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Abstract: This paper aims to propose new stability equations for the design of shallow, unlined
horseshoe tunnels in rock masses. The computational framework of the upper- and lower-bound
finite-element limit analysis is used to numerically derive the stability solutions of this problems
using the Hoek–Brown failure criterion. Five dimensionless parameters including the width ratio
and the cover-depth ratio of the tunnels, as well as the normalized uniaxial compressive strength, the
geological strength index, and the yield parameters of the Hoek–Brown rock masses, are considered
in the study. Selected failure mechanisms of the horseshoe tunnels in rock masses are presented to
portray the effect of all dimensionless parameters. New design equations for stability analyses of
horseshoe tunnels are developed using the technique of nonlinear regression analysis and the average
bound solutions. The proposed stability equations are highly accurate and can be used with great
confidence by practitioners.

Keywords: horseshoe tunnels; rock mass; Hoek–Brown; finite-element-limit analysis; design equation

1. Introduction

The uses of horseshoe-shaped sections are not uncommon in the construction of tun-
nels and subways, particularly in mountainous areas where rock excavation is needed.
Indeed, the semi-elliptical roof of the horseshoe-shaped tunnel has advantages in distribut-
ing the loads through geometrical arches. Furthermore, the semi-circular space above the
tunnel is needed for maintenance considerations. To assure safety while employing an
open-face classical tunneling technique to construct the unusual horseshoe-shaped tunnel,
a thorough stability analysis is thus essential.

Previous studies on the tunnel stability of soils using laboratory and centrifuge ex-
periments were conducted by [1–3]. By using an analytical approach of the limit analysis
method, Davis et al. [4] proposed analytical solutions for a cohesive-soil, shallow-tunnel
problem. Sloan [5] has introduced the finite-element limit-analysis (FELA) approach to
conduct the numerical solutions and has applied FELA to analyze the tunnel stability
problem with different shapes such as unlined circular tunnels, unlined square and rectan-
gular tunnels, plane strain tunnel headings, 3D headings of tunnels and sinkholes and soil
retention stability with openings in subterranean walls, e.g., [6–23].

Research on horseshoe-shaped tunnels has not received much attention till the recent
investigation on the undrained stability of horseshoe tunnels in undrained clays [24].
Bhattacharya and Sriharsha [25] have recently presented lower-bound solutions for the
problem of drained horseshoe tunnels. The effect of spacing between the dual horseshoe
tunnels in undrained clay was also investigated by [26,27]. Moreover, there were various
analytical investigations on horseshoe tunnel stability, e.g., [28–32].
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Regarding rock tunnel excavation, the well-recognized failure criterion to describe the
rock behavior is the Hoek–Brown (HB) failure criterion [33]. While determining the shear
strength of rock masses, the HB-failure criterion takes into account the nonlinearity of the
minor principal (compressive) stress in contrast to the Mohr–Coulomb failure criterion,
and therefore better represents the crucial failure aspects of various rock types. By using
the combination of the Finite-Element-Limit Analysis (FELA) and the HB model, several
previous papers have presented a number of rock-tunnel-stability solutions such as for
unlined circular tunnels, unlined square and rectangular tunnels, unlined horseshoe tunnels
using the lower-bound method and planar tunnel headings, e.g., [34–41].

It was noted that the problem of horseshoe-shaped tunnels in rock masses has not been
extensively investigated with the efficiency tools of both the upper-bound (UB) and lower-
bound (LB) methodology of an adaptive-finite-element method. In this paper, stability
charts and equations are established from the upper- and lower-bound solutions to handle
the stability problem of unlined rock tunnels with horseshoe shapes. However, there are no
design equations that enable an evaluation of unlined rock tunnels with horseshoe shapes in
the available published literature. The proposed design equations were developed using a
nonlinear regression analysis and are useful in practice for geotechnical engineers to assess
the stability of traditional open-face tunneling in maintaining tunnel excavation stability.

