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Abstract
A practical approach to continuously monitor and provide real-time solar energy prediction can
help support reliable renewable energy supply and relevant energy security systems. In this study
on the Korean Peninsula, contemporaneous solar radiation images obtained from the
Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) system,
were used to design a convolutional neural network and a long short-term memory network
predictive model, ConvLSTM. This model was applied to predict one-hour ahead solar radiation
and spatially map solar energy potential. The newly designed ConvLSTMmodel enabled reliable
prediction of solar radiation, incorporating spatial changes in atmospheric conditions and
capturing the temporal sequence-to-sequence variations that are likely to influence solar driven
power supply and its overall stability. Results showed that the proposed ConvLSTMmodel
successfully captured cloud-induced variations in ground level solar radiation when compared
with reference images from a physical model. A comparison with ground pyranometer
measurements indicated that the short-term prediction of global solar radiation by the proposed
ConvLSTM had the highest accuracy [root mean square error (RMSE)= 83.458 W ·m−2, mean
bias error (MBE)= 4.466 W ·m−2, coefficient of determination (R2)= 0.874] when compared
with results of conventional artificial neural network (ANN) [RMSE= 94.085 W ·m−2,
MBE=−6.039 W ·m−2, R2 = 0.821] and random forest (RF) [RMSE= 95.262 W ·m−2,
MBE=−11.576 W ·m−2, R2 = 0.839] models. In addition, ConvLSTM better captured the
temporal variations in predicted solar radiation, mainly due to cloud attenuation effects when
compared with two selected ground stations. The study showed that contemporaneous satellite
images over short-term or near real-time intervals can successfully support solar energy
exploration in areas without continuous environmental monitoring systems, where satellite
footprints are available to model and monitor solar energy management systems supporting
real-life power grid systems.

1. Introduction

Successful integration of the rapidly growing renew-
able energy production into existing or future power
grid systems is an important challenge for the
future global energy supply. Any electricity oper-
ator needs to ensure a precise balance between

electricity production and consumption to reduce
overall costs and sustain electricity production [1].
Existing energy plants that run on nuclear power,
steam (thermal resources), fossil fuels (coal), and
hydropower can control their energy production
according to expected consumption by responding to
the different temporal horizons of their operational
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power systems [2]. However, solar energy is inter-
mittent and unpredictable due to its high sensitiv-
ity to atmospheric conditions. It is also generated by
spatially dispersed, small scale power plants [3, 4].
This adds to the risk or uncertainty underlying sys-
tem management, which in turn increases the cost of
solar power production.

New approaches are required to predict the spa-
tiotemporal distribution of solar radiation with a
reliable degree of accuracy. These will optimize the
integration of solar energy into existing electrical
power grids and ensure its favorable trading per-
formance and sustainability in the modern electricity
market [5].

Numerical Weather Prediction (NWP) models
are the ‘gold standard’ for building frameworks
based on mathematical equations that seek to emu-
late changes in global solar radiation [6]. The main
advantage of such models is their dynamical model-
ling ability to represent atmospheric properties. For
example, solar radiation is predicted by interpret-
ing physical processes of atmospheric flows, as well
as by considering cloud movement and other atmo-
spheric components. Real-time solar energy power
generating systems require short-term predictions
(within 6 h). However, NWP models are relatively
less reliable for short-term prediction of solar radi-
ation because the models need to derive a phys-
ical valid state after initialization (called the spin-up
time). In particular, very short-term forecasts (now-
cast) of 1–2 h ahead, derived by NWP, are less accur-
ate than those provided by Machine Learning (ML)
approaches [7, 8].

ML algorithms including artificial neural network
(ANN), support vector machine (SVM), and ran-
dom forest (RF) are recently developed alternatives
to NWP models and have been widely applied to
predict global solar radiation [9–16]. Many of these
new models use atmospheric datasets of a sufficient
length and quality as well as relevant parameters to
explain the variations in solar radiation over a his-
torical period. ML approaches have attained a high
degree of accuracy in the retrieval and prediction of
global solar radiation at the Earth’s surface [17–22].
The main advantage of ML models, as compared
with the NWP model, is that the former can simu-
late the spatiotemporal characteristics of global solar
radiation simply by using ground pyranometer or
satellite datasets, without understanding the complic-
ated physical processes or the related solar radiation
dynamics.However, existingMLmodels are unable to
consider environmental information beyond the tar-
get points [23, 24]. As solar radiation varies in time
and space due to the effects of cloud movements and
the components of the atmosphere [25], existing ML
methods based on shallow network structures (less
than two layers), and fixed initial conditions [26, 27]
are limitedwith regard to the prediction of spatiotem-
poral solar radiation.

