; Ranjan et al., 2018).

Each sleep stage exhibits unique waveforms and

patterns which are used by experts to detect abnormal

patterns in sleep EEG recordings. One of these

waveforms is the k-complexes (Parekh et al., 2015;

Berry, et al., 2012; Zacharaki et al., 2013). In 2002, The

American Academy of Sleep Medicine (AASM) defined k-

complexes as large-amplitude transient waveforms. These

waveforms have a single negative sharp wave followed by

a positive sharp wave (Bankman et al., 1992). This incon-

sistency in the shapes peaks of k-complexes results from

the non-periodic nature of EEG signals. Most early studies

show that k-complexes can appear many times during S2,

with amaximum duration between 0.5 s and 1.5 s. The fre-

quency range of k-complexes is between 8 Hz and 16 Hz

(Rodenbeck et al., 2006; Noori et al., 2014). However,

Stage 2 can also be recognized by other transient wave-

forms, such as sleep spindles. The detection of those tran-

sient waveforms in EEG signals based on visual inspection

is tedious, time consuming, and requires expert skills.

Automatic detection approaches have thus been devel-

oped to identify k-complexes based on different transfor-

mation techniques (Al-salman et al., 2018).

Automatic detection approaches have thus been

developed to identify k-complexes based on different

transformation techniques combined with different

machine learning such as support vector machine,

decision tree and artificial neural network (Lajnef et al.,

2015; Al-Salman et al., 2019; Parekh et al., 2015).

Richard and Lengelle (1998) used a linear filtering

approach in time and frequency domains to identify sleep

k-complexes in EEG signals. An average sensitivity and

false positive rate of 90% and 9.2% were reported in their

study. Tang and Ishii (1995) utilized the discrete wavelet

(DWT) for recognizing k-complexes in EEG signals. In that

study, they obtained an 87% sensitivity and a 10% false

positive rate.

Kam et al. (2004) proposed a method using a hidden

Markov model based on a continuous-density to identify

k-complexes in EEG signals. In their study, the false pos-

itive rate was reported around 7%, while the sensitivity

classification was 85.3%. Research reported by Devuyst

et al. (2010), employed a likelihood threshold to detect

k-complexes. An average sensitivity of 60.94% and

61.72% respectively, were recorded. Erdamar et al.

(2012) detected k-complexes based on the characteristics

of EEG signals such as amplitude and duration proper-

ties. The obtained results were evaluated using a receiver

operating curve. The paper reported an accuracy of 91%.

Vu et al. (2012) applied a hybrid-synergic classifier to dis-

tinguish EEG k-complexes. They achieved an average of

90% accuracy and 70% sensitivity.

Bankman et al. (1992) presented a method based on

artificial neural network. In that study, 14 features were

extracted from the raw EEG signals to detect k-

complexes. An average sensitivity of 90% was obtained

with an 8% false positive rate. Based on the study, using

the extracted features provided a significantly better per-

formance than the original EEG data. Another study
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was presented by Hernández-Pereira et al. (2016), in

which k-complexes were detected based on 14 features

extracted from each EEG signal. The extracted features

were then used as input to different classifiers to identify

the k-complexes. An average classification accuracy rate

of 91.40% was recorded using a features selection

method. Krohne et al. (2014) utilized a wavelet transfor-

mation for detecting k-complexes. Four features were

extracted from each sub-band. An average sensitivity of

74% was recorded. A pattern matching wavelet method

to identify k-complexes in EEG signals was presented

by (Patti et al., 2016). The average sensitivity in that study

was 84%. Those studies were conducted using data from

the same database used in this paper.

More recently, Lajnef et al. (2015) detected k-

complexes using a tunable Q-factor wavelet transform.

An average sensitivity and false positive rate of 81.57%

and 29.54% were reported respectively. Parekh et al.

(2015) proposed a method based on a non-linear opti-

mization algorithm to recognize the k-complexes. The

maximum F-measure in their study was reported at

0.57%. Our previous work, (Al-Salman et al., 2018,

2019) reported that fractal dimension based features

achieved promising results for analyzing EEG signals

and for detecting sleep spindles and k-complexes. This

research focuses on developing an accurate method to

detect k-complexes in EEG signals. Detecting those wave

forms can contribute to identify sleep S2 correctly in EEG

signals. The study will help advance the knowledge in

sleep research and assist experts with new technologies.

In this study, firstly, a dual-tree complex wavelet

transform (DT-CWT) is used to decompose an EEG

signal into real and imaginary parts. High sub-bands from

four levels of decompositions are used for features. The

fractal dimensions and frequency features are extracted

from each sub-band to detect the k-complexes in EEG

signals. The extracted feature sets are evaluated to

identify the best combination of features for detecting k-

complexes. An ensemble classification model is used to

classify the extracted features into k-complexes and non

k-complexes segments. Our findings revealed that the

proposed method is promising to detect k-complexes in

EEG signals.
EXPERIMENTAL PROCEDURES

Proposed method

To detect the k-complexes in EEG recordings, the DT-

CWT is utilized and coupled with an ensemble model. A

sliding window approach is employed to divide EEG

signals into segments. A window size of 0.5 s is

adopted with an overlapping of 0.4 s that is chosen

empirically. Then, the DT-CWT is used to decompose

each EEG segment to a set of real and imaginary parts.

After testing, 12 fractal dimension and frequency

features are employed, and forwarded to an ensemble

classifier to detect the k-complexes in EEG signals. The

results obtained using the ensemble classifier are

compared with those obtained by a single classifier of a

LS-SVM, Naive Bayes and k-means, separately. The

results indicate that, by using the ensemble classifier,
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classification accuracy is higher than those obtained by

the individual classifiers. Fig. 1 outlines the methodology

of the proposed method. All the experimental results

were obtained in a Matlab 2015b environment on a

computer that has the features of: 3.40 GH Intel (R)

core (TM) i7 processor machine and 8.00 GB RAM.
EEG recordings and data acquisition

The EEG database for k-complexes detection was

acquired in a sleep laboratory of a Belgian hospital using

a digital 32-channel polygraph (BrainnetTM Sys-tem of

MEDATEC, Brussels, Belgium). It is important to

highlight that all EEG recordings on this database were

from patients with various sleep pathologies: dystonia,

restless legs syndrome, insomnia, apnea/hypopnea

syndrome (Devuyst et al., 2011; Al-Salman et al., 2019;

Devuyst et al., 2010). The k-complexes database, which

has been made available by the University of

MONS - TCTS Laboratory and University Libre de

Bruxelles—CHU de Charleroi Sleep Laboratory, can be

accessed online at http://www.tcts.fpms.ac.be/~devuyst/
Databases/DatabaseKcomplexes. The k-complex data-

sets that were publically available included 10 recordings

acquired from 10 subjects. The sleep EEG data were

collected in 30-minute intervals of the central EEG channel

for a whole night PSG recording for k-complexes scoring.

The sampled rate used to preprocess EEG signals was

200 Hz. Each recording included three EEG channels:

The CZ-A1 or C3-A1, FP1-A1 and O1-A1; two EOG chan-

nels (P8-A1, P18-A1); and one submental EMG channel.

The recordings (from subjects) in the EEG database were

given to two experts who independently scored k-

complexes according to the manual (Berry et al., 2012)

and their recommendations in (Devuyst et al., 2010). The

CZ-A1 channel EEG recordings sampled at 200 Hz were

utilized for detecting the k-complexes in this research. Also

for this study, we chose randomly six subjects out of ten

that were scored by Expert 1 as a benchmark since the

annotations of Expert 2 were not available for all subjects.

(Miranda et al., 2019). More details regarding the EEG

database were provided by (Al-Salman et al., 2019;
Fig. 1. Block diagram of the k-complexes detection method using fractal

based on the DT-CWT and HFD algorithms coupled with an ensemble mode
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Lajnef et al., 2015; Parekh et al., 2015; Miranda et al.,

2019). Examples of EEG signals with k-complex events

are shown in Fig. 2 (Miranda et al., 2019).
Signals stratification

EEG signals are segmented into small intervals using a

sliding window technique. Li and Wen (2011) utilized a

segmentation technique for classifying EEG signals. A

sliding window with an overlapping was used by

(Zhuang et al., 2016; Al-salman et al., 2018) to detect

sleep spindles. Kam et al. (2004) also used a sliding win-

dow method to identify k-complexes. A sliding window

with an overlapping was also used by (Al-Salman et al.,

2019) to identify k-complexes. Their results demonstrated

that using the sliding window technique helped to improve

classification results.

In this paper, we supposed that Y was an EEG signal

having X data points, where Y= {y1, y2, y3 . . . yx}. Each
30 s EEG segment was divided into sub-segments of T,
where, T= {m1, m2, m3. . . mx} using a sliding window

technique. The size of a sliding window was determined

empirically based on an extensive number of

experiments during the training phase. The previous

work by (Al-Salman et al., 2018, 2019) showed that the

sliding window technique gave accurate results in EEG

signals segmentation for detecting the characteristics of

sleep S2, such as sleep spindles and k-complexes. As

sleep spindles and k-complexes occur during stage 2 for

about 0.5–2 s, we tested various window sizes (such as

1.0 s, 1.5 s and 2.0 s) and overlapping lengths to identify

the optimal segment size. However, we made the window

length between 0.5 and 2 s. We used the same technique

in (Al-Salman et al. 2018; Al-Salman et al., 2019a,b). We

selected 0.5 s window length based on our simulation

results. The simulation results showed that the window

size of 0.5 s was most optimal for identifying EEG charac-

teristics than other window sizes. More details about the

window size is explained in the results section. Fig. 3 pro-

vides an example of EEG signals partitioned into intervals

of 0.5 s with an overlapping of 0.4 s.
and frequency features

l.
Dual-tree complex wavelet
transform (DT-CWT)

The discrete wavelet transform

(DWT) is a spectrum analysis

technique. It was often used in

various research studies to

analyse non-stationary signals

such as EEG signals. Due to the

characteristics of EEG signals

change over time, using the DWT

often causes the problems of

aliasing, shift variance, lack of

directionality and limited

directional information (Baraniuk

et al., 2005; Li et al., 2017; Liu

et al., 2012). Those drawbacks

could be addressed by using a dual

tree complex wavelet transforma-

tion (DT-CWT). The DT-CWT

http://www.tcts.fpms.ac.be/%7edevuyst/Databases/DatabaseKcomplexes
http://www.tcts.fpms.ac.be/%7edevuyst/Databases/DatabaseKcomplexes


Fig. 2. Example of k-complexes waveform using the CZ-A1 channel identified from EEG data by two

different experts (Miranda et al., 2019).

Fig. 3. Example of EEG signals partitioned into small segments using sliding window techniques. A

window size of 0.5 s was used with an overlap of 0.4 s.
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decomposes a signal into different levels to obtain the

most significant frequency sub-bands. It employs two

DWT trees (Das et al., 2016; Selesnick et al., 2005).

The top tree represents the real part of the complex wave-

let coefficients while the bottom tree represents the imag-

inary part as illustrated in Fig. 4. It has many

characteristics, such as an approximate shift invariance,

better directional selectivity, limited redundancy and inde-

pendency of the number of scales.

In this study, EEG signals are passed through the DT-

CWT to obtain the high and low frequency sub-bands.

Each segment is decomposed into four levels, namely,

four sub-bands of y1, y2, y3, y4 including sub-band z4,

based on the four levels of decompositions. For example,

in the first level of the decomposition, each EEG segment

is decomposed into a higher frequency component y1

and a lower frequency component z1. Then, in the

second level, z1 is decomposed into y2 and z2 as the

higher and lower frequency components, respectively

(Das et al., 2016). As the results, each DT-CWT coefficient

has two parts of real and imaginary components. 10 sub-

bands are obtained after the four levels of decomposition.
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The sub-bands for both real and

imaginary parts are presented as

(y1, 1), (y1, 2), (y2, 1), (y2, 2), (y3,

1), (y3, 2), (y4, 1), (y4, 2), (z4, 1)

and (z4, 2). For example, the first

sub-band for the real and imaginary

parts are represented as (y1, 1),

(y1, 2), respectively. Then, fractal

and frequency features are

extracted from each sub-band and

used to study the behaviours of the

k-complexes in EEG signals.
Fractal dimension based on
Higuchi’s algorithm (HFD)

A fractal dimension (FD) technique

has been proved to be an efficient

method for analyzing the

characteristics of EEG signals

(Finotello et al., 2015; Xiao et al.,

2005; Prieto et al., 2011; Smitha

and Narayanan, 2015; AL-Salman

et al., 2018, 2019). More details

are provided in our previous work

by (Al-Salman et al., 2018, 2019a,

b). In this study, Higuchi’s Algorithm

is used to estimate the FD from

each sub-band of the DT-CWT.

The Higuchi’s fractal dimension

(HFD) algorithm is used tomeasure

the FDs of EEG signals. To calcu-

late the FDs based on the HFD,

the following steps are considered

(Accardo et al., 1997; Higuch,

1988). Let p
3
be a time series to be

analyzed. Starting from the first

point in the time series, the algo-

rithm constructs Yr
x as a new time

series, which is defined as:� ��

Yr

x ¼ Y xð Þ; Y xþ rð Þ; Y xþ 2rð Þ; . . . ;Y xþ N� xð Þ
r

r

�
; for r

¼ 1;2; . . . ; r

ð1Þ

where x is the initial point of the time series, and r is the

time interval between two data points. The length of the

curve Lx rð Þ is calculated for each of the r time instance,

and the curve Yr
x is:

Lx rð Þ ¼
PN�x

r

i¼1 Y xþ i:rð Þ � Y xþ i� 1ð Þrð Þj jðn� 1Þ
N�r
r
r

ð2Þ

where N is the length of the original time series Y; and
N� 1ð Þ= N� xð Þ=r½ � rÞ is a normalization factor. An

average length was computed for all the time series,

having the same scale r, as the mean of the r length

Lx rð Þ for x ¼ 1; . . . ; rmax, where rmax is a free parameter.

This procedure was repeated many times for each r. The

mean value (average length) of the curve length for each

r was calculated as



Fig. 4. EEG signals decomposed using DT-CWT. Four sub-bands (y1, y2, y3, y4) including sub-band

z4 are obtained based on four levels of decomposition. g0[n] and h0[n] presents the real tree while

g1[n] and h1[n] show the imaginary tree for each level of DT-CWT.
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L rð Þ ¼
Xr

x¼1

Lx rð Þ ð3Þ

The total average length for L rð Þ is proportional to r�D,

where D is the FD by Higuchi’s method. In the curve

oflog L rð Þð Þvs log 1rð Þ, the slop of the least square’s

linear best fit is the estimate of the FDs (Accardo et al.,

1997; Esteller et al., 2001). In this paper, the HFD is

applied to calculate the FDs from each sub-band after

the DT-CWT decomposition. 13 features were extracted

from the FDs, and then reduced to three: standard devia-

tion, mean energy and skewness. These features were

used along with the frequency features as the input to

the ensemble classifier to detect k-complexes. Our find-

ings showed that the extracted features from the FDs

based on the HFD and DT-CWT coupled with the ensem-

ble classifier achieved better results in comparison to

those by other methods. More details are explained in

the experimental results section.
Fig. 5. Graphical diagram of features extraction from higher sub-

band (y1, y2 and y3) of the DT-CWT and fractal dimension of the HFD

algorithm.
Features extraction method

Fractal and frequency features were used in this study to

detect k-complexes. Fig. 5 shows the main steps of the

features extraction process. A total of 13 statistical

features are extracted, including {minimum, range,

median, mean, skewness, maximum, standard

deviation, variation, mode, kurtosis, Hurst exponent,

Mean Energy, Permutation entropy} based on fractal

dimension, and 9 frequency features of

{f1; f2; f3; f4; f5; f6; f7; f8; f9} were extracted from

each sub-band. A short explanation of the frequency

features is given in Table 1 (Vu et al., 2012; Nguyen-ky

et al., 2009; S�en et al., 2014; Al Ghayab et al., 2019;

Al-Salman et al., 2018). After testing, eventually 12 hybrid

features of f1; f2; f3; f4; f5; f6; f7; f8; f9;f
standard deviation; mean energy; skewnessg were used

to detect the k-complexes in this study. Those features

are then forwarded to an ensemble model to identify
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k-complexes in EEG signals.

Fig. 6 shows a schematic diagram

for k-complex with amplitude and

time labels for one segment in

EEG signals.
Classification algorithms to
analysis EEG data

The ability of the proposed

approach to detect k-complexes in

EEG signals is tested based on

serval classifiers. Three

classification algorithms of LS-

SVM, k-means and Naı̈ve Bayes

are combined to design an

ensemble classifier in this paper.

The final decision for the

classification was made using a

voting scheme based on the

weights of the three classifiers.

The chosen classifiers and their

tuning parameters are explained

in this section. The chosen
classifiers and their tuning parameters are explained in

this section. Table 2 shows the optimum parameters for

each individual classifier, which were combined to form



Table 1. Formula of the statistical features.

Features Formula Explanation

f1 Xmax The max amplitude

f2 Xmin The min amplitude

f3 Xmax � Xmin Peak to peak amplitude

f4 jpmax � pminj Distance between max and min data points

f5 f2 =j jf1j j The ratio between the max amplitude and the min amplitude

f6 jpmiddel � pstartj Duration of positive curve

f7 jpmiddle � pendj Duration of negative curve

f8 jpstart � pendj Duration of the sharp wave (prospective k-complex)

f9 Xstart � Xend Differences between the first point and the min negative wave

f10
XSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1
ðxn�XMean Þ2
n�1

r
Standard Deviation; Where Xn ¼ 1; 2; 3; . . . ::;n, is a time series, N is the number of data points

f11
XSke¼

PN
n¼1

xn � XMeanð Þ 3

N�1ð ÞX3
SD

Skewness feature where XMean is a mean for 0.5 s EEG signals

f12
XMean energy ¼ 1

N

Pk
n¼k�Nþ1

x n½ �2 Mean energy features; where Xn is a time series
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the ensemble model (Al-Salman et al., 2019; Diykh et al.,

2016). More details regarding those three individual clas-

sifiers were provided in our previous work (Al-Salman

et al., 2018; Al-Salman et al., 2019a,b). Based on the lit-

erature (Al-Salman et al., 2018, 2019; Li and Wen. 2011;

Orhan et al., 2011; Rakshit et al., 2016; Shete et al., 2013;

Li and Wen, 2010); we found that those three classifiers of

LS-SVM, K-means and Naı̈ve Bayes algorithms are con-

sidered the most popular and effective methods in

biomedical signal classification. Many researchers have

used the above three classifiers individually to classify

EEG signals (Da cost et al, 2013; Jansen et al, 1990;

Kantar and Erdamar, 2017; Puntumapon and Pattara-

Atikom, 2008; Rakshit et al., 2016; Shete et al., 2013; Li

and Wen, 2010).
Fig. 6. Schematic diagram for a k-complex with amplitude and time labels f

signals.
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Least square support vector machine (LS-SVM). Suy-

ken and Vandewalle proposed a modified version of the

original support vector called the least square support

vector machine (LS-SVM). It is widely used to tackle

binary classification problems. It was used by (Al-

Salman et al., 2018, 2019; Zhu et al., 2014) to detect

sleep spindles. We used the LS-SVM classifier as part

of the ensemble model. The main parameters, c;r and

the kernel function are carefully selected during the train-

ing phase. In this study, the radial basis function kernel

(RBF_kernal) was used. It can be defined as:

RBF kernal x;xkð Þ ¼ exp � x� xkj jj jð Þ2=2r 2 ð4Þ
Naı̈ve Bayes classifier. Naı̈ve Bayes algorithm

classifies the input sample using two concepts: Bayes’

rules and posterior hypothesis. The main assumption of
or one segment in EEG
Naive Bayes is that each input

value influences a given class in a

different way. It is used in two

procedures in the training phase

to determine the most common

class for each attribute. These

procedures are a maximum

probability algorithm and features

probability distribution. They are

used by many researchers. Al-

Salman et al. (2018) employed

the Naı̈ve Bayes classifier in their

study to distinguish sleep spindles.

In this work, the Naı̈ve Bayes clas-

sifier is employed under the

ensemble model to detect k-

complexes

K-means classifier. The k-

means classifier is commonly

used to identify data in various

fields such as signals in time

series and biomedical signal

processing. It was used by Orhan

et al. (2011) to classify EEG epilep-



Fig. 7. Architecture of an ensemble model that is designed using a

combination of three classifier including a least square support vector

machine, k-means and Naı̈ve Bayes , and the voting concept was

used in the classification phase.

Table 2. classifiers’ parameters used during the experiments.

Classifier Parameters

LS-SVM c ¼ 10, r= 1 and kernel is RBF.

Naı̈ve

Bayes

The EEG k-complexes refer to class nodes while

the feature nodes represent the statistic features of

FDs as well as the frequency features

k-means k, ci and xk, where k is the number of clusters ,

k = 2, while ci is the centre of clusters and ci ¼ 1,

and xk is the data points
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tic seizures. It is known as an unsupervised classification

method and is mainly designed to solve clustering prob-

lems. The main mechanism of the k-means classifier is

the division of a training sample into classes based on

the similarities or differences within them. Each observa-

tion is associated with one group with the nearest cen-

troid. An objective function, which reduces the squared

errors, is used by the k-means to determine the cluster

centre along with other elements. The k-means algorithm

aims to associate each element in the training sample

with other elements that have the same characteristics.

In this paper, the k-means is used as a classifier tech-

nique along with the ensemble model.

The ensemble model

In this paper, an ensemble classifier based on the three

single classifiers of k-means, LS-SVM and Naı̈ve Bayes,

is constructed and employed to identify k-complexes

with a weighing scheme. The final decision of the

classification was made based on voting (Gao et al.,

2017). The ensemble technique for generating a variety

of aggregation (bagging) was used to detect the k-

complexes. An example of the bagging algorithm with

the three classifiers to build the ensemble model is shown

in Fig. 7.

The bagging ensemble technique uses a different set

of training data to train individual classifiers. The training

set is randomly divided into several subsets using a

bootstrap aggregation method. Each individual classifier

is trained separately and combined with other classifiers

with a weighting scheme. All classifiers are trained

together for the final prediction.

A weight is calculated for each classifier based on

their error rates. A lower value error rate is considered

more accurate for that classifier and it is assigned with a

higher weight. The voting weights of the classifiers are

calculated based on the following equation (Han et al.,

2011; Lafta et al., 2017):

xi Ctð Þ ¼ log
1� error Ctð Þ
error Ctð Þ ; 1 � Ctð Þ � 3 ð5Þ

where xi Ctð Þ is the weight of a classifier’s vote, error Ctð Þ
is the error rate of its classifier. The proposed weighted

bagging ensemble can be explained using the following

example:

Step 1: A classifier is first trained individually, and the

ErrRate is calculated for each classifier. For example,

based on Eq. (5), the weights for the three classifiers
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are assigned as w_k-means (KM) = 0.47, w_ Naı̈ve

Bayes (NB) = 0.31 and w_LS-SVM = 0.73.

Step 2: The prediction results from individual classi-

fiers are: k-means predicts 0 (Class 0, means that a

non k-complex is detected); LS-SVM predicts 1 (Class

1, means k-complexes are detected), and Naı̈ve Bayes

predicts 0.

Step 3: Based on the weighted votes of the ensemble

model, the prediction results are

Class 0: KM+ NB=> 0.47 + 0.31 = 0.78; Class 1:

LS-SVM=> 0.73

Finally, based on the above result, Class 1 gained the

lower value than Class 0. The final ensemble classifier

flags the segment as Class 0 (a non-k-complexes

segment).
Discriminability evaluation and statistical analysis

In this study, several assessment metrics along with k-

fold cross validation are utilized to evaluate the

performance of the proposed approach. These metrics

are sensitivity, accuracy, specificity, confusion matrix,

Cohen’s kappa coefficient and Matthews’s correlation

coefficient. Further details about the metrics’ are

provided in (Al-Salman et al., 2019, 2018; Al Ghayab

et al., 2019). A brief explanation of the metrics is provided

in this section.
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Accuracy measure. It is used to evaluate the

performance of a classification algorithm based on

dividing the number of the samples (cases) correctly

classified by the total number of samples. The true

positive (TP) means the actual k-complexes waves that

are correctly detected. The true negative (TN) is the

actual non-k-complexes that are correctly marked as

non-k-complexes. Classification accuracy is defined as:

Accuracy ¼
P

TPþP
TNP

Total number of cases
� 100 ð6Þ
Sensitivity measure. It is a statistic metric used to test

the quality of a classifier based on measuring the

proportion of the actual positive prediction. The false

negative (FN) shows the actual k-complex that are

incorrectly marked as non k-complexes.

