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Abstract. This paper studies the system stability of a Model-Based Networked 

Control System (MB-NCS). In the MS-NCS, the sensors send information 

through the network to update the model state. The system estimation error is 

reset when the packets are received. We define the maximum interval between 

the received packets as the maximum update time (MUT) while assuming the 

update frequency is constant. In practice, packet drops randomly. In this work, 

we assume that intervals between the received packets follow Poisson 

Distribution. The result shows that the system is stable if the expected interval 

is less than MUT. This result is verified in simulations.  
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1   Introduction 

In the past decade, networked control systems (NCS) have gained great attention in 

control system theory and design. The term NCS is used to describe the combined 

system of controllers, actuators, sensors and the communication network that 

connects them together. Compared with traditional feedback control systems, NCS 

reduces the system wiring, make the system easy to operate, maintain and diagnose in 

case of malfunctioning. In spite of the great advantages that the networked control 

architecture brings, inserting a communication network between the plant and the 

controller introduces many problems as well. Constrains have been brought in as the 

information must be exchanged according to the rules and dynamics of the network. 

Network induced delays are unavoidable because of the scheduling schemes. 

Communication link failures cause the information flow between the controller and 

the plant to be disrupted. Packets may also be lost due to insufficient process power, 

bus capacity in the end machines or by congestion in routers on the link. Time delays 

and packet drops deteriorate the networked control system performance. In [1-2], 

system stability has been studied while network time delays are considered. Gupta et 

al [3] investigated the system performance with packet drops, and concluded that 

packet drops degrade a system’s performance and possibly cause system instability.  



Yook et al [4] used state estimator techniques to reduce the communication volume in 

a networked control system.  

It is important to develop the understanding of how much loss the control system 

can tolerate before the system becomes unstable. Spencer et al [5] stated that by 

experiments the assumption of Poisson statistics for the distribution of packet loss is a 

good approximation. Packet loss should be kept to less than certain rates to avoid loss 

of synchronization. Montestruque [6] proposed a Model-based NCS, and provided the 

necessary and sufficient conditions for stability in terms of the update time and the 

parameters of the plant and its model, assuming that the frequency at which the 

network updates the state in the controller is constant. Teng et al [7] modeled the 

unreliable nature of the network links as a stochastic process, and assume that this 

stochastic process is independent of the system initial condition and the plant model 

state is updated with the plant state at the time when packet arrives. A model for the 

model-based NCS is built up and a new system matrix is obtained regarding the 

intervals between the arrived packets following random distributions. The result 

shows that the system is stable as long as the system error is reset within the 

maximum update time. Apparently, it is very conservative. 

If the statistical description of the link failure process is given a priori, a problem 

of interest is to determine the optimal control and estimation policies under the link 

failure constrains. In the authors’ best knowledge, the packet drop distribution has not 

been fully investigated. In NCS, we consider the communication between the sensor 

and the controller or estimator is subject to unpredictable packet loss. We assume that 

packet drops obey Poisson distribution. This work studied how the packet drops affect 

on the system stability in terms of random distribution. 

This paper is organized as follows. In section 2, system stability is analyzed in the 

cases where packet drops follow Poisson distribution. In section 3, example is 

provided to verify our conclusion. Conclusion is drawn in section 4.  

2   Paper Preparation 

A model-based control system in Fig. 1 is considered. The system dynamics are given 

by: 

Plant: 

)()()1( nBunAxnx +=+ . (1) 

Model:  

)(ˆ)(ˆˆ)1(ˆ nuBnxAnx +=+ . (2) 

 

Controller:  

)(ˆ)( nxLnu = . (3) 



where x(n) is the plant state vector, A and B are system parameter matrices, )(ˆ nx  

is the estimate of the plant state, Â and B̂  are the model matrices, L is the 

controller feedback gain matrix. We define the modelling error matrices AAA ˆ~
−= , 

BBB ˆ~
−= . 

 

The stochastic process { }
n
γ  models the unreliable nature of the network links. 

0=
n
γ , when the packet is not received. 1=

n
γ , otherwise. 

n
γ  takes value 0 with 

small probability α , and 
n
γ  takes value 1 with big probability α−1 . α  is a 

known constant. We assume that 
n
γ  is independent of the initial condition, x(0). 

The vector  )(nx  is current state x(n) if a packet is received. 0)( =nx , 

otherwise. That gives us the following equation: 

)()( nxnx
n
γ= . (4) 

We define the state error as: 

)(ˆ)()( nxnxne −= . (5) 

The frequency at which the network updates the state is not constant. We assume 

that the intervals obey Poisson distribution. The plant model state )(ˆ nx  be updated 

with plant’s state )(nx , at every 
k
n , where 

kkk
hnn =− −1 , 

k
h  is the interval 

between the received packets, k=0, 1, 2, ... Then, 0)( =
k
ne .  

Now we can write the evolution of the closed loop NCS, 
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Fig. 1 Model-Based Networked Control System 
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(7) 

We modeled the system as a set of linear systems, in which the system jumps from 

one mode representing by 0A  to another representing by 1A . We define matrix Λ  

as the function of 0A ,  1A  and α : 

10 )1( AA αα −+=Λ . (8) 

We define 
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)()1( nznz Λ=+ . (9) 

Theorem 1: The system described by (8) is globally exponentially stable around 

the solution, if the eigenvalues of 
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 are inside the unit circle.  

τ  represents the expected interval between the received packets. 

3   Simulation 

To verify our conclusion, a simple control system is used to estimate the system 

response and test the system stability in case of Poisson packet drops. A full state 

feedback is given by: 
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We have two matrices,  
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Based on [6-7], assuming that there is no packet dropout and the frequency at 

which the network updates the state is constant, the magnitude of the maximum 

eigenvalues of 
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 against update time h as shown in Figure 2. We 

define the maximum interval between the received packets as maximum update time 

(MUT). From Fig. 2 it can be seen that MUT is 4.  
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In this work, we use the same system and assume that packet drops obey Poisson 

distribution. The system jumps from one mode with h≥MUT, representing by 0A  

to another mode with h＜MUT, representing by 1A .  

Fig. 2 The Plot of Magnitude of the Maximum 

eigenvalues of the Test Matrix 



Fig. 3 shows the plots of the system responses with initial condition 
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in case the packet intervals are attributed to Poisson Distribution with mean values of 

MUT<τ . Using Matlab function poissrnd to generate Poisson random numbers 

with mean 3=τ  as follows: 4, 3, 4, 3, 5, 1, 4, 4, 3, 4, 4, 3, 4, 4, 2, 2, 3, 2, 6, 2, 3, 7, 

7, 4, 5, 5, 2, 3, 1, 2.  From the graphics in Figure 3, it can be seen the system is 

stable. 
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4. Conclusion 

In this paper, the stability problem in Model-Based Networked Control System (MB-

NCS) with unpredictable packet drops has been investigated. In MB-NCS, the sensors 

send information through the network to update the model state. The system 

estimation error is reset when the packets are received. We define the maximum 

interval between the received packets as the maximum update time (MUT) while 

assuming the update frequency of the model is constant. If the frequency at which the 

network updates the model state is constant, and the update time is less than MUT, the 

system is stable. In practice, packet drops randomly. We modeled the unreliable 

nature of network links as a stochastic process. In our previous work, the system is 

stable if the model state is updated within MUT. In this work, we assume that packet 

losses follow Poisson Distribution. The result shows that the system is stable if the 

expected interval between the received packets is under MUT. This conclusion is 

demonstrated in examples at the end. 

Fig. 3 The System Response with Bernoulli 
Distribution Packet Intervals 
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