
Physics and Chemistry of the Earth 126 (2022) 103135

Available online 16 February 2022
1474-7065/© 2022 Elsevier Ltd. All rights reserved.

The impact of climate change on land degradation along with shoreline 
migration in Ghoramara Island, India 

Bijay Halder a,*, Ameen Mohammed Salih Ameen b, Jatisankar Bandyopadhyay a, 
Khaled Mohamed Khedher c,d, Zaher Mundher Yaseen e,f,g,h 

a Department of Remote Sensing and GIS, Vidyasagar University, Midnapore, 721102, India 
b Department of Water Resources, College of Engineering, University of Baghdad, Baghdad, Iraq 
c Department of Civil Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia 
d Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul, 8000, Tunisia 
e Adjunct Research Fellow, USQ’s Advanced Data Analytics Research Group, School of Mathematics Physics and Computing, University of Southern Queensland, QLD, 
4350, Australia 
f New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq 
g College of Creative Design, Asia University, Taichung City, Taiwan 
h Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Kompleks Al-Khawarizmi, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia   

A R T I C L E  I N F O   

Keywords: 
Shoreline change 
Land transformation 
Coastal development 
Remote sensing and GIS 
Ghoramara Island 

A B S T R A C T   

Sea level rise (SLR) due to climate change is affecting the coastline, causing shoreline changes, the degradation of 
mangrove forests, and the destruction of coastal resources. This is the cause of a huge amount of mangrove 
degradation in many parts of the Ganges–Brahmaputra–Meghna delta. A total of 90% of people have been forced 
to migrate from the island due to extreme weather conditions. In this study, remote sensing (RS) and geographic 
information system (GIS) techniques were used for LULC change and shoreline shift analyses of Ghoramara Is
land. LULC classification was carried out using thirty years of Landsat datasets with intervals of ten years (1990 
and 2000) and intervals of five years (2005, 2010, 2015, and 2020). The classification was conducted using a 
supervised classification method. The field survey data were used to validate the classification results. The total 
area was reduced from 608 ha (in 1990) to 375 ha (in 2020) due to the extreme weather conditions. Around 39% 
of the land area was found to be degraded due to shoreline changes. The LULC classes of built-up area, agri
cultural land, water bodies, and vegetation were found to have lost around 62.345 ha, 63.328 ha, 0.836 ha, and 
113.241 ha, respectively, from the year 1990–2020. It was observed that the shoreline shifted towards the north- 
east, north-west, and southern directions in the last thirty years. This study identified the land use changes due to 
shoreline shifting and proposed the appropriate to achieve the sustainable development of Ghoramara Island.   

1. Introduction 

The Sundarban delta and its adjacent areas are more vulnerable due 
to the effects of climate change, anthropogenic activities, and extreme 
weather conditions (Chowdhury et al., 2008). Erosion and accretion are 
common land dynamic processes that take place in coastal regions, 
meaning that these areas are rapidly changing (Purkait, 2009). Affective 
tidal activities, waves, and long-shore ocean currents continuously 
modify the shape of the shoreline in the Ganges–Brahmaputra–Meghna 
estuarine delta area. Hydro-geomorphological procedures such as 
erosion and accretion (deposition) are very much active in this area 

(Adarsa et al., 2012; Appeaning Addo, 2015; Bandyopadhyay et al., 
2004; Ghosh and Mukhopadhyay, 2016; Raju et al., 2010). For the 
analysis of accretion and erosional processes, shoreline change estima
tion and investigation are most important parameters for sustainable 
coastal development. The shoreline of a coastal area is defined as the 
edge separating the land and water areas, which fluctuates due to the 
rise and fall of the tides (Cui and Li, 2011; Plater, 2003). The coastal area 
is highly significant in terms of natural resource management and 
biodiversity. The coastal region is very vulnerable and can be damaged 
by extreme weather conditions and natural dynamic procedures such as 
waves, tidal effects, wind speed, currents, storm surges, coastal erosion 
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and accretion, cyclonic activity, and sediment deposition and trans
formation (Armanuos et al., 2020; Tao et al., 2021). Anthropogenic 
activities such as deforestation are also affecting the coastal regions and 
may cause shoreline shifting over short and long periods (Ghosh et al., 
2015). Shoreline change is a major issue affecting the coastal region and 
is the most important parameter that must be taken into account in 
future disaster management and planning to protect this area (Mujabar 
and Chandrasekar, 2011). Due to sea level rise, coastal regions are 
changing rapidly, damaging the coastal ecosystem and also causing land 
degradation in some areas. Forest protection is essential for biodiversity 
conservation and maintaining a sustainable ecosystem (Rodrigues et al., 
2021). Forest resources such as food, fodder, fuel, fiber, wood, fruits, 
tree leaves and eco-tourism are dependent on coastal environmental 
disturbances, because extreme weather conditions and anthropogenic 
activities are destroying the ecosystem (Böttcher et al., 2021). A 
healthier natural environment can ensure sustainable development for 
people living in coastal areas, stabilize climate fluctuations, help to 
conserve fresh drinking water, mitigate risk for flood-prone areas, 
reduce river bank erosion and flood inundation, lower the level of soil 
moisture, and decrease soil erosion (Poortinga et al., 2018). 