It is defined as:

Sensitivity Senð Þ ¼
P

TPP
TPþP

FN
� 100 ð7Þ
Specificity measure. It is utilized to calculate the

average of negative cases that are correctly marketed

by the proposed method. The false positive (FP) refers

to the number of k-complexes that are incorrectly

determined by a classifier. The main formula of

specificity is defined as:

Specifcity Speð Þ ¼
P

TNP
TNþP

FP
� 100 ð8Þ
Matthews’s correlation coefficient (MCC). MCC is a

metric used to test the quality of a classifier. It provides

a balanced evaluation. The MCC uses the sensitivity

and specificity to examine the performance of the

proposed model. The MCC returns a value between �1

(worst) and 1 (best), while 0 indicate a results no better

than a random prediction. It is defined as (Patti et al.,

2016):

MCC ¼
P

TP� TNð Þ �P
FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp
ð9Þ
F-measure. It is one of the most important

measurements used to show overlapping between the

two sets. It is defined by weighted sensitivity and

precision.

F�measure ¼ Precision x Recall

Precisionþ Recall
ð10Þ
Table 3. The obtained results for k-complexes detection.

Assessment tools Fold No.

Fold �1 Fold �2 Fold �3

Accuracy 97% 97% 98%

Sensitivity 95% 94% 96%

Specificity 99% 97% 97%
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Kappa coefficient statistic. It is a statistical measure

used to evaluate the agreement between two

classification results. In this paper, it is employed to

evaluate the agreement between two models, the

proposed method and expert (Expert 1). It is defined as:

Kappa Coefficient ¼ accuracy� Pe

1� Pe

;

where Pe is a probablity of random agreement ð11Þ
K-fold cross-validation statistic. This is a popular

measure for assessing classification accuracy, and is

used to describe the performance of the proposed

method. The datasets are divided into six subsets of

equal size with each subset contains an equal number

of EEG segments that include k-complexes and non-k-

complexes. One of these subsets is used as the testing

set, while the remaining subsets are used as the

training set. All subsets are tested in turn. The testing

classification accuracy for all subsets is calculated and

recorded, and their average accuracy is computed below.

Performance ¼ 1

k

Xk

1

accuracy kð Þ ; k ¼ 6 in this study ð12Þ

In this paper, the 6-fold cross-validation is used as the

accuracy isn’t improved after k > 6. The motivation to use

the k-fold cross validation technique is that when we fit a

model, we are fitting it to a training dataset. Without cross

validation we only have information on how our model

performs to the in-sample data. Ideally we would like to

see how the model performs when we have new data in

terms of accuracy of its predictions. In this paper, we

used 6-fold cross validation in order to distribute our

dataset in six sub-groups. In each testing run we used

one sub-group for the training and others for the testing
Experimental results

A number of experiments were conducted to evaluate the

performance of the proposed method. The datasets used

in the experiments were described in Section 2. The

fractal and frequency features were used to identify the

k-complexes. Each segment with 0.5 s of EEG data was

passed through the DT-CWT to decompose the signal

into different frequency sub-bands (high and low

frequencies). The high sub-bands are considered in this

paper. A set of fractal and frequency features were

extracted from each sub-band. Table 3 presents the

obtained results based on the proposed method. All the

experimental results were obtained in a Matlab 2015b

environment on a computer that has the properties of:
Fold �4 Fold �5 Fold �6 Average

97% 97.2% 98% 97.3%

95% 93% 94% 94.5%

98% 99% 98% 98%
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3.40 GH Intel (R) core (TM) i7 processor machine and

8.00 GB RAM.
Features analysis

Feature selection is important for EEG waveforms

detection. In this section, the extracted features were

analysed for their ability to detect the k-complexes.

Fig. 8a–d provide the box plots for some fractal and

frequency features. Fig. 8a shows the FDs of the k-

complexes. The values of the fractal dimensions ranged

between 1.0 and 2.0. One of the statistical features

extracted from the fractal dimension was mean energy.

It showed a high performance for identifying the k-

complexes. Fig. 8d presents the plot boxes of the mean

energy. It was noticed that it generated different values

by which the k-complexes can be detected. However,

with the k-complexes, mean energy generated takes

values between 1.5 and 2.0. The main reason for this is

that k-complexes normally have higher amplitudes than
Fig. 8. Box plots for EEG k-complexes (Ks) and Non-k-complexes

(Non-Ks) by using different features. (A) Shows the fractal dimension
feature for Ks and Non-Ks. (B) Shows the minimum and maximum

peak-to-peak values for Ks and Non-Ks. (C) Presents variance
features for both Ks and Non-Ks. (D) shows the box plot for mean
energy features. The x-axis shows the values of features for both Ks

and Non-Ks in EEG signals.
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other waves in EEG signals. This feature was employed

to recognize the k-complexes.

On the other hand, variance showed a negative

reflection for the detection of the k-complexes. Fig. 8c

shows box plots of variance. From Fig. 8c, we can see

that this feature had similar values for the k-complexes

and the non-k-complexes. Consequently, this feature

was not considered in this study. Another feature, which

is peak to peak (f3), was investigated. Based on the

obtained results, peak-to-peak showed a significant

ability to identify the k-complexes compared with non k-

complexes segments. Fig. 8b shows the box plots of

peak-to-peak for both k-complexes and non k-

complexes. It was noticed that it was sufficient to

identify the k-complexes from the non k-complexes in

EEG segments.

Standard deviation was also employed as a feature in

this study. It was used to measure the dispersion and

skewness of EEG signals. Based on the results, the

standard deviation feature can be used to distinguish

the characteristics of sleep Stage 2, such as k-

complexes.

Based on the features analysis, it was found that there

was a positive relationship between the number of the

extracted features and classification accuracy rate.

Several experiments were conducted using different

sets of features. 12 fractal and frequency features were

tested separately. The importance of each feature was

recorded based on the classification results. The 12

features were then ranked in descending order. The

final features vector obtained is {f1, f2, f3, f4, f5, f6, f7,

f8, f9, standard deviation (SD), mean energy (ME),
skewness (SK)}. The features set was chosen based on

the optimisation phase. During the training phase,

different features were tested individually, and their

corresponding accuracies were recorded. The features

were ranked based on their classification performance,

and the most influential features were selected. Fig. 9

shows the 12 features ranked based on their

importance. We can see that f3 is considered the most

important one among the 12 features.
Fig. 9. Frequency and fractal features based on the classification

accuracy rate for each feature; 12 features were ranked based on

their importance. The x-axis shows the type of features while the y-

axis presents the accuracy percentage for each feature.
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Classification and cross validation

Table 3 shows the classification results based on

accuracy, sensitivity and specificity. The results

demonstrated that the minimum accuracy was 97%. The

obtained results were compared with the experts’

scoring (Expert1), and it was noticed that there were

agreements between the proposed method and the

expert’s scoring. All the results in Tables 3 and 4 were

carried out using the ensemble classifier.

6-Fold cross-validation using different classifiers

The classification performance was evaluated with the

individual classifiers based on 6-fold validation, namely:

LS-SVM, k-means, Naı̈ve Bayes classifiers. The EEG

data was divided into six folds (groups) and each group

was tested in turns. The features extracted from each

0.5 s of an EEG segment were forwarded to those

classifiers separately to identify the best classifier to

detect k-complexes. The results obtained by those

classifiers were compared with the proposed ensemble

classifier. All parameters of the individual classifiers

were selected in the training phase. Comparison of the

individual classifiers and the ensemble classifier

according to the obtained results were made in terms of

accuracy. Table 4 shows all the performances based on

6-fold cross validation. The results demonstrate that

there is a big improvement in the classification results

when the ensemble classifier was used to detect the k-

complexes in EEG signals. For the performances of the

individual classifies, the LS-SVM achieved the highest

accuracy among all the three classifiers with an average

accuracy of 90.9%. The second highest performance

was achieved by Naı̈ve Bayes classifier. The k-means

classifier recorded the lowest accuracy. Based on the

obtained results in Table 4, the best detection results

were achieved by the ensemble classifier gaining an

average accuracy of 97.3%. It is clear that there were

improvements in results when the ensemble classifier

was adopted to detect the k-complexes in this study.

Performance evaluation of the proposed method
using different window sizes

To evaluate the performance of the proposed method for

detecting k-complexes in EEG signals, the window sizes

of 1.0 s, 1.5 s and 2.0 s were tested in this paper. The

average accuracies of the proposed scheme were
Table 4. The detection accuracy comparison by all the classifiers

based on 6-fold cross validation.

Classifier type

LS-SVM Naive Bayes k-means Ensemble

Fold-1 91% 87.3% 82.3% 96.7%

Fold-2 93.1% 86.2% 80.9% 97.3%

Fold-3 90.1% 87.1% 84.7% 98%

Fold-4 87.9% 85% 75.8% 97%

Fold-5 91.1% 87% 80.1% 97.2%

Fold-6 92.4% 88% 83.2% 98%

Average 90.9% 86.7% 81.2% 97.3%
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recorded from the 6-fold cross evaluation. The

accuracies against the expert’s scoring using different

window sizes were reported in Fig. 10. Our findings

show that the proposed method achieved the highest

results when the window size of 0.5 s with overlapping

0.4 s was used.

Performance evaluation of the proposed method
based on single and multi-sub-bands

The performance of the proposed method was evaluated

based on the signal and multi sub-bands. Tables 5 and 6

show the corresponding values of accuracy, sensitivity

and specificity from the single and multi sub-bands,

respectively. Our findings show that the features obtained

from the higher frequency sub-bands (y1, y2, and y3)

gave more accurate results than those from the low-

frequency sub-bands (y4 and z4). Based on the results

presented in Table 6, the performance of the proposed

approach improved significantly when the extracted

features from the higher sub-bands were adopted.

However, the results from low sub-bands were not

significant and they recorded lower accuracy compared

with the other sub-bands. Table 5 shows the accuracy

obtained by using the proposed method from a single

sub-band.

Furthermore, p-value was used in this study to

determine the significant features based on a

hypothesis test that is used to test the validity of

features selection. P-value is a number between 0 and

1 and is interpreted in the following way: a small p-value
(p � 0.05) indicates a strong indication against the null

hypothesis, while a large p-value (>0.05) indicates

weak evidence against the null hypothesis.

Performance evaluation of the proposed method
based on the number of segments and execution time

The performance of the proposed method was also

evaluated through execution time. Fig. 11 shows the
Fig. 10. The performance of the proposed method using different

window sizes of 0.5 s, 1.0 s, 1.5 s and 2.0 s based on 6-fold cross-

validation. The average accuracy of the proposed method was

recorded from each fold using those window sizes. The results

demonstrate that the proposed approach achieved the highest results

with a window size 0.5 s compared with others of 1.0 s, 1.5 s, and

2.0 s.



Table 5. The reported results by the proposed method using single sub-band.

Name of sub-band Accuracy Sensitivity Specificity P-value

Sub-bands 1 (y1) 86.92% 81.6% 84.3 3.3359-E3

Sub-bands 2 (y2) 89.91% 87.5% 86.4 2.20058E-5

Sub-bands 3 (y3) 90.54% 93.2% 88.9% 2.4268E-6

Sub-bands 4 (y4) 75.13% 78% 80.1% 0.01329

Sub-bands 5 (z4) 71.65% 64.2% 68.3% 0.34026

Table 6. The reported results by the proposed method using multi-level decomposition sub-band.

Name of sub-band Accuracy Sensitivity Specificity P-value

Sub-bands 1,2 (y1,y2) 95 % 92.45 96.1% 2.4014E-5

Sub-bands 1,3 (y1,y3) 93.79% 91.3% 94.5% 3.4253E-4

Sub-bands 2,3 (y2,y3) 95.28% 93.7% 95.2% 4.6242E-5

Sub-bands 1,2,3 (y1,y2,y3) 97.3% 94.5% 98.1% 2.7523E-10
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complexity time for the ensemble classifier and the

individual classifiers. We assume that the number of the

segments is Y, and the time to extract features for one

segment is Z. The total classification time (T) depends

on the processing time (L) of the classifier used. The

total complexity and processing time (T) are T = Y*Z

+ L. To compute the performances of the four

classifiers, the same computer having the same settings

was used, with the same input data segments. The

complexity time of the proposed method was recorded

for each classifier.

From Fig. 11, the lowest execution time was recorded

with the k-means classifier compared with other

classifiers. The results show that the ensemble classifier

recorded the highest execution time to detect the k-

complexes compared to the three individual classifiers

as the implementation of the ensemble classifier

depended on the summation of the execution times by

the three individual classifiers. In return, the proposed

method yielded a high performance classification.
Fig. 11. Execution time for the ensemble model and the other three

classifiers of LS-SVM, Naı̈ve Bayes and k-means, based on the

segment number.
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Apparently, there is a trade-off between the

performance and the computation speed.

The performance of the proposed method was also

compared with the other three classifiers based on the

number of segments. In this study, the same number of

segments were used for comparison and the number of

segments were selected randomly from the database.

Those segments were divided into a training set and a

testing set, and were then forwarded to the ensemble

model as well as to the k-means, Naı̈ve Bayes and LS-

SVM classifiers to identify k-complexes. Fig. 12 shows

the obtained results by the proposed method using the

ensemble classifier and the other three classifier. We

can see from the obtained results that the performance

of the proposed scheme was the best.
Fig. 12. Shows the performance comparison between the proposed

method and other classifiers: LSSVM, K-means and Naı̈ve Bayes

based on the number of segments. The x-axis shows the number of

segments, while the y-axis presents the accuracy by the proposed

method.
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Comparisons with k-complexes classification
methods

To evaluate the proposed method, its performance was

compared with the state of the art of k-complexes’

detection in term of accuracy, sensitivity and specificity.

The same EEG recordings were used in all the

comparison studies. Table 7 presents the comparison

results. The best classification accuracy rates among

the methods are highlighted in bold font in Table 7. The

proposed method reported the highest results compared

with those by (Patti et al., 2016; Krohne et al., 2014;

Erdamar et al., 2012; Devuyst et al., 2010; Vu et al.,

2012; Kantar and Erdamar, 2017; Migotina et al., 2010;

Hernandez-Pereira et al., 2016; Bankman et al., 1992).

Patti et al. (2016) used pattern matched wavelets to

detect k-complexes. They achieved an average detection

sensitivity of 84%. In that study, various thresholds for

wavelet coefficients were applied to detect k-complexes.

The maximum wavelet coefficient for a k-complex ranged

within the scales of 0.5 s to 2.0 s. Our proposed method

reported higher results than those by Patti et al. (2016).

Another study was presented by Krohne et al. (2014), in

which the k-complexes were identified based on a dis-

crete wavelet transform. In their study, a different mother

wavelet was tested to determine the best wavelet func-

tion. A different set of features including peak-to-peak

amplitude, positive amplitude, RelDelta, mean and slop

of the rise were extracted from each of the sub-bands.

The average sensitivity of 74% was recorded. They

obtained a smaller sensitivity compared with that of the

proposed method. Erdamar et al. (2012) employed the

teager energy operator to identify k-complexes in EEG

signals. A different set of features of amplitude, minimum

and maximum duration and slope of the rise were utilized.

Based on the obtained results shown in Table 7, their

classification results were lower than those by the pro-

posed method.

Devuyst et al. (2010) used a fuzzy threshold to extract

features. They applied an algorithm to detect the waves in

EEG signals based on likelihood thresholds. An average
Table 7. Comparisons among the proposed approach with other studies in th

Authors Method

Patti et al. (2016) Pattern matched Wavelets by 400 and 700 thresh

Krohne et al. (2014) Wavelet transformation and different features thre

Devuyst et al. (2010) Features extraction based on fuzzy thresholds for

Erdamar et al. (2012) Teager energy operator coupled with a wavelet tr

features such as amplitude and duration.

Vu et al. (2012) Features extraction by a hybrid-synergic machine

Bankman et al.

(1992)

12 features combined with a neural network.

Kantar and Erdamar

(2017)

Three features with support vector machine.

Hernández-Pereira

et al. (2016)

14 frequency features and support vector machine

Migotina et al. (2010) Hjorth parameters and fuzzy decision

The proposed

method

Fractal and frequency features coupled with ense

Accuracy = ACC, Sensitivity = SEP, Specificity = SPE and False positive rate = FPR.

11
sensitivity of 61.72% with expert1 and 60.94% with

expert2 were obtained. Their results were lower than

those by the proposed method. Vu et al. (2012) employed

a hybrid-synergic machine learning method to detect the

k-complexes in EEG signals. In that study, a set of 29 fea-

tures were extracted from each 0.5 s of an EEG segment,

and were then analysed separately based on the classifi-

cation accuracy rate. Representative instance classifier

based on multi-instance learning and single-instance

learning was used to classify those features into k-

complexes and non-k-complexes. An average accuracy

of 90% and sensitivity of 70% were reported. Based on

these results, the proposed method used a set of 12 fea-

tures and yielded better results compared with that of Vu

et al. (2012). Kantar and Erdamar (2017) used a combina-

tion of features combined with a support vector machine

classifier to detect the k-complexes in EEG signals. They

reported 70.8% sensitivity and 85.29% specificity. Thus,

we can see that the proposed method gave better results

than Kantar and Erdamar (2017). Another study was pre-

sented by Migotina et al. (2010), in which the k-complexes

were detected using fuzzy decision with hjorth parame-

ters. Their fuzzy decision was based on a number of

hjorth parameters, which were defined experimentally.

In that study, the performance of the detection system

was compared to the visual human scoring. The average

sensitivity and specificity of 86% and 82% were reported,

respectively. Based on the results, the proposed method

reported higher results compared with Migotina et al.

(2010).

Bankman et al. (1992) detected k-complexes in EEG

signals using a different set of features combined with a

neural network classifier. 12 features were extracted from

each EEG signal and then used as inputs to the neural

network classifier to identify k-complexes. An average

sensitivity of 90% was reported. Our method obtained a

higher classification sensitivity compared with that by

Bankman et al. (1992). Hernández-Pereira et al. (2016)

also detected the k-complexes based on a different fea-

tures’ selection method. 14 frequency features were

extracted and then used as inputs to several different
e literature.

ACC SEN SPE FPR

olds. – 84% – –

shold. – 74% – –

Scorers 1 and 2. – 61.72%

60.94%

– 19.62%

ansform based on 91% 85.3% – 0.07%

learning method. 90% 70% – –

– 90% – –

– 70.8% 85.29% –

classifier. 91.40% – – 6.2%

– 86% 82% –

mble model 97.3% 94.5% 98% 0.019%

0



Table 8. The performance of the proposed method with different fractal

algorithms.

algorithm Accuracy Sensitivity Specificity

Katz’s method 72.3% 65.7% 84.2%

Box counting method 91% 87% 92%

Higuchi’s method 97.3% 94.5% 98%
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classifiers. In that study, different machine learning meth-

ods including a support vector machine (SVM), artificial

neural network and logistic regression were investigated.

A maximum accuracy of 91.4% was recorded using a

SVM classifier. From the results in Table 6, we can see

that the proposed method obtained a better classification

accuracy compared with Hernández-Pereira et al. (2016).

In summary, the comparisons with the previous studies

show that using the DT-CWT for a combination of fea-

tures is an effective and suitable method to detect k-

complexes in EEG signals
DISCUSSIONS

In this work, the fractal and frequency features were

employed to analyse EEG sleep characteristics. Two

sets of optimal features were selected to classify the

transient waveform (k-complexes) in sleep EEG signals.

Three fractal features and nine frequency features were

extracted from each EEG segment as the feature

vector. They were then forwarded to an ensemble

classifier to detect the k-complexes. Further

investigations and discussions are as follows:
The performance comparison of the proposed
method with the DWT

The performance of the DT-CWT was compared with a

discrete wavelet transformation (DWT). The same

features in Section 2 were extracted from the DWT and

those features were forwarded to the ensemble model

to detect k-complexes. We can see that the results

obtained by using the DWT are lower than those

obtained by the DC-CWT. Fig. 13 shows the

comparisons by the DWT and DT-CWT.
Fig. 13. Results obtained by the DWT and DT-CWT. The same

methodology in the section of Experimental procedures was used to

extract features. The performance of the proposed method was

evaluated in terms of accuracy, sensitivity, and specificity.
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The performance comparison of the proposed
method with different algorithm for FD

Two algorithms, box-counting and Katz’s were utilized to

extract 12 features. The algorithms used the same

methodology as that described in

Section EXPERIMENTAL PROCEDURES. The

extracted features were fed into the ensemble model to

identify k-complexes. The characteristics of those

methods were also used by Salmasi et al. (2016) to anal-

ysis EEG signals. In their work, the HFD algorithm

achieved higher classification rates than the box-

counting and Katz’s methods. In this paper, to evaluate

the performance of the HFD algorithm, two algorithms

for FDs including Katz’s and box counting were used to

extract the fractal dimension features. The comparison

results of the box counting and Katz’s method, as well

as the HFD algorithm were presented in Table 8. The per-

formance of the proposed method is evaluated in term of

accuracy sensitivity and specificity.

However, for further evaluation, F-score, Kappa

coefficient and Mathew’s correlation coefficient MCCð Þ
measurements were used to evaluate the performance

of the proposed scheme. They were computed in each

fold and the averages of all the results were considered.

The proposed method achieved an average

classification rate of F-score, Kappa coefficient and

MCC of 0.87%, 0.93% and 0.921%, respectively. Based

on the literature, the results obtained by F-score, Kappa

coefficient and MCC provided the evidence that the

proposed method surpassed other methods in the

identification of the k-complexes and non-k-complexes

segments.

Finally, we showed that the DT-CWT combined with an

ensemble machine can be used to identify k-complexes

efficiently. The proposed method is compared with

individual classifiers as well as with several existing k-

complexes detection methods in which the same

datasets were used as in this paper. It was proved that

the proposed methodology attained a good performance

in term of detecting k-complexes. It was also observed

that using fractal and frequency features gave good

classification accuracy for the detection of the

characteristics of sleep Stage 2. This study suggests

that the DT-CWT combined with an ensemble machine

can be used to identify the k-complexes efficiently. This

method can help physicians diagnose sleep disorders

and potentially reduce medical costs.
CONFLICT OF INTERESTS

The authors declare that there are no conflicts of interest

regarding the publication of this paper.



132 W. AL-Salman et al. / Neuroscience 422 (2019) 119–133
ACKNOWLEDGMENT

The authors would like to thank Dr Barbara Harmes

(Language Centre, Open Access College, University of

Southern Queensland, Australia), for her help and

support.

REFERENCES

Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal

dimension for the analysis of electroencephalographic time

series. Biol Cybern 77:339–350.

Al Ghayab HR, Li Y, Siuly S, Abdulla S (2019) A feature extraction

technique based on tunable Q-factor wavelet transform for brain

signal classification. J Neurosci Methods 312:43–52.

Al-Salman W, Li Y, Wen P (2019) Detecting sleep spindles in EEGs

using wavelet fourier analysis and statistical features. Biomed

Signal Process Control 48:80–92.

Al-Salman W, Li Y, Wen P (2019) Detection of EEG K-complexes

using fractal dimension of time frequency images technique

coupled with undirected graph features. Front Neuroinf 13.

Al-salman W, Li Y, Wen P, Diykh M (2018) An efficient approach for

EEG sleep spindles detection based on fractal dimension coupled

with time frequency image. Biomed Signal Process Control

41:210–221.

Bankman IN, Sigillito VG, Wise RA, Smith PL (1992) Feature-based

detection of the K-complex wave in the human

electroencephalogram using neural networks. IEEE Trans

Biomed Eng 39:1305–1310.

Baraniuk R, Kingsbury N, Selesnick I (2005) The dual-tree complex

wavelet transform-a coherent framework for multiscale signal and

image processing. IEEE Signal Process Mag 22:123–151.

Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn B

(2012) The AASM manual for the scoring of sleep and associated

events. Rules, Terminology and Technical Specifications. Darien,

Illinois: American Academy of Sleep Medicine.

Da Costa JC, Ortigueira M, Batista A (2013) K-means clustering for

sleep spindles classification. Int J Inf Technol Comput Sci

(IJITCS). ISSN:2091-1610.

