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Abstract

Privacy preservation is an important issue in the release of data for mining purposes.
Recently, a novel l-diversity privacy model was proposed, however, even an l-diverse data
set may have some severe problems leading to reveal individual sensitive information.
In this paper, we remedy the problem by introducing distinct (l, α)-diversity, which,
intuitively, demands that the total weight of the sensitive values in a given QI-group is
at least α, where the weight is controlled by a pre-defined recursive metric system. We
provide a thorough analysis of the distinct (l, α)-diversity and prove that the optimal
distinct (l, α)-diversity problem with its two variants entropy (l, α)-diversity and recur-
sive (c, l, α)-diversity are NP-hard, and propose a top-down anonymization approach to
solve the distinct (l, α)-diversity problem with its variants. We show in the extensive
experimental evaluations that the proposed methods are practical in terms of utility
measurements and can be implemented efficiently.

1 Introduction

Many data holders publish their microdata for different purposes. However, they have difficul-
ties in releasing information such that no privacy is compromised. The traditional approach
of releasing the data tables without breaching the privacy of individuals in the table is to
de-identify records by removing the identifying fields such as name, address, and social secu-
rity number. However, joining this de-identified table with a publicly available database (like
the voters database) on attributes like race, age, and zip code (usually called quasi-identifier)
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can be used to identify individuals. For example, Sweeney reported in [31] that 87% of the
population of the United States can be uniquely identified by the combinations of attributes:
gender, date of birth, and 5-digit zip code.

In order to protect privacy, Sweeney [31] proposed the k-anonymity model, where some of
the quasi-identifier fields are suppressed or generalized so that, for each record in the modified
table, there are at least (k − 1) other records in the modified table that are identical to it
along the quasi-identifier attributes. In the literature of k-anonymity problem, there are two
main models. One model is global recoding [9, 14, 26, 30] while the other is local recoding
[2, 30]. Here, we assume that each attribute has a corresponding conceptual generalization
hierarchy or taxonomy tree. A lower level domain in the hierarchy provides more details than
a higher level domain. For example, Zip Code 14248 is a lower level domain and Zip Code
142∗∗ is a higher level domain. We assume such hierarchies for numerical attributes too. In
particular, we have a hierarchical structure defined with {value, interval, ∗}, where value is
the raw numerical data, interval is the range of the raw data and ∗ is a symbol representing
any values. Generalization replaces lower level domain values with higher level domain values.
For example, Age 27, 28 in the lower level can be replaced by the interval (27-28) in the higher
level.

1.1 Motivation

When releasing microdata, it is necessary to prevent the sensitive information of the indi-
viduals from being disclosed. Two types of information disclosure have been identified in
the literature [4, 13]: identity disclosure and attribute disclosure. Identity disclosure occurs
when an individual is linked to a particular record in the released table. Attribute disclosure
happens when the new information about some individuals is revealed, i.e., the released data
makes it possible to infer the characteristics of an individual more accurately than it would
be possible before releasing the data. Although k-anonymity protects against identity dis-
closure, it is insufficient to prevent attribute disclosure. Several models such as p-sensitive
k-anonymity [32], l-diversity [23] and t-closeness [18] were proposed. However, depending
on the nature of the sensitive attributes, even these enhanced properties still permits the
information to be disclosed.

p-sensitive k-anonymity principle: The purpose of p-sensitive k-anonymity is to protect against
attribute disclosure by requiring that there be at least p different values for each sensitive
attribute within the records sharing a combination of quasi-identifier. This approach has the
limitation of implicitly assuming that each sensitive attribute takes values uniformly over its
domain; that is, that the frequencies of the various values of a sensitive attribute are similar.
When this is not the case, achieving the required level of privacy may cause a huge data
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utility loss.

l-diversity principle: The l-diversity model protects against sensitive attribute disclosure by
considering the distribution of the attributes. The approach requires l “well-represented”1

values in each combination of quasi-identifiers. This may be difficult to achieve and, like
p-sensitive k-anonymity, may result in a large data utility loss. Further, as we shall discuss
in Section 2, l-diversity is insufficient to prevent similarity attack.

t-closeness principle: The t-closeness model protects against sensitive attributes disclosure by
defining semantic distance among sensitive attributes. The approach requires the distance
between the distribution of the sensitive attribute in the group and the distribution of the
attribute in the whole data set to be no more than a threshold t. Whereas Li et al. [18]
elaborate on several ways to check t-closeness, no computational procedure to enforce this
property is given. If such a procedure was available, it would greatly damage the utility of
data because enforcing t-closeness destroys the correlations between quasi-identifier attributes
and sensitive attributes.

Faced with these limitations, we intend to enhance the current privacy paradigms to make
them preserve the better trade-off between data quality and privacy. The work presented in
this paper is highly inspired by [23]. The main contribution of [23] is to introduce the basic
l-diversity property, which provides privacy even when the data publisher does not know
what kind of knowledge is possessed by the adversary. In this paper, we propose a family of
enhanced (l, α)-diversity models, where l is an integer and α is a real number. In addition to
l-diversity, we further require that the total weight of sensitive values in any QI-group should
be at least α after modification. We also propose an efficient anonymization method to tackle
our problems.

2 Preliminaries

Let T be the initial microdata and T ′ be the released microdata. T ′ consists of a set of tuples
over an attribute set. The attributes characterizing microdata are classified into the following
three categories.

• Identifier attributes can be used to identify a record such as Name and Medicare card.