Coastal vulnerability can be increased by erosion or shoreline shift
ing, which can be detrimental to local anthropological activities and 
coastal areas. The identification of coastline changes is vital in order to 
understand the dynamics and evaluation of coastal areas (Baig et al., 
2020) and enable stakeholders to plan better disaster management 
systems in order to reduce coastal erosion and minimize social losses, 
loss of life, physical changes, and economic losses (Fuad and Fais D A, 
2017). The most vulnerability areas are located where erosion is high 
rather than accretion, whereas in less vulnerable areas accretion occurs 
faster than erosion. Land use and land cover transformation is a very 
significant parameter for the study of global change due to land alter
ation. This study aims to help decision-makers, ecosystem managers, 

and environmental planners with future worldwide communication 
(Dwivedi et al., 2005; Fan et al., 2007; Zhao et al., 2004). Land use land 
cover change is the modification of bio-physical changes in the forest 
and other areas of Earth’s surface (Awadh et al., 2022). At present, forest 
land is converted to farming land, built-up areas, and aquaculture, 
leading to degradation of forest areas (Prakasam, 2010). 

Earth observational satellite data are useful for detecting, mapping, 
and investigating land surface alterations as well as in policy making for 
the future development of this area (AL-Shammari et al., 2021; Salman 
et al., 2021). Landsat 5 TM and 8 OLI/TIRS data are widely used for 
monitoring Earth surface phenomena and are available in digital format 
for machine learning algorithm pre-processing and analysis (Loveland 
and Dwyer, 2012). The use of satellite-based RS data to identify Earth 
surface changes due to extreme environmental conditions and anthro
pogenic activities is cost- and time-effective and easy (Dai and Khorram, 
1999). In economically developing countries, people are highly depen
dent on agriculture, which can be affected by land transformation 
(Meshesha et al., 2016). However, few studies regarding LULC changes 
have been carried out on either a short-term or long-term basis (Klein 
Goldewijk and Ramankutty, 2004). Accuracy Assessment is the satellite 
data interpretation technique where monitor the user and producer 
accuracy of the classified maps. Those results are depended on the actual 
earth surface alteration. In this study, the changes detection technique 
was used for monitoring the actual land surface and estimating LULC 
classes, which was important for the generalization and investigation of 
our objectives. In moderate-resolution satellite data, mixed pixels are a 
common phenomenon that can increase the variation in classified maps. 
The change detection method was used to generalize the estimated LULC 
classes and the actual Earth surface condition. 

Multi-temporal Earth observational satellite datasets were used to 
identify the land degradation and for shoreline change detection on 
Ghoramara Island. Satellite data are very useful for coastal 

Fig. 1. The location map of the investigated case study area.  
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management, monitoring, and assessment. A geographical information 
system-based method was used for the shoreline change analysis. 
Shoreline prediction, topographic and bathymetric information extrac
tion, and coastal zone identification are some of the most important 
tasks in coastal management. Ghoramara Island is part of the Sundarban 
delta complex that has had its land area reduced due to embankment 
failure. This island is located in Hoogly estuary, where salt water mixes 
with fresh water from the major three rivers in India—i.e., the Ganges, 
the Brahmaputra, and the Meghna. The present study aimed to identify 
the land use and land cover changes along with land degradation over 
Ghoramara Island for South 24 Parganas districts using multi-temporal 
satellite images. Landsat 5 TM and 8 OLI/TIRS data were used for this 
study during the periods of 1990–2020. The aim of this study was also to 
categorize the shoreline shifts and perform erosion–accretion estimation 
during those years using geospatial technologies. 