Das AB, Bhuiyan MIH, Alam SS (2016) Classification of EEG signals

using normal inverse Gaussian parameters in the dual-tree

complex wavelet transform domain for seizure detection. SIViP

10:259–266.

Devuyst S, Dutoit T, Stenuit P, Kerkhofs M (2010) Automatic K-

complexes detection in sleep EEG recordings using likelihood

thresholds. In: Engineering in medicine and biology society

(EMBC), 2010 annual international conference of the

IEEE. IEEE. p. 4658–4661.

Devuyst S, Dutoit T, Stenuit P, Kerkhofs M (2011) Automatic sleep

spindles detection—overview and development of a standard

proposal assessment method. In: Engineering in medicine and

biology society, EMBC, 2011 annual international conference of

the IEEE. IEEE. p. 1713–1716.

Diykh M, Li Y, Wen P (2016) EEG sleep stages classification based

on time domain features and structural graph similarity. IEEE

Trans Neural Syst Rehabil Eng 24:1159–1168.

Erdamar A, Duman F, Yetkin S (2012) A wavelet and teager energy

operator based method for automatic detection of K-complex in

sleep EEG. Expert Syst Appl 39:1284–1290.

Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of

waveform fractal dimension algorithms. IEEE Trans Circuits

Systems I: Fundamental Theory Appl 48:177–183.

Finotello F, Scarpa F, Zanon M (2015) EEG signal features extraction

based on fractal dimension. In: Engineering in medicine and

biology society (EMBC), 2015 37th annual international

conference of the IEEE. IEEE. p. 4154–4157.

Gala M, Mohylova J (2009) Detection of k-complex in the EEG signal.

In:World congressonmedical physics andbiomedical engineering,

September 7-12, 2009,Munich,Germany.Springer. p. 1170–1173.
112
Gao H, Jian S, Peng Y, Liu X (2017) A subspace ensemble

framework for classification with high dimensional missing data.

Multidimension Syst Signal Process 28:1309–1324.

Gorur D, Halici U, Aydin H, Ongun G, Ozgen F, Leblebicioglu K

(2002) Sleep spindles detection using short time Fourier

transform and neural networks. In: Proceedings of the 2002

international joint conference on neural networks.

IJCNN’02. IEEE. p. 1631–1636.

Han J, Pei J, Kamber M (2011) Data mining: concepts and

techniques. Elsevier.

Hernández-Pereira E, Bolón-Canedo V, Sánchez-Maroño N, Álvarez-
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5.2 Chapter Summary 

Al-Salman et al. (2019) presented an innovative method to extract the most significant 

features from EEG databases, Dream project at University of Mons-TCTS Laboratory. 

A sliding window technique was used to divide EEG signals into small segments. A 

window size of 0.5s with an overlapping of 0.4s was considered in this study. DT-CWT 

was applied to decomposed each segment into four sub-bands. Thereafter, fractal and 

frequency features were extracted from each sub-band. The key features were 

forwarded to the ensemble model to detect the k-complexes. The experimental results 

observed that using fractal and frequency features gave reasonable classification 

accuracy for the detection of the characteristics of sleep Stage 2, compared to existing 

methods. Furthermore, the proposed method was compared with individual classifiers 

as well as with several existing k-complexes detection methods in which the same 

datasets were used. The results show that the proposed feature extraction method 

combined with the ensemble model outperforms other techniques in k-complexes 

detection. In addition, this method is capable of differentiating the variety of EEG 

categories (k-complexes and non-k-complexes) with an excellent performance, 

compared to existing methods. The obtained results clearly demonstrated that using 

DT-CWT based on the ensemble model technique has the potential to improve the 

classification and to identify k-complexes in EEG signals.  

However, using only six subjects of EEG recording was not enough to detect k-

complexes with high accuracy and low execution time. Considering other technique, 

such as fractal and graph features, reduced the processing execution time, decreased 

the dimensionality of EEG data and improved the results with all datasets. The next 

chapter will discuss k-complexes detection of a whole dataset based on the fractal 

dimension of time-frequency images technique coupled with undirected graph 

features. This method improved performance by reducing the execution time with a 

whole dataset. 
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CHAPTER 6 

 

DETECTION OF EEG K-COMPLEXES USING 

FRACTAL DIMENSIONS OF TIME FREQUNCEY 

IMAGES TECHNIQUE COUPLED WITH 

UNDIRECTED GRAPH FEATURES 
 
 
6.1 Introduction 
 
In Chapter 5, the fractal and frequency features combined with the ensemble mode 

classifier was presented to identify k-complexes in sleep stage 2 with a high accuracy 

rate and high processing of execution time. This scheme was implemented and tested 

on a benchmark EEG database which used only six subjects out of ten. However, to 

reduce the execution time, to decrease the dimensionality of EEG data, and to improve 

the results with all datasets a novel method to identify k-complexes, based on fractal 

graph features, is presented in this chapter; it was conducted and tested with a whole 

dataset. 

In previous research, Al-Salman et al. (2018) reported that the fractal dimension based 

features achieved promising results for analysing EEG signals as well as for the 

detection of sleep spindles. As a result, the concept of the fractal algorithm was used 

in this study to identify the k-complexes with the lowest execution time and the highest 

classification results.  
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In this chapter, the details presented here is an exact copy of a published  paper in 

Journal of Frontiers in Neuroinformatics  by Al-Salman et al. (2019). They explain a 

new method based on a fractal dimension (FD) of time frequency images (TFI) 

technique coupled with undirected graph features. The method was employed to 

analyse and identify k-complexes in EEG signals during sleep stage 2.  There were 

four steps in the process.  

Firstly, an EEG signal was divided into smaller segments using a sliding window 

technique.  Secondly, each segment was passed through a spectrogram of short time 

Fourier transfer to obtain the TFI; FD were then discovered in EEG signals to each 

TFI. Thirdly,  the structural properties of the undirected graph were used to extract the 

discriminative features from each FDs; and lastly, these features were forwarded to a 

least square support vector machine (LS-SVM) and k-means classifier to detect k-

complex and non k-complex segments. The proposed method was tested with a whole 

EEG database, and it was also compared with other existing methods, based on a 

number of performance evaluation measures.  The findings of this study shows that 

the proposed method yields better classification results than other existing methods in 

the literature. 
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K-complexes identification is a challenging task in sleep research. The detection of
k-complexes in electroencephalogram (EEG) signals based on visual inspection is
time consuming, prone to errors, and requires well-trained knowledge. Many existing
methods for k-complexes detection rely mainly on analyzing EEG signals in time and
frequency domains. In this study, an efficient method is proposed to detect k-complexes
from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled
with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments
using a sliding window technique. Each EEG segment is passed through a spectrogram
of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box
counting method is applied to each T-F image to discover the FDs in EEG signals.
A vector of FD features are extracted from each T-F image and then mapped into an
undirected graph. The structural properties of the graphs are used as the representative
features of the original EEG signals for the input of a least square support vector
machine (LS-SVM) classifier. Key graphic features are extracted from the undirected
graphs. The extracted graph features are forwarded to the LS-SVM for classification.
To investigate the classification ability of the proposed feature extraction combined
with the LS-SVM classifier, the extracted features are also forwarded to a k-means
classifier for comparison. The proposed method is compared with several existing
k-complexes detection methods in which the same datasets were used. The findings of
this study shows that the proposed method yields better classification results than other
existing methods in the literature. An average accuracy of 97% for the detection of
the k-complexes is obtained using the proposed method. The proposed method could
lead to an efficient tool for the scoring of automatic sleep stages which could be useful
for doctors and neurologists in the diagnosis and treatment of sleep disorders and for
sleep research.

Keywords: electroencephalogram, k-complexes, structural undirected graph, fractal dimensions, box counting
and time frequency images
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INTRODUCTION

Sleep can be divided into different sleep stages that include mainly
non-rapid eyes movements (NREM) sleep, rapid eyes movements
(REM) sleep etc. NREM sleep can be further divided into four
stages of drowsiness (S1), light sleep (S2), deep sleep (S3) and
very deep sleep (S4). Recently, the NREM sleep were reduced
by American academy of sleep medicine (AASM) into three
stages in which S3 and S4 were combined into one stage as
slow waves stages (SWS) (Rechtschaffen and Kales, 1968; Iber
et al., 2007; Ranjan et al., 2018). Figure 1 shows the sleep stage
signals and their characteristics (Fraiwan et al., 2012). Analysis
of these sleep waveforms based on their characteristic features
of different stages is an important phase in sleep studies as each
sleep stage has different characteristic waveforms. One of those
important waveforms occurred in electroencephalogram (EEG)
signals and changed over a short time are sleep spindles and
k-complexes waves. K-complexes and sleep spindles patterns are
the key characteristics of S2, and consequently they are often
used to identify S2.

In 1993 k-complexes were first discovered by Loomis
et al. (1938). A k-complex includes a large-amplitude transient
waveform with a single negative sharp wave followed by a
positive sharp wave, and it has a relatively sharp amplitude
that is more than ±75 µV (Bremer et al., 1970; Richard and
Lengelle, 1998; Lajnef et al., 2015). This transient bio-signal
waveform occurs in all sleep stages, but mainly occurs in sleep
stage 2, and it presents in 12–14 Hz waves (Jansen and Desai,
1994). Moreover, in another study (Bremer et al., 1970) it was
reported that the minimum peak to peak amplitude value of
the k-complexes is around 100 µV. Most of these early studies
showed that k-complexes could appear many times during
stage 2 with a maximum time duration between 0.5 and 1.5 s.
Some studies reported that the maximum time duration of
a k-complexes is between 1 and 3 s (Pohl and Fahr, 1995;
Lajnef et al., 2015; Hernández-Pereira et al., 2016; Ghanbari and
Moradi, 2017; Al-Salman et al., 2018). Examples of EEG signals
with and without k-complexes events are shown in Figure 2
(Yücelbaş et al., 2018a).

The k-complexes are very important in both children’s and
adults’ sleep studies and the diagnoses of neurophysiologic and
cognitive disorders (Bremer et al., 1970; Strungaru and Popescu,
1998; Lajnef et al., 2015). Reliable methods for the analysis and
detection of the k-complexes in sleep EEG signals are of great
importance for sleep research and clinical diagnosis (Kokkinos
and Kostopoulos, 2011). Traditionally, k-complexes are visually
examined and marked in an all-night sleep EEG recording by
one or two well-trained experts. This process is time consuming,
specialist dependent, and tedious, due to the fact that there are
typically 1 to 3 k-complexes per minute in stage 2 for young
adults (Amzica and Steriade, 2002; Kam et al., 2004; Ghanbari and
Moradi, 2017; Ranjan et al., 2018). Therefore, the auto detection
of k-complexes is a very important research topic.

In this paper, the fractal dimension (FD) combined with
undirected graphs is used to detect k-complexes in sleep EEG
signals. Firstly, EEG signal is divided into segments of 0.5 s. Each
segment is transformed into a time frequency (T-F) images using

a short time Fourier transform (STFT). Secondly, a box counting
algorithm is applied to each of the T-F image to calculate their
FD. Ten FDs are extracted from each T-F image, and are mapped
to undirected graphs to extract the features of interest. The
least square support vector machine classifier is used to validate
the proposed method. The performance is measured in term
of accuracy, sensitivity, and specificity. The performance of the
proposed method was compared with several existing methods
in the literature. The results demonstrated that the proposed
method achieved a high classification accuracy rate for detecting
k-complexes in EEG signals.

The remainder of this paper is organized as follows: Section
“Related Work” descripts the EEG data used in this paper. Section
“EEG Data Description” illustrates the details of the proposed
methodology. The experimental results are explained in section
“Proposed Method.” Finally, the conclusion is provided in section
“Experimental Results.”

RELATED WORK

Several automatic methods have been developed to detect
and analyze the k-complexes. Those approaches used different
transformation techniques, such as Fourier transform, wavelet
transform, spectral analysis, matching pursuit and autoregressive
modeling (Camilleri et al., 2014). So far, no studies have been
presented to identify k-complex transient events based on their
waveform characteristics, such as a textural descriptor, non-linear
features or their graph connections.

Bankman et al. (1992) used a method based on different set of
features to detect k-complexes in sleep EEG signals. 14 features
were extracted from EEG signals and then used as input into a
neural network. The researchers reported an average of sensitivity
and false positive rate (FPR) of 90 and 8.1%, respectively. Another
study was presented by Hernández-Pereira et al. (2016), in which
k-complexes were also detected based on 14 features extracted
from each sleep EEG signal. The features were then forwarded to
different classifiers to identify k-complexes. An average accuracy
of 91.40% was reported using the features selection method.

Tang and Ishii (1995) proposed a method to identify
k-complexes based on the discrete wavelet transform (DWT)
parameters. The DWT parameters were used to determine the
time duration and amplitude of k-complexes. In their study, they
obtained 87% sensitivity and 10% FPR. More recently, Lajnef
et al. (2015) used a tunable Q-factor wavelet transform for the
detection of k-complexes. An average sensitivity and FPR of 81.57
and 29.54% were reported, respectively.

Another study was presented by Richard and Lengelle (1998),
in which the k-complexes were recognized based on a joint linear
filter in time and time-frequency domains. The k-complexes and
delta waves were identified with an average sensitivity and FPR of
90 and 9.2%, respectively. Yücelbaş et al. (2018b) used a method
to detect k-complexes automatically based on time and frequency
analyses. In their study, an EEG signal was decomposed using a
DWT. An average accuracy rate of 92.29% was achieved.

Noori et al. (2014) used a features selection using a generalized
radial basis function extreme learning machine (MELM-GRBF)
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FIGURE 1 | Typical EEG signals of 30 s belonging to sleep stages for a subject: awake stage, N1, N2, S3, N4, and REM stage.

FIGURE 2 | EEG signal examples: (A) with k-complexes events. (B) without k-complexes.

algorithm to detect k-complexes. In their study, fractal and
entropy features were employed. The EEG signals were divided
into segments using a sliding window technique. The size
of the window was set to 1.0 s. An average sensitivity and
accuracy of 61 and 96.1% were reported. Researchers in Zacharaki
et al. (2013) utilized two steps to detect k-complexes. In the
first step, the k-complex candidates are selected, while the
number of k-complexes is reduced in the second step using
a machine learning algorithm. In that study, four features,
including peak-to-peak amplitude, standard deviation, and a
ratio of power and duration of the negative sharp wave,
were extracted from each segment. An average sensitivity of
83% was reported.

Parekh et al. (2015) detected the k-complexes based on a fast
non-linear optimization algorithm. In that study, only F-score

result was reported. An average F-score of 0.70 and 0.57% for
the detection of the sleep spindles and the k-complexes were
achieved, respectively. Another study was presented by Henry
et al. (1994), in which the k-complexes were classified based on
matched filtering. Each segment was decomposed into a set of
orthonormal functions and wavelets analysis.

Devuyst et al. (2010) used a likelihood threshold parameters
and features extraction method to detect k-complexes. The
performance of the detection was assessed against to two human
experts’ scorings. An average of sensitivity rate of 61.72 and
60.94% for scorer 1 and scorer 2 were obtained. Migotina et al.
(2010) presented a method based on Hjorth parameters and
employed fuzzy decision to identify k-complexes. In that study,
the performance of the proposed method was compared with the
visual human scoring to evaluate their results. All those methods
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for classifying k-complexes in sleep EEG signals were based on
linear features. So far waveform characteristics based features,
such as a textural descriptor, and graph network connections,
have not been used for the detection of k-complexes.

According to the literature, we found that the FD as non-
linear features has been proven to be an efficient approach to
explore the hidden patterns in digital images and signals (Prieto
et al., 2011; Finotello et al., 2015). It has been used to analyze
and classify EEG signals to trace the changes in EEG signals
during different sleep stages, and has also been employed to
recognize different digital image patterns. Yang et al. (2007) and
Sourina and Liu (2011) employed a FD approach to analyze sleep
stages in EEG signals.

Fractal dimension technique was also used by Ali et al. (2016)
for voice recognition. Time frequency (TF) images were also
used by Bajaj and Pachori (2013) to classify sleep stages. Bajaj
et al. (2017) also identified alcoholic EEGs based on T-F images.
Based on our previous study (Al-Salman et al., 2018) we found
that time frequency images coupled with FD yielded promising
results in analyzing and detecting sleep spindles in sleep EEG
signals. Furthermore, undirected graph properties have been used
to analyze and study brain diseases (Vural and Yildiz, 2010; Wang
et al., 2014). Some studies reported that undirected graphs can
be considered as one of the robust approaches to characterize
the functional topological properties in brain networks for both
normal and abnormal brain functioning (Sourina and Liu, 2011;
Li et al., 2013). The relevant techniques were employed in image
processing as a powerful tool to analyze and classify digital images
(Sarsoh et al., 2012).

Recently, a graph approach was used in Diykh et al. (2016) to
classify sleep stages. However, in this work, we have combined
the fractal features with properties of undirected graphs to detect
k-complexes in sleep EEG signals. Based on our knowledge,
fractal graph features approach has not been used in k-complexes
detection before.

EEG DATA DESCRIPTION

The EEG datasets used in this paper were collected by the Dream
project at University of Mons-TCTS Laboratory (Devuyst et al.,
2011). The sleep EEG data sets that were publically available
included 10 recordings acquired from 10 subjects: 4 males and
6 females using a digital 32-channel polygraph (BrainnetTM
system of MEDATEC, Brussels, Belgium) (Devuyst et al., 2010).
The sleep EEG data sets were collected in a 30 min interval of the
central EEG channel for a whole night. The datasets were sampled
at frequency of 200 Hz. Three EEG channels (CZ-A1 or C3-
A1, FP1-A1 and O1-A1) and one submental EMG channel were
recorded from each subject. The k-complexes in this database
were detected visually by two experts. The first expert scored all
the ten recordings, while the second expert only annotated five
recordings out of the 10 EEG recordings. Therefore, the CZ-
A1 channel EEG recordings sampled at 200 Hz, all recording
by expert 1, were used for detecting the k-complexes in this
study. The information about for the database is shown in
Table 1. For more information, please refer to the following

TABLE 1 | Database information from dream database.

Subject ID Sex Age K-complexes
scored by expert 1

K-complexes
scored by expert 2

ID1 Man 20 34 19

ID2 woman 47 45 8

ID3 Woman 24 12 3

ID4 Woman 23 78 14

ID5 Woman 27 39 20

ID6 Man 23 28 –

ID7 Man 27 11 –

ID8 Woman 46 4 –

ID9 Man 27 5 –

ID10 woman 21 16 –

website gives details. The dataset with additional information
is publicly available from http://www.tcts.fpms.ac.be/~devuyst/
Databases/DatabaseKcomplexes.

PROPOSED METHOD

In this work, a new method is presented based on time-
frequency image and graph features to detect k-complexes in
EEG signals. An illustration is given in Figure 3. The EEG
signal is firstly divided into segments using a sliding window
technique. The size of the window is set to 0.5 s with an
overlapping of 0.4 s. Then, each 0.5 s EEG segment is passed
through the spectrogram of STFT to obtain the time-frequency
images (T-F images). FD as a texture descriptor for each
T-F image is calculated based on the box counting method.
The vector of FD from each T-F image is then mapped into
an undirected graph. Three features of {degree distributions,
Jaccard coefficient, and cluster coefficient} from each graph are
extracted and used as the key features to detect k-complexes
in this study. Those features are then forwarded to a least
square support vector machine (LS-SVM) classifier to detected
k-complexes in EEG signals.

Segmentation
Sleep experts have observed that k-complexes normally appear
in EEG signals for 0.5 to 2 s. The sliding window technique was
utilized by Siuly et al. (2011) for the classification of EEG signals.
It was also utilized by Al-Salman et al. (2018) and Zhuang et al.
(2016) to detect sleep spindles in EEG signals. Kam et al. (2004)
employed the sliding window method to detect k-complexes in
their study. Their results showed that applying a sliding window
technique helped to improve satisfactory classification results. As
sleep spindles and k-complexes occur during stage 2 for about
0.5 to 2 s, we tested various window sizes of 1.0, 1.5, and 2.0 s
and overlapping lengths to identify the optimal segment size.
However, we made the window length between 0.5 and 2 s.
We used the same technique in Al-Salman et al. (2018, 2019).
We selected 0.5 window length based on our simulation results.
The simulation results showed that the window size of 0.5 s
was more optimal for identifying EEG characteristics than other
window sizes. Figure 4 shows the EEG signal being dividing
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FIGURE 3 | The methodology of the proposed method for k-complexes detection.

EEG signals
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overlapping 0.4s

FIGURE 4 | An example of segmenting an EEG signal into windows using a sliding window technique.

into 0.5 s segments with an overlapping of 0.4 s using a sliding
window technique.

Spectrogram of STFT
Spectrogram of STFT is normally defined as the normalized,
square magnitude of the STFT coefficient (Bajaj et al., 2017;
Al-Salman et al., 2018). The STFT is defined as:

S(n, ω) =

∞∑
x=−∞

y[x]w[n− x]e−jwn (1)

where y[x]w[n− x] is a short time of signal S(n, ω) at time n, and
the discrete of STFT can be formulated as:

S(n, k) = S(n, ω)|ω =
2πk
N

(2)

where N refers to the number of discrete frequencies.
Before Fourier transform was calculated, the centered function

w = [x] at time n was multiplied with signal S. The Fourier
transform is estimated at time n, and the window function, w =
[x] centered at time n, of signal S(n, ω) is considered close to time
n. A fixed positive function was used to obtain the STFT, which is
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denoted as w[x]. Thus, the spectrogram can be formulated as:

SP(n, k) = |S(n, ω)|2 (3)

The signal is divided into smaller blocks to obtain the STFT
coefficients using the sliding window. After each block is
transformed through a Fourier transform, their spectrum is
obtained. As the result, the spectrogram of the signal can be
calculated from the square of the discrete STFT by using Eqs
1 and 2. Figure 5 shows examples of an EEG segment with
a k-complex and an EEG segment without a k-complex event
were transformed into a time frequency image using the STFT.
According to the literature, the spectrogram is more effective
for analyzing non-stationary signals (Siuly and Li, 2012). In this
paper, the spectrogram is applied to each EEG segment to obtain
the T-F images.

Fractal Dimension
Fractal dimension allows us to measure the degree of complexity
of an object. With FD, each figure can be depicted by a series of
fragments. Those fragmented parts can be represented as a small
copy of the original figure (Al-Salman et al., 2018).

Extracting features from EEG signals is a common step to
obtain the key information. The FD technique is one of the
most powerful methods to extract the hidden characteristics
from EEG signals (Nunsong and Woraratpanya, 2015) as well
as to explore the key patterns in biomedical signals and image
processing (Prieto et al., 2011). The FD is commonly used to
analyze and classify EEGs signals (Finotello et al., 2015). Based
on our previous work (Al-Salman et al., 2018), it was found
that extracting features from FD could reduce the complexity of
computation time and also increased the detection accuracy.

In this paper, the box counting algorithm is employed and
applied to estimate the FD (capacity dimensions) of a T-F image
to identify k-complexes in EEG signals. The box counting method
can be described as follows: Suppose that M is a T-F images
and we need to calculate the FD of M. The following main
formula is utilized.

Dim = lim
r→0

log N(r)
log(1/r)

(4)

Based on the equation above, Dim is a FD, N(r) is the total
number of boxes, and r is the size of boxes that are required to
cover image M. To cover the entire T-F image, different sizes of
boxes are tested, and N(r) and r are determined. Figure 6 presents
an example illustrating how the number and size of boxes
were created. More details about the box counting algorithm is
provided in our previous work (Al-Salman et al., 2019).

Features Extraction Based on Fractal
Graphs
Different window sizes of 0.5, 1.0, 1.5, and 2.0 s were tested
in this study to investigate the most suitable number of boxes
required to cover the curve. The number of the boxes that are
required to cover the entire T-F images using 0.5 s is shown in
Table 2, while Table 3 presents the number of boxes with different
sizes of windows. As mentioned before, the FD is calculated after

transferring an EEG segment into T-F images using the STFT.
Then, the box-counting algorithm is applied on each T-F image
to extract the features of interest. The values of those features
range between 1.0 and 2.0. Each element in the FDs is calculated
based on logN(r)/log(1/r). By using the slope of a least square best
straight line, the fractal is obtained. From each T-F image, ten FD
features as a vector are extracted from each TFI.