• Quasi-identifier (QI) attributes may be known by an intruder, such as Zip code and Age.
QI attributes are presented in the released microdata T ′ as well as in T .

1The interpretation of the term “well-represented” can be found in [23].
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ID Age Country Zip Code Disease
1 27 USA 14248 HIV
2 28 Canada 14207 HIV
3 26 USA 14206 Cancer
4 25 Canada 14249 Cancer
5 41 China 13053 Hepatitis
6 48 Japan 13074 Phthisis
7 45 India 13064 Asthma
8 42 India 13062 Obesity
9 33 USA 14242 Flu
10 37 Canada 14204 Flu
11 36 Canada 14205 Flu
12 35 USA 14248 Indigestion

Table 1: The raw microdata

ID Age Country Zip Code Disease
1 (27-28) America 142∗∗ HIV
2 (27-28) America 142∗∗ HIV
3 (25-26) America 142∗∗ Cancer
4 (25-26) America 142∗∗ Cancer
5 >40 Asia 130∗∗ Hepatitis
6 >40 Asia 130∗∗ Phthisis
7 >40 Asia 130∗∗ Asthma
8 >40 Asia 130∗∗ Obesity
9 (33-35) America 142∗∗ Flu
10 (36-37) America 142∗∗ Flu
11 (36-37) America 142∗∗ Flu
12 (33-35) America 142∗∗ Indigestion

Table 2: 2-anonymous microdata

• Sensitive attributes are assumed to be unknown to an intruder and need to be protected,
such as Disease or ICD-9 Code2. Sensitive attributes are presented both in T and T ′.

In what follows we assume that the identifier attributes have been removed and the quasi-
identifier and sensitive attributes are usually kept in the released and initial microdata table.
Another assumption is that the values of the sensitive attributes are not available from any
external source. This assumption guarantees that an intruder can not use the sensitive at-
tributes to increase the chances of disclosure. Unfortunately, an intruder may use record
linkage techniques [35] between quasi-identifier attributes and external available information
to glean the identity of individuals from the modified microdata. To avoid this possibility
of privacy disclosure, one frequently used solution is to modify the initial microdata, more
specifically the quasi-identifier attributes values (a minimal set Q of attributes in T that can
be joined with external information to re-identify individual records), in order to enforce the
k-anonymity property.

Definition 1 (k-anonymity) T ′ is said to satisfy k-anonymity if and only if each combina-
tion of quasi-identifier attributes in T ′ occurs at least k times.

A QI-group in the modified microdata T ′ is the set of all records in the table containing
identical values for the QI attributes. There is no consensus in the literature over the term

2International Statistical Classification of Diseases and Related Health Problems: ICD-9 -provides multiple
external links for looking up ICD codes. Available http://icd9cm.chrisendres.com/.

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Name Age Country Zip Code
Rick 26 USA 14246

Hassen 45 India 13064
Rudy 25 Canada 14249

Yamazaki 48 Japan 13074

Table 3: External available information

Category ID Sensitive Information Sensitivity
One HIV, Cancer Top Secret
Two Phthisis, Hepatitis Secret
Three Obesity, Asthma Less Secret
Four Flu, Indigestion Non Secret

Table 4: Categories of Disease

ID Age Country Zip Code Disease
1 <30 America 142∗∗ HIV
2 <30 America 142∗∗ HIV
3 <30 America 142∗∗ Cancer
4 <30 America 142∗∗ Cancer
5 >40 Asia 130∗∗ Hepatitis
6 >40 Asia 130∗∗ Phthisis
7 >40 Asia 130∗∗ Asthma
8 >40 Asia 130∗∗ Obesity
9 3∗ America 142∗∗ Flu
10 3∗ America 142∗∗ Flu
11 3∗ America 142∗∗ Flu
12 3∗ America 142∗∗ Indigestion

Table 5: 2-diverse microdata

used to denote a QI-group. This term was not defined when k-anonymity was introduced
[26, 31]. More recent papers use different terminologies such as equivalence class [36] and
QI-cluster [33].

For example, let the set {Age, Country, Zip Code} be the quasi-identifier of Table 1.
Table 2 is one 2-anonymous view of Table 1 since there are five QI-groups and the size of
each QI-group is at least 2. So k-anonymity can ensure that even though an intruder knows
a particular individual is in the k-anonymous microdata table T , s/he can not infer which
record in T corresponds to the individual with a probability greater than 1/k.

The k-anonymity property ensures protection against identity disclosure, i.e. the identifi-
cation of an entity (person, institution). However, as we will show next, it does not protect
the data against attribute disclosure, which occurs when the intruder finds something new
about a target entity. Consider Table 2, where the set of quasi-identifiers is composed of
{Age, Country, Zip Code} and Disease is the sensitive attribute. As we discussed above,
identity disclosure does not happen in this modified microdata. However, assuming that ex-
ternal information in Table 3 is available, attribute disclosure can take place. If the intruder
knows that in Table 2 the Age attribute was modified to ‘(25-26)’, s/he can deduce that both
Rick and Rudy have Cancer, even he does not know which record, 3 or 4, is corresponding to
which person. This example shows that even if k-anonymity can protect identity disclosure,
sometimes it fails to protect against sensitive attribute disclosure. To deal with this problem
in privacy breach, the l-diveristy model was introduced in [23].