2. Materials and methods 

2.1. Study area 

The Ganges–Brahmaputra–Meghna delta is positioned across three 
major tectonic plates: the Indian Plate, the Burma Plate, and the 
Eurasian Plate. Most people are dependent on agricultural production, 
which is the key source of economic development. Anthropogenic ac
tivities and extreme weather conditions are the reasons for coastal 
vulnerability, forest degradation, flood inundation, and shoreline 
changes. The study area, Ghoramara Island, is affected by extreme 
weather conditions such as cyclonic storms and tidal effects, which 
cause shoreline changes, flood inundation, decreased agricultural pro
ductivity, land degradation, and soil salinity. Due to global sea level rise 
(SLR), the forest land and mangrove areas of the Indian Sundarban are 
decreasing over time. The incidence of flooding has increased due to 
shoreline shifting, river bank erosion, and sediment transformation, 
which all increase the coastal vulnerability of this area. The average 
elevation of this area is 1–2 m above mean sea level (MSL) (Hait and 
Behling, 2008; Jenice Aroma and Raimond, 2016). 

The total, 102 islands can be found in the Indian Sundarban. Of 
these, 48 islands are covered by mangrove forest and the other 54 
islands are inhabited. Ghoramara is the most vulnerable island of India 
and is located in the South 24 Parganas district. This island is situated 
around 4 km away from Kakdwip and 1.91 km from Sagar Island. The 
actual location of this island is 21◦ 54′ 5’’N to 21◦ 55′ 29’’N and 88◦ 7′

2’’E to 88◦ 8′ 26’’E. Once, Ghoramara Island was home to 40,000 
people, but due to land degradation and the vulnerability of this island 
the population has diminished to only 3000 people (Fig. 1). Most resi
dents migrated to obtain a better livelihood. Cultivation, livestock 
farming, and fishing are the main occupations of residents of this island. 

Table 1 
Data source and date of acquisition.  

SL 
No. 

Satellite Sensor Date Path and 
Row 

Data Source 

1 Landsat 4- 
5 

TM 14-11- 
1990 

138, 45 https://earthexplorer. 
usgs.gov/ 

2 09-11- 
2000 

3 07-11- 
2005 

4 06-02- 
2010 

5 Landsat 8 OLI/ 
TIRS 

19-11- 
2015 

6 16-11- 
2020  

Fig. 2. The overall modeling framework adopted for the current research.  
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2.2. Data source 

Earth observational satellite datasets were used for this study, where 
the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land 
Imager/Thermal Infrared Sensor (OLI/TIRS) datasets were derived from 
the USGS website (https://earthexplorer.usgs.gov/). Six temporal 
datasets were acquired (Table 1) for six different years—i.e., 1990, 
2000, 2005, 2010, 2015, and 2020. Table 1 indicates the acquired data 
and other information of the satellite datasets. 

2.3. Image pre-processing 

The satellite imagery was pre-processed and geometric correction, 
atmospheric correction, and topographic correction were carried out in 
the RS and GIS platform. Pre-processing was conducted before image 
classification to improve the accuracy and achieve better biophysical 
singularity. The composite tool from the data management toolbox in 
ArcGIS 10.5 was used to prepare multiband images, leading to the 
preparation of false color and/or true color composite images. The sat
ellite datasets were pre-processed in the ERDAS Imagine software v14 
for the layer stacking, geo-referencing of the image, masking of the study 
area, and finally clipping/sub-setting of the study area using Region of 
Interest (ROI). The satellite images were used for monitoring the Earth 
surface phenomena and for land transformation estimation using a 
change detection technique, which was carried out by overlapping of the 
classified LULC images (Fig. 2). 

2.4. Image classification 

Earth observational satellite dataset classification was performed by 
obtaining different categories of the spectral signatures of different 
temporal Landsat TM and OLI/TIRS imageries. After acquiring the im
ages, band color composite (false color or true color) selection was the 
most significant factor for the different LULC classes. The NIR and red 
band were used for monitoring the vegetation area, where the SWIR and 
NIR bands were used for monitoring the built-up area. Band composi
tions, such as, short-wave infrared (SWIR), near-infrared (NIR), and red 
(R) band combinations, were used for the identification of the soil 
moisture content of build-up areas and bare soil (https://www.usgs. 
gov/faqs/). Each spectral signature was created using polygons in the 
respective satellite images. A total of 5–45 signatures were taken for 
each class. An acceptable signature is the one confirming factor that 
there is ‘minimal confusion’ amongst the land use and land cover to 
remain planned (Table 2). 

Satellite datasets for the different time periods were used for image 
classification and supervised classification with the maximum likelihood 
algorithm. Pixel-based image classification is best for land use classifi
cation. The likelihood Lk is demarcated as the subsequent possibility of a 
pixel being appropriate for class k. 

Lk =
P k

X = P (k)*P(X/k)∑
(i)*P(X

i )
(1)  

where P(k) indicates the possibility of detecting X from class k or the 
possibility concentration purpose (Table 3). 