For example, if the box size r is 16, the size of window is
0.5, 1.0, 1.5, and 2.0 s and the number of boxes is 1232, 1973,
2357 and 3351, respectively, as shown in Table 3. Based on the
equation of logN(r)/log(1/r), the fractal value for the seventh
feature (FD7) is 1.204 with window size 0.5 s, as shown in
Table 2. However, to obtain 10 FDs from each T-F image, the
same procedure is repeated 10 times. In general, the FD values
are between 1.0 and 2.0 and all the FD values are non-integer.
Based on the experimental results during the training phase, the
proposed method provides better classification results using a
window size of 0.5 s than the window sizes of 1.0, 1.5, and 2.0 s.
More details regarding windows sizes will be presented in section
Experimental results.

Structure and Construction of Graph Properties
Undirected graph properties have been used to analyze and
study brain diseases (Vural and Yildiz, 2010; Wang et al., 2014).
The graph may be considered as one of the more robust tools
to characterize the functional topological properties in brain
networks for both normal and abnormal brain functioning (Stam
et al., 2007; Li et al., 2013). It is widely used to identify EEG signals
such as sleep stages, as well as to classify digital images (Sarsoh
et al., 2012; Diykh et al., 2016). In this study, the structure of graph
properties is employed to identify k-complexes from EEG signals.

An undirected graph can be described as a set of nodes and
edges. A graph is a pair of set G = (V, E), where V is a set of
nodes in a graph and E is a set of connections between the nodes
of graphs. Each pair of nodes in a graph is connected by a link.
The connection denotes that there are relationships between each
pair of nodes in a graph (Blondel et al., 2004; Migotina et al.,
2010; Bernhardt et al., 2015). The Euclidean distance has been
used in this study as a similarity measure (Huang and Lai, 2006).
The edges between the first point and others are calculated using
the Euclidean distance. Figure 7 shows a vector of FD as example
X = {1.2, 1.4, 1.3, 0.7, 1.9, 2.2, 0.3, 2.0, 2.8, 4.6, 12.2, . . . }, being
transferred into an undirected graph which is obtained from the
TFIs based on Eq. 4. To construct the undirected graph, each
data point in X was considered to be a node in a graph. v1 is
the first node in the graph corresponding to the first point in the
vector X with a value of 1.2. The edges between this point and the
others were calculated based on Euclidean distance. More details
about Euclidean distance were provided in Zhang and Small
(2006), Zhu et al. (2014), and Jain et al. (1999). Consequently,
a distance matrix (adjacency matrix) is produced according to
Eq. 7. Based on the proposed method, the undirected graph can
be characterized with its degree distributions, cluster coefficient
and Jaccard coefficient. The next section provides more details in
relation to the undirected graph characteristics.

To build the adjacency matrix, we assume that there are
two nodes, v1 and v2, in an undirected graph. Those nodes are
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FIGURE 5 | Time-Frequency Image of an EEG segment by the STFT: (A) with k-complexes events. (B) without k-complexes.

= 1/ 10

FIGURE 6 | An illustration of the box counting algorithm to create the size and the numbers of boxes.

TABLE 2 | The number of boxes in ten scale according to the box size by using 0.5 s window sizes.

Box size r 1 2 4 8 16 32 64 128 256 512 1024

No. of box N(r) 277925 70406 17805 6418 1232 360 105 34 12 4 1

log(1/r) 0 0.30102 0.60205 0.90308 1.20411 1.50514 1.80617 2.10720 2.40823 2.70926 3.01029

log N(r) 5.4439 4.8476 4.2505 3.6645 3.0906 2.4857 2.0212 1.5315 1.0792 0.6021 0

connected if the distance (d) between v1 and v2 is less than or
equal to a pre-determined threshold as explained in the following
(Boccaletti et al., 2006; Huang and Lai, 2006; Lacasa and Toral,
2010; Zhu et al., 2014; Diykh et al., 2016).

(v1, v2) ∈ E, if d(v1, v2)≤ thr (5)

where thr is the pre-determined threshold. Since the structure
of the graph is generally biased by the number of existing
edges, statistical measures should be calculated on graphs
of equal degree k. Therefore, the threshold was defined in
this study by adopting the mean degree as an appropriate
threshold scheme to reveal the informative network topology

which is the average number of edges per nodes of the
graph. More details about adopting the mean degree as
the threshold was provided in Sporns and Zwi (2004),
Stam et al. (2007), Dimitriadis et al. (2009, 2010), and
Micheloyannis et al. (2009).

k =
1
n

n∑
i=1

B(vi, vj); n = number of node; (6)

Graph G can be described by giving a square matrix T × T
called adjacency matrix B. This matrix is used to describe the
connection between all the nodes of the graph. The adjacency
matrix contains zeros in its diagonal. Thus it is considered to be
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TABLE 3 | The number of the boxes in seven scales using different window size of
2.0, 1.5, 1.0, and 0.5 s.

Box size r 1 2 4 8 16 32 64

No. of box N(r)
using 2.0 s

536322 136667 34827 8966 3351 614 168

No. of box N(r)
using 1.5 s

572994 145071 36542 9222 2357 615 168

No. of box N(r)
using 1.0 s

435823 110918 28205 7321 1973 571 166

No. of box N(r)
using 0.5 s

277925 70406 17805 6418 1232 360 105

a symmetrical matrix. The value of this matrix is equal to zero
if there is no connectivity among two nodes (v1 and v1), and
otherwise it is equal to one (Boccaletti et al., 2006). However,
the connectivity matrix of an undirected graph is symmetric as
B(vi, vj) = B(vj, vi).

B(vi, vj)

{
1, if (vi, vj) ∈ E
0, otherwise

(7)

It is clear from Figure 7 that the node v11 of Euclidean distance
has no connection to any other nodes in the graph. That means
that this node is an isolated point in the graph. In this paper,
all the graphs have been constructed with the same number of
nodes. The next section provides more details in relation to the
undirected graph characteristics.

Graph Features
In this study, the adjacency matrix of a graph G has been used to
extract the statistical features. Those statistical features of a graph
can be used for the detection of k-complexes from EEG signals in
this paper. The following section describes the important features
that can be extracted from graph G (Li et al., 2013; Fang and
Wang, 2014; Diykh and Li, 2016).

Degree distributions (DD) of the graph
The DD of graph G, denoted by P(k), is defined to the proportion
of nodes with degree k partitioned by the total number of nodes
in the graph (Stam and Reijneveld, 2007; Zhu et al., 2014; Diykh
et al., 2016). It is obtained by counting the number of nodes
having degree k divided by the total number of nodes (Zhu et al.,
2014). The DD is defined as:

P(k) =
|{v|d(v) = k}|

U
(8)

where d(v) refers to the degree of node v, while U is the total
number of nodes in the graph. For example, in Figure 7, P(k) =( 3

10 , 2
10 , 5

10 , 2
10 , 3

10 , 2
10 , . . . , n

10
)
.

Clustering coefficient (CC) of the graph
The CC can be considered as one of most important metrics
utilized to characterize both local and global structures of a graph,
G. It was used by Stam et al. (2007) and Li et al. (2013) to
analyze brain activities. Assume that vi is a node in the graph.
The clustering coefficient of a given node, vi is calculated as the
proportion of the links among vi’s neighbors. For example, the
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FIGURE 7 | A vector of fractal dimension is mapped into an undirected graph.
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CC of node vs in Figure 7 is 1 as the node vs has three neighbors:
(v4→ v5, v3→ v5, v5→ v6). Thus, the CC of vs = 1. The average
of the CC of all the nodes is measured as:

CC =
1
U

U∑
i=1

Gvi (9)

where U is the number of the nodes in graph G and Gvi is the
clustering coefficient of node vi.

Jaccard coefficient of the graph
Jaccard coefficient is used to measure the similarity between two
nodes of a graph. Assume vi and vj are two nodes in graph
G. Jaccard coefficient can be defined as a ratio of the set of
the neighboring intersection between vi and vj to the set of the
neighboring unions for the two nodes. Jaccard coefficient was
used by Anuradha and Sairam (2011) to classify digital image.
It was also utilized by Iglesias and Kastner (2013) to analyze
the similarity between two time series. Their results showed
that using a Jaccard coefficient helped to improve satisfactory
classification results. Jaccard coefficient function is calculated
based on the following equation:

M(vi, vj) =
|0(vi) ∩ 0(vj)|

|0(vi) ∪ 0(vj)|
(10)

where 0(vi) and 0(vj) are the sets of neighbors of the two nods,
vi and vj, that have an edge from vi and vj, and M = [0, 1]. In this
study, for each graph, a Jaccard coefficient vector is computed.
Figure 8 shows the main steps of the features extraction process
using the proposed method.

Classification Algorithms
After the three fractal graph features are obtained from each
graph, they are forwarded to a LS-SVM classifier to identify
k-complexes in sleep EEG signals. For comparison, a k-means
classifier is also applied. Based on the literature (Siuly et al.,
2011; Siuly and Li, 2012; Al Ghayab et al., 2016; Al-Salman et al.,
2018, 2019), we found the two classifiers are considered the most
popular and effective methods in biomedical signal classification.
The training parameters of the selected classifiers were presented
in Table 4.

Least Square Support Vector Machine (LS-SVM)
The LS-SVM classifier was first developed by Suyken and
Vandewalle (Guler and Ubeyli, 2007) based on the last version of a
support vector machine. It is widely used to classify various types
of biomedical signals because it has showed great performance
results with a high accuracy rate and low execution time.
Many researchers used the LS-SVM classifier to classify different
characteristic patterns of EEG signals, such as sleep stages, sleep
spindles and epileptic seizures (Sengur, 2009; Siuly and Li, 2012,
2015; Bajaj and Pachori, 2013; Al Ghayab et al., 2016; Diykh et al.,
2016). It was used for the detection of sleep spindles in EEG
signals in our previous work (Al-Salman et al., 2018).

The LS-SVM classifier generally depends on two hyper
parameters, γ and σ. Those parameters should be carefully chosen
due to they can positively or negatively affect the performance of

a method to increase or decrease the classification rate. The radial
basis function (RBF) kernels, γ and σ are empirically selected
during the training session. In this paper, the optimum values for
γ and σ are set to γ = 10 and σ = 1.

K-Means
The k-means classifier is a second classifier being employed in
this study. It is considered as one of the most popular approaches
in biomedical data classification. In general, the k-means classifier
is known as a clustering algorithm (Faraoun and Boukelif, 2006;
Al-Salman et al., 2018). It partitions observations into a number
of groups according to the similarities or dissimilarities among
their patterns. The Euclidean distance for a k-means classifier
is usually used for the dissimilarity measure. It was used by Al-
Salman et al. (2018) for detecting the sleep spindles, and by
Orhan et al. (2011) for detecting the epileptic EEG signals. In
this research, the k-means classifier is used to distinguish between
k-complexes and non-k-complexes waveforms.

Performance Evaluation
In order to evaluate the performance of the proposed method
with different EEG categories, the following metrics, accuracy,
sensitivity and specificity are used in this paper. The main
formulas of those statistical measurements are defined as Tawfik
et al. (2016) and Yücelbaş et al. (2018b).

Accuracy (ACC) =
TP+ TN

TP+ FN+ FP+ TN
;

Sensitivity (SEN) =
TP

TP+ FN
;

Specificity (SPE) =
TN

TN+ FP

(11)

where TN (true negative) is the actual non-k-complexes that are
correctly classified as non-k-complexes. FP (false positive) refers
to the number of k-complexes that are incorrectly determined by
a classifier. TP (true positive) means the actual k-complex waves
that are correctly detected. FN (false negative) shows the actual
k-complexes that are incorrectly marked as non-k-complexes.
More details for those metrics and other measurements are
provided in Al-Salman et al. (2018).

Matthews’s Correlation Coefficient (MCC)
MCC is used in machine learning as a measure of the quality
of binary classifications. It provides a balanced evaluation of
the detector as compared with sensitivity and specificity values,
which can be used even if classes are of unequal size. It is defined
in Migotina et al. (2010) and Matthews (1975):

MCC =
TP.TN− FP.FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(12)

F-Score
One of the most important measurements that are used to show
the overlapping between the two sets. F-score is defined by
weighted sensitivity and precision.

F− score =
2TP

2TP+ FP+ FN
(13)
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FIGURE 8 | A graphical diagram of feature extraction.

Kappa Coefficient
It is a statistic measure used to evaluate the agreement between
two classification results. In this paper, it is employed to evaluate
the agreement between two models, the proposed method and
expert (expert 1). It is defined as below:

Kappa coefficient (k)=
TP+TN

N − pre
1− pre

(14)

where, pre = TP+FN
N .TP+FP

N +

(
1− TP+FN

N

)
.
(

1− TP+FP
N

)
, and

N = (TP+ FP+ TN+ FN).

K-Cross Validation
It is a popular approach used for evaluating the performance of
a classification algorithm. It is utilized to estimate the quality
of the classification results by dividing the number of correctly
classified results by the total of the cases. The datasets in section

TABLE 4 | Classifiers’ parameters used in this study.

Classifier Parameters

LS-SVM γ = 10, σ = 1 and RBF kernel

K-means k, ci and xk , where k is the number of clusters and k = 2. ci is
the center of the clusters and ci = 1, and xk is the data points.

“EEG Data Description” are separated into k groups with equal
size. Each time, one group is used as the testing set, while the
remaining subsets (groups) are used as the training set. All the
groups are tested in turn. The testing classification accuracy for
all groups is calculated. In this paper, 6- cross-validation is used
as the accuracy is not improved after k > 6. The average accuracy
for all testing subsets is computed below:

Performance =
1
6

6∑
1

accuracy(k) (15)

where accuracy(k) is the accuracy over the six iterations (k = 1,
2, . . ., 6).

EXPERIMENTAL RESULTS

All the experiments were conducted with the database discussed
in section “EEG Data Description” and three structural graph
features were extracted from each FD of the T-F images in this
study. The features graph were sorted in a descending order based
on their importance as shown in Figure 9. Based on the obtained
results, the proposed method with the three graph features
recorded high classification results, with an average accuracy of
97%. All the experimental results were obtained in a Matlab 2015b
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FIGURE 9 | Classification accuracy based on individual graph features.

environment on a computer that has the following features: 3.40
GH Intel (R) CoreTM i7 processor machine, and 8.00 GB RAM.
The experimental results were evaluated in terms of accuracy,
sensitivity, and specificity. The 6-fold cross validation was also
used in this study.

According to Figure 9, some attributes of a graph, such
as the Jaccard coefficient, were more significant that other
graph attributes in recognizing k-complexes. To investigate
the effectiveness of the characteristics of the graph on the
identification of the k-complexes, the mean and standard
deviation measurements for each segment were used in this
study, as shown in Figure 10. From the results in Figure 10, we
can see that the three of the graph features: Jaccard coefficient,
clustering coefficient, and degree distribution can be used as key
attributes to differentiate the k-complexes. All the characteristics
of the graph have reported reasonable results in term of standard
deviation, as shown on Figure 10. Based on the literature,
the obtained results indicate that the three graph features of
{Jaccard coefficient, clustering coefficient, and degree distribution}
can be used to distinguish between k-complexes and non-k-
complexes EEG segments.

The results based on the three features set by the proposed
method are presented in Table 5. Based on the results in Table 5,
it was observed that, the three features set of the graph yields the
highest accuracy for the detection of k-complexes in EEG signals.
The obtained results demonstrated that the proposed method
yielded the best performance with an average accuracy, sensitivity
and specificity of 97, 96.6, and 94.7%, respectively. All the results
in Table 5 were carried out using LS-SVM classifier with a
window size of 0.5 s. For further evaluation, the performance
of the proposed method was also tested using a FPR and kappa
coefficient. The FPR and kappa coefficient have been calculated
for each subject and the average of all the results was investigated.
The average of the FPR and kappa coefficient of the proposed

method was 0.060 and 0.87, respectively. Based on the literature,
the obtained results by the FPR and kappa coefficient provided
evidence that the proposed method has the potential to classify
k-complexes and non-k-complexes in EEG signals.
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FIGURE 10 | Mean and standard deviation of undirected graph features.

TABLE 5 | The performance of the proposed method based on
the DD, JC and CC.

Fold No. Sensitivity % Specificity % Accuracy %

Fold1 97 94 98.2

Fold2 96.3 97.8 97.1

Fold3 97.1 96 97

Fold4 97 94 97.3

Fold5 96 92 95.8

Fold6 97 93 96.8

Average 96.6 94.7 97
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Performance of the Proposed Method
Based on Different Window Sizes
To detect all possible occurrences of the k-complexes in the
original EEG signals, and to assess the ability of the proposed
method to identify the k-complexes, three other window sizes
of 1.0, 1.5, and 2.0 s were tested in this paper. The features
described in Section “Graph Features” were extracted, and the
dataset was divided into six subsets. The average accuracies of the
proposed method were recorded from the 6-fold cross evaluation.
The accuracies against the expert’s scoring using different window
sizes were reported in Figure 11. From the results in Figure 11,
it can be seen that it was difficult to detect k-complexes in EEG
signals with 2.0 s window size, which makes sense since the most
of the occurrences of k-complexes have a window size of 0.5 s.
Our findings show that, there were large disagreements between
the proposed method and the expert (Expert 1) in some datasets
when 1.5 s window size was used.

On the other hand, it was observed that the proposed method
has the capacity to identify k-complexes at a window size of 1.0 s
and there was only slight disagreements between the proposed
method and the expert’s scoring. Our findings show that the
proposed method achieved the highest results when the window
size of 0.5 s with overlapping of 0.4 s was used. The maximum
accuracy was 97%.

Performance of the Proposed Method
Using Receiving Operating
Characteristic Curve
The performance of the proposed method was also evaluated
based on a Receiving Operating Characteristic (ROC) curve.

Figure 12 depicts the ROC analysis results of the LS-SVM
classifier. The ROC is a suitable metric in studying the
dependence of sensitivity and specificity. The relationship
between the true positive rate and FPR were investigated in this
paper using the ROC curve. A good test is the one for which
sensitivity (true positive rate) rises rapidly and 1-specificity (FPR)
hardly increases at all until sensitivity becomes high (Übeyli,
2008). From Figure 12, it is seen that the area value of the
ROC curve is 97, which indicates that the LS-SVM model has
effectively detected the k-complexes in EEG signals using the
extracted features from the graph. Therefore, it is obvious that
the fractal graph features well represent the EEG signals and
the LS-SVM classifier trained on these features achieves a high
classification accuracy.

Performance Comparisons Using
Different Classifiers, Different
Data-Driven Thresholding Scheme and
With Other Existing Studies
Three types of comparisons were conducted in this section.
Firstly, the performance of the proposed method was compared
with a different classifier, k-means classifier. Secondly, the
proposed method was also compared with different data-
driven thresholding scheme. Finally, the proposed method was
compared with other studies that used the same datasets as
described in section “EEG Data Description.”

Comparison With K-Means Classifier
Figure 13 shows the comparison results between the LS-SVM
and k-means classifiers using the extracted features. The same
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FIGURE 12 | Performance evaluation of the proposed approach using the LS-SVM classifier based on the ROC curve.

number of segments were used. The segments were chosen
randomly from the database. The selected segments were
separated into a training set and a testing set, and then were
forwarded to the classifiers, separately, to identify k-complexes.
Based on the results in Figure 13, it can be observed that
the performance of the proposed scheme using the LS-SVM
was better than that by the k-means classifier. The accuracy of
the k-means classifier was degraded from 65 to 51% when the
number of the segments gets to 4000. In terms of accuracy,
sensitivity and specificity, the proposed method based on the
LS-SVM classifier outperformed the k-means.

For more investigation, the execution time of the proposed
method was calculated based on the LS-SVM classifier as well
as to the k-means classifier. Figure 14 shows the complexity
time for the LS-SVM and k-means classifiers. To compute the
performances of the two classifiers, the same computer having
the same settings was used, with the same input data segments.
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FIGURE 13 | The performance comparison between the proposed method
and the k-means classifier.

The complexity time of the proposed method was recorded for
each classifier. From Figure 14, we observed that the proposed
method took an acceptable time although it had more processing
steps involved in the algorithm. Based on the obtained results, the
highest execution time was recorded with the LS-SVM classifier
compared with the k-means classifier. Although converting the
fractal features to the undirected graphs take more time, it
resulted in more accurate results in k-complexes detection.

To shed more light on the comparison, the performance of
the proposed method was also compared with k-means classifiers
for detecting k-complexes in EEG signals based on 6-fold cross
validation. The EEG data were divided into six folds and each
fold was tested six times. The boxplots for each fold based on 6-
fold cross validation were shown in Figures 15, 16. According
to the results in Figure 16, it was observed that there was an
improvement achieved with the proposed method to detect the
k-complexes in EEG signals when the LS-SVM classifier was used
to classify the features compared to the k-means classifier. It is
clear from these results, the extracted features based on fractal
graphs coupled with the LS-SVM classifier have better ability to
distinguish the k-complexes in EEG signals.

Comparison With Different Data-Driven Thresholding
Scheme
The proposed method was tested with different data-driven
thresholding scheme reported in Dimitriadis et al. (2017a,b)
such as minimal spinning tree (MST) and orthogonal minimal
spinning tree (OMST). A spanning tree is a subgraph that
includes all nodes of the original graph but it has no cycles. The
MSTs try to connect simultaneously all the nodes of the graph
by minimizing the cost of the total sum of the weighted links.
An MST based on the Kruskal algorithm was used in this study
to search the MST in an undirected weighted graph and remove
redundant edges. On the other hand, the OMSTs try to capture
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FIGURE 15 | The boxplot of the classification accuracy based on 6-fold cross validation for k-means classifier.

the most significant connections under the constraint of the MST.
More details about the data-drive threshold method was provided
in Dimitriadis et al. (2017a,b).

In this paper, the proposed method was also compared
with MST and OMST approaches; we optimized the mean
degree following a step of 0.1 from mean degree = >5 up
to mean degree = <8 toward the maximization of accuracy.
The best classification performance was obtained when k was
6 and the optimal matching step was 0.2, with an accuracy
of 97%, as shown on Table 6. The main reason for that is
small mean degrees produces more informative features that
further improve classification performance. Also, when the
mean degree was small, features that contributed more to the
classification were also chosen, leading to higher classification
accuracy (Breakspear and Terry, 2002; Rutter et al., 2013; Guo
et al., 2018). Thus, the experimental results showed that the

optimizing mean degree influenced the classification results.
Furthermore, the results in Table 6 indicate that network analysis
of an undirected graph to detect k-complexes in EEG signals
has been realized in binary graphs using MST, OMST and
arbitrary thresholding. However, our findings showed that the
proposed method using an arbitrary threshold reported better
accuracy, sensitivity and specificity than that of those methods:
the MST and OMST. Therefore, in this study, we consider
arbitrary thresholding. Table 6 shows the comparison results
among different data-driven schemes.

Comparison With Other Methods Based on Different
Measurements
For further evaluation, the performances of the proposed method
was compared with other methods based on different metrics,
including F-score, recall, precision and Matthews (MCC).
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FIGURE 16 | The boxplot of the classification accuracy based on 6-fold cross validation for LS-SVM classifier.

Figure 17 shows the result of comparisons based on different
measurements. They were used in different methods to detect
k-complexes in EEG signals (Devuyst et al., 2010; Parekh
et al., 2015; Ghanbari and Moradi, 2017). They conducted their
methods with the same database as used in this study. It can be
seen in Figure 17, that the proposed detection approach has a
better F-score, recall, precision and MCC values compared with
those by other methods. The averages of F-score, recall, precision
and MCC were 0.77, 0.96, 0.78, and 0.83%, respectively. Our
method performed better than other detection methods, and it
achieved higher results compared with those by others.

Comparisons With Other Existing K-Complexes
Classification Methods
Table 7 represents the performance comparisons among the
seven reported methods (Devuyst et al., 2010; Erdamar et al.,
2012; Vu et al., 2012; Krohne et al., 2014; Zamir et al., 2015;
Patti et al., 2016; Ranjan et al., 2018). All these studies used the
same database as discussed in section “EEG Data Description.”
According to the results in Table 7, the proposed method is
the best among the seven methods. Additionally, it achieved a

TABLE 6 | The performance of the proposed method over various
thresholding schemes.