2. Hoek–Brown (HB) Failure Criterion

The Hoek–Brown failure criterion [42] is employed in this study to produce the stability
solutions of unlined horseshoe tunnels. The power law relationship between the major and
minor principal stresses is used to describe the formulation of the HB-failure criterion (i.e.,
σ1 and σ3). Equation (1) gives a mathematical representation of the HB model with the
assumption of positive tensile normal stresses (see [42]).

− σ3 = −σ1 + σci

(
−mb

σ1

σci
+ s
)a

(1)

where σci represents the uniaxial compressive strength. The mathematical expressions for
the parameters mb, s, and a span from Equations (2)–(4) (see [42]).
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According to the preceding equations, the geological strength index (GSI) generally
varies in the range of 10 for an exceedingly deficient rock mass up to 100 for an undamaged
or intact rock mass. The shear strength of an intact rock mass is associated with the
Hoek–Brown yield parameter (mi), which is determined by several factors such as mineral
composition and particle size. The disturbance factor or DF parameter indicates the level
of disturbance that the explosion and stress relaxation have caused to the rock mass. In
general, the DF spans from 0 to 1, with a DF of 0 being the least disturbed or undisturbed
in situ rock masses, whereas the highly disturbed in situ rock masses have a DF of 1.

3. Problem Statement

The problem description of an unlined horseshoe tunnel surrounded by rock mass
is illustrated in Figure 1. The geometry of the tunnel is separated into two parts: a flat
floor underneath the ceiling with dimensions B for the width and D/2 for the height of the
vertical walls; and a semi-elliptical tunnel ceiling with a width and height of B and D/2,
respectively. The tunnel is positioned with a cover depth of C below the ground surface.
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The rock mass behavior around the tunnel is represented using the HB criterion and γ also
represents the rock unit weight. The rock surface is subject to a uniform surcharge pressure
σs while the support pressure inside the rock tunnel is disregarded.
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Figure 1. Problem description of a horseshoe tunnel.

Based on the present analysis, this investigation is focused on rock masses with the
assumptions of DF = 0. In the computations in this study, the disturbance factor DF
is reduced to zero due to the assumption that the tunneling excavation process causes
no appreciable disturbances to the adjacent rock mass. By adopting the dimensionless
technique, the six-dimensional input parameters (i.e., B, D, σci, GSI, mi, γ) can be reduced to
four dimensionless parameters, which further result in the dimensionless output parameter
(σs/σci) of a uniform surcharge σs as indicated by Equation (5).

σs

σci
= f (

B
D

,
C
D

,
σci
γD

, mi, GSI) (5)

where C/D denotes the tunnel’s cover-depth ratio and B/D denotes the tunnel’s width
ratio. σci/γD denotes the normalized uniaxial compressive strength. σs/σci denotes as the
normalized collapse surcharge ratio or the stability factor that is the objective function to be
“optimized” using limit analysis theorems and finite element technique. It is also named
as the stability factor (σs/σci) in this paper. The parametric variations considered in the
present stability analysis are listed as follows.

• The tunnel cover-depth ratio of C/D = 1–5.
• The tunnel width ratio of B/D = 0.5, 0.75, 1, 1.333, and 2.
• The yield parameter mi is set to be mi = 5–30.
• The range of the GSI is set to be 40–100.
• The rock’s unit weight is in the range from 22–30 kN/m3 while the uniaxial compres-

sive strength is taken in the range from σci = 0.25–250 MPa for weak to strong rocks.
As a result, the dimensionless parameter σci/γD is set to be 100–∞, where the case of
σci/γD = ∞ correlates to exceptionally high strength rock masses (σci is quite huge).
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Note that the above selected ranges were also employed by several researchers to
investigate various forms of rock tunnels stability, e.g., [34–41]. There are five input
data attributes related to the tunnel geometry and rock conditions that are summarized
in Table 1.

Table 1. Input parameters.