Definition 2 (l-diversity) A QI-group is said to have l-diversity if there are at least l dis-
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tinct values for the sensitive attribute. A modified table is said to have l-diversity if every
QI-group of the table has l-diversity.

For instance, Table 5 is a 2-diverse view of Table 1. Although the l-diversity principle
represents an important step beyond k-anonymity in protecting sensitive attribute disclosures,
it still has some shortcomings. Following through, we show that the l-diversity principle is
insufficient to prevent the similarity attack, which means when the sensitive attribute values
in a QI-group are distinct but with similar sensitivity, an adversary can learn important
information.

Sometimes, the domain of the sensitive attributes, especially the categorical ones, can
be partitioned into categories according to the sensitivity of attributes. For example, in the
medical data set Table 1, the Disease attribute can be classified into four categories (see
Table 4). The different types of diseases are organized in a category domain. The attribute
values are very specific, for example they can represent HIV or Cancer, which are both Top
Secret information of the individuals. In the case that the initial microdata contains specific
sensitive attributes like Disease, the data owner can be interested in protecting not only these
most specific values, but also the category that the sensitive values belong to. For example,
the information of a person who affected with Top Secret needs to be protected, no matter
whether it is HIV or Cancer. If we modify the microdata to just satisfy l-diversity property, it
is possible that in a QI-group with l distinct sensitive attribute values, all of them belong to the
same pre-defined confidential category. For instance, the values {HIV, HIV, Cancer, Cancer}
of one QI-group in Table 5 all belong to Top Secret category. To avoid such situations, we
introduce a family of enhanced (l, α)-diversity model integrating a recursive metric function.

3 A family of enhanced (l, α)-diversity models

Let S be a categorical sensitive attribute we want to protect against attribute disclosure.
First, we sort the values of S according to their sensitivity, forming an ordered value domain
D, and then partition the attribute domain into m-categories (S1, S2, · · · , Sm), such that
S = ∪m

i=1Si, Si ∩ Sj = ∅ (for i 6= j) and Sl ≤ Sk (1 ≤ l ≤ k). We say Sl ≤ Sk, if Sl is more
sensitive than Sk (1 ≤ l ≤ k). For example, consider the Disease S={HIV, Cancer, Phthisis,
Hepatitis, Obesity, Asthma, Flu, Indigestion} in Table 1, it has been partitioned into four
categories according to the sensitivity of the diseases (Table 4), where S1 (Top Secret) is the
most sensitive and S4 (Non Secret) is the least one.

Definition 3 Let D(S) = {S1, S2, · · · , Sk} denote a partition of categorical domain of an
attribute S, weight(Si) be the weight of category Si and wi,i−1 be the weight between two
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Age Country Zip Code Disease
<40 America 142∗∗ HIV
<40 America 142∗∗ HIV
<40 America 142∗∗ Cancer
<40 America 142∗∗ Flu
>40 Asia 130∗∗ Hepatitis
>40 Asia 130∗∗ Phthisis
>40 Asia 130∗∗ Asthma
>40 Asia 130∗∗ Obesity
<40 America 14∗ ∗ ∗ Cancer
<40 America 14∗ ∗ ∗ Flu
<40 America 14∗ ∗ ∗ Flu
<40 America 14∗ ∗ ∗ Indigestion

Table 6: Distinct (3,1)-diversity

Age Country Zip Code Disease
<40 America 142∗∗ HIV
<40 America 142∗∗ HIV
<40 America 142∗∗ Flu
<40 America 142∗∗ Flu
>40 Asia 130∗∗ Hepatitis
>40 Asia 130∗∗ Phthisis
>40 Asia 130∗∗ Asthma
>40 Asia 130∗∗ Obesity
<40 America 14∗ ∗ ∗ Cancer
<40 America 14∗ ∗ ∗ Cancer
<40 America 14∗ ∗ ∗ Flu
<40 America 14∗ ∗ ∗ Indigestion

Table 7: Entropy (2,2)-diversity

adjacent categories (2 ≤ i ≤ k). Then,

weight(Si+1)− weight(Si)

weight(Si)− weight(Si−1)
=

wi+1,i

wi,i−1

, 2 ≤ i ≤ k (1)

Where weight(S1) = 0, weight(Sk) = 1 is the initial condition. Note that the weight of the
specific sensitive value is equal to the weight of the category that the specific value belongs
to. The weight of the QI-group is the total weight of each specific sensitive value that the
QI-group contains. In the following, we discuss two simple and typical schemes to define
wi,i−1.

(1): uniform weight: wi,i−1 = 1 (2 ≤ i ≤ k). This is the simplest scheme when all weights
among the categories are equal to 1. In this scheme, the weight of the category Si is the
number of categories that are less sensitive than Si over the total number of categories. For
example, given the partition of sensitive attributes as shown in Table 4 and A={Cancer,
Phthisis, Asthma, Flu}. The distance between Cancer (S1) and Flu (S4) is 3/3=1, while
the distance between Phthisis (S2) and Asthma (S3) is 1/3. According to Equation (1),
weight(S1) = 0, weight(S2) = 1/3 and weight(Asthma) = 2/3, weight(Flu) = 1, the total
weight of A is 0+1/3+2/3+1=2.