Metrics Types of thresholding schemes

MST OMST Arbitrary thresholding

Accuracy 89% 94.6% 97%

Sensitivity 91% 95% 96.6%

Specificity 94.6% 86.2% 94.7%

high accuracy, sensitivity and specificity of 97, 96.6, and 94.7%
compared with those methods.

Patti et al. (2016) reported their results of the k-complexes
detection with the same database. The average of the sensitivity
results they achieved was 84%. The average accuracy was lower
than that obtained in this study. Vu et al. (2012) focused on
designing a hybrid classifier to detect k-complexes in EEG
signals using a hybrid synergic machine learning method. A set
of features were extracted from each EEG segment and a
representation instance classifier was used to classify the extracted
features. Overall, they reported an average of the classification
accuracy of 90.2%. Based on the obtained results, the proposed
method outperformed the one by Vu et al. (2012).

Another study was made by Devuyst et al. (2010), in which a
likelihood threshold was used to detect k-complexes. That study
was conducted using the same datasets as the ones used in this
paper. The authors reported only true positive rates. The obtained
results in our method were higher than those by Devuyst et al.
(2010). Ranjan et al. (2018) detected k-complexes using a fuzzy
algorithm combined with an artificial neural network. In that
study, features were extracted from each EEG segment and
then forwarded to a fuzzy neural network algorithm to identify
k-complexes in EEG signals. An average accuracy, sensitivity,
and specificity of 87.56, 94.04, and 76.2%, were reported,
respectively. The classification results were also lower than those
by the proposed method. A convert optimization technique was
utilized by Zamir et al. (2015) to detect k-complexes. In that
study, different features were extracted and ranked based on a
feature selection algorithm. The best classification accuracy of
84% was reported. Their accuracy was lower than that of the
proposed method.

Erdamar et al. (2012) detected k-complexes using two main
stages, including a wavelet transformation combined with a
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FIGURE 17 | Performance comparison of the proposed method for k-complex detection using different assessment measures.

TABLE 7 | Performance comparisons between the proposed method and other different k-complexes detection approaches with the same datasets.

Authors Method Accuracy Sensitivity Specificity

Patti et al. (2016) Pattern matched wavelets using 400 threshold – 84% –

Vu et al. (2012) Hybrid synergic multi-instance learning machine. 90.2% 70.4% –

Devuyst et al. (2010) Likelihood threshold 61.72%

Ranjan et al. (2018) Fuzzy algorithm combined with artificial neural network 87.56% 94.04% 76.2%

Zamir et al. (2015) Convert optimization technique 84%

Erdamar et al. (2012) Wavelet transformation combined with a Teager energy operator 91% 89 –

Krohne et al. (2014) Wavelet transformation – 74% –

The proposed method T-F images coupled with fractal graph features 97% 96.6% 94.7%

Teager energy operator. In that study, features were extracted
based on the amplitude and duration properties of k-complex
waveforms. The results from both stages were combined to make
a robust method for the detection of k-complexes. In comparison,
the proposed method yielded a high classification accuracy than
that by Erdamar et al. (2012). Krohne et al. (2014) classified
EEG signals into k-complex and non-k-complex segments based
on wavelet transformation. In that study, different datasets were
used. Their results with both databases were lower than our
proposed method. It is clear that the proposed method yielded the

TABLE 8 | Comparisons between the proposed method and other studies based
on the type of features and classifiers used.

Authors Features Classifier ACC

Hernández-Pereira
et al. (2016)

12 frequency features. support vector machine 91.4%

Gala and Mohylova
(2009)

Time and frequency
domain features

neural network 63%

Ranjan et al. (2018) 12 Bankman features fuzzy neural network 86.9%

Noori et al. (2014) Statistic and fractal
features

extreme learning
machine

96%

The proposed
method

Fractal and graph
features

LS-SVM classifier 97%

highest accuracy compared with the seven other methods using
the same datasets.

For further evaluation, the performance of the proposed
method was compared with those by Hernández-Pereira et al.
(2016), Gala and Mohylova (2009), Ranjan et al. (2018), Noori
et al. (2014) based on the types of features and classifiers used.
Table 8 shows the results of the comparison. It can be noticed that
the proposed scheme reported the highest accuracy compared
with the four other methods. The proposed method obtained
an average accuracy of 97% with fractal and graph features.
This demonstrated that the proposed approach achieved the best
performance in terms of classification accuracy.

CONCLUSION

In this paper, the FD technique and undirected graph properties
are used to detect k-complexes in EEG signals. In the proposed
method, each 0.5 s EEG segment was passed through the
spectrogram of the STFT to obtain the time-frequency images
(T-F images). Then, the box counting algorithm was applied to
each T-F image to calculate the FD. A vector of FD was mapped
into an undirected graph to extract the features of interest. Three
features were extracted from each graph and they were forwarded
to a LS-SVM classifier to identify k-complexes in EEG signals.
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The experimental results showed that the graph features achieved
better performance for the detection of k-complexes with an
average accuracy of 97%.

The proposed method was also compared with other existing
methods and with different classifiers to identify the ability
of using fractal graph features to detect k-complexes. Based
on those comparisons the proposed method achieved the best
performance in terms of classification accuracy, sensitivity and
specificity. The maximum averages of accuracy, sensitivity and
specificity obtained using the proposed method are 97, 96.6, and
94.7%, respectively. The outcomes of this study can help the
physicians with diagnosing sleep disorders and potentially it can
reduce the medical costs. In our future work, the fully weighted
version will be taken into consideration as a new methodology to
detect other sleep characteristics such as sleep spindles, Sawtooth
waves, Alpha waves, and vertex waves.
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6.2 Chapter Summary 

Al-Salman et al. (2019) developed a new method to identify the k-complexes from 

sleep stage 2 in EEG signals. They used FD and TFI coupled with an undirected graph 

to extract features which have been used to detect k-complexes in EEG signals. The  

extracted features, the vectors of FD of each TFI, were transmitted to the undirected 

graph to firstly reduce the dimensionality of FD and to secondly extract the most 

discriminating graph features. Features were extracted from each graph and they were 

forwarded to a LS-SVM classifier to identify k-complexes in EEG signals.  The 

proposed method was tested with all datasets (all EEG recordings) rather than as part 

of a dataset. The experimental results showed that the graph features achieved better 

performance for the detection of k-complexes. This study proved that the FDs 

combined with undirected graph features achieved low execution time with a high 

classification results.  

Al-Salman et al. (2019) demonstrated that the proposed method, based on FDs and TFI 

coupled with graph features, was promising for the extraction of the features from the 

EEG data and the selection of the most important features. In addition, it had the 

potential to detect the most important characteristics of sleep stage 2: k-complexes. 

The proposed method was also compared with other existing methods, based on 

different features, and also with different classifiers to identify the usefulness of using 

fractal graph features to detect k-complexes. Based on those comparisons the proposed 

method achieved the best performance and it outperformed other methods which used 

different transformation techniques. Al-Salman et al. (2019) clearly demonstrated that 

the proposed method has the ability to detect the k-complexes with a high classification 

results and low execution time. Al-Salman et al. (2019) also suggested that the fractal 

graph features can be used to identify k-complexes efficiently and without pre-

processing.  
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CHAPTER 7 

 

CONCLUSIONS AND DIRECTIONS FOR 

FUTURE WORK 
 

7.1 Introduction  

The human brain is a complex network that contains billions of neurons, each of which 

generates small electrical signals. The brain uses the electrical signals through a system 

of neurons to send instructions to organs of the body and to process different types of 

information at a specific time. Researchers use several techniques to record electrical 

signals generated by the brain. One of the most important techniques to detect, record 

and measure record brain activity is EEG signals. 

Analysis and classification methods of EEG signals can help doctors and specialists to 

detect and identify brain disorders. Normally, EEG signals are recorded using 

electrodes placed on the scalp using a conductive gel. They have the ability to help the 

diagnosis and treatment of neurological diseases, sleep disorders, and abnormalities of 

the brain. However, they are affected by brain diseases, such as sleep disorders, 

epileptic seizures, autism, and Alzheimer’s disease.   

A variety of methods have been developed and presented based on time domain and 

frequency domain to study the characteristics of EEG signals and to investigate their 

composition. Those methods are commonly used to analyse different types of brain 

disorders during the recording of EEG signals such as identifying sleep characteristics 

and sleep stages. Because each recording of the EEG signal has unique patterns and 

characteristics, previous studies have been unable to develop a robust signal analysis 
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approach. Practical and effective approaches are therefore in demand to achieve 

accurate results for EEG classification. Summaries of the analysis and detection 

techniques have been presented in this chapter. Furthermore, some work limitations 

have also been discussed for future research guidance. 

7.2  Discussion  and Conclusions of the Thesis 

The research project has aimed to identified sleep stages automatically by detecting 

the main characteristics in EEG signals. In this research, robust techniques in order 

have been presented and developed to identify and analyse the most important 

characteristics of sleep stages: sleep spindles and k-complexes. Four techniques, 

considered to relate to the main objectives of the thesis, have been developed: 

1- Development of a robust technique to analyse and detect sleep 

characteristics such as sleep spindles in EEG signals based on the hybrid 

transformation technique. This will improve the detection system 

performance and has a high  accuracy rate.   

2- Improvement of  the developed method to identify the sleep  spindles in 

EEG signals by presenting new extraction techniques based on FD of TFI 

that can improve the classification accuracy and reduce the time for the 

processing of execution. 

3- Design of a new method to identify and analyse other sleep characteristics 

in EEG signals such as k-complexes; the second most important bio-signal 

waveform in sleep stage 2 based on DT-CWT coupled with fractal and 

frequency features.  

4- Investment in the ability of fractal dimensions in # 2 to develop an efficient 

feature extraction method to detect k-complexes from the whole EEG 

database, thus reducing the dimensionality of EEG datasets and improving 

classification performance with less execution time. 

In order to achieve these objectives and to accomplish these techniques, firstly 

two methods were developed: wavelet Fourier analysis (WFA) with the 

statistical model, and fractal dimension (FD) technique coupled with time-

frequency images (TFI) to detect the sleep spindles in EEG signals. Those 

methods detected sleep spindles in EEG signals with a high accuracy rate and 

a shorter execution time. Thereafter, a new method was designed and 
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developed based on fractal and frequency features coupled with an ensemble 

classification model to detect the second most important characteristics, such 

as k-complexes in EEG signals. Finally, for investing in the ability of FD of 

TFI, another method was developed based on fractal graph features coupled 

with an LS-SVM classifier to detect k-complexes in EEG signals with high 

classification results and less execution time. This method tested and evaluated 

a whole EEG dataset. A summary of the developed methods is provided in the 

following subsection: 

7.2.1 Detection and analysis of sleep spindles in EEG signals  

In the first method, wavelet Fourier analysis and the statistical model method were 

used to detect sleep spindles in EEG signals as seen in Chapter 3. Wavelet Fourier 

analysis was designed based on discrete wavelet transform (DWT) combined with fast 

Fourier transform (FFT). This method was applied to extract the important features 

from sleep EEG signals. In this process, the EEG signals were segmented into small 

windows of 0.5 second (s) with an overlap of 0.4s.  Ultimately, ten statistical features 

were extracted from each window segment after applying a wavelet-Fourier 

transformation. Lastly, the LS-SVM classifier was used to classify the sleep spindles 

using the extracted features. The obtained results were also compared with the other 

existing methods in the literature.  The evaluation results showed that the proposed 

method was the best among all the methods in terms of detection accuracy. 

Furthermore, C4.5 decision tree, k-means and k-nearest classifier were also 

implemented for comparisons, and the results were compared with those by the LS-

SVM.  To test the effectiveness of the proposed method for detection sleep spindles, 

Dream sleep spindles; and Montreal archive of sleep studies, were used.  These 

databases were acquired from different EEG channels and recorded by either R& K or 

AASM guidelines. Further, this technique was conducted and tested with different 

window sizes: 2.0s. 1.0s, 1.5s, and 0.25s to detect all possible occurrences of sleep 

spindles in the original EEG signals. The experimental results in this chapter showed 

that the length of 0.5s reported better results than 2.0s. 1.0s, 1.5s and 0.25s; the WFA 

method achieved 97.9% classification accuracy.  The outcomes of this technique may 

help physicians to diagnose sleep disorders and potentially to reduce medical costs. 
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7.2.2 Fractal dimension of Time-frequency images for sleep spindles detection 

To improve the classification performance and to reduce the execution time, a robust 

method to detect sleep spindles in EEG signals was presented as discussed in Chapter 

4.  The proposed method in Chapter 4 applied time frequency image and fractal 

dimension techniques to detect sleep spindles with a high classification accuracy and 

low execution time. In this procedure, each EEG signal was divided into small 

segments using a sliding window technique. A window size of 0.5s with an overlap of 

0.4s was adopted in this study after extensive experiments. Then the EEG signals were 

converted into time frequency images by using a spectrogram of a short time Fourier 

transform. A box counting algorithm was applied to calculate the fractal dimensions 

(FDs) from each TFI. Statistical features were extracted from each FD. This work 

successfully reduced the extracted features dimension. Lastly, the extracted features 

were used as the input to the least square support vector machine, K-means, neural 

network, and Naïve Bayes classifiers to elicit the best classification method to detect 

sleep spindles and to evaluate the performance of this technique. Furthermore, the 

proposed method in this study  was evaluated using two publically available datasets: 

Dream sleep spindles and the Montreal archive of sleep studies. An average accuracy 

of 98.6% was obtained by the proposed method. The experimental results showed that 

using the TFI with the fractal dimension could improve the detection of sleep spindles 

and take much less execution time compared to the WFA. The outcomes of this study 

may help sleep experts to efficiently analyse EEG signals.  

7.2.3  K-complexes identifaction in EEG signals.  

Al-Salman et al. (2018) clearly demonstrated that using fractal dimension techniques 

improved the classification results of sleep spindles in the EEG signal. In addition, the 

excellent results achieved using the fractal algorithm to identify sleep spindles (Al-

Salman et al., 2018), motivated an exploration and development of the fractal 

dimension algorithm to detect k-complexes in EEG signals. Thus, a new method based 

on fractal and frequency features was developed for detecting the k-complexes in EEG 

signals as explained in Chapter 5. In this framework, a sliding window technique was 

used to divide EEG signals into small segments. Each segment was decomposed into 

four levels (four sub-bands) using a dual-tree complex wavelet transform (DT-CWT) 

method. Four sub-bands including y1, y2, y3, y4, and z4 were obtained for each part 
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tree. As a result, the DT-CWT coefficient produced both real and imaginary parts. Ten 

sub-bands were obtained after four levels of decomposition (five sub-bands for each 

part), and the high sub-bands were considered in this research for feature extraction. 

Thereafter, fractal and frequency features were extracted from each sub-band and then 

forwarded to the ensemble classifier to detect the k-complexes. The results presented 

indicated that DT-CWT combined with an ensemble machine may be used to identify 

the k-complexes efficiently. An average accuracy of 97.3% was obtained by the 

proposed method for the detection of the k-complexes, as shown in Chapter 4. Finally, 

to evaluate the performance of this algorithm and to compare the obtained results with 

the ensemble mode, the LS-SVM, k-means and Naïve Bayes classifier were used in 

this research. Furthermore, the performance of the proposed method was compared 

with other existing methods of k-complex detection. A review of the literature found 

that there were no methods using frequency features and fractal dimension 

characteristics in k-complex detection. The obtained results indicated that using fractal 

and frequency features gave reasonable classification accuracy for the detection of the 

characteristics of sleep Stage 2. This method may help physicians to diagnose sleep 

disorders and potentially to reduce medical costs. 

7.2.4  Fractal graph features to detect k-complexes 

To reduce the processing of execution time, to decrease the dimensionality of EEG 

data, and to improve the results with all datasets a novel method to identify k-

complexes, based on fractal graph features, was presented in Chapter 6; it was 

conducted and tested with a whole database. In previous research, Al-Salman et al. 

(2018) reported that the fractal dimension based features achieved promising results 

for analysing EEG signals as well as for the detection of sleep spindles. As a result, 

the concept of the fractal dimension technique was used in this study to identify the k-

complexes. This method has been used to improve classification results with less 

execution time. 

In this procedure, each 0.5s EEG segment was passed through the spectrogram of the 

STFT to obtain the time-frequency images (T-F images). Subsequently, the box 

counting algorithm was applied to each T-F image to calculate the fractal dimension. 

A vector of the fractal dimension was mapped into an undirected graph to extract the 

features of interest. The characteristics of graph features were extracted from each 

graph and they were forwarded to a LS-SVM classifier to identify k-complexes in EEG 
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signals. The performance of this method was evaluated through the 6-fold cross 

validation procedure. The ROC curve was also used in Chapter 5 to evaluate the results 

of the proposed method. The experimental results showed that the graph features 

achieved approximately the same performance but took less execution time, for the 

detection of k-complexes, as shown in Chapter 5. To check whether the developed 

approaches have advantages or not, the proposed method was also compared with 

other existing methods in which different transformation techniques were used, and 

with different classifiers to identify the ability to use fractal graph features to detect k-

complexes. Based on those comparisons the proposed method achieved the best 

performance and it also showed the effectiveness of using fractal graph features to 

identify k-complexes in EEG signals. Moreover, it could be applied efficiently for real-

time applications. 

To sum up, it can be concluded that this research project has established new and 

successful algorithms and techniques for reliable detection of the characteristics of 

sleep stage2 in EEG signals: sleep spindles and k-complexes. There are many 

advantages to be gained from using these approaches. They will help doctors, 

particularly neurologists in the diagnosis and treatment of sleep disorders and other 

brain-related disorders and for sleep research. Furthermore, the proposed methods in 

this thesis can help doctors to provide clinical information about patients who suffer 

from sleep disorders. Another very important benefit of this research is that it will help 

to decrease the cost of treatment for patients because the proposed methods can run 

automatically to check the patient’s recordings. 

7.3 Future Work 

This study analyses feature extraction techniques from EEG recordings to detect the 

most important characteristics of sleep stages in EEG signals: sleep spindles and k-

complexes. We believe that the techniques developed in this thesis will provide the 

potential to analyse EEG signals in the biomedical field as well as the potential to 

classify and process EEG signals. To enable an improvement in the methods presented 

in this thesis, we have highlighted a number of key issues which are addressed below.  

The WFA and LS-SVM classifier was tested on two databases of EEG signals: Dream 

sleep spindles and the Montreal archive of sleep studies. Technically, the WFA method 

was applied to divide the EEG signals into segments using sliding window techniques. 



Chapter 7   Conclusions and Directions for Future Work 

 

143 
 

In future work, the WFA method could be used to cluster the EEG data into m number 

of clusters. At the last sub cluster, different types of features: statistical, entropic, linear 

and non-linear features will be extracted and the characteristics of each feature will be 

studied to find the harmony among these features. The computational hypothesis test 

based on the one-way ANOVA f-test will test these features and select the most 

proportional features from each sub-cluster and will then extract the most 

representative features of raw EEG data.  In addition, further work on WFA in EEG 

signal analysis can be undertaken to improve the method through a decrease in 

execution time. In the biomedical application, the processing of real time EEG signal 

data requires high speed techniques.  In the near future, the WFA method aims to 

reduce computational time by using fewer hybrid features and applying parallel 

processing techniques. 

In relation to the time-frequency image (TFI) and the fractal dimension, methods 

were developed to extract features from the time frequency domain from an offline 

database collected by Dream sleep spindles and the Montreal archive of sleep studies. 

This method works well with the both databases and increases the classification 

accuracy; it decreases the execution time, but it may increase the delay time when 

implemented with a real-time application. In future work, this method could be 

executed on a real-time database by using a huge data framework and different deep 

learning approaches. Additionally, in the detection stage using an ensemble of the 

classifiers could improve the classification accuracy and the efficiency of the trained 

models compared with using a single classifier. 

In addition, a dual- tree complex wavelet transform (DT-CWT) coupled with an 

ensemble model was developed to identify k-complexes in EEG signals. This method 

was used to detect binary EEG classes. This scheme may be extended in the future to 

test multi-channel EEG signals such as epileptic seizures, and also to be implemented 

on real time databases. In addition, it was tested with only one database. A planned 

future work aims to test the proposed method with more than one database or a huge 

database. In addition, in the future, TQWT a parametric method that depends on Q 

factor (Q) and redundancy (R) to decompose EEG signals into a number of sub-bands 

might be used instead of DT-CWT which were set empirically to decompose EEG 

signals into a number of sub-bands. 
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Furthermore, this method can be improved to reduce the extraction time using the 

preprocessing techniques for both phases of testing and training. In relation to the 

dimensionality reduction for the extracted features, a principal component analysis 

(PCA) will be used in future work. 

One potential problem with EEG signals is that they sometimes contain a variety of 

noises which can be the result of environmental and physiological factors. The 

proposed method developed in this study did not attempt to remove the unrelated 

signals such as noise from raw EEG data. Further investigation and study are required 

to successfully remove noise without compromising EEG signals for the proposed 

techniques. In future studies, these methods will be developed to achieve high 

performances for detecting the characteristics of sleep in EEG signals, after removal 

of these kinds of unrelated signals (artifacts and noise). 

However, to increase the classification results and reduce the execution time of the 

proposed methods, the multi-fractal dimension, and an undirected graph with deep 

learning approach will be used. Analysing multi-fractal characteristics of undirected 

graphs could help to reveal some of the hidden patterns of EEG signals that cannot be 

detected using fractal dimensions such as vertices and slow waves. In addition, using 

a multi-fractal attribute to analysing EEG signals could lead to abnormal behaviour in 

EEG signals that can be difficult to detect using transformation techniques and 

statistical features. 

This thesis studied offline detection methods, but it is desirable for this work to be 

applied to a real online database to see the impact of this research. This will require 

more effort. Therefore, all of the proposed methods need to be employed for online 

detection. This would be a significant achievement in the field of biomedical signal 

processing for work under difficult conditions.  

In summary, these proposed methods can successfully detect the characteristics of 

sleep stages in EEG signals, such as sleep spindles and k-complexes and efficiently 

obtain  accurate results. However, there is still room for improvement, and therefore 

more research work needs to be done in the future.  
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Appendix A : Matlab simulation code for Chapter 3 

 Detecting sleep spindles in EEGs using wavelet 

fourier analysis and  Statistical  Feature  

In this appendix, a simulation code to detect sleep spindles in EEG signals is 

presented. In this simulation code, some of functions used were from Matlab tool 

The experiment results were obtained using Matlab programming language version 

R2018a.  

A 
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%This Program Read each subject and then identify sleep spindles in 

EEG signals 

% Three Matrix of classification results: Accuracy, Sensitivity and 

specificity//each Matrix is included the classification results of 

sleep spindles 

% the major steps of the methodology:  

% 

% 

% 

% 1. Read EEG recordings {the data sets are downloaded from  

% http:\\www.tcts.fpms.ac.be/∼devuyst/Database/DatabaseSpindles} and 
% % http://www.ceams-carsm.ca/en/MASS.  

% 2. Each EEG recording was segmented into small segment using 

sliding  

% window techniques (0.5s with overlapping 0.4s)  

% 3. Each EEG segment is decomposed using a discrete wavelet 

transform  

% (DWT) into different levels of decompositions 

% 4. Wavelet detail coefficient at level 3 (D3) is selected and 

passed 

% through FFT to identify the desired frequency bands. 

% 5. Ten statistical characteristics are extracted from each band  

% 6. Nonparametric Kruskal-Wallis one-way analysis of variance is 

used to select the important features  

7. As a result, the extracted features are used as input to the two

LS-SVM and other four classifiers.

% 8. In the classicisation phase, at each time, sleep spindles and

non-sleep spindles EEG segment was detected.