Deep learning models such as deep neural net-
works (DNNs), long short-term memory (LSTM)
networks, and convolutional neural network
algorithms, have been developed to solve complex
and nonlinear problems in the fields of computer vis-
ion and remote sensing [1, 28–31], andmore recently,
solar energy prediction [32–34]. These newer meth-
ods allow for the building of deeper, more complex
network structures (often based on multiple hidden
layers in the overall model architecture) to accurately
identify the key features present in the predictor(s)
and target variables [29]. Implementingmultiple hid-
den layers can avoid vanishing gradient descents and
over-fitting issues, which are typical in single hidden
layer ML models. New activation functions such as a
rectified linear unit (ReLU) have led to a better dro-
pout rate and more effective initialization of kernels
or weights. Deep learning algorithms can generate
accurate predictions, particularly for relatively com-
plex and stochastic datasets [35–37].

Considering the potential benefits of deep
learning-based models, the aims of this study were
to: (i) develop a new convolutional long short-term
memory (ConvLSTM) model for one-hour ahead
solar radiation prediction using geostationary con-
temporaneous satellite images, and (ii) generate spa-
tial solar radiation maps of the Korean Peninsula
using the ConvLSTM model. The novelty of this
study is the newly designed ConvLSTM model that
integrates continuous COMS-MI images to provide
spatiotemporal variations in solar radiation at any
specific point.

2. Materials andmethods

2.1. Study area and satellite imagery for training
the deep learning model
The study area covers the Korean Peninsula (figure 1).
It has a temperate monsoon climate, with a cold
continental climate in the north (similar to north-
ern China) and a marine climate in the south
(similar to southern Japan [38]). The 33 ground
pyranometers (model CM21, Kip & Zonen) oper-
ated by the KoreaMeteorological Administration (red
dots in figure 1) provided ground measurements of
solar radiation with hourly resolution (available at
https://data.kma.go.kr). The quality control proced-
ures followed the criteria of the Guide to Meteor-
ological Instruments and Methods of Observation
World Meteorological Organization (WMO) No. 8.
These measurements served to validate global solar
radiation predictions generated by the deep learning-
based ConvLSTMmodel and conventional ANN and
RF models.

In the present study, the COMS-MI satellite was
mainly used to estimate spatiotemporal solar radi-
ation as an input parameter [39]. COMS-MI has
five spectral bands, ranging from visible to infrared,
with spatial resolutions of 1–4 km. These bands
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Figure 1.Map of the study area and locations of ground
pyranometers (red dots) using world geodetic system
(WGS) 84 geographic projection.

have proved to be quite useful in observing atmo-
spheric conditions such as cloud cover and atmo-
spheric gas concentrations. The temporal resolu-
tion of the COMS-MI device ranges from about
15 min to 3 h depending on where the observa-
tion is made [40]. Therefore, it is possible to make
a time series of global solar radiation images to
reflect the continuous flow of the atmosphere. In this
study, the global solar radiation was first estimated
by a physical model that used COMS-MI satellite
spectral bands and atmospheric information. Sub-
sequently, the same time series of solar radiation only
served as the input data for the DNN, ANN, and
RF models to reduce the size of the computation
memory [41–43]. For more details of the physical
model’s development, readers may consult previous
studies [43–44].

Our estimation of hourly global solar radiation
using a physical model employed COMS-MI data-
set collected from a total of 1100 sequential images
between 1 April 2011 and 31 December 2015 (parts
of the time series data were not available due to a
change in observation mode). These data, consecut-
ively recorded between 09:00 h and 13:00 h local time,
were required to predict daytime solar radiation at
14:00 h (i.e. at least 1 h after the observation). The
main reasons for predicting one hour ahead solar
radiation is that short-term prediction is useful for
determining whether or not the existing power gener-
ation is operating [1]. To construct the deep learning-
based ConvLSTM and conventional ANN and RF
models, the full dataset was divided into three distinct
parts in chronological order: training, validation, and
test datasets. 80% of the total datasets were used for
training and validation of the data-driven models
from 1 April 2011 to 8 September 2015 (880 images).
Among this 80%, about 10% (i.e. 110 images) was
used for validation of the ML models during the
training process to reduce over-fitting problems. The
remaining 20% from 9 September to 31 December

Figure 2. Schematic of the long short-term memory
(LSTM) algorithm used to predict solar radiation [30].