Input Parameters Values

C/D 1, 2, 3, 4, 5

B/D 0.5, 0.75, 1, 1.333, 2

GSI 40, 60, 80, 100

mi 5, 10, 20, 30

σci/γD 100, 1000, ∞

4. Finite-Element-Limit Analysis (FELA)

The plastic bound theorems as well as finite element discretization in conjunction with
the mathematical optimization are used for the presented computational limit analysis.
The upper bound (UB) and lower-bound (LB) solutions can be used to bracket the rigorous
collapse pressure of tunnel problems based on the associated flow rule and an assumption
of a rigid plastic material. In order to enhance computational performance, this study
mainly utilizes the modern adaptivity meshing approach. The active failure of horseshoe
rock tunnels is calculated employing the innovative FELA software OptumG2 [43].

Three numerical models of unlined horseshoe tunnels in rock masses are shown in
Figure 2a–c with B/D = 0.5, 1, 2, respectively. The plots are in the cases of C/D = 2. The
simulations are performed just using a half of the domain as well as the tunnel’s geometry in
all numerical analyses and has no significant effect on the solution. In the FELA analysis, the
standard boundary conditions are imposed with the following limitation: the movements at
the left and right planes are set to occur only in the vertical direction, while the movements
at the bottom plane’s boundary is prohibited to occur in both vertical and horizontal
directions The domain size is selected to be large enough in order to prevent the plastic
shear zone intersecting the right and bottom boundaries of the domain. The sufficiently
large domain can ensure that the calculated bound solutions will not be affected from an
insufficient size of the domain. Inside the tunnel, there is not any pressure assigned from
the central tube of the tunnel. The uniform surcharge σs is delivered downward to the
region of the rock surface and is intended to be optimum at the active collapse event.

According to the UB formulation, the rock mass is discretized into various six-noded
triangular elements with the velocity components at all the nodes. The objective func-
tion of the UB analysis is to optimize the maximum surcharge (σs). The kinematically
admissible displacement field can be found everywhere in the domain as well as at the
boundary conditions. The load is calculated from the principle of virtual work based on
the compatibility and the flow rule formulations. As a result, the surcharge is related to
the problem’s unknown velocities by using the virtual work idea, which compares the
rate of work accomplished between external loads to the internal energy dissipation at
triangle components.
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According to the LB formulation, the rock mass around the tunnel is partitioned by
using linear interpolation inside three-nodded triangular elements, each of which nodes
is connected to an unknown stress component. By allowing nodes to be specific to each
element, stress discontinuities are supplied to the lower-bound mesh at the common edges
of the neighboring triangular elements. The objective function in the optimization is to
maximize the surcharge (σs) at the surface of the rock. The surcharge can be solved by taking
into account the statically permissible stress constraints that employing the equilibrium
equations, the stress discontinuities, and the stress boundary conditions. As a result, the
problem’s lower bound solution is obtained.

The powerful mesh adaptivity feature had been employed to generate the compact
bound solutions [44]. It should be noted that by utilizing this feature, a variety of elements
are automatically inserted in the regions that have significant plastic shear strain and
where, following the given iterations, the discrepancies between the upper and lower-
bound solutions become limited. This study utilized a beginning mesh of 5000 elements
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with five iterations of mesh adaptivity, which leads to an expanded finalized mesh of
10,000 elements. This setting is applied to all numerical models carried out in this study by
following many previous studies, e.g., [45–58]. Note that Sloan [5] stated that the stability
analysis using the FELA based on the limit analysis theory requires only the conventional
strength parameters such as the undrained shear strength, but does not use the deformation
parameters such as Poisson’s ratio and Young’s modulus which are different from the
conventional displacement-based FEM. Thus, Poisson’s ratio and Young’s modulus are not
considered in this study using FELA. Hence, large deformations of rock tunnels cannot be
investigated by using FELA.