9. Part of  code was presented in this sections A and D ;For further

information regarding Matlab code contact with authors.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read the EEG.rec file, the channel CZ-A1 and C3-A1  is  selected

in this study

% Clear all

disp (' This Program was used to detecte sleep spindles using WFA');

[filename pathname]=uigetfile({'*.rec'},'Select EEG recording');

fulname=strcat(pathname, filename);

[Su2 Su22]=edfread(fulname);

R=Su22(3,:);

%Read the EEG.Hyp file index%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[filename pathname]=uigetfile({'*.txt'},'Select EEG HYP file');

fulname=strcat(pathname, filename);

Ki=importdata(fulname)

SS=Ki.data

x = inputdlg('Enter Sample Frequncey Rate:',... % Read Sampling of

dataset

'Sample', [1 50]); 

Sample = str2num(x{:});  
 SS(:,3)=SS(:,1)+SS(:,2); 
[M1,M2]=size(SS); 
for i=1:M1 

n1=SS(i,1); 
n2=SS(i,3); 
p1=n1*200; 
p2=n2*200; 
SREc{i}.SP=R(p1:p2); 
SREc{i}.St=p1; 
SREc{i}.ENd=p2; 

end 
Rec=SREc; 
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m=size(SS,1); 
d=SS; 
tim=200; 
sz=100; 
k=1; 
for i=1:m 

s=d(i,1)*tim; 
e=s+d(i,2)*tim-sz; 
for j=s:e 

sp(k)=j; 
k=k+1; 

end 
end 
save sp sp 
M=R; 
[n1 n]=size(M); 
dd=sp; 
n=size(M,2); 
k=1;sz=100; 
for i=1:20:n-sz 

Pos_1=i; 
Pos_2=i+sz-1; 

feat(k,1:sz)=M(i:i+sz-1); 
Pos_mat(k,1)=Pos_1; 
Pos_mat(k,2)=Pos_2; 

k=k+1; 
end 

save feat feat 
disp (' The segmentations were completed, Please press enter to 

continue another setp');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% extracted 10 features based on wavelet Fourier anywise, DWT and 

FFT, from 5 sub bund and then reduced to 4 sub-bund;  

Wav_w=Wavelat_w(feat);  
[Alph_1, Beat_1, Theta_1 ,Delat_1]= ExtractedBund_FFT_w(Wav_w); 

Featutres_Alph=StatisticFeatutres_w(Alph_1); 
Featutres_Beat=StatisticFeatutres_w(Beat_1); 
Featutres_Theat=StatisticFeatutres_w(Theta_1); 
Featutres_Delat=StatisticFeatutres_w(Delat_1); 
Featutres_AllBund=[Featutres_Alph, 

Featutres_Beat,Featutres_Theat,Featutres_Delat]; 
Fea_thear=Featutres_AllBund; 
[o1 o2]=size(Fea_thear); 
for i=1:o1 

b=find(dd==i); 
if isempty(b) 

Y(i)=0; 
else 

Y(i)=1; 
end 

end 
Y=Y'; 
 disp (' The features were extracted based on WFA,Please press enter 

to continue'); 
   Pause; 
 %%%%%%%%%%%%%%%%%%%%%%%%%%% LS_SVM11%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[ACC,SES, SPE]=LS_SVM11_classifciation_w(Fea_thear,Y) 
disp('Classifciation results using WFA') 
disp('Accuracy') 
disp('________') 
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disp('   The performnace of the proposed method as Accuracey=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performnace of the proposed method as Sensitivity=' ); 

disp(SES); 
disp('------------------------------------------------------'); 
disp('Specifcity') 
disp('   The performnace of the proposed method as Specifcity=' ); 

disp(SPE); 
toc 
%%%%%%%%%%%%% Comparison with different classifiers%%%%%%%%%%%%%% 

[ACC,SES, SPE]=LS_SVM11_classifciation_w(); 

[index] = K_Means_classi (Fea_thear); 

Test_targets = C4_5 (Train date, train targets, Test data, inc_node) 

Y_id=Convert_Idx(Y); 

  [Acc,rand_index,match]=AccMeasure(Y_id,index); 

disp('Classifciation results using WFA') 

disp('Accuracy') 

disp('________') 

disp('   The performnace of the proposed method as Accuracey=' ); 

disp(Acc); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ VV ] = Wavelat_w(BB2) 
% received The EEG data and  return bund of wavelet coefficient  
 RR=BB2; 
[n m]=size(RR); 
for i=1:n 
 Ch=RR(i,:); 
 D=wave_w(Ch); 
  RE=reshape(D',1,[]); 
  Subject1(i,:)=RE; 
end 
  VV=Subject1; 
 end 

 function [ DD5 ] = wave_w(CH ) 

 Ch=CH; 
 waveletName='db6'; 
 level=5; 
% Multilevel 1-D wavelet decomposition 

 [c0,l0]=wavedec(Ch,level,waveletName); 
% 1-D detail coefficients for ch0 
 cD1 = detcoef(c0,l0,1); %NOISY  
 cD2 = detcoef(c0,l0,2); %GAMMA  
 cD3 = detcoef(c0,l0,3); %BETA  
 cD4 = detcoef(c0,l0,4); %ALPHA  
 cD5 = detcoef(c0,l0,5); %THETA  
 cA5 = appcoef(c0,l0,waveletName,5); %DELTA 
% Reconstruct single branch from 1-D wavelet coefficients for ch0 
 D1 = wrcoef('d',c0,l0,waveletName,1); %NOISY 

 D2 = wrcoef('d',c0,l0,waveletName,2); %GAMMA 

 D3 = wrcoef('d',c0,l0,waveletName,3); %BETA  
 D4 = wrcoef('d',c0,l0,waveletName,4); %ALPHA 

 D5 = wrcoef('d',c0,l0,waveletName,5); %THETA 

 A5 = wrcoef('a',c0,l0,waveletName,5); %DELTA 
 DD5=D3; 
end 
 function [c,l] = wavedec(x,n,IN3,IN4) 
narginchk(3,4); 
validateattributes(x,{'numeric'},{'vector','finite','real'},'wavedec

','X'); 
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validateattributes(n,{'numeric'},{'scalar','integer','positive'},'wa

vedec','N'); 
if nargin==3 

[Lo_D,Hi_D] = wfilters(IN3,'d'); 
else 

Lo_D = IN3;   Hi_D = IN4; 
end 
 s = size(x); x = x(:)'; 

c = []; 
l = zeros(1,n+2);

if isempty(x) , return; end

 l(end) = length(x); 
for k = 1:n 

[x,d] = dwt(x,Lo_D,Hi_D); 

c     = [d c];

l(n+2-k) = length(d);

end 
c = [x c]; 
l(1) = length(x); 

if s(1)>1, c = c'; l = l'; end 

function varargout = detcoef(coefs,longs,levels,dummy) 

% Extract 1-D detail coefficients. 
narginchk(2,4); 
 validateattributes(coefs,{'numeric'},{'vector','finite','real'},... 

'detcoef','C'); 
validateattributes(longs,{'numeric'},... 

{'vector','integer','positive'},'detcoef','L'); 
 nmax = length(longs)-2; 
cellFLAG = false; 
if nargin>2 

if isnumeric(levels) 
if (any(levels < 1)) || (any(levels > nmax) ) || ... 

any(levels ~= fix(levels)) || isempty(levels) 
error(message('Wavelet:FunctionArgVal:Invalid_LevVal')); 

end 
cellFLAG = (nargin>3); 

else 
cellFLAG = true; 
levels = 1:nmax; 

end   

else 
levels = nmax; 

end 
 first = cumsum(longs)+1; 
first = first(end-2:-1:1); 
longs = longs(end-1:-1:2); 
last  = first+longs-1; 
nblev = length(levels); 
tmp   = cell(1,nblev); 
for j = 1:nblev 

k = levels(j); 
tmp{j} = coefs(first(k):last(k)); 

end 
  if (nargout == 1 && nblev>1) || cellFLAG 
   varargout{1} = tmp; 
else 
   varargout = tmp; 
end 
 function x = wrcoef(o,c,l,varargin) 
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narginchk(4,6) 
o = lower(o(1));

rmax = length(l); nmax = rmax-2;

 if o=='a' 
nmin = 0;  
else nmin = 1; 

end 
if ischar(varargin{1}) 

[Lo_R,Hi_R] = wfilters(varargin{1},'r'); next = 2; 
else 

Lo_R = varargin{1};  Hi_R = varargin{2}; next = 3; 
end 
if nargin>=(3+next) , n = varargin{next}; else n = nmax; end 

if (n<nmin) || (n>nmax) || (n~=fix(n)) 
error(message('Wavelet:FunctionArgVal:Invalid_ArgVal')); 

end 
 dwtATTR = dwtmode('get'); 
 switch o 
  case 'a' 

x = appcoef(c,l,Lo_R,Hi_R,n); 
if n==0, return; end 
F1 = Lo_R; 

   case 'd' 
% Extract detail coefficients. 
x = detcoef(c,l,n); 
F1 = Hi_R; 

   otherwise 
error(message('Wavelet:FunctionArgVal:Invalid_ArgVal')); 

end 
 imin = rmax-n; 
x  = upsconv1(x,F1,l(imin+1),dwtATTR); 
for k=2:n , x = upsconv1(x,Lo_R,l(imin+k),dwtATTR); end 
function [ TT1, TT2, TT3, TT4 ] = ExtractedBund_FFT_w(T) 
Denoised_x_total=T; 
Test1(1,:)=Delta_bandfilter(Denoised_x_total); 
Test1(2,:)=Theta_bandfilter(Denoised_x_total); 
Test1(3,:)=Alfa_bandfilter(Denoised_x_total); 
Test1(4,:)=Beta_bandfilter(Denoised_x_total); 
Test1(5,:)=Gama_bandfilter(Denoised_x_total); 
 TT1=Test1; 
 TT2=Test2; 
 TT3=Test3; 
 TT4=Test4; 
  end 
function y = Gama_bandfilter() 
% Calculated the Game bund. 
 persistent Hd; 
 if isempty(Hd) 

Fstop1 = 30; % First Stopband Frequency 
Fpass1 = 30.1;  % First Passband Frequency 
Fpass2 = 63.8;  % Second Passband Frequency 
Fstop2 = 63.9; % Second Stopband Frequency 
Astop1 = 60; % First Stopband Attenuation (dB) 
Apass  = 1; % Passband Ripple (dB) 
Astop2 = 60; % Second Stopband Attenuation (dB) 
Fs     = 200;   % Sampling Frequency 
h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', Fstop1, 

Fpass1, ... 
Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 
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Hd = design(h, 'equiripple', ... 
'MinOrder', 'any'); 
set(Hd,'PersistentMemory',true); 

y=Hd; 
end 
end 

 y = filter(Hd,x); 

function y = Alfa_bandfilter() 
 persistent Hd; 
 if isempty(Hd) 

Fstop1 = 7; % First Stopband Frequency 
Fpass1 = 7.1;  % First Passband Frequency 
Fpass2 = 12.9;  % Second Passband Frequency 
Fstop2 = 13; % Second Stopband Frequency 
Astop1 = 60; % First Stopband Attenuation (dB) 
Apass  = 1; % Passband Ripple (dB) 
Astop2 = 60; % Second Stopband Attenuation (dB) 
Fs     = 128;   % Sampling Frequency 

h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', Fstop1, 

Fpass1, ... 
Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 

Hd = design(h, 'equiripple', ... 
'MinOrder', 'any'); 

set(Hd,'PersistentMemory',true); 
y=Hd; 

end 
end  
y = filter(Hd,x); 

function y = Theta_bandfilter() 
persistent Hd; 
 if isempty(Hd) 

 Fstop1 = 3.5;  % First Stopband Frequency 
Fpass1 = 3.6;  % First Passband Frequency 
Fpass2 = 6.9;  % Second Passband Frequency 
Fstop2 = 7; % Second Stopband Frequency 
Astop1 = 60; % First Stopband Attenuation (dB) 
Apass  = 1; % Passband Ripple (dB) 
Astop2 = 60; % Second Stopband Attenuation (dB) 
Fs     = 200;   % Sampling Frequency 

h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', Fstop1, 

Fpass1, ... 
Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 
Hd = design(h, 'equiripple', ... 
'MinOrder', 'any'); 

set(Hd,'PersistentMemory',true); 
y=Hd; 

end 
end 

 y = filter(Hd,x); 

function y = Delta_bandfilter() 
persistent Hd; 
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 if isempty(Hd) 
Fstop1 = 0.5;   % First Stopband Frequency 

Fpass1 = 0.6;   % First Passband Frequency 
Fpass2 = 3.4;   % Second Passband Frequency 
Fstop2 = 3.5;   % Second Stopband Frequency 
Astop1 = 60; % First Stopband Attenuation (dB) 
Apass  = 1; % Passband Ripple (dB) 
Astop2 = 60; % Second Stopband Attenuation (dB) 
Fs     = 200;   % Sampling Frequency 

h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', 

Fstop1, Fpass1, ... 
Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 

Hd = design(h, 'equiripple', ... 
'MinOrder', 'any'); 

set(Hd,'PersistentMemory',true); 
y=Hd; 

end 
end  
y = filter(Hd,x); 

function y = Beta_bandfilter(x) 
persistent Hd; 

if isempty(Hd) 
Fstop1 = 13; % First Stopband Frequency 
Fpass1 = 13.1;  % First Passband Frequency 
Fpass2 = 29.9;  % Second Passband Frequency 
Fstop2 = 30; % Second Stopband Frequency 
Astop1 = 60; % First Stopband Attenuation (dB) 
Apass  = 1; % Passband Ripple (dB) 
Astop2 = 60; % Second Stopband Attenuation (dB) 
Fs     = 128;   % Sampling Frequency 
h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', Fstop1, 

Fpass1, ... 
Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 

Hd = design(h, 'equiripple', ... 
'MinOrder', 'any'); 
set(Hd,'PersistentMemory',true); 

end 
 y = filter(Hd,x); 
function [Featutres_Bund]= StatisticFeatutres_w( T ) 
% calculate 10 statistic features from each sub-band; 
RR=T; 
[n m]=size(RR); 
for j=1:n 
 Ch=RR(j,:); 
featu=mainpoint(Ch); 

feature(j,:)=featu;  

end 
  Featutres_Bund=feature; 
 end 

function [X ] = mainpoint ( Y ) 
% Receives: A set of EEG data Y  

% % Returns: a vector of statistical features X 

i=1; 
for i=1:10 
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 X(1)=max(Y); 
 X(2)=range(Y); 
 X(3)=std(Y); 
 X(4)=min(Y); 
 X(5)=mean(Y); 
 X(6)=mode(Y); 
 X(7)=median(Y); 
 X(8)=var(Y); 
 X(9)=skewness(Y); 
 X(10)=kurtosis(Y); 
end 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ ACC,SEM, SPE] = LS_SVM11_classifciation_w(XX,Y) 

tic 
X=xx; 

y=Y; 

gam=10; 
sig2=1; 
type='classification'; 
L_fold=6; 

[gam, sig2] = tunelssvm({x,y,'c',[],[],'RBF_kernel'}, 'simplex',... 
'leavseoneoutlssvm', {'misclass'}); 

[alpha,b] = trainlssvm({x,y,type,gam,sig2,'RBF_kernel'}); 
Yh=simlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},Xtest); 

 [perc,n,which]=misclass(Ytest,Yh); % Which: contains the indices of 

the misclassificated instances  

(the first column gives the 

row, the second the column index) 

n      % is the number of misclassifications 

perc   % is the rate of misclassifications (between 0 and 1) 

[C,order] = confusionmat(Ytest,Yh); 
C 
order 
Y_latent=latentlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},x);  

[area,se,thresholds,oneMinusspec,sens,TN,TP,FN,FP]=roc(Y_latent,y); 
%[thresholds oneMinusspec sens ]; 
Accuracy=(TP+TN)/(TP+TN+FP+FN)*100 
ACC=Accuracy; 
T=TP/(TP+FN); 
T1=TN/(TN+FP) 
SEM=T*100; 
SPE=T1*100; 

toc 
end 
function [ index] = K_Means_classi( X1 ) 
  x=X1; 

 k=2; 
p=100; 

opts = statset('Display','final'); 
[idx,ctrs,sumd] = 

kmeans(x,k,'Distance','city','Replicates',p,'Options',opts,'start','

uniform','emptyaction','drop');

index=idx; 
  end 

function [ Y_id ] = Convert_Idx ( H ) 
Y=H; 
for i=1:length(Y) 
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if Y(i)==0 
Y_id(i)=2; 

else 
Y_id(i)=1; 

end 
end 
Y_id=Y_id'; 

end 
function [Acc,rand_index,match]=AccMeasure(T,idx) 
%Measure percentage of Accuracy; 
k=max([T(:);idx(:)]); 
n=length(T); 
for i=1:k 

temp=find(T==i); 
a{i}=temp;  

end 
 b1=[]; 
t1=zeros(1,k); 
for i=1:k 

tt1=find(idx==i); 
for j=1:k 

t1(j)=sum(ismember(tt1,a{j})); 
end 
b1=[b1;t1]; 

end 
Members=zeros(1,k); 

P = perms((1:k)); 
Acc1=0; 

for pi=1:size(P,1) 
for ki=1:k 

Members(ki)=b1(P(pi,ki),ki); 
end 
if sum(Members)>Acc1 

match=P(pi,:); 
Acc1=sum (Members); 

end 
end 
 rand_ss1=0; 
rand_dd1=0; 
for xi=1:n-1 

for xj=xi+1:n 
rand_ss1=rand_ss1+((idx(xi)==idx(xj))&&(T(xi)==T(xj))); 
rand_dd1=rand_dd1+((idx(xi)~=idx(xj))&&(T(xi)~=T(xj))); 

end 
end 
rand_index=200*(rand_ss1+rand_dd1)/(n*(n-1)); 
Acc=Acc1/n*100;  
match=[1:k;match]; 
end  

function test_targets = C4_5(train_patterns, train_targets, 

test_patterns, inc_node) 
% Classify using Quinlan's C4.5 algorithm 
[Ni, M] = size(train_patterns); 
inc_node = inc_node*M/100; 
Nu = 10; 
discrete_dim = zeros(1,Ni); 
for i = 1:Ni, 

Ub = unique(train_patterns(i,:)); 
Nb = length(Ub); 
if (Nb <= Nu), 



Appendices 

184 

discrete_dim(i) = Nb; 
dist = abs(ones(Nb ,1)*test_patterns(i,:) - 

Ub'*ones(1, size(test_patterns,2))); 
[m, in] = min(dist); 
test_patterns(i,:)  = Ub(in); 

end 
end 
%Build the tree recursively 
disp('Building tree') 
tree = make_tree(train_patterns, train_targets, inc_node, 

discrete_dim, max(discrete_dim), 0); 
%Classify test samples of EEG 
disp('Classify test samples using the tree') 
test_targets    = use_tree(test_patterns, 1:size(test_patterns,2), 

tree, discrete_dim, unique(train_targets)); 
%END 
function targets = use_tree(patterns, indices, tree, discrete_dim, 

Uc) 
%Classify recursively using a tree 
targets = zeros(1, size(patterns,2)); 
if (tree.dim == 0) 

%Reached the end of the tree 
targets(indices) = tree.child; 
return 

end 
dim = tree.dim; 
dims= 1:size(patterns,1); 
if (discrete_dim(dim) == 0), 

%Continuous pattern 
in = indices(find(patterns(dim, indices) <= 

tree.split_loc)); 
targets = targets + use_tree(patterns(dims, :), in, 

tree.child(1), discrete_dim(dims), Uc); 
in = indices(find(patterns(dim, indices) >  

tree.split_loc)); 
targets = targets + use_tree(patterns(dims, :), in, 

tree.child(2), discrete_dim(dims), Uc); 
else 

%Discrete pattern 
Uf = unique(patterns(dim,:)); 
for i = 1:length(Uf), 

if any(Uf(i) == tree.Nf) 

in = indices(find(patterns(dim, indices) == 

Uf(i))); 
targets = targets + use_tree(patterns(dims, :), in, 

tree.child(find(Uf(i)==tree.Nf)), discrete_dim(dims), Uc); 
end 

end 
end 
%END use_tree 
function tree = make_tree(patterns, targets, inc_node, discrete_dim, 

maxNbin, base) 
%Build a tree recursively 
[Ni, L] = size(patterns); 
Uc = unique(targets); 
tree.dim = 0; 
%tree.child(1:maxNbin)  = zeros(1,maxNbin); 
tree.split_loc = inf; 
if isempty(patterns), 

return 
end 
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if ((inc_node > L) | (L == 1) | (length(Uc) == 1)), 
H = hist(targets, length(Uc)); 
[m, largest] = max(H); 
tree.Nf = []; 
tree.split_loc  = []; 
tree.child = Uc(largest); 
return 

end 
for i = 1:length(Uc), 

Pnode(i) = length(find(targets == Uc(i))) / L; 
end 
Inode = -sum(Pnode.*log(Pnode)/log(2)); 
delta_Ib    = zeros(1, Ni); 
split_loc   = ones(1, Ni)*inf; 
for i = 1:Ni, 

data = patterns(i,:); 
Ud = unique(data); 
Nbins   = length(Ud); 
if (discrete_dim(i)), 

P   = zeros(length(Uc), Nbins); 
for j = 1:length(Uc), 

for k = 1:Nbins, 
indices = find((targets == Uc(j)) & (patterns(i,:) == 

Ud(k))); 
P(j,k)  = length(indices); 

end 
end 
Pk = sum(P); 
P = P/L; 
Pk = Pk/sum(Pk); 
info = sum(-P.*log(eps+P)/log(2)); 
delta_Ib(i) = (Inode-sum(Pk.*info))/-

sum(Pk.*log(eps+Pk)/log(2)); 
else 

P   = zeros(length(Uc), 2); 
[sorted_data, indices] = sort(data); 
sorted_targets = targets(indices); 
I = zeros(1, L-1); 

for j = 1:L-1, 
P(:, 1) = hist(sorted_targets(1:j) , Uc); 
P(:, 2) = hist(sorted_targets(j+1:end) , Uc); 
Ps = sum(P)/L; 
P = P/L; 
Pk = sum(P);

P1 = repmat(Pk, length(Uc), 1); 
P1 = P1 + eps*(P1==0); 
info  = sum(-P.*log(eps+P./P1)/log(2)); 
I(j)  = Inode - sum(info.*Ps); 

end 
[delta_Ib(i), s] = max(I); 
split_loc(i) = sorted_data(s); 

end 
  end 
[m, dim] = max(delta_Ib); 
dims = 1:Ni; 
tree.dim = dim; 
Nf   = unique(patterns(dim,:)); 
Nbins   = length(Nf); 
tree.Nf = Nf; 
tree.split_loc      = split_loc(dim); 
%If only one value remains for this pattern, one cannot split it. 
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if (Nbins == 1) 
H = hist(targets, length(Uc)); 
[m, largest] = max(H); 
tree.Nf = []; 
tree.split_loc  = []; 
tree.child = Uc(largest); 
return 

end 
if (discrete_dim(dim)), 

%Discrete pattern 
for i = 1:Nbins, 

indices         = find(patterns(dim, :) == Nf(i)); 
tree.child(i)   = make_tree(patterns(dims, indices), 

targets(indices), inc_node, discrete_dim(dims), maxNbin, base); 
end 

else 
%Continuous pattern 
indices1            = find(patterns(dim,:) <= split_loc(dim)); 
indices2            = find(patterns(dim,:) > split_loc(dim)); 
if ~(isempty(indices1) | isempty(indices2)) 

tree.child(1)   = make_tree(patterns(dims, indices1), 

targets(indices1), inc_node, discrete_dim(dims), maxNbin, base+1); 
tree.child(2)   = make_tree(patterns(dims, indices2), 

targets(indices2), inc_node, discrete_dim(dims), maxNbin, base+1); 
else 

H = hist(targets, length(Uc)); 
[m, largest] = max(H); 
tree.child = Uc(largest); 
tree.dim = 0; 

end 
end 
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Matlab simulation code for Chapter 4 

An efficient approach for EEG sleep spindles 

detection based on fractal dimension coupled with 

time frequncey image  

In this appendix, a simulation code to detect sleep spindles in EEG signals is presented. 

In this simulation code, some of functions used were from Matlab tool. The experiment 

results were obtained using Matlab programming language versiona  R2018a. 