Generally, P (k) are expected to be equivalent to each other and ƩP 
(i)*P(x/i) indicates the shared class. Therefore, Lk represents the P(X/k) 
or the possibility concentration purpose (http://sar.kangwon.ac.kr/etc). 

2.5. Post classification 

After classification, a post-classification accuracy assessment is 
required for monitoring the accuracy of the classification maps (Cheruto 
et al., 2016). Mixed-pixel data are a common problem for different types 
of Earth observational satellite datasets with moderate spatial resolu
tion, such as Landsat data (Lu and Weng, 2005). The built-up area is 
more heterogeneous due to settlement, road, open space, and water 
bodies, and many urban amenities are located there (Jensen et al., 
2007). The visual interpretation of the satellite data is important for 
classification, and false color composites (FCCs) and true color com
posites (TCCs) are necessary for image classification. After classification, 
accuracy assessment and area calculation were carried out using the 
ArcGIS v10.5 software. 

2.6. Accuracy assessment 

The accuracy assessment is important for identifying observed and 
actual Earth surface phenomena. Accuracy assessments are used for 
monitoring the land use and land cover classification in satellite datasets 
(Owojori and Xie, 2005). Different year satellite datasets were used to 
calculate the Earth surface alteration. The accuracy assessment was 
calculated from the user and producer accuracy of the classification 
imageries. The omission and commission error due to accuracy assess
ment was also identified. The ground references, field survey, and 
Google Earth data were used for monitoring the accuracy. The 
point-based investigation of the satellite data classification maps and 
Earth surface actual conditions were correlated and used for identifying 
the accuracy percentage. The random points were generated and used 
for estimating the accuracy of the classified maps. This technique is 
mostly used for monitoring the accuracy of classified maps and inves
tigating changes in the Earth’s surface. If the accuracy is not above an 
acceptable limit, it may be that the classification maps are improperly 
classified, or some errors have occurred. After accuracy assessment, 
kappa coefficient identification is necessary in order to determine the 
non-parametric classification accuracy. 

2.7. Kappa statistic 

The kappa coefficient was calculated from the user, producer accu
racy, and number of signatures given by the LULC classification. The 
kappa coefficient was used for confusion matrix assessment, which 
measured the accuracy of the classified map matrix (Rosenfield and 
Fitzpatrick-Lins, 1986). The kappa coefficient was calculated from the 
observed accuracy and expected accuracy of the classification maps and 
Earth surface phenomena. The kappa coefficient was not only used to 
calculate the observed and actual scenarios of the Earth surface but also 
to measure the total disagreement (Cohen, 1968). 

Table 2 
Descriptive part of each classified factors of this area.  

Sl 
No. 

LULC classes Description 

1 Built-up Area Residential area, commercial, industrial, transportations, 
roads and construction area. 

2 Vegetation Area having plantation or natural growing forest, its 
including many types of trees. 

3 Marshy Land Treeless wetland and mud with distributed grasses. 
4 Water Bodies River, Pond, lakes, and open water area. 
5 Agricultural 

Land 
Crop land and fallow land of this area. 

6 Sandy Land Sandy area along with the shoreline  

Table 3 
Scale of kappa coefficient.  

SL No. Value of K Strength of agreement 

1 <0.20 Poor 
2 0.21–0.40 Fair 
3 0.41–0.60 Moderate 
4 0.61–0.80 Good 
5 0.81–1.00 Very good  
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K =
(Po − Pe)
(1 − Pe)

(2)  

where K means Kappa value, Po represents the observed accuracy, and 
Pe indicates the chance accuracy. After accuracy assessment, kappa 
coefficient measurement is necessary for identifying the validity of the 
LULC classification. 

2.8. Shoreline extraction technique 

The high water line (HWL) of the satellite datasets was used to 
identify the actual shoreline shifting of different years of satellite data
sets. The HWL has often been used as an identifier (Boak and Turner, 
2005) for the highest point of coastal areas or the earlier high tide of the 
location derived from satellite images and the coast by a noticeable 
wet/dry strip (Pajak and Leatherman, 2002). The HWL was calculated 
using band rationing and then digitized in the ArcGIS 10.5 software. 
Additionally, band rationing was used for estimating the shoreline 
change of the study area in different time periods. After band rationing, 
raster to vector analysis is necessary in order to identify the actual 
shoreline of the study location. 

2.9. Normalized difference vegetation index (NDVI) 

Forest land is essential for healthier environmental development, 
because forest area is used to maintain the oxygen balance; decrease the 
soil salinity and soil erosion; and maintain soil moisture, thermal vari
ation, heat transformation, and infiltration of the groundwater. The 
surface runoff is also maintained by the forest ecosystem. Many coun
tries have their limits of forest land, with India having 33% forest land. 