5. Results and Discussion
5.1. Verification

Throughout this paper, the numerical results of all parametric studies are provided in
terms of average solutions (Ave), which are the mean value from the UB and LB solutions.
Note that the upper and lower-bound discrepancies are permissible up to a maximum
of 5% for all numerical results presented hereafter in this paper. To verify these Ave
solutions, the published LB solutions by Rahaman and Kumar [40] are applied to perform
a verification with the current solutions. The instances that were picked to compare in
Figure 3 include: C/D = 1–5; B/D = 1; mi = 5; σci/γD = 100 and ∞; GSI = 40, 60, 80,
100. It can be observed that the stability factor σs/σci from the present study has a very
good agreement with the previous solution. Therefore, the results that were achieved and
reported in the study inspire considerable confidence. A few more parametric studies are
further investigated next.
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5.2. Parametric Studies

For the stability problem of rock tunnels with a horseshoe shape, this study produces
a total of 1200 computed Ave solutions of the normalized failure surcharge σs/σci, which
will be used later to develop design equations in the next section. In order to depict the
impact of all the input parameters such as B/D, C/D, σci/γD, GSI, and mi that are taken
into consideration, the numerical results are also visually given in Figures 4–8.
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and (b) mi = 30.

The influence of the GSI on the stability factor σs/σci can be seen Figure 4a,b within
the case of mi = 5 and 30. The representing figure is drawn based on the instances of C/D
= 3 and σci/γD = 1000. Five selected various width ratios of B/D = 0.5, 0.75, 1, 1.333,
and 2 are also plotted in the figures. According to numerical findings, the relationship
between the GSI and σs/σci, are formed exponentially, while an increase in the GSI leading
to a nonlinear increase in σs/σci for all ranges of B/D. These outcomes may be attributed
to the exponential function utilized in the HB-failure-criterion model and represented
in Equations (2)–(4). In fact, a high GSI value indicates a rock mass that has not been
significantly disturbed, which raises the stability of rock tunnels.

The impact of mi on σs/σci for the GSI = 40 and 100 is shown in Figure 5a,b, respectively.
The plots contain five distinct width ratios of B/D = 0.5, 0.75, 1, 1.333, and 2 and are
established using the chosen parameters of C/D = 3 and σci/γD = 1000. Based on the
obtained results, it is clearly observed that mi directly affects σs/σci in the positive linear
variation pattern. For all B/D ranges, a rise in mi leads to a rise in σs/σci. Generally, mi
is determined by the mineralogy, composition, and grain size of the intact rock mass in
physical aspect.

The impact of σci/γD on σs/σci is shown in Figure 6a,b, since all the data are shown
only in a linear horizontal relation, demonstrating that the rise in σci/γD has no impact
on the σs/σci values. This finding applies to all B/D, mi and the GSI values. The total rock
tunnel stability is seldom affected by the unit weight ratio of σci/γD since, in this study,
we defined the value of σci to be very large comparing to that of γD, where the considered
range of is σci/γD = 100–∞. However, the cases with σci/γD being less than 100 are beyond
the scope of this study. More studies on those cases with small values of σci/γD being less
than 100 should be carried out in the future.

The impact of the cover-depth ratio C/D on σs/σci for the cases of (σci/γD = 1000,
GSI = 80 and mi = 5 and 30) are shown in Figure 7a,b respectively, in which it is demon-
strated that C/D and σs/σci have a nonlinear increasing relationship, while an increase in
the C/D value leads to a higher value of the stability factor σs/σci. It may be explained by
the typical phenomenon that the deeper the tunnel is, the greater stability can be achieved.
Figure 8a,b show the impact of B/D on σs/σci for the cases of (σci/γD = 1000 and GSI = 80
and mi = 5 and 30). It can be understood that the geometrical arching effect would develop
with either a rise in C/D or a fall in B/D, which would be advantageous for enhancing the
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tunnel stability. Numerical results of all C/D values show that when B/D increases, σs/σci
also increases non-linearly. Also, a higher B/D ratio yields a lesser value of σs/σci.