2015 (220 images) was used to test the ML models to
evaluate the performance and generalization of these
models.

2.2. Framework of the ConvLSTMDNNmodel
The DNN algorithm employed in the present study
is considered to be an LSTM model, a variant of
the recurrent neural network (RNN) algorithm. The
RNN algorithm suffers from a drawback: a complex
neuronal structure can result in a ‘vanishing gradient,’
which can make long-term predictions relatively dif-
ficult [44–46].

To overcome this issue, the present study imple-
mented the LSTM algorithm (figure 2), which
introduced a memory block instead of a neuron
[47, 48].

According to Shi et al [49], LSTMs and Con-
vLSTM (which uses a convolutional system) have
identical basic structures, but the more advanced
ConvLSTM algorithm uses a three-dimensional (3D)
tensor for all gates and relevant input/output vari-
ables. Furthermore, all the matrix calculations are
changed according to the convolutional process,
such that the number of weightings and biases are
dramatically reduced. These changes can allow the
ConvLSTM algorithm to successfully capture spa-
tial features and temporal features in the model’s
input data. In this study, we used the ConvL-
STM algorithm with a Tensorflow backend, avail-
able from the Keras library of Python software
version 3.6.

To configure the most suitable ConvLSTMmodel
structure, this study employed techniques previously
used for video frame predictions [50] as well as
short-term rainfall predictions [51]. The basic struc-
ture of the suggested model consists of a combina-
tion of hidden layers1 (stacked ConvLSTM2D layers)
and hidden layers2 (stacked Conv3D, ConvLSTM2D,
Conv2D layers) sections (figure 3). In hidden lay-
ers1, the spatiotemporal features of the continuous
solar radiation from 09:00 to 13:00 are captured,
and the spatiotemporal features stretched by time
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Figure 3. Prototype structure for training the deep learning model to predict solar radiation.

are compressed into a target time (14:00) in hidden
layers2.

Between all convolution layers, a batch normal-
ization layer was inserted to increase the training
speed and prevent over-fitting [52]. These convo-
lution layers used 40 filters, the ‘ReLU’ activation
function and the ‘He normal’ initializer, except for
Conv2D (single filter). The initializer of the filter
weights prevented the gradient vanishing problem
during back-propagation of the error and improved
the predictive performance [53, 54]. The ‘ReLU’ activ-
ation function is widely used for training procedures,
and application of the ‘He normal’ initializer is suit-
able for ‘ReLU’ activation [53]. In the fitting process,
the mean squared error (MSE) loss function coupled
with the Adam optimizer was implemented because
the target variable (solar radiation) is a floating num-
ber with a physical unit (W · m−2). To identify the
optimal structure of the ConvLSTM model for pre-
dicting global solar radiation, the number of Con-
vLSTM2D layers was varied within a range of 1 to 4
(Hidden Layers1, figure 3).

In addition, we compared the conventional data-
derived models, ANN and RF [55, 56], with the per-
formance of the proposed DNN model.

In the case of ANN, we designed the neural net-
work structure with three layers, namely the input,
hidden, and output layers [55]. One hidden layer has
several hidden nodes, including the activation func-
tion and weights. To avoid over-fitting to the train-
ing data, we adopted early stopping during the train-
ing process. A trial and error method was used to
determine the number of optimal nodes in the hid-
den layer. RF is a combination of several decision
trees (30 trees in this study) with randomized node
optimization and bootstrap aggregating [14, 56, 57].
To enhance the generality and prediction perform-
ance of the trained RF model, we set the ratio of the
amount of data and the number of input variables to
be used in each tree.We tested the combination of the
number of input variables (2 and 3) and the ratio of
the amount of input data (0.5, 0.632, and 0.8), and
found the optimum configuration to be 2 variables
with an input ratio of 0.8 [58].

3. Results and discussion

3.1. Evaluation of the ConvLSTMmodel
performance
We used the root mean square error (RMSE) between
the observed and predicted values of solar radi-
ation to assess the accuracy of four different Con-
vLSTM models and found relatively small dif-
ferences (table 1). The three-layer ConvLSTM2D
algorithm used the lowest number of training epochs
and proved to be the most accurate (see figure
S1(c) in the supplementary file (available online at
stacks.iop.org/ERL/15/094025/mmedia) in the sup-
plementary file). In contrast, the two-layer ConvL-
STM model had the highest number of training
epochs and the lowest accuracy, and the learning
process changed due to the unstable loss of the eval-
uation data (see figure S1(b) in the supplementary
file). The most complicated model, the four-layer
ConvLSTM2D, required the second highest num-
ber of epochs. The single layer ConvLSTM model
showed an unstable trend of validation loss and rel-
atively low accuracy. These results indicated that the
simple structure model was limited in terms of accur-
acy improvement, but that problems such as over-
fitting also occurred in the complex model. Based on
this analysis, we selected the three-layer ConvLSTM
model and applied it to predict global solar radiation
one hour after the input data were measured.