(2): sensitivity weight: wi,i−1 = 1
(i−1)β (2 ≤ i ≤ k, β ≥ 1). For a fixed β, the intuition of

this scheme is that the weight of more confidential categories should possess less weight than
the less ones. Thus, we formulate the sensitivity weight scheme, where the weight near to the
top confidential category is smaller and the weight far from the top is larger. Still consider
the partition of sensitive attributes as shown in Table 4 and A={Cancer, Phthisis, Asthma,
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Flu}. When setting β = 2 and according to Equation (1), weight(S1) = 0, weight(S2) = 9/61
and weight(Asthma) = 45/61, weight(Flu) = 1, the total weight of A is 115/61.

Definition 4 (distinct (l, α)-diversity) The modified microdata T ′ satisfies distinct (l, α)-
diversity if it satisfies l-diversity principle, and for each QI-group, the total weight of its
sensitive attribute values is at least α.

Table 6 is a distinct (3, 1)-diverse view of Table 1. Since there are at least three different
values in each QI-group and the least total weight of the QI-group is 1. Compared with Table
5, we can easily see that requiring the distinct (l, α)-diversity can significantly reduce the
risk of sensitive attribute disclosure, hence better protecting individual’s private information.
Further, if we take a closer look at the first four tuples in Table 6, which form a QI-group, and
we assume that the attacker has some background knowledge that Allen falls in that group,
then although the attacker does not have 100% confidence to say that Allen suffered from
deadly disease, he/she still has a higher probability of 75% to infer the sensitive information
of Allen. In order to avoid this situation, we further introduce two more variants of distinct
(l, α)-diversity models, which taking the amount of sensitive information into account.

Definition 5 (entropy (l, α)-diversity) Let the entropy of a QI-group G be defined as:
Entropy(G) = −∑

s∈S p(G, s)logp(G, s), in which S is the set of the categories divided among
the sensitive attribute values, and p(G, s) is the fraction of records in G that have sensitive
value s in the category S. The modified microdata table T ′ satisfies entropy (l, α)-diversity if
it satisfies (l, α)-diversity principle, and for every QI-group G, Entropy(G) ≥ log(l).

Table 7 is a distinct (3, 1)-diverse view of Table 1. The entropy (l, α)-diversity principle
is stronger than the distinct (l, α)-diversity. In order to have entropy (l, α)-diversity for each
QI-group, the entropy of the entire table must be at least log(l). Sometimes this may be too
restrictive, since the entropy of the entire table may be low if a few values are very common.
This leads to the following less conservative variant of (l, α)-diversity models.

Let m be the number of categories of the sensitive attribute values belong to in a QI-group,
and ri, 1 ≤ i ≤ m be the number of times that the ith most frequent category appears in a
QI-group G. G is said to have recursive (c, l, α)-diversity if r1 < c(rl + rl+1 + · · ·+ rm).

Definition 6 (recursive (c, l, α)-diversity) The modified microdata T ′ satisfies recursive
(c, l, α)-diversity if it satisfies (l, α)-diversity principle, and all of its QI-groups have recursive
(c, l, α)-diversity.

The recursive (c, l, α)-diversity ensures that the most frequent value does not appear too
frequently, and the less frequent values do not appear too rarely, which, intuitively, could
balance the distribution of non-sensitive and sensitive attributes in each QI-group.
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Among these variants of (l, α)-diversity models, both parameters l and α are intuitive and
operable in real-world applications. Parameter l specifies the number of “well-represented”
values in each QI-group, while parameter α captures the degree each specific sensitive attribute
value contributes to the QI-group. By increasing the value of α or l, we are strengthening
the protection from sensitive attribute disclosure, however, in different ways. Specifically,
the effect of raising α is to enlarge the protection range of each sensitive value, whereas
the purpose of elevating l is to lower an adversarys chance of beating that protection. The
enhanced (l, α)-diversity models have the following monotonicity property.

Proposition 1 Given a data set T and α, if T satisfies distinct (l1, α)-diversity, it also
satisfies (l2, α)-diversity, for every l2 ≤ l1.

Following through, we define the optimal problem of distinct (l, α)-diversity, and prove
that the optimal distinct (l, α)-diversity is NP-hard, and as a corollary, we deduce that both
the optimal entropy (l, α)-diversity and recursive (c, l, α)-diversity problems are also NP-hard.

Theorem 1 : The optimal distinct (l, α)-diversity problem is NP-hard for a binary alphabet
(
∑

= {0, 1}).

Proof: The proof is by transforming the problem of Edge Partition into 4-Cliques [10] to the
distinct (l, α)-diversity problem.

Edge Partition into 4-Cliques : Given a simple graph G = (V,E), with |E| = 6m for some
integer m, can the edges of G be partitioned into m edge-disjoint 4-cliques?

Given an instance of Edge Partition into 4-Cliques. Set l = 2, α = 6. We construct the
data set T as follows: for each edge e = (v1, v2) ∈ E, create a pair of records rv1,v2 and r̃v1,v2,
so there are 2|E| in total. For each vertex v ∈ V , construct a non-sensitive attribute, there
are totally |V | non-sensitive attributes. In addition to it, we create one sensitive attribute in
T , which makes the number of attributes in T be |V |+ 1. The two records (rvi,vj

, r̃vi,vj
) have

the attribute values of both vi and vj equal to 1 and all other non-sensitive attribute values
equal to 0, but one record rvi,vj

has the sensitive attribute equal to 1 and the other record
r̃vi,vj

has the sensitive attribute equal to 0 (1 ≤ i, j ≤ |V |). An example is given in Figure 1,
where the data set T in Figure 1(b) is constructed from the clique of Figure 1(a).