The overwhelming population pressure, transportation development, 
deforestation, low afforestation, high level of paper use, and coastal 
erosion have led to decreases in the area of forests in many parts of the 
world. Urban expansion is the main reason for forest land losses and 
thermal variation; extreme weather conditions have also increased 
mangrove forest area changes. The Normalized Different Vegetation 
Index (NDVI) is used for monitoring the green space area and in change 
analysis. Earth observational satellite datasets are used for this type of 
index-based vegetation monitoring. Landsat TM and OLI/TIRS data with 
different bands are used for monitoring vegetation changes and the 
actual scenarios of the Earth surface. The NDVI values vary between − 1 
and +1, where plus values indicate healthier vegetated land and minus 
values indicate the open spaces and other LULC classes. 

NDVI =
NIR − R
NIR + R

(3) 

The NIR band indicates the near infrared band and R indicates the 
red band of the Landsat TM and OLI/TIRS satellite datasets. The given 
equation indicates the vegetation scenarios because NIR and red bands 
mostly dominate the green spaces. The NDVI values are also used for the 
change analysis of the vegetation using high NDVI values and calcu
lating the green space dynamics of the study area. 

3. Result and discussion 

3.1. Land use pattern of Ghoramara Island 

The livelihood of Ghoramara Island mainly depends on its natural 
resources. Agriculture and fishing (inland and marine) are the main 
occupations in this area. Due to land degradation, this area has lost a 

Fig. 3. Land use and land cover map of this study area between 1990 and 2020.  
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huge amount of land in the last thirty years. Land loss is directly 
affecting the local people, and many of them have migrated to obtain 
most sustainable livelihoods. However, waterways are the main form of 
transportation connecting the mainland with this island. In this study, 
six major land areas were identified: built-up area, vegetation, water
bodies, agricultural land, marshy land, and sandy land. Agricultural 
activity is the main land use type in this area because the fertile land is 
used for rice cultivation. Due to shoreline shift, Ghoramara Island has 
lost its agricultural land and fisheries, which were the main income 
sources of this area. The marshy land is frequently submerged by tidal 
water and the shoreline has gradually eroded. The north, north-eastern, 
and southern parts of Ghoramara Island are highly vulnerable and have 
lost a lot of land due to sea level rise. 

3.2. Land use change calculation 

The RS-based land use and land cover classification images of 
Ghoramara Island for the years of 1990, 2000, 2005, 2010, 2015, and 
2020 are shown in Fig. 3. The agricultural land has increased from 1990 
to 2020 because of the high production of crops. Inland fisheries and 
crop production are the main occupations on Ghoramara Island, but 
people frequently leave this place for other areas to obtain a better 
livelihood. Sea level rise is affecting the coastal area and around 39% of 
the area has been lost in just 30 years (Fig. 3). A huge amount of 
vegetation area has been lost in the study period. In the years of 1990 
and 2000, build-up areas were seen scattered in all of the areas, but if we 
look at other years such as 2005, 2010, 2015, and 2020, we can see that 
built-up areas have been lost. Mainly, the people in these areas migrated 
to Kakdwip, Namkhana, Sagar, and the Pathar Patima block of South 24 
Parganas district. In the years from 2010 to 2020, the middle and 
southern parts of this area were changed into agricultural land. Forest 
land was degraded and converted to agricultural land in the northern, 
north-east, and southern parts. This study reveals the loss of built-up 
land. 

3.3. Land use/land cover gain and loss 

Thirty years of Landsat data were used to classify this study area. The 
amount of built-up area was 18.053% in the year of 1990, whereas, due 
to land degradation, the amount of built-up area is gradually reducing. 
The built-up area was 17.38%, 15.02%, 13.30%, 12.96%, and 12.65% in 
the years of 2000, 2005, 2010, 2015, and 2020, respectively. However, 