3.2. Evaluation of predicted solar radiationmaps
using the three-layer ConvLSTMmodel
Global solar radiation maps generated from values
predicted for the Korean Peninsula served to visually
evaluate the performance of the proposedConvLSTM
model with only the test datasets. The results of the
ANN and RF models were compared against those
of the proposed ConvLSTM. Figure 4 shows three
examples of predicted global solar radiation maps
acquired from the ANN, RF and three-layer ConvL-
STM models as well as the physically based model.
Overall, the spatial patterns of solar radiation for all
three selected samples were well predicted using the
ANN, RF, and ConvLSTMmodels compared with the
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Table 1. Summary of the prediction results according to the structures of the tested ConvLSTMmodels.

Model structure (kernel size) Number of parameters
MSE (RMSE)
(W ·m−2) Epochs

ConvLSTM2D(3× 3) 1 layer-Conv3D(3× 3× 3)-
ConvLSTM2D(3× 3)-Conv2D(1× 1)

218 321 5757.25 (75.88) 69

ConvLSTM2D(3× 3) 2 layer-Conv3D(3× 3× 3)-
ConvLSTM2D(3× 3)-Conv2D(1× 1)

333 841 6010.87 (77.92) 80

ConvLSTM2D(3× 3) 3 layer-Conv3D(3× 3× 3)-
ConvLSTM2D(3× 3)-Conv2D(1× 1)

449 361 4981.41 (70.58) 59

ConvLSTM2D(3× 3) 4 layer-Conv3D(3× 3× 3)-
ConvLSTM2D(3× 3)-Conv2D(1× 1)

564 881 5545.96 (74.47) 77

Figure 4. Predicted global solar radiation maps for the Korean Peninsula developed using the ANN, RF, proposed ConvLSTM,
and the physical models for 14:00 h (local time) 25 September 2015, 14:00 h (local time) 8 October 2015, and 14:00 h (local time)
17 December 2015. The red circles represent areas that are incorrectly predicted to be cloudy in the ANN and RF models.

Figure 5. Density scatterplots describing the correlation between the reference images from the physical model and the predicted
maps of solar radiation data for the test dataset only. Performance of each data-driven model was validated using the reference
images of the physical model. Results for (a) ConvLSTM, (b) RF, and (c) ANNmodels. The dotted line is the one-to-one reference
line, and the solid line is the regression line.

correspondingmaps generated from the output of the
physical model (figures 4(a), (e) and (i)).

For the ConvLSTM model, the complex spatial
patterns of clouds, which lower the solar radiation
incident on the Earth’s surface, were well simulated

using the proposed deep learning approach. The high
attenuation areas due to the prevalence of thick cloud
(shown in dark blue) and the spatial location of the
surrounding thin clouds (shown in sky blue) were
well matched. However, although the spatial location
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and shapes of the clouds appeared to be in good agree-
ment, the predicted maps of global solar radiation
were relatively smooth in comparison with those
derived from the physical model and conventional
ML methods. This was predominantly attributed to
the convolutional filter of the DNN structure.

For the conventional ANN and RF models, the
predicted maps of solar radiation were similar. These
models predicted one hour ahead solar radiation by
training or validating their network weights based
on the difference of each pixel, unlike the convolu-
tional filter. Therefore, they predicted more detailed
spatial patterns of clouds and intensities of high and
low values of solar radiation than the ConvLSTM
model. Nevertheless, some problems persisted with
the ANN and RFmodels. In the first and second rows
in figure 4, the red circled areas contain thin clouds
(figures 4(b), (c), (f) and (g)) that do not exist in the
reference images (a), and (e); thus, the clouds were
predicted incorrectly by both models. This could be
caused by a biased training towards clear and thick
cloud cases that have more examples and are easier to
predict than thin clouds since the optimizing process
of the ML models was designed to increase the total
accuracy. In addition, the prediction of global solar
radiation by the ANN and RF models appeared to be
underestimated when compared with the ConvLSTM
and physical models.