We define the cost of the distinct (2,6)-diversity to be the number of suppressions applied
in the data set. We show that the cost of the distinct (2,6)-diversity is at most 48m if and
only if E can be partitioned into a collection of m edge-disjoint 4-cliques.

“⇐” Suppose E can be partitioned into a collection of m disjoint 4-cliques. Consider a
4-clique C with vertices v1, v2, v3 and v4. If we suppress the attributes v1, v2, v3 and v4 in
the 12 records corresponding to the edges in C, then a cluster of these 12 records are formed
where each modified record has four ∗’s. Note that the distinct (l, α)-diversity requirement
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v1

v2 v3

v4

⇒

(a) (b)

Figure 1: (a) one 4-clique C; (b) a data set T constructed from C

can be satisfied as the frequency of the sensitive attribute value 1 is equal to 6 and the
distinct number of sensitive values are 2. The cost of the distinct (2,6)-diversity is equal to
12× 4×m = 48m. An example of the anonymization is given in Figure 2, where Figure 2(b)
is a (2,6)-diverse view of Figure 2(a).

⇒

(a) (b)

Figure 2: (a) an original data set; (b) a distinct (2,6)-diverse data set

“⇒” Suppose the cost of the distinct (2,6)-diversity is at most 48m. As G is a simple
graph, any twelve records should have at least four attributes different. So, each record should
have at least four ∗s in the solution of the distinct (2,6)-diversity. Then, the cost of the distinct
(2,6)-diversity is at least 12 × 4 ×m = 48m. Combining with the proposition that the cost
is at most 48m, we obtain the cost is exactly equal to 48m and thus each record should have
exactly four ∗’s in the solution. Each cluster should have exactly 12 records (where six have
sensitive value 1 and the other six have sensitive value 0). Suppose the twelve modified records
contain four ∗’s in attributes v1, v2, v3 and v4, the records contain 0s in all other nonsensitive
attributes. This corresponds to a 4-clique with vertices v1, v2, v3 and v4. Thus, we conclude
that the solution corresponds to a partition into a collection of m edge-disjoint 4-cliques. �
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Corollary 1 : Both the optimal entropy (l, α)-diversity and recursive (c, l, α)-diversity prob-
lems are NP-hard.

3.1 Utility measurement

In privacy preserving data publishing, it is necessary to balance the conflicting goals, data
privacy and utility. There are a number of quality measurements presented in previous studies.
Many metrics are utility-based, for example, model accuracy [9, 16] and query quality [15, 38].
They are associated with some specific applications. Three generic metrics have been used in
a number of recent works. The discernability metric (DM) was proposed by Bayardo et al.
[5] and has been used in [15, 38]. It is defined as follows:

DM =
∑

QI-group G

|G|2

where |G| is the size of the QI-group G. The cost of anonymisation is determined by the size
of the QI-group. An optimization objective is to minimize weighted discernability cost.

Normalized average QI-group size (CAVG) was proposed by LeFevre et al. [15], and has
been used in [38]. It is defined in the following:

CAVG = (
total records

total QI-groups
)/(k)

The quality of k-anonymisation is measured by the average size of QI-groups produced. An
objective is to reduce the normalized average QI-group size.

However, neither the normalized average QI-group size (CAVG) nor the discernability
metric (DM) takes the data distribution into account. For this reason we also use the KL-
divergence [11], which is described next. In many data mining tasks, we would like to use the
published table to estimate the joint distribution of the attributes. Now, given a table T with
categorical attributes A1, · · · , Am, we can view the data from an m-dimensional distribution
F . We can estimate this F with the empirical distribution F̂ , where F̂ (x1, · · · , xm) is the
fraction of tuples t in the table such that t.Ai = xi, for 1 ≤ i ≤ m. When a generalized
version of the table is published, the estimate changes to F̂ ∗ by taking into account the gener-
alizations used to construct the anonymized table T ∗(and making the uniformity assumption
for all generalized tuples sharing the same attribute values). If the tuple t = (x1, · · · , xm) is
generalized to t∗ = (x∗

1, · · · , x∗
m), then F̂ ∗(x1, · · · , xm) is given by:

F̂ ∗(x1, · · · , xm) =
|{t∗ ∈ T ∗}|
|T ∗| × area(t∗)

11
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Figure 3: Example illustration of local-recoding algorithm

where, area(x∗
1, · · · , x∗

m) =
∏m

i=1 |{xi ∈ Ai|xi is generalized to x∗
i }|.

To quantify the difference between the two distributions F̂ and F̂ ∗, we use the Kullback-
Leibler divergence (KL-divergence) which is defined as;

KL-divergence =
∑

x∈A1×··· ×Am

F̂ (x)log
F̂ (x)

F̂ ∗(x)

where 0log0 is defined to be 0. The KL-divergence is non-negative and is 0 only when the
two estimates are identical. In this paper, we use three metrics mentioned above to quantify
the information loss of the anonymized data sets.

4 The anonymization algorithms

In this section, we present a top-down approach to tackle the problem of finding an anonymized
solution that satisfies distinct (l, α)-diversity, and then we extend it to entropy (l, α)-diversity
and recursive (c, l, α)-diversity.