the built-up area of was reduced around 62.345 ha area from the year 
1990–2020. Agricultural land occupied 38.66% of the total area of 
Ghoramara Island in the year of 1990 and 39.18%, 38.78%, 39.88%, 
41.72%, and 45.79% of the area in the years of 2000, 2005, 2010, 2015, 
and 2020, respectively. It was observed that 63.33 ha of agricultural 
land were lost from 1990 to 2020. The vegetation area was reduced 
during the last thirty years because people have converted the scattered 
forest land into agricultural land for crop production and fish cultivation 
on Ghoramara Island. Again, 33.12%, 32.56%, 31.31%, 30.82%, 
27.11%, and 23.50% of scattered forest area was identified in the years 
of 1990, 2000, 2005, 2010, 2015, and 2020, respectively. The vegeta
tion areas mainly comprised some planted trees, grassland, and natural 
greenery. In the last 30 years, around 113.24 ha of vegetation has been 
lost in Ghoramara Island. Those areas have converted into agricultural 
land and some parts are built-up land. Water bodies were mainly clas
sified into general ponds and inland fisheries. It was observed that 
shoreline shifting leads to land loss and a loss of water bodies. Some 
inland fisheries and general ponds are located in middle and shoreline 
areas in the year of 2020. A total of 3.17% of the area was occupied in 
the year of 1990, with 6.22%, 7.11%, 8.21%, 7.67%, and 4.92% (Fig. 4) 
remaining in the years of 2000, 2005, 2010, 2015, and 2020, respec
tively (Table 5). Marshy land and sandy land are located along the 
shoreline area of Ghoramara Island. No Mangrove forest is located on 
Ghoramara Island. Sea level rise affects people’s livelihoods, and the 
shifting of the shoreline has reduced the area of Ghoramara Island 
(Fig. 5). This area requires proper planning and management, otherwise 
the land area of Ghoramara island will be lost in around 40–50 years. 

Fig. 4. Area calculation of different land classes of six different years.  

Table 4 
Erosion and accretion analysis of Ghoramara Island.  

Year Total Area 
(Ha) 

Erosion 
(Ha) 

Accretion 
(Ha) 

Change 
(Ha) 

Remarks 

1990 608 - - - - 
1990 to 

2000 
517 90.24 0.76 − 89.48 Erosion 

2000 to 
2005 

501 12 4 − 8 Erosion 

2005 to 
2010 

472 28 1 − 27 Erosion 

2010 to 
2015 

420 51.125 0.875 − 50.25 Erosion 

2015 to 
2020 

375 45 0 − 45 Erosion  
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The accuracy assessment and kappa coefficient were calculated in order 
to validate our classification result (Tables 6–11). 

3.4. Assessment of shoreline change 

The subsequent changes in the coastline of Ghoramara Island were 
detected using thirty years of Landsat data following the band rationing 
method. HWL data were digitized to identify the shoreline of this island. 
Between the years 1990 and 2020, the shoreline of the entire island 
shifted north-east; the north-west and southern parts were the most 
affected by the shoreline shifting. The shoreline was shifted in the north, 

north-east, and southern parts of the island and slightly shifted in the 
south-east and south-west parts from 1990 to 2000. The land area 
increased from 2000 to 2005; the southern parts accreted but some parts 
eroded. Between the years of 2010 and 2015, due to sea level rise, the 
north, north-east, and southern parts were eroded. This same situation 
occurred during the years 2015–2020 (Fig. 6). Climate change can 
damage coastal areas and affect the environment (Fig. 7). People have 
suffered from this land degradation and decrease in Ghoramara Island. 
In this study, we focused on shoreline shifting due to climate change, 
which affects the livelihood of people in coastal areas and also leads to 
land losses. People have lost their cropland and fisheries, and it is now 

Table 5 
Land use and Land cover changes analysis.  

Class Name 1990 2000 2005 2010 2015 2020 

Area 
(Ha) 

Percentage 
(%) 

Area 
(Ha) 

Percentage 
(%) 

Area 
(Ha) 

Percentage 
(%) 

Area 
(Ha) 

Percentage 
(%) 

Area 
(Ha) 

Percentage 
(%) 

Area 
(Ha) 

Percentage 
(%) 

Built-up Land 109.76 18.05 89.86 17.38 75.24 15.02 62.78 13.30 54.46 12.96 47.42 12.65 
Agricultural 

Land 
235.05 38.66 202.55 39.18 194.28 38.78 188.25 39.88 175.24 41.72 171.73 45.79 

Vegetation 201.36 33.12 168.35 32.56 156.86 31.31 145.46 30.82 113.86 27.11 88.12 23.50 
Water Body 19.29 3.17 32.14 6.22 35.62 7.11 38.76 8.21 32.21 7.67 18.45 4.92 
Marshy Land 34.65 5.70 18.76 3.63 29.77 5.94 24.35 5.16 28.54 6.80 37.54 10.01 
Sandy Land 7.88 1.30 5.34 1.03 9.23 1.84 12.39 2.63 15.68 3.97 11.74 3.13  

Fig. 5. Spider diagram shows that different land classes in the years of 1990–2020.  