5.3. Failure Mechanisms

The final adaptive meshes using the 5th iteration for the three B/D = 0.5, 1, and 2 are
shown in Figure 9, while the plots of the shear dissipations indicating the failure zones of
the three B/D are presented Figure 10. These plots are based on the case of (σci/γD = 1000,
GSI = 80, and mi = 20). It is interesting to note that either the final adaptive meshes or the
shear dissipation plots are adapted to represent the plastic shear zone of the horseshoe
tunnels in rock masses. Note that the zones with the adaptive mesh refinement can be used
to represent the same zones of the shear dissipation since the patterns of both are in the
similar manner. The failure zone frequently displayed an oval form and spans from the
tunnel’s base to the rock’s surface. The size of the failure zone around the tunnel is reduced
by a greater B/D. The failure zone for the case with B/D = 2.0 extends from the corner
point of the tunnel, while the failure zone for the case with B/D = 0.5 extends from below
the base of tunnel.
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Figure 11 presents the failure mechanisms for the four GSI values while the plots in
Figure 12 are for four different mi values. The chosen cases for Figure 11 are (C/D = 2,
B/D = 0.5, σci/γD = 1000, mi = 20, and GSI = 40, 60, 80, and 100), whereas Figure 12
shows the cases of (C/D = 2, B/D = 2, σci/γD = 1000, GSI = 80, and mi = 5, 10, 20, 30).
From both figures, it can be concluded that the influence of the GSI and mi on the overall
failure mechanisms is negligible, given the uniform surcharge pressures at the collapse
state. The absolute values of shear dissipation are not significant; hence, they are not shown
in the figures.
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Figure 11. Shear dissipations for various GSI: (a) 40, (b) 60, (c) 80 and (d) 100 (C/D = 2, B/D = 0.5, 
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σci/γD = 1000 and GSI = 80).

Figures 13–15 show the failure mechanisms that have been affected by the cover-depth
ratio for B/D = 0.5, 1, and 2, respectively. Other parameters are fixed as: σci/γD = 1000,
GSI = 80, and mi = 20. In general, the failure mechanisms resemble each other under the
uniform surcharge effects. It is also important to note the three possible slip planes; one is
above the tunnel and the other two spiral upwards to the ground level from the tunnels
side. The failure zone spreads further away from the tunnel as C/D is increased.
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Figure 15. Shear dissipations of unlined horseshoe tunnel in rock mass with B/D = 2 for the cases of
C/D: (a) 1, (b) 2, (c) 4 and (d) 5 (σci/γD = 1000, GSI = 80 and mi = 20).

5.4. Comparison among Different Tunnel Shapes

Figure 16 presents a comparison of the stability factors σs/σci among various tunnel
forms. Figure 16a,b are related to mi = 5 and mi = 30, respectively. Some published papers
for the similar problem are carried out in the comparison including the problems of a plane
strain tunnel heading [41], a square tunnel [37], and a circular tunnel [34]. The current
horseshoe tunnel problems (B/D = 0.5, 1, and 2) are compared to all of the above studies.
According to numerical data in Figure 16, the greatest stability factor σs/σci among the six
varied forms is the result of the planar tunnel headings. The lowest stability factor can be
founded in the cases of the horseshoe tunnel with a large B/D value (B/D = 2) due to the
large unsupported width of the tunnel. This comparison is useful in determining the form
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of a tunnel. Furthermore, it may be used to validate the current solution since it exhibits
the identical pattern as earlier studies.
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Figure 16. Comparison of the stability factors σs/σci for different shapes of tunnels: (a) mi = 5 and
(b) mi = 30 (σci/γD = 1000 and GSI = 80 Design equations.