The idea of the algorithm is to first generalize all tuples completely so that, initially, all
tuples are generalized into one QI-group. Then, tuples are specialized in iterations. During
the specialization, we must maintain distinct (l, α)-diversity. The process continues until we
cannot specialize the tuples anymore. For ease of illustration, we present the approach for
a quasi-identifier of size 1. The method can be easily extended to handle quasi-identifiers of
size greater than 1. The algorithm is shown as in Algorithm 1. Let us illustrate it with the
sample data in Table 8(a). Suppose the QI contains Zipcode only. Because there are only
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Algorithm 1: The anonymization algorithm (Distinct(l, α))
1. generalize all tuples to their most general form
2. let P be a set containing all these generalized tuples
3. S ← {P}; O ← ∅.
4. repeat
5. S′ ← ∅
6. for all P ∈ S so
7. specialize all tuples in P one level down to form

some specialized child nodes.
8. unspecialize the nodes which violate (l, α)-diversity

by moving the tuples back to the parent node.
9. if the parent p violates (l, α)-diversity, then
10. unspecialize tuples in the remaining child nodes

so that the parent p satisfies (l, α)-diversity
11. for all non-empty branches B of P ,

do S′ ← S′ ∪ {B}
12. S ← S′

13. if P is non-empty then O ← O ∪ {P}
14. until S = ∅
15. return O.

No. Zipcode Disease
1 4351 HIV
2 4351 Flu
3 4351 HIV
4 4352 Flu

(a)

No. Zipcode Disease
1 4351 HIV
2 4351 Flu
3 435* HIV
4 435* Flu

(b)

Table 8: (a) Sample data; (b) Generalized table

two distinct sensitive values, we assume that α = 1 and l = 2. Initially, we generalize all four
tuples completely to the most general value Zipcode=**** (Figure 3(a)). Then, we specialize
each tuple one level down in the generalization hierarchy. We obtain the branch with Zipcode
= 4*** in Figure 3(b). In the next iterations, we obtain the branch with Zipcode = 43**
and the branch with Zipcode = 435* in Figure 3(c) and (d), respectively. Next, we further
specialize the tuples into the two branches as shown Figure 3(e). Hence the specialization
process can be seen as the growth of a tree.

If each leaf node satisfies (l, α)-diversity, the specialization is successful. However, we may
encounter some problematic leaf nodes that do not satisfy (l, α)-diversity. Then, all tuples
in such leaf nodes will be pushed upwards in the generalization hierarchy. In other words,
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those tuples cannot be specialized in this process. They should be kept unspecialized in their
parent nodes. For example, in Figure 3(e), the leaf node with Zipcode = 4352 contains only
one tuple, which violates (l, α)-diversity when l = 2. Thus, we have to move this tuple back
to its parent node with Zipcode = 435* (See Figure 3(f)).

After the previous step, we move all tuples in problematic leaf nodes to their parent nodes.
However, if the collected tuples in the parent node do not satisfy (l, α)-diversity, we should
further move some tuples from other leaf nodes L to the parent node so that the parent node
can satisfy (l, α)-diversity while L also maintain the (l, α)-diversity. For instance, in Figure
3(f), the parent node Zipcode = 435* violates (l, α)-diversity when l = 2. Thus, we should
move one tuples upwards in the node B with Zipcode = 4351 (which satisfies (l, α)-diversity).
In this example, we move tuple 3 upwards to the parent node so that both the parent node
and the node B satisfy the (l, α)-diversity. Finally, in Figure 3(g), we obtain a data set where
Zipcode of tuples 3 and 4 are generalized to 435* and Zipcode of tuples 1 and 2 remains
4351. So the final allocation of tuples in Figure 3(g) is the final distribution of tuples after
the specialization. The results can be found in Table 8(b).

The algorithm for generating entropy (l, α)-diverse or recursive (c, l, α)-diverse data set
is similar with Algorithm 1. The difference is in the checking criteria of each candidate in
the solution space. At the step 8 in Algorithm 1, it tests the (l, α)-diversity property, and in
addition to that, we can further test the entropy or recursive conditions to ensure the entropy
(l, α)-diversity or recursive (c, l, α)-diversity. We use Entropy(l, α) and Recursive(l, α) to
denote the algorithms for entropy (l, α)-diversity and recursive (c, l, α)-diversity.

5 Proof-of-concept experiments

The goals of the experiments are three-fold. First, we study the effect of similarity attacks
on the real-life data set by comparing l-diversity with the enhanced (l, α)-diversity models.
Second, we evaluate the efficiency of the new proposed models. Third, we investigate the
effectiveness of our proposed models in terms of utility preservation.

Experiment setup: We compare four privacy measures, which are l-diversity, distinct (l, α)-
diversity, entropy (l, α)-diversity and recursive (c, l, α)-diversity. We compare these privacy
measures through evaluations of (1) vulnerability to similarity attacks; (2) efficiency; and (3)
data utility. We adopted the publicly available data set, Adult Database, at the UC Irvine
Machine Learning Repository3, which has become the benchmark of this field [14, 23, 9]. We
used a configuration similar to [14, 23] by eliminating the records with unknown values. The
resulting data set contains 45,222 tuples. Seven of the attributes were chosen as the quasi-

3available at www.ics.uci.edu/-mlearn/MLRepository.html
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Attribute Type Distinct values Height
Age Numeric 74 5

Workclass Categorical 8 3
Education Categorical 16 4
Country Categorical 41 3

Marital Status Categorical 7 3
Race Categorical 5 3

Gender Categorical 2 2
Health Condition Sensitive 8 –

Table 9: Description of Quasi-identifier

identifier. We add a column with sensitive values called “Health Condition” consisting of
{HIV, Cancer, Phthisis, Hepatitis, Obesity, Asthma, Flu, Indigestion} to the Adult data and
randomly assign one sensitive value to each record. Table 9 provides a brief description of the
data including the attributes we used, the type of each attribute data, the number of distinct
values for each attribute, and the height of the generalization hierarchy for each attribute.
We divide the 8 values of the Health Condition attribute into four pre-defined equal-size
categories, based on the confidentiality of the values (See Table 4). In this paper, the weight
of each category is evaluated by using the sensitivity weight function with β = 2 defined in
Section 3. We implement Distinc(l, α), Entropy(l, α) and Recursive(l, α) algorithms for the
distinct (l, α)-diversity, entropy (l, α)-diversity and recursive (c, l, α)-diversity.