Table 6 
Confusion matrix of 1990 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 9 1 0 0 0 0 10 10.00% 90.00% 
Built-up Area 0 24 2 0 1 0 27 11.11% 88.89% 
Vegetation 0 1 28 1 3 0 33 15.15% 84.85% 
Marshy Land 1 0 0 10 1 2 14 28.57% 71.43% 
Agricultural Land 0 1 5 0 41 1 48 14.58% 85.42% 
Sandy Land 0 0 0 2 0 6 8 25.00% 75.00% 
Column Total 10 27 35 13 46 9 140   
Omission Error 10.00% 11.11% 20.00% 23.08% 10.87% 33.33%    
Produce Accuracy 90.00% 88.89% 80.00% 76.92% 89.13% 66.67%    
Overall Accuracy 84.29%    Kappa Coefficient 0.7968     
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difficult to build a sustainable livelihood in Ghoramara Island. 

3.5. Erosion and accretion calculation 

The delta region is made up of unstable land. The 

Ganges–Brahmaputra–Meghna delta is affected by climate change. Sea 
level rise along with shoreline changes can damage the coastal envi
ronment and people’s livelihoods. In South 24 Parganas, many islands 
that have seen recent development have been facing a huge amount of 
land loss. Ghoramara is one of the islands affected by sea level rise and 

Table 7 
Confusion matrix of 2000 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 10 1 0 1 0 0 12 16.67% 83.33% 
Built-up Area 1 28 2 0 1 0 32 6.25% 87.50% 
Vegetation 0 4 43 0 5 0 52 17.31% 82.69% 
Marshy Land 0 0 2 17 0 1 18 16.67% 94.44% 
Agricultural Land 0 1 5 0 48 0 54 11.11% 88.89% 
Sandy Land 0 0 0 1 0 6 7 14.29% 85.71% 
Column Total 11 34 52 19 54 7 175   
Omission Error 9.09% 17.65% 17.31% 10.53% 11.11% 14.29%    
Produce Accuracy 90.91% 82.35% 82.69% 89.47% 88.89% 85.71%    
Overall Accuracy 86.86%    Kappa Coefficient 0.8279     

Table 8 
Confusion matrix of 2005 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 9 0 0 1 0 1 11 18.18% 81.82% 
Built-up Area 0 37 2 0 3 0 42 11.90% 88.10% 
Vegetation 1 4 49 0 3 0 57 14.04% 85.96% 
Marshy Land 1 0 0 11 0 1 13 15.38% 84.62% 
Agricultural Land 0 1 3 0 45 0 49 8.16% 91.84% 
Sandy Land 0 0 0 2 0 8 10 20.00% 80.00% 
Column Total 11 42 54 14 51 10 182   
Omission Error 18.18% 11.90% 9.26% 21.43% 11.76% 20.00%    
Produce Accuracy 81.82% 88.10% 90.74% 78.57% 88.24% 80.00%    
Overall Accuracy 87.36%    Kappa Coefficient 0.8351     

Table 9 
Confusion matrix of 2010 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 10 0 0 1 0 2 13 23.08% 76.92% 
Built-up Area 0 25 1 0 2 0 28 10.71% 89.29% 
Vegetation 0 1 28 0 3 0 31 12.90% 90.32% 
Marshy Land 0 0 0 7 0 1 8 12.50% 87.50% 
Agricultural Land 1 1 3 0 37 0 42 11.90% 88.10% 
Sandy Land 0 0 0 1 0 8 9 11.11% 88.89% 
Column Total 11 27 32 9 42 11 131   
Omission Error 9.09% 7.41% 12.50% 22.22% 11.90% 27.27%    
Produce Accuracy 90.91% 92.59% 87.50% 77.78% 88.10% 72.73%    
Overall Accuracy 87.79%    Kappa Coefficient 0.8428     

Table 10 
Confusion matrix of 2015 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 4 0 0 1 0 0 5 20.00% 80.00% 
Built-up Area 0 21 2 1 4 1 29 27.59% 72.41% 
Vegetation 0 1 27 0 4 0 32 15.63% 84.38% 
Marshy Land 1 0 0 5 0 1 7 28.57% 71.43% 
Agricultural Land 0 1 3 0 21 0 24 16.67% 87.50% 
Sandy Land 0 0 0 1 0 2 3 33.33% 66.67% 
Column Total 5 23 32 8 29 4 100   
Omission Error 20.00% 8.70% 15.63% 37.50% 27.59% 50.00%    
Produce Accuracy 80.00% 91.30% 84.38% 62.50% 72.41% 50.00%    
Overall Accuracy 80.00%    Kappa Coefficient 0.7340     
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has lost a huge amount of its land area. In this study, thirty years 
(1990–2020) of satellite data were used to identify the shoreline 
changes. The area of Ghoramara Island in 1990, 2020, 2005, 2010, 
2015, and 2020 was 608, 517, 501, 472, 420, and 375 ha, respectively 
(Fig. 8). Between the years of 1990–2000, an amount of 90.24 ha was 
eroded while 0.76 ha accreted. Erosion is occurring over time on 
Ghoramara Island. The population is suffering from this natural disaster 
and has migrated to other places to obtain a more sustainable livelihood. 
Between the years of 2000–2005, 2005 to 2010, 2010 to 2015, and 2015 