According to Equation (5) and Figures 4–8, σs/σci, the results of the tunnel stability
depend on a number of dimensionless parameters, such as B/D, C/D, GSI, mi, and σci/γD.
Given that in the current investigation the discrepancies between the calculated UB and
LB solutions are under 5%, their average (Ave) values were used to develop the design
equations. In order to achieve the mathematical equations, the authors attempted numerous
curve-fitting techniques on the Ave solutions. As a result, it can be summarized that
extremely strong correlations exists between σs/σci and a linear function of γD/σci, a cubic
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function of the GSI, a linear function of mi, and a quadratic function of C/D, as expressed
as follows:

σs

σci
= A1 + A2

(
C
D

)
+ A3

(
C
D

)2
(6a)

σs

σci
= B1 + B2(GSI) + B3(GSI)2 + B4(GSI)3 (6b)

σs

σci
= E1 + E2(mi) (6c)

σs

σci
= G1 + G2

(
γD
σci

)
(6d)

where Ai, Bi, Ei, Gi are coefficients from the curve-fitting method for the different dimen-
sionless parameters.

By combining all expression in Equation (6) in the equations with the best mathe-
matic forms, the design equations for computing σs/σci are developed and expressed in
Equations (7a)–(7d):

σs

σci
= F1 + F2mi − F3

(
γD
σci

)
(7a)

F1 = GSI

[
b1 + b2

C
D

+ b3

(
C
D

)2
]
+ GSI2

[
c1 + c2

C
D

+ c3

(
C
D

)2
]

(7b)

F2 = e1 + e2
C
D

+ GSI

[
f1 + f2

C
D

+ f3

(
C
D

)2
]
+ GSI2

[
g1 + g2

C
D

]
+ GSI3

(
d1

C
D

)
(7c)

F3 = a1 + a2
C
D

(7d)

where ai, bi, ci, di, ei, fi, and gi in Equations (7a)–(7d) denote the constant coefficients.
The least squares approach is a straightforward method to resolve the seven constant

coefficients given in Equation (7) [59] by reducing the squared sum of the deviation in
σs/σci between the FELA and the approximate solutions, which can be seen as follows [59]:

Minimize
(

error2
)
= Minimize

(
n

∑
i=1

(yi − fi)
2

)
(8)

where yi = Ave FELA solutions
fi = Approximate solutions of σs/σci from Equation (7a)
n = Number of data
The accuracy of the proposed new design equation can be verified using the coefficient

of determination, R2 as [59]:

R2 = 1 − SSres

SStot
(9a)

SStot =
n

∑
i=1

(yi − y)2 (9b)

SSres =
n

∑
i=1

(yi − fi)
2 (9c)

y =
1
n

n

∑
i=1

(yi ) (9d)

Using the aforesaid approach, Table 2 provides all the constants required in the
proposed stability equations. For all B/D values, there is a strong correlation between the
predictions and the Ave solutions. Note that the coefficient of determination (R2) is 99.98%
for all B/D. Note that the value of R2 can be computed from Equation (9) by employing
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all Ave FELA solutions (yi) and all approximate solutions from Equation (7a) (fi) with the
value of n = 1200 cases so that the value of R2 is then obtained. Hence, the proposed design
Equation (7) can be used with great confidence in predicting the collapse surcharges σs/σci
of shallow unlined horseshoe tunnels in Hoek–Brown rock masses.

Table 2. Optimal value of the constants for the design equation (B/D = 0.5 to 2.0).

Constants
B/D

0.50 0.75 1.00 1.33 2.00

a1 −1.1961 −0.7953 0.7507 0.0739 −0.9954
a2 −1.0018 −1.1190 1.0521 −0.1071 −1.6162
b1 0.0227 0.0217 0.0196 0.0151 0.4874 × 10−2

b2 −0.0325 −0.03018 −0.0275 −0.0216 −0.0100
b3 0.0049 0.4442 × 10−2 0.3960 × 10−2 0.3004 × 10−2 0.1119 × 10−2