Similarity attack: We use the first 7 attributes in Table 9 as the quasi-identifier and treat
Health Condition as the sensitive attribute, and divide the eight values of the Health Condition
into four categories groups shown in Table 4. Any QI-group that has all values falling in one
category is viewed as vulnerable to the similarity attacks. We use the modified Incognito [14]
to generate 4-diverse table. In the anonymized table, a total of 1570 tuples can be inferred
about their sensitive value categories. The results show that similarity attacks present serious
privacy risks to l-diverse tables on real data. We also generate the anonymized table satisfying
the distinct (4,2)-diversity, and entropy (4,2)-diversity, and both tables do not contain tuples
that are vulnerable to similarity attacks. This shows that both the distinct (l, α) diversity
and entropy (l, α)-diversity provide better privacy protection against similarity attacks.

Efficiency: In this set of experiments, we compare the running time of the algorithms for
finding l-diverse, distinct (l, α)-diverse (Distinct(l, α)), Entropy (l, α)-diverse (Entropy(l, α))
and recursive (l, α)-diverse (Recursive(l, α)) data sets. The results are shown in Figure 4.

Data used for Figure 4(a) is generated by re-sampling the Adult data sets while varying the
cardinality of data from 25K to 45K. We evaluate the running time for all privacy measures
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Figure 4: Performance comparisons of four privacy measures by: (a) varying data cardinality;
(b) varying l; (c) varying the size of QI.

with default setting l = 4, α = 2. From Figure 4(a) we can see, the execution time for all the
anonymization algorithms is ascending with the increasing data percentage. This is because
as the percentage of data increases, the computation cost increases too. The result is expected
since the overhead is increased with more dimensions.

Next, we evaluate how the parameter l affects the cost of computing. Data set used for
this set of experiments is the whole Adult data and we evaluate by varying l. Setting α = 2,
Figure 4(b) displays the results of execution time by varying l from 2 to 10. The cost drops
as l grows, because the larger the l is, the more chance each QI-group has more distinct
sensitive values, which makes it easier to meet the privacy requirements, therefore allowing
our algorithms to terminate earlier.

Finally, we evaluate the effect of the size of QI attributes on the computation overhead.
We vary the size of the set of quasi-identifier attributes from 2 to 7. A QI attribute set
of size j consists of the first j − 1 attributes listed in Table 9 and Health Condition as
the sensitive attribute. We measured the time taken to return all 4-diverse, distinct (4,2)-
diverse, entropy (4,2)-diverse and recursive (3,4,2)-diverse data sets. As we can see from
Figure 4(c), the running time for finding the (4,2)-diversity is always less than the entropy
(4,2)-diversity and recursive (3,4,2)-diversity. This is because higher privacy requirements
need more computation cost. Also, finding the 4-diverse data set has the similar computation
cost with searching for the (4,2)-diverse data set for the adult database, which makes the
enhanced (l, α)-diversity models practical.

From these evaluations, the running times for enhanced (l, α)-diversity models are fast
enough for them to be used in practice, and more important is the enhanced (l, α)-diversity
models can effectively prevent from similarity attack.

16



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Varying L

D
M

 

 

Recursive(l,α) with c=3
Entropy(l,α)
Distinct(l,α)
l−diversity

(a)

2 4 6 8 10
0

1

2

3

4

5

6

7

8

Varying L
C

A
V

G

 

 

Recursive(l,α) with c=3
Entropy(l,α)
Distinct(l,α)
l−diversity

(b)

2 4 6 8 10 Base
0

5

10

15

20

Varying L

K
L

−
d

iv
e

rg
e

n
ce

 

 

Recursive(l,α) with c=3
Entropy(l,α)
Distinct(l,α)
l−diversity
Baseline

(c)

Figure 5: Data utility comparison by varying l vs. : (a) discernability metric (DM); (b)
normalized average QI-group size (CAVG); (c) vs. KL-divergence

Data utility: Having verifying the efficiency of our technique, we proceed to test its effec-
tiveness. The utility is measured by three metrics introduced in Section 3.1. Figure 5(a)
displays the comparison of different methods when varying l on Adult database with discern-
ability metric (DM). We can see that for the variable l, the produced anonymizaed tables
satisfying (l, α)-diversity preserves the similar data utility compared with l-diversity model,
and it maintains better data utility than the other two enhanced privacy principles. This is
because the requirements of the other two principles are more strict, which may require more
generalization operations, and make the discernability metric (DM) higher than the distinct
(l, α)-diversity and l-diversity. Figure 5(b) reports the results with regard to the normalized
average QI-group size (CAVG). We can see that for a smaller l, the quality of the data is
better preserved for three variants of (l, α)-diversity models, but for a larger value of l, the
entropy (l, α)-diversity and recursive (l, α)-diversity models produce the anonymized data sets
with less utility than the distinct (l, α)-diversity principle.