B 
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%%%%%%%%%%%%%%%%%%%%%%%%%Read EEG data %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Reading EEG data is same as in the appendix A 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 

FFFFF=feat2; % all the dataset which is content all segments 
 [k1 k2]=size (FFFFF); 
for Check =1:k1 

% set all parameters as empty in the first time; 

 I=  [];II= [];J= [];nn= [];r=  [];df= []; 

x=FFFFF(Check,1:100); 
name=['C:\Users\U1061534\Documents\MATLAB\Checki\SurfacePlot555' 

num2str(Check)]; 
spectrogram(x,'yaxis');print(name,'-djpeg','-noui'); 
KI=['C:\Users\U1061534\Documents\MATLAB\ Checki \SurfacePlot555' 

num2str(Check) '.jpg' ]; 
I=imread(KI ); 
II=rgb2gray(I); 
p=imcrop(II,[[145.5 65.5 846 738]]); 
III=im2bw(p); 
[nn, r] = Dim(III);

df = -diff(log(nn))./diff(log(r)); 
DFF = (log(nn))./(log(r)); 
FractalBox_ng1(Check,:)=df(1:10); 
disp(['Fractal dimension, Df = ' num2str(mean(df(4:8))) ' +/- ' 

num2str(std(df(4:8)))]) 
end 

Save FractalBox_ng1 FractalBox_ng1 

XX=StatisticFeatutre (FractalBox_ng1); 

Fea_thear=XX; 

[o1 o2]=size (XX); 
for i=1:o1 

b=find(dd==i); 
if isempty(b) 

Y(i)=0; 
else 

Y(i)=1; 
end 

end 
Y=Y'; 
Y=Y(1:o1); 

% LS-SVM Classifier  

[ACC, SEM, SPE] =LS_SVM11_classifciation (Fea_thear, Y) 

disp('Classification results using FD of TFI features ') 
disp('Accuracy') 
disp('________') 
disp(' The performance of the proposed method as Accuracy=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performance of the proposed method as Sensitivity=' ); 

disp(SEM); 
disp('------------------------------------------------------'); 
disp('Specificity') 
disp('   The performance of the proposed method as Specificity=' ); 

disp(SPE); 

% K-means Classifier 

 [index] = K_Means(Fea_thear); 
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Y_id=Convert_Idx(Y); 

  [Acc,rand_index,match]=AccMeasure(Y_id,index); 

disp('Classification results using FD of TFI') 

disp('Accuracy') 

disp('________') 

disp('   The performance of the proposed method as Accuracy=' ); 

disp(Acc); 

% Nave Bayes Classifier  

disp('Classification results using Naïve Bayes')  

disp('            Accuracy    ')  

disp('------------------------------------------------------'); 

disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%);  

[Acc]=Nai_classificationTesting(Fea_thear,Y); 
disp('Classification results using Naive')  

disp('            Accuracy    ') 

disp('________________________________________')  

disp('   Sleep Spindles detection, accuracy=' );  

disp(ACC_NAVE);  

disp('------------------------------------------------------'); 

end   

################################################################## 

function varargout = spectrogram(x,varargin) 
%SPECTROGRAM Spectrogram using a Short-Time Fourier Transform;  

narginchk(1,11); 
nargoutchk(0,6); 
 if nargout > 0 
  [varargout{1:nargout}] = pspectrogram({x},'spect',varargin{:}); 
else 
  pspectrogram({x},'spect',varargin{:}); 
end 
#################################################################### 

function [boxCounts,resolutions]=Dim(I) 
 % this function extracted FD from each T-F images 

maxDim = max(size(I)); 
newDimSize = 2^ceil(log2(maxDim)); 
rowPad = newDimSize - size(I, 1); 
colPad = newDimSize - size(I, 2); 
I = padarray(I, [rowPad, colPad], 'post'); 
boxCounts = zeros(1, ceil(log2(maxDim))); 

resolutions = zeros(1, ceil(log2(maxDim))); 
boxSize = size(I, 1); 
boxesPerDim = 1; 
idx = 0; 
while boxSize >= 1 

boxCount = 0; 
for boxRow = 1:boxesPerDim 

for boxCol = 1:boxesPerDim 
minRow = (boxRow - 1) * boxSize + 1; 
maxRow = boxRow * boxSize; 
minCol = (boxCol - 1) * boxSize + 1; 
maxCol = boxCol * boxSize; 
objFound = false; 
for row = minRow:maxRow 

for col = minCol:maxCol 
if I(row, col) 

boxCount = boxCount + 1; 
objFound = true;  

end; 
if objFound 

break; 



Appendices 

190

end; 
end; 

if objFound 
break; 

end; 
end; 

end; 
end; 

 idx = idx + 1; 
boxCounts(idx) = boxCount; 
resolutions(idx) =  boxSize; 
boxesPerDim = boxesPerDim * 2; 
boxSize = boxSize / 2; 

end; 
D = polyfit(log(resolutions), log(boxCounts), 1); 

#################################################################### 

function [XX]= StatisticFeatutres ( T ) 
% calculate 10 statistic features from each sub-band  

% Receives: A set FD of TFI

% Returns: a vector of statistical features X 

RR=T; 
[n m]=size(RR); 
for j=1:n 
 Ch=RR(j,:); 
featu=mainpoint(Ch); 

feature(j,:)=featu;  

end 
   XX=feature; 
 end 
function [X] = mainpoint ( Y ) 
% Receives: A set of EEG data Y (Raw of FD of TFI)

% Returns: a vector of statistical features X 

i=1; 
for i=1:8 
 X(1)=max(Y); 
 X(2)=range(Y); 
 X(3)=std(Y); 
 X(4)=min(Y); 
 X(5)=mean(Y); 
 X(6)=median(Y); 
X(7)=skewness(Y); 
X(8)=kurtosis(Y); 
end 
end 
 ################################################################### 

function [hdr, record] = edfread(fname, varargin) 
%Read all waveforms/data associated with file 'EEG1.edf': 
if nargin > 5 

error('EDFREAD: Too many input arguments.'); 
end 
 if ~nargin 

error('EDFREAD: Requires at least one input argument (filename 

to read).'); 
end 
 [fid,msg] = fopen(fname,'r'); 
if fid == -1 

error(msg) 
end 
assignToVariables = false;  
targetSignals = [];  
for ii = 1:2:numel(varargin) 
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switch lower(varargin{ii}) 
case 'assigntovariables' 

assignToVariables = varargin{ii+1}; 
case 'targetsignals' 

targetSignals = varargin{ii+1}; 
otherwise 

error('EDFREAD: Unrecognized parameter-value pair 

specified. Valid values are ''assignToVariables'' and 

''targetSignals''.') 
end 

end 
 hdr.ver = str2double(char(fread(fid,8)')); 
hdr.patientID  = fread(fid,80,'*char')'; 
hdr.recordID   = fread(fid,80,'*char')'; 
hdr.startdate  = fread(fid,8,'*char')'; 
hdr.starttime  = fread(fid,8,'*char')'; 
hdr.bytes = str2double(fread(fid,8,'*char')'); 
reserved = fread(fid,44); 
hdr.records = str2double(fread(fid,8,'*char')'); 
hdr.duration   = str2double(fread(fid,8,'*char')'); 
hdr.ns = str2double(fread(fid,4,'*char')'); 
for ii = 1:hdr.ns 

hdr.label{ii} = regexprep(fread(fid,16,'*char')','\W',''); 
end 
 if isempty(targetSignals) 

targetSignals = 1:numel(hdr.label); 
elseif iscell(targetSignals)||ischar(targetSignals) 

targetSignals = 

find(ismember(hdr.label,regexprep(targetSignals,'\W',''))); 
end 
if isempty(targetSignals) 

error('EDFREAD: The signal(s) you requested were not detected.') 
end 
 for ii = 1:hdr.ns 

hdr.transducer{ii} = fread(fid,80,'*char')'; 
end 
for ii = 1:hdr.ns 

hdr.units{ii} = fread(fid,8,'*char')'; 
end 
for ii = 1:hdr.ns 

hdr.physicalMin(ii) = str2double(fread(fid,8,'*char')'); 
end 
for ii = 1:hdr.ns 

hdr.physicalMax(ii) = str2double(fread(fid,8,'*char')'); 
end 
for ii = 1:hdr.ns 

hdr.digitalMin(ii) = str2double(fread(fid,8,'*char')'); 
end 
for ii = 1:hdr.ns 

hdr.digitalMax(ii) = str2double(fread(fid,8,'*char')'); 
end 
for ii = 1:hdr.ns 

hdr.prefilter{ii} = fread(fid,80,'*char')'; 
end 
for ii = 1:hdr.ns 

hdr.samples(ii) = str2double(fread(fid,8,'*char')'); 
end 
for ii = 1:hdr.ns 

reserved = fread(fid,32,'*char')'; 
end 
hdr.label = hdr.label(targetSignals); 
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hdr.label = regexprep(hdr.label,'\W',''); 
hdr.units = regexprep(hdr.units,'\W',''); 
disp('Step 1 of 2: Reading requested records. (This may take a few 

minutes.)...'); 
if nargout > 1 || assignToVariables 

scalefac = (hdr.physicalMax - hdr.physicalMin)./(hdr.digitalMax 

- hdr.digitalMin);

dc = hdr.physicalMax - scalefac .* hdr.digitalMax; 
tmpdata = struct; 

for recnum = 1:hdr.records 
for ii = 1:hdr.ns 

if ismember(ii,targetSignals) 
tmpdata(recnum).data{ii} = 

fread(fid,hdr.samples(ii),'int16') * scalefac(ii) + dc(ii); 
else 

fseek(fid,hdr.samples(ii)*2,0); 
end 

end 
end 
hdr.units = hdr.units(targetSignals); 
hdr.physicalMin = hdr.physicalMin(targetSignals); 
hdr.physicalMax = hdr.physicalMax(targetSignals); 
hdr.digitalMin = hdr.digitalMin(targetSignals); 
hdr.digitalMax = hdr.digitalMax(targetSignals); 
hdr.prefilter = hdr.prefilter(targetSignals); 
hdr.transducer = hdr.transducer(targetSignals); 

record = zeros(numel(hdr.label), 

hdr.samples(1)*hdr.records); 
disp('Step 2 of 2: Parsing data...'); 

recnum = 1; 
for ii = 1:hdr.ns 

if ismember(ii,targetSignals) 
ctr = 1; 
for jj = 1:hdr.records 

try 
record(recnum, ctr : ctr + hdr.samples(ii) - 1) 

= tmpdata(jj).data{ii}; 
end 
ctr = ctr + hdr.samples(ii); 

end 
recnum = recnum + 1; 

end 
end 
hdr.ns = numel(hdr.label); 
hdr.samples = hdr.samples(targetSignals); 

if assignToVariables 
for ii = 1:numel(hdr.label) 

try

eval(['assignin(''caller'',''',hdr.label{ii},''',record(ii,:))']) 
end 

end 
record = []; 

end 
end 
fclose(fid); 

####################See Code in Appendix A #################### 

function [ ACC,SEM, SPE] = LS_SVM11_classifciation (XX,Y) 
function [ index] = K_Means_classi( X1 ) 
function [Acc,rand_index,match]=AccMeasure(T,idx) 

######################################################### 
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Matlab simulation code for Chapter 5

K-complexes detection in EEG signals using fractal

and frequncey featutres  coupled with an ensamble 

classification model 

In this appendix, a simulation code to detect k-complexe in EEG signals is presented. 

In this simulation code, some of functions used were from Matlab tool. The experiment 

results were obtained using Matlab programming language version R2018a.  

C 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Reading EEG data is same as in the appendices A and B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Dual_wessam=DualWavalte(feat); 

 [Freqnucey_Featutres]=Frequncet_Featutres2018 (Dual_wessam); 
[Fractal_Features] =Feature_weHFD2018 (Dual_wessam); 
[Statistic_Featutres]= Feature_we2018 (Fractal_Features); 
[Statistic_Record]=FeatutresFrom_Record_Statistic 

(Statistic_Featutres); 

[Frequncey_Record]=FeatutresFrom_Record_Statistic(Freqnucey_Featutre

s); 
[Bund1,Bund2,Bund3,Bund4,Bund5,BundAll]=Bund_Dual(Statistic_Record,F

requncey_Record); 
 Featutres_AllBund=BundAll; 
Fea_thear=Featutres_AllBund; 
[o1 o2]=size(Fea_thear); 
for i=1:o1 

b=find(dd==i); 
if isempty(b) 

Y(i)=0; 
else 

Y(i)=1; 
end 

end 
 Y=Y'; 
 [ACC, SEM, SPE] = Ensamble_Result (Fea_thear, Y); 
disp('Classification results using DT-CWT) 
disp('Accuracy') 
disp('________') 
disp('   The performance of the proposed method as Accuracy=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performance of the proposed method as Sensitivity=' ); 

disp(SEM); 
disp('------------------------------------------------------'); 
disp('Specificity') 
disp('   The performance of the proposed method as Specificity=' ); 

disp(SPE); 
%end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [ V ] = DualWavalte ( X ) 
% Summary of this function goes here 
% detailed explanation goes here 
% Each 0.5s EEG signals was decomposed into 4 levels using DT-CWT; 

% a total of 10 sub-bands are obtained based on four levels of 

% decomposition. 

% this function was called three sub function to complete the level 

of decomposing: 

1- FSfarras

2- dualfilt1

3- dualtree

xx=X; 
  [n m]=size(xx); 
  for k=1:n 
  x=xx(k,:); 
 J = 4; % number of stages; 4 sub-bands 
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  [Faf, Fsf] = FSfarras; 

 [af, sf] = dualfilt1; 
 w= dualtree(x, J, Faf, af);

  y= idualtree(w, J, Fsf, sf); 
  K_complex10{k}.p=w; 
  K_complex10{k}.p1=y; 
  err = x - y;

  max(abs(err)); 
  end  

function w = dualtree(x, J, Faf, af) 
% Dual-tree Complex Discrete Wavelet Transform 
x = x/sqrt(2); 
% Tree 1 
[x1 w{1}{1}] = afb(x, Faf{1}); 
for j = 2:J 

[x1 w{j}{1}] = afb(x1, af{1}); 
end 
w{J+1}{1} = x1; 
% Tree 2 
[x2 w{1}{2}] = afb(x, Faf{2}); 
for j = 2:J 

[x2 w{j}{2}] = afb(x2, af{2}); 
end 
w{J+1}{2} = x2; 
function y = idualtree(w, J, Fsf, sf) 
% Inverse Dual-tree Complex DWT 
y1 = w{J+1}{1}; 
for j = J:-1:2 
   y1 = sfb(y1, w{j}{1}, sf{1}); 
end 
y1 = sfb(y1, w{1}{1}, Fsf{1}); 
 % Tree 2 
y2 = w{J+1}{2}; 
for j = J:-1:2 
   y2 = sfb(y2, w{j}{2}, sf{2}); 
end 
y2 = sfb(y2, w{1}{2}, Fsf{2}); 
% normalization 
y = (y1 + y2)/sqrt(2); 
function [ MM ] = Frequncet_Featutres2018 ( BB2 ) 
[n m2]=size(BB2) 
RR=BB2; 
for w1=1:m2 
 Ch1=RR{w1}.p 

for A1=1:5 
DD1=Ch1{A1}; 

for T=1:1 
DD2=DD1{1}; 
DD3=DD1{2}; 

DD4=[DD2,DD3]; 
 F1(A1,:)= Frequncey_Features_We(DD4); 

 DD1=[]; 
DD2=[]; 
DD3=[]; 
F3=[]; 
end 

FFF44{w1}.p=F1; 
end 

end 

 MM= FFF44; 
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   end  

function [ HH ] = Frequncey_Features_We( X ) 
FFKomplex=X; 
[n m]= size(FFKomplex); 
for i=1:n 
   [Mxf,I] = max(FFKomplex(i,:));   % max

   [Mif,II] = min(FFKomplex(i,:));   % min

Dffamplitud=Mxf-Mif;  % diffrences amplitude or peak to peak

DistMx_mi=I-II; %distaice betwwen max and min

Rati= abs(Mif)/abs(Mxf); %ration

Sharp=Dffamplitud/DistMx_mi; %sharp

Pstart=II+1; 
   Pend=I-1; 
   pmedil=Dffamplitud; 

   Duration=abs(Pstart-Pend); %duration

   DurPositiv= abs(pmedil- Pstart); %duration positive

   DurNagative= abs(pmedil- Pend); %duration nagative

   Reflectsharp=Mxf/DurPositiv; %reflect sharp positive

  ReflectshNag=Mxf/DurNagative; %reflect sharp nagative

   slop=(Mxf-Mif)/(DurPositiv-DurNagative);   %slop

%  Sharpwaves= Dffamplitud/DistMx 
% assigned all features above to one vector 

Max11(i)=Mxf; %max 
Min11(i)=Mif; %min 
Dff11(i)=Dffamplitud; % diffrences amplitude  

DistMx_mi11(i)=DistMx_mi; %distaice betwwen max and min 
Rati11(i)=Rati; %ration 
Sharp11(i)=Sharp; %sharpwaves 
Dura11(i)=Duration; % duration   

DurPosi11(i)=DurPositiv; % duration posituive 

DurNaga11(i)=DurNagative; % duration posituive 

   Reflectsh11(i)=Reflectsharp;  %reflect sharp positive  

   ReflectshNag11(i)= ReflectshNag;  %reflect sharp nagative   

   slop11(i)=slop; %slop 
end 

 Max11' ; %max 
Min11' ; %min 
Dff11' ; % diffrences amplitude  

DistMx_mi11' ; %distaice betwwen max and min 
Rati11' ; %ration 
Sharp11' ; %sharpwaves 
Dura11' ; % duration   

DurPosi11' ; % duration posituive 

DurNaga11'  ; % duration posituive 

   Reflectsh11' ; %reflect sharp positive  

   ReflectshNag11' ; %reflect sharp nagative   

   slop11'; 
%NewFeaturesK_complxes =[ Max11', Min11', Dff11', DistMx_mi11', 

Rati11',Sharp11', Dura11',DurPosi11',DurNaga11', Reflectsh11', 

ReflectshNag11',slop11']; 
  NewFeaturesK_complxes =[ Max11', Min11', Dff11', DistMx_mi11', 

Rati11',Sharp11', Dura11',DurPosi11',DurNaga11']; 
HH=NewFeaturesK_complxes; 

end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ VV ] = Feature_weHFD2018 ( BB2 ) 
% Detailed explanation goes here 
[n m2]=size(BB2) 
RR=BB2; 
for w1=1:m2 
 Ch1=RR{w1}.p 
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for A1=1:5 
DD1=Ch1{A1}; 

for T=1:1 
DD2=DD1{1}; 
DD3=DD1{2}; 

   DD4=[DD2,DD3]; 
 F1(A1,:)= FractalHFD(DD4); 

DD1=[]; 
DD2=[]; 
DD3=[]; 
F3=[]; 
end 

FFF33{w1}.p=F1; 
end 

end 

 VV= FFF33; 
   end  

function [ F ] = FractalHFD ( XX ) 
%Detailed explanation goes here 
Text=XX; 
[n m]= size(Text); 
ff=Text; 
for i=1:n 

for r=1:8 
   HDF_Kc(i,r)=Higuchi_FD1(ff(i,:), r); 

end 
end 
F=HDF_Kc; 
End 

function [HFD] = Higuchi_FD1(serie, Kmax)  
control = ~isempty(serie); 
assert(control,'The user must introduce a series (first inpunt).'); 
control = ~isempty(Kmax); 
assert(control,'The user must introduce the Kmax parameter (second 

inpunt).'); 
N = length(serie);  
X = NaN(Kmax,Kmax,N); 
for k = 1:Kmax 

for m = 1:k 
limit = floor((N-m)/k); 
j = 1; 
for i = m:k:(m + (limit*k)) 

X(k,m,j) = serie(i); 
j = j + 1; 

end  

end 
end 
L = NaN(1, Kmax); 
for k = 1:Kmax 

L_m = zeros(1,k); 
for m = 1:k 

R = (N - 1)/(floor((N - m)/k) * k); 
aux = squeeze(X(k,m,logical(~isnan(X(k,m,:))))); 

for i = 1:(length(aux) - 1) 
L_m(m) = L_m(m) + abs(aux(i+1) - aux(i)); 

end 
L_m(m) = (L_m(m) * R)/k; 

end 
L(k) = sum(L_m)/k; 

end 
x = 1./(1:Kmax); 
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aux = polyfit(log(x),log(L),1); 
HFD = aux(1);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ VV ] = Feature_we( BB2 ) 
[n m2]=size (BB2); 
RR=BB2; 
for w1=1:m2 
 Ch1=RR{w1}.p; 

for A1=1:5 
DD1=Ch1(A1,:); 

 F1(A1,:)= mainpoint(DD1); 
DD1= []; 

 end 
FFF33{w1}.p=F1; 

end 

 VV= FFF33; 
   end  

function [X ] = mainpoint ( Y ) 
%  detailed explanation goes here 

% Receive:  

% the vector of FD and Return the vector of statistic features 

i=1; 
for i=1:10 
  X(1)=std(Y); 
  X(2)=skewness(Y); 
  X(3)=Energy(Y); 
 end 
end 
function [ KK ] = FeatutresFrom_Record_Statistic ( TT ) 
FST1=TT; 
  [n m2]=size( FST1); 
for i=1:m2 

Ch1=FST1{i}.p 
RRR=reshape(Ch1',1,[]) 
WWWW(i,:)=RRR; 

end 
KK=WWWW; 
end 
function [ F_Rc1, F_Rc2,  F_Rc3,  F_Rc4,  F_Rc5, F_Rc6] = Bund_Dual 

( X1,X2) 
 GG=X1; 

  HH=X2; 
SS1=GG(:,1:3); 
SS2=GG(:,4:6); 
SS3=GG(:,7:9); 
SS4=GG(:,10:12); 
SS5=GG(:,13:15); 

FF1=HH(:,1:9); 
FF2=HH(:,10:18); 
FF3=HH(:,19:27); 
FF4=HH(:,28:36); 
FF5=HH(:,37:45); 

E1=[SS1,FF1]; 
E2=[SS2,FF2]; 
E3=[SS3,FF3]; 
E4=[SS4,FF4]; 
E5=[SS5,FF5]; 

E6=[SS1,SS2,SS3,FF1,FF2,FF3]; 
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F_Rc1=E1; 
F_Rc2=E2; 
F_Rc3=E3; 
F_Rc4=E4; 
F_Rc5=E5; 
F_Rc6=E6; 
End 

function [ACC, SEM,SPE ] = Ensamble_Result ( XXX,YYY ) 
X2=XXX; 
Y2=YYY; 
[Acc,Id1,SPE1]=Nai_classificationTesting(X2,Y2); 
[ ACC,SEM, SPE,Id2,Ytest]=LS_SVM_classifciationTesting(X2,Y2); 
[Id3]=K_Means_Testing(X2); 
[n m]=size(Id2); 
Idx1=Id1(1:n,1); 
Idx2=Id2(1:n,1); 
Idx3=Id3(1:n,1); 
[Y_id]=Convert_Tes(Idx3);   % k-means index  
Y_id2=Id2;

Y_id3=Idx1;

p1=Y_id; 
p2=Y_id2; 
p3=Y_id3; 
[L J]=size(p1); 
[Acc,rand_index,match]=AccMeasure(Y_id,Ytest) 
T1=1-SPE1; 
T2=1-SPE; 
T3=1-rand_index; 
Wi_N=log2((1-T1)/T1); 
Wi_L=log2((1-T2)/T2); 
Wi_K=log2((1-T3)/T3); 
 F1=Wi_N; 
 F2=Wi_L; 
 F3=Wi_K; 
for i=1:L

if p1(i)==0 && p2(i)==0 && p3(i)==0 
XXT(i)=-1; 
elseif p1(i)==1 && p2(i)==1 && p3(i)==1 

XXT(i)=1; 
end  

if p1(i)==1 && p2(i)==1 && p3(i)==0 
G1=F1+F2; 
G2=F3; 
if G1>=G2 

XXT(i)=1; 
else 

XXT(i)=-1; 
end  

 else if p1(i)==1 && p2(i)==0 && p3(i)==1 
G1=F1+F3; 
G2=F2; 
if G1>=G2 

XXT(i)=1; 
else  

XXT(i)=-1; 

end  
   else if p1(i)==0 && p2(i)==0 && p3(i)==1 

G1=F1+F2; 
G2=F3; 
if G1>=G2 

XXT(i)=-1; 
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else 

XXT(i)=1; 

end  
 else if p1(i)==0 && p2(i)==1 && p3(i)==0 

G1=F1+F3; 
G2=F2; 
if G1>=G2 

XXT(i)=-1; 
else  

XXT(i)=1; 

end 

else if p1(i)==0 && p2(i)==1 && p3(i)==1 
G1=F2+F3; 
G2=F1; 
if G1>=G2 

XXT(i)=1; 
else  

XXT(i)=-1; 

end  
   else if p1(i)==1 && p2(i)==0 && p3(i)==0 

G1=F2+F3; 
G2=F1; 
if G1>=G2 

XXT(i)=-1; 
else  

XXT(i)=1; 

end 

end  

end 

 XXT=XXT' 
  [u1 u11]=size(XXT) 
 [Y_idF]=Convert_Tes1(XXT); 
 [u1 u11]=size(XXT); 
  Ytest=Ytest(1:u11,1); 
[Acc,rand_index,match]=AccMeasure(Ytest,Y_idF); 
end  
function [ Y_id ] = Convert_Tes ( H ) 
Y=H; 
 for i=1:length(Y) 

if Y(i)==2 
Y_id(i)=1; 

else 
Y_id(i)=-1; 

end 
end 
Y_id=Y_id'; 
end 
function [ ACC,Id1, SPE1,FF ] = Nai_classificationTe ( XX,BB ) 
distr='normal'; 
distr='kernel'; 
DD=XX; 
Y=BB; 
[n3 m3]=size(DD); 
R=m3+1; 
DD(1:n3,R)=Y; 
nrows = size(DD,1); 
r80 = round(0.75 * nrows); 
trainingset = DD(1:r80,:,:); 
testset = DD(r80+1:end,:,:); 
[k1 k2]=size(trainingset); 
x = trainingset(:,1:k2-1); 
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y = trainingset(:,k2); 
% test set 
u= testset(:,1:k2-1) 
v=testset(:,k2); 
Y=DD(:,R); 
% Create a cvpartition object that defined the folds 
c = cvpartition(Y,'holdout',.2); 
yu=unique(y); 
nc=length(yu); % number of classes 
ni=size(x,2); % independent variables 
ns=length(v); % test set 
 for i=1:nc 

fy(i)=sum(double(y==yu(i)))/length(y); 
end 
 switch distr 

case 'normal' 
for i=1:nc 

xi=x((y==yu(i)),:); 
mu(i,:)=mean(xi,1); 
sigma(i,:)=std(xi,1); 

end 
for j=1:ns 

fu=normcdf(ones(nc,1)*u(j,:),mu,sigma); 
P(j,:)=fy.*prod(fu,2)'; 

end 
case 'kernel' 

for i=1:nc 
for k=1:ni 

xi=x(y==yu(i),k); 
ui=u(:,k); 
fuStruct(i,k).f=ksdensity(xi,ui); 

end 
end 
for i=1:ns 

for j=1:nc 
for k=1:ni 

fu(j,k)=fuStruct(j,k).f(i); 
end 

end 
P(i,:)=fy.*prod(fu,2)'; 

end 
otherwise 

disp('invalid distribution stated') 
return 

 end 
[pv0,id]=max(P,[],2); 
for i=1:length(id) 

pv(i,1)=yu(id(i)); 
end 
 confMat=myconfusionmat(v,pv); 
conf=sum(pv==v)/length(pv); 
ACC=conf*100; 
SPE1=conf*100; 
Id1=v; 
MM=SPE1; 
FF=DD; 
end 
 function [ ACC,SEM, SPE,Id1,Ytest] = LS_SVM_classifciationTe 
 (X2,Y2) 
Xtest= X2; 
Ytest=Y2;
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size(Xtest) 
size(Ytest) 
gam=10; 
sig2=1; 
type='classification'; 
L_fold=6; 
[x,y]=Ranad(X2,Y2); 
[gam, sig2] = tunelssvm({x,y,'c',[],[],'RBF_kernel'}, 'simplex',... 