We used two reference datasets to appraise the
performance of our data-driven model: reference
images from the physicalmodel and groundmeasure-
ments from the pyranometers located in South Korea.
First, each of the predicted solar radiation maps from
the data-driven models was validated with reference
images of the physical model using only the test data-
sets (from 9 September to 31 December 2015), as
shown in the density scatter plots in figure 5. All
the data-driven approaches showed good predictions
of one-hour ahead solar radiation using their own
trained network structures integratedwith the COMS
geostationary satellite data. For all three cases, the
highest density in each figure appeared in an area
that received a low level of solar radiation, which was
attributed to cloud effects. Among the data-driven
models, the predictions of the ConvLSTM model in
figure 5(a) showed the highest statistical agreement
(RMSE = 71.334 W ·m−2, R2 = 0.895) with the ref-
erence images of the test dataset. However, the MBE
of ConvLSTM was higher, which indicated it tended
to overestimate more than the other models. Nev-
ertheless, the Inter-Quartile Range (IQR) distribu-
tion of ConvLSTM was narrower, and the range of
the overall deviation was smaller compared to the
ANN and RF models (see figure S2 in the supple-
mentary file). Extreme values tended to be reduced
by considering the spatial relation of neighboring
pixels with the convolutional filer. The second and
third highest accuracies were obtained by the RF
(RMSE = 76.961 W · m−2, R2 = 0.853) and ANN

Figure 6. Density scatterplots describing the correlation
between ground pyranometer data and modeled solar
radiation data. Model results from the (a) ConvLSTM, (b)
RF, and (c) ANN models were validated with pyranometer
measurements located on the ground in South Korea.

(RMSE = 78.422 W · m−2, R2 = 0.851) models (fig-
ures 5(b) and (c), respectively), but these results were
not significantly different from those of the proposed
deep learning approach.

Second, the predicted solar radiation data from
each model were compared with those recorded at
the ground stations scattered across South Korea to
calculate the actual amount of solar energy avail-
able to the photovoltaic (PV) systems. Ground-based
pyranometers were considered the ultimate reference
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Figure 7. Time series comparisons of solar radiations from each of DNN (red long dash line), RF (green medium dash line), and
ANN (blue short dash line) with ground pyranometer (black line) for the test dataset at every 14:00 local time. The two ground
stations for Heuksando (a), and Jeonju (b) were selected based on the scale of solar radiation variations.

for validating the solar radiation predicted by the
models. However, unlike the reference images from
the test dataset, a test on the pyranometer measure-
ments of solar radiation through satellite observa-
tions was performed. This determined the spatial rep-
resentativeness of the ground stations due to spatial
discrepancies induced by the systematic differences
between pixel-based satellite global solar radiation
and hemisphere upward-looking-based pyranometer
measurements [44]. For the ConvLSTM model,
the predicted solar radiation showed the highest
correlation with the ground measurements under
all sky conditions (figure 6(a)) and also showed
the highest accuracy (RMSE = 83.458 W · m−2,
MBE = 4.466 W · m−2, coefficient of determina-
tion (R2)= 0.874) with the ground pyranometer data
when compared with the conventional ML methods.
In addition, the prediction accuracy of the solar radi-
ation by ConvLSTMwas comparable and almost sim-
ilar to the retrieval accuracy of the physical model
(RMSE = 81.843 W · m−2, MBE = 8.414 W · m−2,
R2 = 0.880; see figure S3 in the supplement-
ary file). The ANN (RMSE = 94.085 W · m−2,
MBE = −6.039 W · m−2, R2 = 0.821) and RF
(RMSE= 95.262W ·m−2, MBE=−11.576W ·m−2,
R2 = 0.839) models were less accurate (figures
6(c) and (b), respectively). Results indicated that
the existing ML methods somewhat underestim-
ated the values compared to the ground measure-
ments. This is consistent with the statistical results

of the ConvLSTM prediction maps that were com-
pared with the reference images of the physical model
in figure 5. In addition, the accuracy of the statist-
ical results is different from that of the reference
images and ground measurements used to valid-
ate the data-driven models (figures 5 and 6). This
is because of the difference between pixel-to-pixel
comparisons for reference images and the manner
of determining which window of the satellite cor-
responded to which ground measurement stations.
In other words, when compared with ground meas-
urements, spatial window size around the station
was more important than the pixel value corres-
ponding to the position of the ground measure-
ment due to the hemisphere upward-looking-based
pyranometer measurements. This may have resulted
in the higher accuracy of ConvLSTM when com-
pared with ground pyranometer data because con-
volutional filters of DNN were able to train environ-
mental information beyond the target points, ensur-
ing successful capture of the spatial features of solar
radiation.