c1 −0.2074 × 10−3 −0.2083 × 10−3 −0.1888 × 10−3 −0.1413 × 10−3 −0.0435 × 10−3

c2 0.4371 × 10−3 0.4092 × 10−3 0.3700 × 10−3 0.2950 × 10−3 0.1562 × 10−3

c3 −0.6221 × 10−4 −0.5704 × 10−4 −0.5019 × 10−4 −0.3764 × 10−4 −0.1514 × 10−4

d1 1.2130 × 10−6 1.07167 × 10−6 9.7466 × 10−7 8.3863 × 10−7 0.6487 × 10−6

e1 0.1421 0.0984 0.0575 0.0173 −0.0394
e2 −0.1718 −0.1431 −0.1245 −0.0974 −0.0633
f 1 −0.6318 × 10−2 −0.4631 × 10−2 −0.3009 × 10−2 −0.1292 × 10−2 0.1305 × 10−2

f 2 0.0115 0.9847 × 10−2 0.8725 × 10−2 0.7073 × 10−2 0.4704 × 10−2

f 3 −0.1756 × 10−3 −0.1616 × 10−3 −0.1436 × 10−3 −0.1104 × 10−3 −0.0326 × 10−3

g1 0.5601 × 10−4 0.3712 × 10−4 0.1968 × 10−4 0.2055 × 10−5 0.2130 × 10−4

g2 −0.1766 × 10−3 −0.1522 × 10−3 −0.1360 × 10−3 −0.1129 × 10−3 −0.0822 × 10−3

R2 99.98% 99.98% 99.98% 99.98% 99.98%

5.5. Example

The dimensions of a horseshoe tunnel are defined as B = 6 m horizontally, D = 3 m
vertically, and C = 3 m cover depth. The rock mass profile is set by several geotechnical
properties including the GSI = 50, mi = 17, σci = 63 MPa, and γ = 22 kN/m3. Figure out the
maximum surcharge (σt) that can cause the collapse of the tunnel.

1. Calculate all the values B/D = 6/3 = 2, C/D = 3/3 = 1, and γD/σci = 22*3/63,000 = 0.001.
2. According to B/D = 2, the values of all constant coefficients including a1, a2, b1, b2, b3,

c1, c2, c3, d1, e1, e2, f 1, f 2, f 3, g1, and g2 from Table 2 are then obtained.
3. Substitute the values of all the parameters such as C/D, γD/σci, the GSI, mi, and a1 to

g2 into Equations 7(a)-7(d); then, σs/σci can be obtained as: σs/σci = 0.353.
4. Calculate σs = 63*0.353 = 22.24 MPa.

6. Conclusions

The objective of this paper is to provide the stability charts and equations for the
unlined horseshoe rock tunnel problem based on the Hoek–Brown model. The stability
solutions were determined for an extensive range of dimensionless parameters by the
finite-element-limit analysis. These may include the width ratio B/D of 0.5–2, and the mi
parameter of 5–30 the cover-depth ratio C/D of 1–5, the geological strength index GSI of
40–100 and the normalized uniaxial compressive strength σci/γD of 100-∞. In brief, all of
the studies described above come to the following conclusions:

• The derived upper and lower bound can surround the genuine solutions below 5% of
their average values while applying the adaptive meshing approach.

• The influence of mi and γD/σci on the normalized failure surcharge σs/σci is a linear
relationship whereas that of B/D, C/D, and the GSI is a nonlinear relationship.

• Regarding the failure mechanisms, it was found that the influence of the GSI and mi
on the overall failure mechanisms is neglectable. A horseshoe tunnel with a large
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value of B/D or C/D has a greater failure zone that penetrates extensively and deeply
through the rock masses.

• A comparison of the stability factor σs/σci for various tunnel shapes was also presented
in the study. It was found that the greatest stability factor is observed in the instance
of the plane strain heading, in descending order with the horseshoe tunnel with
B/D = 0.5, the circular tunnel, the horseshoe tunnel with B/D = 1, the square tunnel,
and the horseshoe tunnel with B/D = 2.

• Utilizing the computed average bound solutions, the novel stability equations are
established for predicting the stability factor σs/σci. The suggested design equations’
accuracy is demonstrated by their coefficient of determination R2 = 99.98%. These
equations can be used with confidence in design practice.
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