In Figure 5(c), we compare l-diverse, distinct (l, α)-diverse, entropy (l, α)-diverse and
recursive (c, l, α)-diverse tables using the KL-divergence utility metric. We wish to publish a
table from which the joint distribution Q×S can be estimated, where S = Health Condition
and Q is the first seven attributes in Table 9. The baseline in Figure 5(c) corresponds to
the KL-divergence for the table where all the attributes in Q were completely suppressed
(thus the resulting table had only one attribute-the sensitive attribute). This table represents
the least useful anonymized table that can be published. The rest of the bars correspond to
the KL-divergence to the best distinct (l, α)-diversity, entropy (l, α)-diversity and recursive
(3, l, α)-diverse tables, respectively for l = 2, 4, 6, 8, 10, α = 2. In the experiments run on the
full Adults data set, we see that the KL-divergence to the best (l, α)-diverse table (entropy
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or recursive) is very close to the KL-divergence to the best distinct (l, α)-diverse table when
l = 2, 4, 6. As expected, for larger values of l, the utility of (l, α)-diverse tables is lower,
and the best tables for the entropy and recursive variants of the (l, α)-diversity models often
have similar utility. Hence, for l = 8, 10 the best tables were very close to the baseline. For
l = 6, the recursive definition performs better than the entropy definition since recursive
(3, l, α)-diversity allows for more skew in the sensitive attribute.

6 Related Work

The problem of information disclosure has been studied extensively in the framework of statis-
tical databases. A number of information disclosure limitation techniques have been designed
for data publishing, including Sampling, Cell Suppression, Rounding, and Data Swapping and
Perturbation. These techniques, however, insert noise to the data. Samarati and Sweeney
[26, 31, 30] introduced the k-anonymity model. Since then, there has been a large amount of
research work on this topic.

The first category of work aims at devising privacy requirements. The k-anonymity model
[26, 31, 30] assumes that the adversary has access to some publicly available databases (e.g.,
a vote registration list) and the adversary knows who is and who is not in the table. A few
subsequent works [23, 34, 36, 18, 19, 21] recognize that the adversary also has knowledge of
the distribution of the sensitive attribute in each group.

Privacy-preserving data publishing has been extensively studied in several other aspects.
First, background knowledge presents additional challenges in defining privacy requirements.
Several recent studies [7, 22, 20, 19] have aimed at modeling and integrating background
knowledge in data anonymization. Second, several works [6, 39, 28] considered continual data
publishing, i.e., re-publication of the data after it has been updated. A m-invariance is one
of the representative models [39]. The basic idea is to keep unchanged the set of sensitive
attribute values in the group that a tuple belongs to even though the tuple may be put into
different groups in different versions of the microdata. Our proposed enhanced (l, α)-diversity
models can also be extended for dynamic microdata. Nergiz et al. [17] proposed σ-presence to
prevent membership disclosure, which is different from identity/attribute disclosure. Wong et
al. [37] showed that knowledge of the anonymization algorithm for data publishing can leak
extra sensitive information. Recently, Koudas et al. [25] designed anonymization schemes
that disguise the distribution of sensitive attributes of microdata, which allows accurately
answer aggregate queries. The designed schemes also support flexible, user-defined tradeoff
between privacy and data utility.

We want to emphasize that l-diversity is still a useful measure for data publishing. l-
diversity and our enhanced measures make different assumptions about the adversary. l-
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diversity assumes an adversity who has knowledge of the form “Someone does (not) have
some kind of disease”, while our enhanced measures further consider an adversary who knows
the distributional information of the sensitive attributes. Our goal is to propose an alternative
technique for data publishing that remedies the limitations of l-diversity in some applications.

Most anonymization solutions adopt generalization [1, 5, 9, 14, 15, 16, 26, 31] and bucketi-
zation [22, 41]. In this paper, we use the Incognito algorithm [14] to implement l-diversity [23].
There are several anonymization techniques, clustering [3], marginal’s releasing [12, 29], data
perturbation [40] and micro-aggregation [8]. On the theoretical side, optimal k-anonymity
has been proved to be NP-hard for k ≥ 3 in [24, 2, 27], and approximation algorithms for
finding the anonymization that suppresses the fewest cells have been proposed in [24, 2]. The
anonymization method we used in this paper is generalization.

7 Conclusion and future work

l-diversity is a novel property that, when satisfied by microdata, can help increase the privacy
of the respondents whose data is being used. However, as shown in the paper, to some
extent this property is not enough for protecting sensitive attributes. In this paper, we
proposed a family of enhanced (l, α)-diversity models against sensitive attribute disclosures.
We theoretically analyzed the hardness of this series of problems, and developed efficient
algorithms to deal with them. Our extensive experiments show that our proposed methods
are effective and practical in real-world applications.

This work also initiates several directions for future investigation. For example, in this
article, we focused on the case where there is a single sensitive attribute; extending our
technique to multiple sensitive attributes is an interesting topic. Another direction concerns
the comparison with t-closeness [18], and some experimental evaluations can be done to
compare the two privacy principles. Finally, it would be useful to study how the anonymized
data sets can be utilized for discovering complex patterns, perhaps through minimization of
specialized metrics for quantifying information loss.
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