The proposed ConvLSTM algorithm has been
shown to effectively simulate the variations in solar
radiation under all sky conditions using the test
dataset from late summer to early winter. Since
the influence of clouds is the largest factor in
determining the accuracy of solar radiation, Con-
vLSTM would also be applicable to the whole year
[14, 43, 59].
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Lastly, we analyzed the temporal changes in
the predicted solar radiation from each model to
determine how well the proposed methods captured
the abnormal variations in solar radiation due to
cloud effects. Figure 7 shows time series comparis-
ons of the solar radiation on each day from DNN,
RF, and ANN using the ground pyranometer, pre-
dicted one-hour ahead (at 14:00 local time) from the
chronological test dataset. We selected two stations
((a) Heuksando, (b) Jeonju), which had the largest
standard deviation during the test dataset periods.
The overall trends in time series of solar radiation
were decreasing during the winter season for both
sites, and intermittent low peak values were mainly
due to the attenuation by cloud effects. ConvLSTM
(red long dash lines) not only captured the dramatic
decreases in solar radiation well (figure 7), but also
clearly had the highest accuracies for Heuksando
(RMSE= 77.445W ·m−2,MBE=−11.707W ·m−2)
and Jeonju (RMSE = 81.890 W · m−2,
MBE = −28.378 W · m−2). However, besides cloud
effects, there are some atmospheric factors that may
rapidly reduce solar radiation such as fire haze, smog,
and particulate matter.

Although it is difficult to evaluate the influences
on solar radiation by various atmospheric variables
using COMS satellites and pyranometers only, we
believe that the prediction algorithms presented in
this study are useful in developing prediction models
for more diverse atmospheric variables using appro-
priate satellite and ground sensors.

4. Summary and conclusions

The DNN algorithm (i.e. ConvLSTM) proposed in
this paper can produce reliable simulationswith fewer
variables, but the depth of such a model network
structure is not directly proportional to the accur-
acy of the predictions. To improve the versatility of
the ConvLSTM model, this study examined four dif-
ferent DNN structures, each with a different depth,
to construct the optimal number of ConvLSTM2D
layers. To avoid over-fitting and gradient vanishing,
we used several built-in model optimization options,
such as batch normalization, initialization of kernel
weights and an early stopping phase. The three-layer
ConvLSTMD algorithm was found to be optimal and
was used to generate spatial maps of solar radiation.
Results were compared against those of the physical
model as well as conventional ML methods.

Overall, the results showed that the ConvLSTM
model was able to predict maps of solar radiation
relatively well, even in the presence of nonlinearit-
ies (e.g. cloud movements), which are inherent in
any dynamical system. In particular, the spatial pat-
terns representing complex cloud movements and
their dynamical intensities (including attenuations)
were spatially well matched against maps derived

from a physical model. The accuracy of the ConvL-
STM model prediction maps had the highest agree-
ment with both the reference images of the physical
model and the ground reference data compared to
the results of the ANN and RF approaches. For the
reference images, ConvLSTM showed the highest
accuracy (RMSE = 71.334 W · m−2, R2 = 0.895),
followed by RF and ANN (RMSE= 76.961 W ·m−2,
R2 = 0.853; and RMSE = 78.422 W · m−2,
R2 = 0.851, respectively). Compared to the ground
pyranometer data, ConvLSTM also showed the
highest accuracy (RMSE = 83.458 W · m−2

and MBE = 4.466 W · m−2, R2 = 0.874) com-
pared to the ANN (RMSE = 94.085 W · m−2,
MBE = −6.039 W · m−2, R2 = 0.821) and RF
(RMSE= 95.262W ·m−2, MBE=−11.576W ·m−2,
R2 = 0.839) methods. Although the spatially rep-
resentative solar radiation maps became relatively
smooth due to the convolutional filters, the ConvL-
STM model was useful to capture the spatial features
of solar radiation according to atmospheric flow. In
addition, calculation time is also an important factor
for the real-time application of prediction models.
In the case of DNN, the prediction took 0.042 s per
image (see table S1 in supplementary file), indicating
that the calculation speed was appropriate. Thus, this
study highlights a new pathway for using contem-
poraneous satellite images to capture the nonlinear
behavior of the atmospheric system to design and
manage solar-powered energy systems.
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