'leaveoneoutlssvm', {'misclass'}); 
[alpha,b] = trainlssvm({x,y,type,gam,sig2,'RBF_kernel'; 
Yh=simlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},Xtest); 
[perc,n,which]=misclass(Ytest,Yh); % Which: contains the indices of 

the misclassificated instances 

(the first column gives the 

row, the second the column index) 

n % is the number of misclassifications 
perc % is the rate of misclassifications (between 0 and 1 
[C,order] = confusionmat(Ytest,Yh); 
C 
order 
Y_latent=latentlssvm({x,y,type,gam,sig2,'RBF_kernel'},{alpha,b},x);  

[area,se,thresholds,oneMinusspec,sens,TN,TP,FN,FP]=roc(Y_latent,y); 
%[thresholds oneMinusspec sens ]; 
Accuracy=(TP+TN)/(TP+TN+FP+FN)*100 
ACC=Accuracy; 
T=TP/(TP+FN); 
SEM=T*100; 
T1=TN/(TN+FP); 
SPE=T1*100; 
Id1=Yh; 
Ytest=Ytest; 
disp('Classifciation results using DT-CWT') 
disp('Accuracy') 
disp('________') 
disp('   The performnace of the proposed method as Accuracey=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performnace of the proposed method as Sensitivity=' ); 

disp(SEM); 
disp('------------------------------------------------------'); 
disp('Specifcity') 
disp('   The performnace of the proposed method as Specifcity=' ); 

disp(SPE); 
toc 
end 

###############See Code in Appendix A #################### 

function [ index] = K_Means_Testing ( X1 ) 
  % Input: X1 and X2, are the pair of sleep stages to be classified 
 % Output: Accuracy the percentage of corrected classification 
 % and sensitivity  

 end 
 function [Acc,rand_index,match]=AccMeasure(T,idx) 
   % Measure percentage of Accuracy and the Rand index of clustering 

   % results 

   % see the procedure in Appendex A; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Matlab simulation code for Chapter 6 

 Detection of EEG k-complexes using fractal 

dimension of time frequncey images technique 

coupled with undirected graph features.  

In this appendix, a simulation code to detect sleep spindles in EEG signals is 

presented. In this simulation code, some of functions used were from Matlab tool. 

The experiment results were obtained using Matlab programming language version 

R2018a.  

D 



204

Appendices 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Reading EEG data is same as in the appendix A 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

FFFFF=feat2; % all the dataset which is content all segments 
% After calculate FD of TFI

Save FractalBox_ng11 FractalBox_ng11  

ff2=FractalBox_ng11; 
F=ff2; 
[k1 K2]=size (ff2) 
for k=1:k1 
  F1=F (k, :) 
  D=dist (F1) 

 A=Adj_mat(D)   

  [DEG,Lap]=Laplace_matrix_degree(A); 

  Jacc_vect(k,:)=Jaccardcoff(A);

  Degree_matrix(k,:)=DEG(:,1) 
  Cluster_coff_matrix(k,:)=clustering1(A, 'undirected') 
  Degree_matrix(k,:)=averageDegree(A);  

end  

 Cluster_coff_matrix_2018=Cluster_coff_matrix; 
  Degree_matrix2018=Degree_matrix; 
  Jacc_vect2018=Jacc_vect; 
  A1=Cluster_coff_matrix_2018; 
  A2=Degree_matrix2018; 
  A3=Jacc_vect2018; 
  Featutres_Fractal_Graph2018=[A1,A2,A3]; 
 save Featutres_Fractal_Graph2018 Featutres_Fractal_Graph2018 
 DD_JC2018= [A2, A3]; 
 DD_CC2018=[A2,A1]; 
 JC_CC2018=[A3,A1]; 
 ALL_DD_JC_CC2018=[A1,A2,A3]; 
 save DD_JC DD_JC2018 

 save DD_CC DD_CC2018 

 save JC_CC JC_CC2018 

 save ALL_DD_JC_CC ALL_DD_JC_CC2018 

XX4=ALL_DD_JC_CC2018; 
[n m]=size(XX4); 
TT1=XX4(:,1:10); 
TT2=XX4(:,11:20); 
TT3=XX4(:,21:30); 
[s s1]=size(TT1); 
for i=1:s 

e=TT1(i,:) 
e1=TT2(i,:) 
e2=TT3(i,:) 
EE(i)=sum(e)/s1; 
EE1(i)=sum(e1)/s1; 
EE2(i)=sum(e2)/s1; 

end 

RR1=EE'; 
RR2=EE1'; 
RR3=EE2'; 
RR4=[RR1,RR2,RR3]; 
Fea_thear=RR4; 
[o1 o2]=size(Fea_thear); 

for i=1:o1 

b=find(dd==i); 
if isempty(b) 

Y(i)=0; 
else 
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Y(i)=1; 
end 

end 
Y=Y'; 
Y=Y(1:o1); 

[ACC, SEM, SPE] =LS_SVM11_classifciation_we(Feathear, Y) 

disp('Classification results using Fracatl_graph features ') 
disp('Accuracy') 
disp('________') 
disp(' The performance of the proposed method as Accuracy=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performance of the proposed method as Sensitivity=' ); 

disp(SEM); 
disp('------------------------------------------------------'); 
disp('Specificity') 
disp('   The performance of the proposed method as Specificity=' ); 

disp(SPE); 

% calculate Mean and Standard deviation for graph features 

disp(' The data was now read , Please press any Key to continue'); 
pause; 
load Three_Graph_Featutres; 
[ZZ_STD, ZZ_mean]=STD_and_Mean2019(Three_Graph_Featutres); 
disp('   Classifciation results using STD and mean for CC,DD,JC=' ); 

disp(ZZ_STD); 
disp('------------------------------------------------------'); 
disp('   Classifciation results using STD and mean for CC,DD,JC=' ); 

disp(ZZ_mean); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function varargout = spectrogram(x,var) 
%SPECTROGRAM Spectrogram using a Short-Time Fourier Transform  
narginchk(1,11); 
nargoutchk(0,6); 
 if nargout > 0 
  [varargout{1:nargout}] = pspectrogram({x},'spect',var{:}); 
else 
  pspectrogram({x},'spect',var{:}); 
end 
function [Y,N] = Laplace_matrix(X1) 
 [n m]=size(X1) 
for i=1:n 

Deg(i,1)=sum(X1(i,:)==1) 
end 
Y=Deg 
%%%%%%%%%%%% Laplacian Matrix%%%%%%%%%%%%%%%%%%%%%%%%%%%  

for i=1:n 
for j=1:m 

if i==j 
Y1(i,j)=Deg(i) 

else  
Y1(i,j)=0 

end 
end 

end 
  N=Y1-X1 

  End 

function [ Y ] = Jaccardcoff( P ) 

% Receives:  

% Adjacency matrix P 
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% 

Returns: 

% Jaccardcoff Y 
A=P; 
[n m]=size (A) 
for i=1:n 

mm1=0; 
for j=1:m 
if (A(i,j)==1) 

mm1=mm1+1; 
nn{i}.mm(mm1)=j; 

end 
end 

end 
for i=1:n 

for j=1:m 
if (i~=j) 
p= nn{i}.mm 
p2= nn{j}.mm 
interse=intersect(p,p2) 
uni=union(p,p2) 
L1=numel(interse) 
L2=numel(uni) 
Jacca_coff(i,:)=L1/L2 
end 

end 
end 
Y=Jacca_coff 
end 
 function coeff = clustering(A, type) 
%  The clustering coefficient for each node in the graph is 

calculated 
n = size(A,1); 
 if (nargin>1) 

if strcmp(type,'directed') 
digraph = true; 

elseif strcmp(type,'undirected') 
digraph = false; 

else 
error('Type must be either "directed" or "undirected"') 

end 
else 

if all(all(A == A')) 
digraph = false; 

else 
digraph = true; 

end 
end 
if digraph 

c = sum((A^2) .* A, 2); 
else 

c = sum((A^3) .* eye(n), 2); 
end 
 % Calculate the out degree of the nodes 
out = sum(A,2);  
% Calculate the clustering coefficient 
s = warning('off','MATLAB:divideByZero'); 
coeff = c ./ (out .* (out - 1)); 
warning(s); 
coeff(out == 0) = 0; 
coeff(out == 1) = 0; 
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end  
function k=averageDegree(adj)  

k=2*numEdges(adj)/numNodes(adj); 

function [Acc,rand_index,match]=AccMeasure(T,idx) 
k=max ([T (:); idx(:)]); 
n=length (T); 
for i=1:k 

temp=find(T==i); 
a{i}=temp;  

end 
b1=[]; 
t1=zeros (1, k); 
for i=1:k 

tt1=find (idx==i); 
for j=1:k 

t1(j)=sum(ismember(tt1,a{j})); 
end 
b1=[b1;t1]; 

end 
Members=zeros (1, k); 

P = perms((1:k)); 
Acc1=0; 

for pi=1:size(P,1) 
for ki=1:k 

Members(ki)=b1(P(pi,ki),ki); 
end 
if sum(Members)>Acc1 

match=P(pi,:); 
Acc1=sum(Members); 

end 
end 
 rand_ss1=0; 
rand_dd1=0; 
for xi=1:n-1 

for xj=xi+1:n 
rand_ss1=rand_ss1+((idx(xi)==idx(xj))&&(T(xi)==T(xj))); 
rand_dd1=rand_dd1+((idx(xi)~=idx(xj))&&(T(xi)~=T(xj))); 

end 
end 
rand_index=200*(rand_ss1+rand_dd1)/(n*(n-1)); 
Acc=Acc1/n*100;  
match=[1:k;match]; 
function [ A] = = Adj_mat ( D ) 
% Receives 

% A Graph distance matrix D

% % Returns:  

% Adjacency Matrix A1, a threshold   

[n m]=size(D) 
 for i=1 : n 

e=D(i,:) 
ee=sum(e)/n; 

 for j=1:n 
if i ~= j 

if( D(i,j)<=ee) 
A(i,j)=1 

else 

A(i,j)=0 
end 

end 
end 
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 end 
A=A 
end 

#######compared using different thresholding MST and OMST ###### 

FractalTFI2019=TFI_ Rev_W(feat2);

[XX1, XX2, XX3, XX5]=Gra_Fe_Extr(FractalTFI2019); 

CaluctedAllFeatutresGraph2019using_MST=XX5; 

XX4=CaluctedAllFeatutresGraph2019using_MST; 

CaluctedAllFeatutresGraph2019using_OMST=XX5; 
XX4=CaluctedAllFeatutresGraph2019using_OMST; 
[n m]=size(XX4); 
TT1=XX4(:,1:10); 
TT2=XX4(:,11:20); 
TT3=XX4(:,21:30); 
[s s1]=size(TT1); 
for i=1:s 

e=TT1(i,:) 
e1=TT2(i,:) 
e2=TT3(i,:) 

EE(i)=sum(e)/s1; 
EE1(i)=sum(e1)/s1; 
EE2(i)=sum(e2)/s1; 

end  
RR1=EE'; 
RR2=EE1'; 
RR3=EE2'; 
RR4=[RR1,RR2,RR3]; 
Fea_thear=RR4;

  [o1 o2]=size(Fea_thear); 
for i=1:o1 

b=find(dd==i); 
if isempty(b) 

Y(i)=0; 
else 

Y(i)=1; 
end 

end 
Y=Y'; 
  Y=Y(1:o1);   

[ ACC,SEM, SPE]=LS_SVM11_classifciation_we(Fea_thear,Y) 

disp('Classifciation results using Dual-Fractal') 
disp('Accuracy') 
disp('________') 
disp('   The performnace of the proposed method as Accuracey=' ); 

disp(ACC); 
disp('------------------------------------------------------'); 
disp('Sensitivity') 
disp('   The performnace of the proposed method as Sensitivity=' ); 

disp(SEM); 
disp('------------------------------------------------------'); 
disp('Specifcity') 
disp('   The performnace of the proposed method as Specifcity=' ); 

disp(SPE); 
load Three_Graph_Featutres; 
[ZZ_STD, ZZ_mean]=STD_and_Mean2019(Three_Graph_Featutres); 
disp('   Classifciation results using STD and mean for CC,DD,JC=' ); 

disp(ZZ_STD); 
disp('------------------------------------------------------'); 
disp('   Classifciation results using STD and mean for CC,DD,JC=' ); 

disp(ZZ_mean); 
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function [ XX1, XX2, XX3, XX4 ] = Gra_Fe_Extr(Y ) 
[k1 k2]=size(Y); 
F=Y; 
for k=1:k1 
  F1=F(k,:); 
  D=dist(F1); 
  [links,weights]=minimal_spanning_tree(D); 
  w=weights; 
  A=Adj_mat(D); 
  [w_st, ST, X_st] = kruskal2019(A, w); 

  Kk=6; 

 A= threslold_mean_degree(X_st,kk) 

  Jacc_vect(k,:)=Jaccardcoff(A);  
  Cluster_coff_matrix(k,:)=clustering1(A, 'undirected') 

  [DEG,Lap]=Laplace_matrix_degree(A); 
  Degree_matrix(k,:)=DEG(:,1) 

end 

XX1=Jacc_vect; 
XX2=Cluster_coff_matrix; 
XX3=Degree_matrix; 
XX4= [Jacc_vect,Cluster_coff_matrix,Degree_matrix]; 

end 
function [Three_Featutres] = CaluctedAllFeatutresGraph2019using_MST 
 (Cluster_coff_matrix,Degree_matrix,Jacc_vect ) 
% Receives: 

% Graph Features 

% Return average of three graph features  

A1=Cluster_coff_matrix; 
A2=Degree_matrix; 
A3=Jacc_vect; 
 Featutres_Fractal_Graph=[A1,A2,A3]; 
 save Featutres_Fractal_Graph Featutres_Fractal_Graph 
 DD_JC=[A2,A3]; 
 DD_CC=[A2,A1]; 
 JC_CC=[A3,A1]; 
 ALL_DD_JC_CC=[A1,A2,A3]; 
 save DD_JC DD_JC 

 save DD_CC DD_CC 

 save JC_CC JC_CC 

 save ALL_DD_JC_CC ALL_DD_JC_CC 

Three_Featutres=ALL_DD_JC_CC ALL_DD_JC_CC ; 
 end 
function [w_st, ST, X_st] = kruskal(X, w) 

isUndirGraph = 0;w=inatialweight(); 
if size(X,1)==size(X,2) && sum(X(:)==0)+sum(X(:)==1)==numel(X)

if any(any(X-X')) 
isUndirGraph = 0; 

end 
ne = cnvrtX2ne(X,isUndirGraph); 

else 
if size(unique(sort(X,2),'rows'),1)~=size(X,1) 

isUndirGraph = 0; 
end 
ne = X; 

end 
if numel(w)~=length(w) 

if isUndirGraph && any(any(w-w')) 
error('If it is an undirected graph, weight matrix has 

to be symmetric.'); 
end 
w = cnvrtw2ne(w,ne); 
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 end 
N    = max(ne(:));   

Ne   = size(ne,1);   

lidx = zeros(Ne,1);  

[w,idx] = sort(w); 
ne      = ne(idx,:); 
[repr, rnk] = makeset(N); 
for k = 1:Ne 

i = ne(k,1); 
j = ne(k,2); 
if fnd(i,repr) ~= fnd(j,repr) 

lidx(k) = 1; 
[repr, rnk] = union(i, j, repr, rnk); 

end 
end 
% Form the minimum spanning tree 

treeidx = find(lidx); 
ST = ne (treeidx, :); 

% Generate adjacency matrix of the minimum spanning tree 
X_st = zeros(N); 
for k = 1:size(ST,1) 

X_st(ST(k,1),ST(k,2)) = 1; 
if isUndirGraph,  X_st(ST(k,2),ST(k,1)) = 1;  end 

end 
% Evaluate the total weight of the minimum spanning tree 

w_st = sum(w(treeidx)); 
 end 
function ne = cnvrtX2ne(X, isUndirGraph) 

if isUndirGraph 
ne = zeros(sum(sum(X.*triu(ones(size(X))))),2); 

else 
ne = zeros(sum(X(:)),2); 

end 
cnt = 1; 
for i = 1:size(X,1) 

v = find(X(i,:));

if isUndirGraph 
v(v<=i) = []; 

end 
u = repmat(i, size(v));

edges   = [u; v]';

ne(cnt:cnt+size(edges,1)-1,:) = edges;

cnt = cnt + size(edges,1);

end 
 end 

function w = cnvrtw2ne(w,ne) 
tmp = zeros(size(ne,1),1); 
cnt = 1; 
for k = 1:size(ne,1) 

tmp(cnt) = w(ne(k,1),ne(k,2)); 
cnt = cnt + 1; 

end 
w = tmp; 

 end 

function [repr, rnk] = makeset(N) 
repr = (1:N); 
rnk  = zeros(1,N); 

 end 
 function o = fnd(i,repr) 
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while i ~= repr(i) 
i = repr(i); 

end 
o = i;

 end 
   function [repr, rnk] = union(i, j, repr, rnk) 

r_i = fnd(i,repr); 
r_j = fnd(j,repr); 
if rnk(r_i) > rnk(r_j) 

repr(r_j) = r_i; 
else 

repr(r_i) = r_j; 
if rnk(r_i) == rnk(r_j) 

rnk(r_j) = rnk(r_j) + 1; 
end 

end 
 end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 function  [links,weights]=minimal_spanning_tree(d) 

[N,N]=size(d);, V=[1:N];, r=1;, VT=r;,  
 weights=zeros(1,N); links=zeros(1,N); 
 V_VT=setdiff(V,VT); 
  weights(V_VT)=d(r,V_VT); 
 links(V_VT)=r; 
 for i=1:N-2 
   [edge_weight,u]=min(weights(V_VT)); 
  node=V_VT(u); 
   VT=union(VT,node); 
   V_VT=setdiff(V,VT); 
  for j=1:N-1-i,  
   [weights(V_VT(j)),index]=min( [weights(V_VT(j)),d(node,V_VT(j))] 

);, 
  if index == 2,  links(V_VT(j))=node;, else, end 

end 
 end 
 links=[2:N; links(2:N)]'; 
 weights=weights(2:N)'; 
  [ignore,list]=sort(weights); 
links=links(list,:); weights=weights(list); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [bin thres mdegree]=threslold_mean_degree(graph,kk) 
iter=5; 
 [d1 d2]=size(graph); 
 step=1/iter; 
 thres=0; 
 bin(1:d1,1:d2)=0; 
  thresdeg=zeros(iter,2); 
 for i=1:iter 

thres=thres+step; 
bin(1:d1,1:d2)=0; 
for k=1:d1 

for l=(k+1):d2 
if(graph(k,l)>thres) 

bin(k,l)=1; 
bin(l,k)=1; 

end 
end 

end 
[deg] = degrees_und(bin); 

thresdeg(i,1)=mean(deg); 
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thresdeg(i,2)=thres; 
 end 
 %find the nearest mean degree to kk 
 dif=zeros(1,iter); 
 for i=1:iter 

dif(i)=abs(thresdeg(i,1) - kk); 
 end 
 %find the mean degree with the min difference from kk 
 [a r]=min(dif); 
%find the threhold corresponds to the mean degree 
 mdegree=0; 
 mdegree=thresdeg(r,1); 
 thres=thresdeg(r,2); 

for k=1:d1 
for l=(k+1):d2 
   if(graph(k,l) > thres) 

bin(k,l)=1; 
bin(l,k)=1; 

end 
end 

end 
function [ZZ_STD,ZZ_mean ] = STD_and_Mean2019 (ALL_DD_JC_CC2018) 
XX4=ALL_DD_JC_CC2018; 
[n m]=size(XX4); 
TT1=XX4(:,1:10); 
TT2=XX4(:,11:20); 
TT3=XX4(:,21:30); 
[s s1]=size(TT1); 
for i=1:s 

e=TT1(i,:) 
e1=TT2(i,:) 
e2=TT3(i,:) 

EE(i)=sum(e)/s1; 
EE1(i)=sum(e1)/s1; 
EE2(i)=sum(e2)/s1; 

end  
RR1=EE'; 
RR2=EE1'; 
RR3=EE2'; 
RR4=[RR1,RR2,RR3]; 
for k=1:s 
   u1=TT1(k,:); 
   u2=TT2(k,:); 
   u3=TT3(k,:); 

LL1(k)=std(u1); 
LL2(k)=std(u2); 
LL3(k)=std(u3); 

end  
HH1=LL1'; 
HH2=LL2'; 
HH3=LL3'; 
HH4=[HH1,HH2,HH3]; 
STD_JC=sum(HH1(1:end,1))/s 
STD_CC=sum(HH2(1:end,1))/s 
STD_DD=sum(HH3(1:end,1))/s 
Mean_JC=sum(RR1(1:end,1))/s 
Mean_CC=sum(RR2(1:end,1))/s 
Mean_DD=sum(RR3(1:end,1))/s 
ZZ_STD=[STD_JC,STD_CC,STD_DD] 
ZZ_mean=[Mean_JC, Mean_CC,Mean_DD] 
end 
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