to 2020, amounts of 12, 28, 51.12, and 45 ha of area were eroded 
(Fig. 9). Agricultural land, built-up land, and many fisheries were 
destroyed during those periods. Around 39% of the area was eroded in 
the last thirty years (Table 4). Mangrove forest is a natural barrier that 
protects coastal regions, but this island does not have any mangrove 
forest. Planting a mangrove forest is therefore the best option to build a 
sustainable livelihood on this island. 

Table 11 
Confusion matrix of 2020 using Google Earth.  

Class Name Ground Truth/Reference Row Total Commission Error User Accuracy 

Water Body Built-up Area Vegetation Marshy Land Agricultural Land Sandy Land 

Water Body 5 0 0 1 0 0 6 16.67% 83.33% 
Built-up Area 0 17 2 0 0 0 19 10.53% 89.47% 
Vegetation 1 0 23 0 3 0 27 14.81% 85.19% 
Marshy Land 0 0 0 4 0 1 5 20.00% 80.00% 
Agricultural Land 0 1 5 0 35 0 41 14.63% 85.37% 
Sandy Land 0 0 0 0 0 2 2 0.00% 100.00% 
Column Total 6 18 30 5 38 3 100   
Omission Error 16.67% 5.56% 23.33% 20.00% 7.89% 33.33%    
Produce Accuracy 83.33% 94.44% 76.67% 80.00% 92.11% 66.67%    
Overall Accuracy 86.00%   Kappa 

Coefficient 
0.8062      

Fig. 6. Shoreline trend map of Ghoramara Island.  
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3.6. NDVI investigation 

The Normalized Difference Vegetation Index (NDVI) was used to 
identify the vegetation health of an area. In this study, satellite data from 
6 different years’ were used to calculate the NDVI values. The green 
color indicates healthy vegetation, whereas the red color on the map 
indicates lower amounts of vegetation or other LULC classes on Ghor
amara Island. The different vegetation index shows that vegetation has 
decreased due to shoreline changes and saltwater intrusion. Fresh water 
ponds have been damaged due to land degradation on Ghoramara Is
land. The highest and lowest values obtained for the year of 1990 were 
0.748837 and − 0.951219, respectively (Fig. 10). Similarly, the highest 
and lowest values obtained for the year 2020 were 0.272969 and 
− 0.0467467, respectively. 

4. Conclusions 

The coastal area is very vulnerable to the effects of climate change 
and changing environmental conditions. Shoreline shifting studies are 
essential to determine land loss or gain. Shoreline erosion and accretion 
studies aim to identify means for the sustainable development of the 
coastal ecosystem and improve people’s livelihoods. People who live in 
coastal areas are suffering hugely from natural disasters such as flood
ing, land erosion, and saltwater intrusion. In this study, we calculated 
the land use changes and shoreline shift between the years of 1990 and 
2020 for Ghoramara Island, India. Due to population pressure, people 
can migrate from urban to rural areas and island areas. In recent years 
(1990–2020), Ghoramara Island has lost around 39% of its land and 
almost 90% of its people have migrated to other places. The total area of 
Ghoramara Island in the years of 1990, 2020, 2005, 2010, 2015, and 
2020 was 608, 517, 501, 472, 420, and 375 ha, respectively. Most of the 

Fig. 7. Shoreline trend of major affected area of this study.  
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land loss in this area occurred due to climate change. To maintain an 
equal balance between the natural environment of this area and human 
intervention, proper attention and management is needed. Otherwise, 
this island will be quickly eroded in the future and all of its people will 
be forced to migrate elsewhere. The main problem is that water is the 
main source connecting it to the mainland. This study aimed to identify 
the land degradation due to shoreline shifting on Ghoramara Island in 
order to provide necessary information that would enable appropriate 
planning for the sustainable management of Ghoramara Island. Further 

studies on this topic are needed in order to achieve the better livelihood 
management of Ghoramara Island with regard to shoreline shifting rate, 
future shoreline prediction, and socio-economic condition. If we do not 
pay this topic proper attention, it may create more problems very soon. 
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